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Abstract

This article introduces Monte Carlo methods which are different from conventional numerical methods and show how
| some of the methods can be applied in Physics to simulate or solve physical problems, through computer pirograms
(written tn FORTRAN in this case), by using a few examples touching modern and classical Physics showing its
usefulness. A functional approach to probability and statistics is described for the purpose of this work instead of
completa treatment, The importance of goad sequences of random numbers with large periods is demonstrated and
the methods, in some instances aré compared with a conventional type and differences pointed ont.

History and Introduction
The expression “Monte Carlo” is actually
very general and called so after a popular city of
- Monte Carlo in Europe, famous for its cosmopolitan
characler and gambling casinos, as a result of the
stochastic nature of gambling and of the methods.
They are based on the use of random numbers and
probabilily statistics lo investigate prablems. Onc can
find Monte Carlo methods used in everything from
economics to nuclear physics. Monte Cario methods

have been.used for centuries, but only in the past

several decades has the technique gained the status of
a full-fledged = numerical method capable of
-addressing the most complex applications. The

applicgtions vary from field to field, and there are.

dozens of subsets of Monté Carlo, even within
physics. To call something a “Monte Carlo™
experiment, all one needs to do is use random
numbers to examine some problems. .

The use of Monte Carlo methods to model
physical problems allows us to examine more
complex systems than we otherivise can. Solving
cquations which describe the interactions for
hundreds or thousands of atom is im possible but,
with Monte Carlo. methods, a large system can be

. sampled in a number of random configurations, and
that data can be used to describe the system as a
whole. Statistical simulation methods may be
contrasted to conventional numerical discretisation
‘methods , which typically are applied to ordinary or
partial “differential equations that describe some
underlying physical or mathcmatical system. In many
applications of Monte Carlo, the physical process is
simulated directly, with the only requirement that the
physical (or mathematical) system be described by
probability density functions (pdf’s) and no need to
even write down the differential equations that
describe ~ the behaviour of the system. Many
applications are then performed (multiple ““trials™)
and the-desired-result-is-taken as an average over the
number of observations. In many practical
applications, one can predict the statistical error
(variance) in this average result, and hence an
estimate of the number of Monte Carlo trials that are
needed to achieve a given error.

Monte Carlo methods necessitate a fast and effective
way to generate random numbers uniformly
distributed on the interval [ The outcomes of”these
random samplings must. be accumulated in an

" appropriate manner to produce the desired result, but

the essential characteristics of Monte Carlo is the use
of random sampling techniques (and perhaps other
algebra to manipulate the outconics) to arrive al a
solution of the physical problem. : -

It is natural to think that Monte Carlo
methods are used to simulate random processes, as
these can be described by pdf’s. However, many
Monte Carlo applications have no apparent stochastic
content, such as the evaluation of definite integral. In
spite’ of this, one can pose the desired solution in
terms of pdf's, and while this transformmation may
seem artificial, this step allows the system to he
treated as a stochastic process for the purpose of
simulation and hence Monte Carlo methods can be
applied to simulate the system. One can, therefore,

“take a broad view of the definition of Monte Carlo

methods by including rubric all methods that invelve
statistical simulation of seme underlving system,
whether or not the system represents a real physical
process. '

The major components of a Monte Carlo
method, comprising the foundation of most Monte
Carlo applications, are: ‘(1) Probability distribution
functions (pdf’s), (i1) Random number generator, (iii)
Sampling rule - rule for sampling from the specified
pdf’s must be given, (iv) .Scoring- the out comes must
be accumulated into overall tallies or scores for the
quantities of interest (v) Error estimation - an
estimate of the statistical error (variance) as a
function of the number of trials and other quantities
must be determined ‘and (vi) Variance reduction
techniques- this can lead to reduction in the
computational time for Monte Carlo simulation as
well. '

What is intended to be shown in this article will be
illustration of the application of some Monte Carlv
Methods and their major components in the following
areas (1) Simple Monte Garlo evaluation of an
integral  (2) Multidimensional  Monte  Carlo
integration (3) Monte Carlo girmr Analvsis (4) The
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Approach to Equilibrium - Monte Carlo Method, and
(5)Radioactive Decay.

