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Abstract

This review focuses on the applications of finite element method (FEM) for heat exchanger 
analyses. Solutions to convection-dominated heat transfer problems usingtheGalerkinFEM 
approximation are always characterised with errors caused by numerical instabilities. Efforts to 
enhance the stability and exactness of results had led to development of a number of stabilization 
techniques.Also, there have been algorithms formulated to effectively solve the sparse symmetric 
and non-symmetric matrix systems resulting from FEM discretised equations of thermal flow 
problems. The development of stabilization techniques and solvers has made the FEM approach a 
more formidable computational fluid dynamics (CFD) tool. However, there have been limited uses 
of finite element CFD codes to heat exchanger applications.
Keywords: Finite element method, Heat exchanger, Stabilization techniques, Solvers

1.0 Introduction
Heat exchangers are widely used in industries to cause transfer of heat between two or 

more fluids. Common applications of heat exchangers are found in power plants, space heating, 
automotive cooling systems, heat recovery units, food and process industries and so on (Bhutta et 
al., 2011; Nasiruddin and Siddiqui, 2006; Parikshit et al., 2015). Heat exchanger (HE) types found 
in these industries are not limited to spiral, lamella, plate-fin, tube-fin, shell-and-tube, double pipe, 
spiral, rotary and fixed matrix heat exchangers (Bhutta et al., 2011).

According to Borah et al. (2013), the heat transfer process between a hot and a cold fluid in 
any heat exchanger is achieved through mechanisms of conduction and convection. However, the 
numerical predictions of the thermal dynamic phenomena, which are described by partial 
differential equations (PDEs), within heat exchangers, are complex to resolve (Micheletti et al., 
2005).

The advent of digital computer and easy-of-use powerful software packages, the subject of 
computational fluid dynamics (CFD), which employs the computational or numerical techniques to 
solve PDEs, has increasingly become interesting and as it offers solutions to problems difficult to 
handle by analytical and experimental methods in more convenient ways (Cengel and Ghajar, 
2015; Papanastasiou et al., 2000). This interest has been extended to heat exchanger analysis 
(Nithiarasu, 2005). Full descriptions and details of flow field variables are usually available at any 
region of any computational domain in CFD as repeated and parametric runs of numerical models 
are usually accomplished with reduced efforts (ALENTEC, 2014).

As stated by Kotwal and Patel (2013), the alternative, cost effective and speedy solutions to 
heat exchanger designs and optimizations are offered by CFD. Also, Stevanovic et al. (2001) added 
that owing to the energy efficient and low cost design provided by this method, researchers have 
successfully employed it in predicting complex flow and heat processes over tube bundles in heat 
exchanger.
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In this paper, a critical review of finite element CFD technique and its solvers for analyses 

of heat exchangers will be discussed.

2.0 Numerical Solutions to Mathematical Models
There are several discretisation methods employ in finding solutions to problems 

established on partial differential equation based mathematical models (Nithiarasu, 2005; Peiro and 
Sherwin, 2005). This is necessitated because of the closure problem caused by more number of 
unknowns to available number of PDE equations, and a large number of approximate discretised 
algebraic equations derived with any of these methods are solved for the unknowns (Sayma, 2009).

The oldest and simplest in implementation among these numerical methods is the finite 
difference method (FDM). FDM makes use of the truncated Taylor’s expansion on structured 
rectangular grids to approximate solutions to problems (Kuzmin, 2010; Peiro and Sherwin, 2005; 
Sayma, 2009). But the use of this method has been limited by difficulty it normally encounters 
with irregular geometries (Lewis et al., 2004; Peiro and Sherwin, 2005).

The finite volume method is also a numerical method which has found its place in 
commercial computational fluid dynamics (CFD) codes. This method extends the use of FDM for 
both structured and unstructured meshes to solve complex flow problems using integral 
formulation (Kuzmin, 2010; Lewis et al., 2004). FVM is very versatile in discretising hyperbolic 
equations but its accuracy reduces whenever approximating diffusive fluxes, also the high-order 
estimations of FVM are very hard to formulate using the theories that established its first and 
second order schemes (Kuzmin, 2010).