Random number generation and some Monte Carlo
Methods.
Since Monte Carlo Methods are procedures that make
use of random numbers, generation. of random
numbers of immense importance to the methods. .
A sequence of random numbers is a set of numbers
that have nothing to do with the other numbers in the
sequence. The idea of a single random number is
incorrect. . In a uniform - distribution of random
numbers in the range [ To be precise, the algorithm
gencralc integers between O and, say M, and divide
by M to return a real value within the range. An
example called “middle square”, describes generating
a sequence of ten digit integers by starting with one,
squaring it and then taking the middle ten digits from
the answer as the next number in the sequence. The
sequence is, however, not random, as each number is
completely determined from the previous.
_“The power residue and linear congruent methods are,
respectively, de scribed by equations:
I=al +cmodM (1)
I = (alr + ¢)modM (2)
The starting value (seed) of I is I where a, ¢ and M
are constants specifically chosen such that a and ¢
and grealer than or equal to 0 and M is greater than I
“a and c. A poor choice of the constants can lead to
“very poor scquences e.g. ones with short periods. The
choice.c=0, in the case of linear congruential method,
obviously leads to a somewhat faster algorithm, and
can also result in long sequences. This is called
“Multiplicative congruential”. M should be as large
as possible since the period can never be longer than
M. One’s choice of M should be one near the largest
integer that can be represented by the computer. A

snmple algorithm for ‘the power resndue method is:

given below:

STEP 1:specify the three constants to be used a,c and
m and the seed. STEP 2:substitute them into the
equation to obtain a value, say X. ;

STEP 3:if this is greater than m, set the value back to
that of the seed.
'STEP 4:whatever the case, dlwde the value x by m to
get next number in sequence.

STEP 5: substitute into the seed’s posttlon the new x
and retutn to step 2.

‘For . any program making use of random numbcr
sequences it must be ensured that the amount ‘of trials
used does not exceed the periods of the sequences for
reliable results to be obtained, other factors in order.
Two methods are demonstrated for the purpose of
illustration by integrating -

the function: 4* Vf— x within hmlts 0 and 1 with
respect to x. The function is from the equation of the
first quadrant of a circle of unit radius. The integer 4.
in the expression ensures the area of the circle is what
is obtained when the integration is carried out since
there are four quadrants in any circle. It should be

noted that the evaluation happens to be equivalent to
the value of pi.

The first method. This: method, can be viewed
graphically such that the area of a particular function,
which is to be determined, is represented within a
larger, regular area or shape whose area is known and
an algorithm. developed so. that ratio of number of
randomly picked coordinates - which  fall within
represented area of the function to total number of
coordinates generated (which should always fall in
those for the larger area) gives the arca of the
function when multiplied by area of the larger shape.
The evaluation of the function of the first quadrant
(ABCD) (Figure 1) of-a circle of unit radius within a
square, using this method in the computer program
algorithm, reveals that increase in trial numibers
increases the ac curacy of the method. The table 1 of
results for a particular sequence of random numbers
of over & million counts as period is given below, -
Value of pi using Hit-Miss Method.

Actual . Value ) of piF3.
1415926535897932384626433832795 i
The logarithm of the errors in the value, when plotted
against the total trials made, gives-a graph (figure 2)
showing that the greater the total trial number, the
better the accuracy, that is, for large trial total, say N,
error approaches zero as inverse of square root of N.
This is revealed from the values “DEP”, which is the
ratio of the error in the valde of pi to the trial total N,
calculated for two instances, as seen in the result. It
establishes the relationship between error and tnal
total. )

The second and final method for the purpose of this
article is the “Sample Mean” method (Figure 2). In
definite integration, with limits a and b manipu]aflon
is made such that a probability distribution function’
f(x) is defined to be 1/(b-a) for a < x < and zero for
any other values and introduced into the integral (by
dividing the original' function) "with the original
integral viewed. as the expectation value of the
function in it so that a f{inal expression of the for:
(b-a)/N*4 .x  .(3)

is' obtained, where b=1 and a=0 for this partlcular
example. USING SAMPLE MEAN METHOD
(Table 2).

It can be seen that the values fluctuate for smail trial
totals but steadily approach thg true value as trials
increase. With trials of 1,000,000, accuracy to 2
decimal places can be said to be achieved and higher
accuracies obtained with increase in trial total (N). By
dividing variance by total trial number (“DEP”) and
the fact. that there is corre§pondence between error
and variance, one can observe, as shown by the last
four lines of data in the in the result, that the
approximate functional dependence of error on N is
such that error approaches zero as inverse of square
root N, for large N. When a tnal total is squared,
square root of its error is obtained. “ERROR 2 show
ap proximate deviation. from true pi oblained by
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dividing standard deviation by square root of trial
total.

When the lines of algorithm or actual code lines used
in the two methods are compared the sample mean-
method is seen to take a shorter time to exe cute and
this, in addition to the fact that it gives better resilt

for the same number of trials, makes it a better

choice. Typically, the hit-miss method takes more
than twice the computational time required by the
sample mean method for a considerable trial total.
Simpson’s rule, .a conventional numerical method,
requires lots partitions, or iterations, to be able to
obtain a very accurate value of pi. A partlcular result
is shown below .