Comparing with FDM and FVM, a relatively new numerical method in CFD analysis is the 
finite element method (FEM), although it has been extensively used for structural analysis 
problems (Gikadi, 2013; Kuzmin, 2010; Lewis et al., 2004; Sayma, 2009). FEM as with FVM is 
capable of approximating problems with irregular geometries using integral formulations on 
structured and unstructured meshes (Sayma, 2009). Although, FEM has been described to offers 
the best solutions to elliptic and parabolic problems in structural analysis, it requires suitable 
technique to capture the hyperbolic nature of convection-dominated flows (Gikadi, 2013; Kuzmin, 
2010) .

According to (Lewis et al., 2004), several approaches to finite element analysis have been 
developed such as the Ritz (heat balance integral), Rayleigh-Ritz (Variational) and the weighted 
residual methods. Also, the commonly used techniques of the weighted residual method are the 
point collocation method, sub-domain collocation method, least-square method and the most 
popular Galerkin method (Sayma, 2009; Zienkiewicz and Taylor, 2000).

There exits some variants of the FEM, among these is the Spectral Element Method (SEM). 
SEM combines the accuracy of pseudo-spectral method with the flexibility of Galerkin FEM for 
complex geometries, and has been found to be an effective tool for solving frequency domain wave 
propagation problems (Komatitsch et al., 2005; Schuberth, 2003). One other variant of FEM is the 
boundary element method (BEM). BEM has advantage where there are very large or infinite 
elements; therefore, solutions found from the exterior domains are integrated over to the interior to 
determine the solutions of the unknowns. This method has been described to be more applicable to 
nonlinear problems and smooth boundaries for accuracy (Aliabadi and Wen, 2011; Antes, 2010).

Another numerical method in the field of numerical science is the vortex element method 
(VEM), this method has recorded good success in analysing complex fluid and heat transfer 
problems using grid-free attribute with simple mathematical operations at lower computational 
memory and time (Dare and Petinrin, 2010; Petinrin et al., 2010). But this method has not been 
widely developed into CFD code.
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3.0 Numerical Stabilization of Convection-Dominated Flows

Solutions offer by Galerkin approximation to convection-dominated transport problems are 
always characterised with errors (Zienkiewicz and Taylor, 2000), and this is as a result of the 
spurious oscillations caused by numerical instabilities (Fries & Matthies, 2004; Knobloch, 2007; 
Lewis et al., 2004; Matthies et al., 2015). Although, the same problem is also found with the FDM 
and FVM but using upwind schemes in reducing the oscillations (Lewis et al., 2004). Peclet and 
Reynolds numbers are the two important dimensionless parameters that are used to check the onset 
of instability with Galerkin FEA approach, and the higher any of these numbers the more 
instability in the system (Fries and Matthies, 2004). For linear elements, oscillation begins when 
the element Peclet number or Reynolds number is greater than one, and given one-dimensional 
PDE-based equation as

The element Peclet number, Pe is determined by (Fries and Matthies, 2004; Gikadi, 2013; 
Nigro et al., 2015)

From equations (1) and (2), <f> is the flow variable, u is the convective velocity vector, c is 
the diffusion coefficient and h is the element size in the flow direction, and for one-dimensional 
problem it is the length of the local element.
From on-going, the instability can be reduced by decreasing the element size, but the practicability 
is very rare as it requires a very high density mesh generation (COMSOL, 2013; Sun et al., 2009).

However, there are a number of stabilization techniques that have been developed for 
enhancing the stability and exactness of results analysis with high Peclet number (John and 
Knobloch, 2016; Lewis et al., 2004; Matthies et al, 2015; Sun et al., 2009).

One of the earliest approaches to eliminate the instabilities characterised by the standard 
Galerkin method in the 1970s is the introduction of the artificial diffusion scheme. With this 
scheme an artificial viscosity term was introduced in the equation to reduce the Peclet number and 
eliminate the negative diffusion caused by numerical instability (Fries and Matthies, 2004; Gikadi, 
2013). (Gikadi, 2013) further stated that having a reasonable selection of the artificial diffusion, 
this approach is very accurate for one-dimensional problem but predictions are always inaccurate 
as space dimension increases because of excessive and isotropic additional diffusion caused by 
artificial diffusion term. Also, inaccuracies set in for inability of this approach to specifically take 
care of the source term whenever present (Fries and Matthies, 2004; Gikadi, 2013).

The Petrov Galerkin approach modifies the weight functions, thus making it different from
the shape functions (Fries and Matthies, 2004; Onate and Manzan, 2000). Therefore, for a PDE of
general form
L u = f (3)
and weak form

(Zii - /)c/Q  = 0 (4)
This weight function can then be determined as

W* =Wt + TW; (5)
Here the wt is the original shape function, r is the stabilization parameter and w \  is the new 

test function for node i and L is advection-diffusion-reaction or any differential operator (Chaple, 
2006; Onate and Manzan, 2000; Zienkiewicz and Taylor, 2000). However, effect of adding 
crosswind diffusion, another technique that introduces artificial diffusion in streamline direction 
for capturing of undershoots and overshoots, is always felt on the output results while solving time- 
dependent and multi-dimensional problems (Fries and Matthies, 2004).
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To overcome the inherent problems associated with the isotropic artificial diffusion, the 

streamline-upwind Petrov-Galerkin (SUPG) was developed by Brooks and Hughes in 1979 (Fig. 1) 
(Franca et al. 2003; Fries and Matthies, 2004; Gikadi, 2013; Knobloch, 2007; Lewis et al., 2004). 
As further explained by (Fries and Matthies, 2004; Gikadi, 2013; Kuzmin, 2010), SUPG introduces 
artificial diffusion tensor instead of a scalar only in the streamline direction thereby imposing 
consistency as against the inconsistency of the isotropic artificial diffusion schemes and this makes 
the artificial diffusion terminology not suitable for this approach. Here the weight function is 
defined as
w* = wi +zLadvwi (6)

From equation q, Lajv is the advective part of the operator (Chaple, 2006; Fries and 
Matthies, 2004).
According to (Gikadi, 2013), Brooks and Hughes in 1982 modified the technique by applying this 
operator on all the equation terms to insure consistency.

0.4 0.6
x

Fig. 1: A result from spurious oscillation with Galerkin method (Franca et al., 2003)

Galerkin Least-Square (GLS) scheme is another technique which was stemmed from 
mathematical relations and shares the same characteristics and equality with the SUPG for 
convection-diffusion problems with linear elements (Fries and Matthies, 2004; Gikadi, 2013; 
Onate and Manzan, 2000). But this scheme as against the SUPG includes the diffusive and reactive 
terms in its stabilization operator (Gikadi, 2013). The GLS adds the least square form of residuals 
to the Galerkin method to boost its stability without compromising the consistence and accuracy of 
results (Fries and Matthies, 2004). Also for GLS, the weight function can be given as (Chaple, 
2006; Fries and Matthies, 2004).
w* = wt + rLwt (7)

Pressure Stabilizing Petrov-Galerkin (PSPG) is also a technique used to dampen the 
instability caused by the Lagrange multiplier that is the pressure through the perturbation of the test 
functions (Fries and Matthies, 2004; Chaple, 2006). This approach and others like the SUPG and 
GLS disregard the popular Babuska-Brezzi condition which has to do with the substitution of the 
pressure term with velocity interpolation (Franca et al, 2003; Fries and Matthies, 2004; Lewis et al, 
2004).

Onate and Manzan (2000) reported that the subgrid scale (SGS) method is an all-purpose 
scheme to generate different kinds of stabilisation techniques, similar to GLS but its operator has a 
difference sign in the diffusive term. The weight function here is (Chaple, 2006).
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w* = +(-L*)rw' (8)
where L* is the adjoint operator

Other schemes that have been reported in literatures that are have been successfully for 
time-dependent problems are the Taylor-Galerkin (TG) and Characteristic Galerkin (CG). The CG, 
which is also known to as the Characteristic Based Split (CBS) technique, follows Babuska-Brezzi 
condition and has a wider applicability (Lewis et al, 2004; Zienkiewicz and Taylor, 2000).

Different combinations of these stabilization techniques have been used to obtain more 
accurate solutions, most especially the SUPG/PSPG (Fries and Matthies, 2004; Tezduyar and 
Sathe, 2003). A typical illustration is shown in Fig. 2 for an air flow around a cylinder located at 
0.15 m from entry of a channel (0.32 x 2.20 m). It is clearly shown that spurious oscillations are 
more evident from the surface plot of flow distribution with no stabilization.