VALUE OF PT USING SIMPSON’S RULE
PARTITIONS MADE =119

STMPSONS GIVES P1= 3.138611

However, it gives a good result for a small partition
total of 119, comparing with values for the trial of
1000 obtained in the previous methods. Judging from

the code needed to have used Simpson’s rule, it can.
be considered to be inefficient with computer time.

‘compared with the previous Monte Carlo methods.
The choice of using one method instead of the other
then depends on the objectives of the programmer. It

would however be a bad choice to use conventional °

methods for multidimensional integration as. the error
introduced

would increase and con31derable computer time will
be wasted.

3 Ermror Analysis

This involves a way of obtaining the error present
from any evaluation so that the degree of accuracy of

a particular method used can be verified. This will be
demonstrated by integrating the function mentioned
carlier for evaluating pi, taking trial to be 10,000
trials, and obtaining the standard deviation of the
measurements. The second is by dividing the 10,000
trials into sub-sets and the standard deviation also
obtained of the measurements. The second is by
dividing the 10,000 trials into sub-sets: and the

standard deviation also obtained. In the first case, the

question “How .can one tell if only 10 measurements
will give the desired accuracy?”-still remains, and,
appropriately, can one tell whether 10 sub-divisions
are appropriate in the second case? These suggested
trying various options-and analysing the results. It
should be stated that, as observed from previous
work, standard deviation of a single measurement is
incorrect as error in value of pi obtained at any time,
hence the need for the above procedures.

It is worth remembering that the variance, square of
standard deviation, of m measurements is given by:
(C))

where

&)

©) |

Results to.demonstrate the first procedure reveal that
standard deviation of each set of measurements does
not give the correct error (Table 3), but values

for each in another way.

obtained in Table 4 are consistent with the error
obtained in- previ ous evaluations where actual pi
value minus calculated ones gave the error involved.
Also Table 4 shows that any set of measurements can
be approprinte by saving computer time. The
interpretation of the standard deviation for, say 10
measurements, is that F has 68.36% chance of being
within 0.006836 of the true’ mean, where I is the

" estimafe.

It is observed, from Table 4, that sets of measurement
above 20 give larger standard deviation, but all have
more or less same “2NID MEASURE OF ERROR™
“2ND MEASURE” gives values of errors determined
It is by dividing standard
deviation for a single measurement in a set by the
square root of trial.total (10,000 in this case), ve o 1t
should be noted that “ST.DEVIATION™ of Table - is
calculated from the mean of the number of scts used,
each set having 10 measurements.

With the second procedure similar steps are taken but
trial total (10,000) is divided into equal partitions.
The standard deviation of the sub-divisions is given
by square root of the expression below:

)

As expecled, from the third table, standard deviation
of the functions of a single divigion does not give
accurate error involved. Table 4 reveals that the

" -standard deviation of each set of sub-divisions is also

inconsistent with previous errors, but the expressions
gives consistency-and is the error involved recorded
as “ERROR™. .

It is observed that 10 sub-sets might be the preferable
choice of sub-divisions, as 20 has higher probable
error and picking most above 20 only take computer
time without improving on the error.

To drive home the point of using a good sequence of
random numbers, a bad sequence of period of period
two is generated and the results analysed taking the
following constants: 5, 0 and 32 as a, ¢ and m. The
power residue method is used for this purpose. First,

‘to calculate pi for varying trial numbers, it is obvions

that the values obtained for pi are off the mark, and
even got worse for large total trials, as demonstrated
by sample Mean method and the integral used
previously.

The two procedures mentioned earlier are also

affected as values tumed deterministic. For the first
procedure (10,000 trials each), it can be seen that the
values of pi repeat themselves with the same period,
two, as the sequence used and Table 6 couldn’t be
generated (unlike before) as variance of the
measurements for each group is negative which
wouldn’t give real standard deviations.

Similar problems (error in value of pi and repetition
are observed when the second procedure 1s used and
its Table 10 shows “calculated error” for only fwo
sets of subdivisions, since the variance of the
remaining yield negative values.

Application to Some Pinsical Fxamples
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The Approach to Equilibrium

An ideal gas of identical, dlstmguxshable
particles in a box for which inter action might be
ignored and the box is isolated is considered. The
initial state of the system is such that all particles are
in the left half of the box and distribution occurs
when a small slide, covering a hole in the middle, the
point of division of the box in two, is removed. One
assumption made is that one-particle passes though
the hole in a unit time. This section answers questions
like, “at time t,. what is the average number of

particles left in the left half of the box?”. “What is the .

probable - equilibration time?”.. This illustrations
demonstrates for total particles of 10, 20 and 40, three
different systems, The equilibrium state is achieved
by a system when, after some time, its macroscopic
state does not change in time except for small random
fluctuations.