0 0,01 0 02 0,23 0,2-1 0.05 D.0E
A 0,0603

(a)

D. 03 0,02 0,03 0,24 0,23
A 0,0558

(C)

0 0.22 0.22 0.23 0.24 0.25
A 0.0551

(d)
Fig. 2: Flow of velocity distribution around a cylinder (a) no stabilization, (b) with crosswind 
diffusion, (c) with streamline (SUPG/GLS) diffusion and (d) with both streamline (SUPG/GLS) 
and crosswind diffusions
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4.0 Finite Element Discretised Equation Solvers

In the last two decades, different algorithms have been formulated in order to effectively 
solve both sparse symmetric and non-symmetric matrix systems (Pozza, 2013). Ways of solving 
finite element discretised equations which are always characterised by these kinds of matrix 
systems for convection-dominated problems are divided into two, namely: direct and iterative 
methods, and the choice of any solver depends on the desired accuracy, time and memory 
requirements (Peladeau-Pigeon, 2012).

The direct solvers make use of makes use of the Cholesky factorization, LU factorization or 
the Gaussian Elimination to provide exact solutions to system of linear equations in a number of 
finite sequences while trading off with the round-off errors. These solvers are very robust and 
deterministic and sometimes provide solutions to complicated problems at very high computer 
memory costs (Gikadi, 2013; Peladeau-Pigeon, 2012; Pozza, 2013).

As reviewed by Ferfecki (2013) and Pozza (2013), one of the common direct solvers is the 
Multifrontal Massively Parallel Sparse (MUMPS) direct solver, which is fast and highly efficient 
for both symmetric and non-symmetric system of matrices, shared memory multi-core ability and 
cluster capable, and another solver which shares almost the same features with MUMPS is the 
Parallel Sparse Direct Solver (PARDISO). Ferfecki (2013) also commented on yet another direct 
solver which is Sparse Object Oriented Linear Equations Solver (SPOOLES) that it requires less 
computer memory but slower in computing than MUMPS. Some other direct solvers are the 
Frontal and Multifrontal solvers but are less efficient than MUMPS (Pozza, 2013).

The iterative solvers employ an initial guess to find good approximations to exact solutions 
by improvement on repetitive and sequential estimations. Although, the iterative solvers are less 
efficient as the convergence levels may be far from exact solutions and sometimes take more 
computational time but they require less computer memory and become more unavoidable to use 
as the spatial direction increases to three (Gikadi, 2013; Peladeau-Pigeon, 2012; Pozza, 2013). 
Also, Pozza (2013) added that the dependability and improvement on the convergence of any 
iterative solver can be achieved with the use of a good preconditioner, which is employed as 
transformation matrix to modify the arrangement of the coefficient matrix and smoothen the 
solution of the solver.

Among the most common iterative schemes are the Jacobi, Gauss-Seidel, successive over­
relaxation (SOR) and the symmetric successive over-relaxation (SSOR) solvers, very simple in 
implementation and robust but are less effective for practical problems as iteration time increases 
out of proportion for more number of degrees of freedom (Gikadi, 2013; Pozza, 2013).

According to Ferfecki (2013), Gikadi (2013), Kirkegaard and Auken (2015) and Pozza 
(2013), the conjugate gradient (CG) solver method is one of the more efficient and cluster capable 
solvers, but only effective for hermitian and positive definite matrices. Extending the capability of 
CG to handle the non-hermitian and indefinite matrices, the bi-conjugate gradient (BiCG) and bi­
conjugate gradient stabilized (BiCGStab) were developed. But COMSOL (2013) and Gikadi 
(2013) stated that the convergence behaviour of both solvers may be erratic and stop before finding 
a good approximate solution, this is however still fair for the BiCGStab.

Also, another set of more robust but with more memory requirements than the BiCGStab 
are the generalized minimal residual (GMRES) and the flexible generalized minimal residual 
(FGMRES), which as well handles more preconditioners and requires more memory than the 
GMRES (COMSOL, 2013; Ferfecki, 2013; Gikadi, 2013).

While these iterative solvers have been categorised as Krylov subspace methods, the 
preconditioners normally apply to aid their performance and accelerate convergence still include 
the usualJacobi, Gauss-Seidel, symmetric successive over-relaxation (SOR) and symmetric 
successive over-relaxation (SSOR) (Pozza, 2013). Other preconditioners that have been 
successfully used are not limited to the single-level symmetric Gauss-Seidel (SGS) relaxation,
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algebraic multigrid (AMG), geometric multigrid (GMG) and incomplete LU (Ferfecki, 2013; 
Gikadi, 2013; Pozza, 2013).

5.0 Finite Element Based Software Codes and Their Heat Exchanger 
Applications

Several finite element codes have been built for modelling of flow and heat transfer 
problems, which are also capable of modelling the thermal and hydraulic characteristics of heat 
exchangers. Some of the codes are FIDAP, POLYFLOW, Elmer, Modelica, Abaqus, ADINA, 
COMSOL Multiphysics and CalculiX (Bhutta et al., 2011; Borah et al., 2013). Although, the codes 
have been used extensively to conduct flow and heat transfer analyses, literature are scarce on their 
heat exchanger applications. However, a number of researchers have used some of the finite 
element CFD codes for heat exchanger analyses as shown in Table 1. In a compressive review 
given by Bhutta et al. (2011) on CFD application to heat exchangers design, almost all the works 
with CFD codes listed were built on FVM, and they were FLUENT and CFX. This does not imply 
that finite volume solvers are better at approximating heat exchanger problems than solvers built 
on FEM. A test case conducted by Micheletti et al. (2005), indicated a more accurate prediction of 
FEM over FVM for the same number of elements while the FEM with grid adaptation gave the 
best result for specific enthalpy of heat exchanger outlet as shown in Fig. 3. Thus, precision level 
of any CFD solution does not depend only on the numerical methods of choice, but also on the 
selected stabilization technique, solver, mesh grid type and adaptation, and so on.

Table 1: Heat exchanger analyses with finite element CFD codes

Authors HE Type CFD Code Stabilization 
Technique and 
Solver

Casella and 
Schiavo (2003)

Generic Modelica GLS

Charvatova et al. 
(2013)

Counterflow tube COMSOL Multiphysics "

Desgrosseilliers 
and Groulx 
(2014)

Double pipe COMSOL Multiphysics

Guillaume
(2011)

Coaxial borehole COMSOL Multiphysics "

Fernandes et al. 
(2005)

Chevron plate POLYFLOW "

Fernandes et al. 
(2007)

Chevron plate POLYFLOW An iterative method

Hameed and 
Essa (2015)

Finned tube COMSOL Multiphysics "

Jia etal. (2014) Counter flow parallel- 
plate

COMSOL Multiphysics "

Jiaetal. (2014) Plate Fin COMSOL Multiphysics -

Lele et al. (2014) Plate-fin and Helical coil COMSOL Multiphysics -

Micheletti et al. 
(2005)

Generic Modelica GLS

Petinrin and 
Dare (2015)

Shell-and-Tube COMSOL Multiphysics Segregated solvers: 
Two GMRES and
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MUMPS

Pryor(2014) Crossflow COMSOL Multiphysics -

Reddy et al. 
(2012)

Shell-and-Tube COMSOL Multiphysics Segregated solvers

Saffarian et al. 
(2014)

Shell-and-Tube COMSOL Multiphysics "

Yakah (2012) Plate-fin and Printed 
circuit

COMSOL Multiphysics "

Fig. 3: Specific enthalpy at HE outlet (Micheletti et al., 2005)

Conclusion
The full description of the mechanism of heat transfer processes in heat exchangers are 

defined by partial differential equations. Computational fluid dynamics offers the best alternative, 
cost effective and speedy solutions in predicting complex flow and heat processes to heat 
exchanger designs and optimizations owing to the energy efficient and low cost design. A number 
of stabilization techniques and efficient solvers have been developed to enhance the accuracy of 
solutions offer by finite element method, one of the CFD tool, for effective prediction convection- 
dominated flows. However, from available number of previous studies on numerical simulation of 
heat exchangers with CFD codes, applications of finite element based software are still limited in 
relation to the finite volume based codes. This may be due to its late arrival to CFD modelling 
applications.
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