The algorithm of the program is such thnt it ensures
only the first time when the particles are equally
spread out is recorded as equilibration time since only
small fluctuations follow later A sample algorithm is
given below:

STEP 1: Specify the constant initial amount in the left
half of the box.

STEP 2: Allow appreciable time for equﬂtbrahon
say, ten times amount,

STEP 3: Initialize variable to hold equilibration time

STEP 4: Find the ratio of particles in the left-half to -

total and compare with- random number

STEP 5: If ratio is less than or equal, then a particle

moves to the right, else, it moves left.
STEP 6: Repeat steps 4 and 5, each time checking

when, first, half of the total remains in the left until

time allowed elapse

STEP 7: Another system may . be worked for, say,
doubling the former, and step 2 is returmned to: )
The results below are for a particular sequence of
random numbers.

PARTICLE-TOTAL =

PARTICLE LEFT IN LEFT PART 4

APPR. TIME(S) TO REACH EQUILIBRIUM =9
PARTICLE-TOTAL = 20 '
PARTICLE LEFT IN LEFT PART = 10

APPR. TIME(S) TO REACH EQUILIBRIUM 32
PARTICLE-TOTAL = 40

PARTICLE LEFT IN LEFT PART =18

APPR. TIME(S) TO REACH EQUILIBRIUM = 50

It is observed that the system approached equilibrium
(Figure 3) and for moré initial, total particles it took
longer time to approach equilibrium (Figures 4 and
5), as expected. Since the tendency in nature is
towards disorder (equilibration, in this case)

The next graph (Figure 6) was generated by a
program written to compare the approach to
equilibrium for five different trinls and their averaged
value using constant totcal'particles of 10. Again their
initial position is the left half of the box and other
asstmplions are as in the entlier example. Hence the
method of achieving results is similar to the former,

'The relative magnitude of the fluctuations can be

determined for each unit time afler equilibrium is
reached, where “ “ represents:.a time average, the
standard deviation a.is the square root of (<n » -— <
>2) and n is the average number of particles in the
left half of the box.

The graph of the averaged value (Figue 6) is seen (o
lie mid-way as expected.

Radioactive Decay

Radioactive decay is truly a random process
and it provided the first evidence that the laws that
govern the sub-atomic world are statistical. With the
choice of a system of initial, parent particle number -
of 100, decay constant 0.01 and duration of 300
seconds, radioactive decay was simulated using the
sequence of random numbers gcmrnlcd by the
computer. Two simulations
were performed. The first compares the random
numbers with the constant probability of decay, ) of a
particle (where \) is the decay constant and L is in |
second in this case) with the assumption that each
particle has constant probability of decay per unit

"time, and this probability must be much lesser thau 1.

While the second uses poisson distribution, with
random numbers compared with varying probabilities
of decay, NA At, where each particle has constant
probability and N is the parent puticle number feft
afler time t. The Doisson distribution  procedue
involved dividing, by 3,000 in this case. the duraton

_into smaller periods ensuring the probability for is a
. lot lesser than 1,

as a rule. The probability of
observing, say, n decays isP=P—P)Y"m for m
divisions. Where p is the probability of a single dccay
per division and C represents Combination.
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HITS |TRIALS [CIRCLE AREAJPI| ERROR
7T oo | 3080001 ] 0.0575350263
1556 | 2000 | 3.10999990 0.03159283
2378 | 3000 3.17066669 =0.02007395
ETRYY anon | ag4d0on00n. 0.002407:31
3903 ) 5000 ! ; 3.11«3240905 - 0.01919270
4678 ‘6000 3.11866665 0.02292609
5476 | 7000 312914276 0.01244998
T 6300 | 8000 T 3A000010 —0.00840735 |
7060 | 9000 | 313777781 0.00381191
7884 | 10000 3. 15350008 0.01200724
N—1000 AREA—3.08400011 DEP—0.0000575026
N—1006,000 AREA=3.14289909 DEP=0.0000000013
Table 2
SET |TRIALS | AREA |STANDARD ERROR2
. | DEVIATION
1 1000 3.1432 |7 0.903601 T0.028577
2 . 2000 3.1410 0892880 - 0.019965
3 3000 3170 1 0.905188 0.016526
4 4000 3.0188 0.906927 0.014340
B CAOD0 | 3286 | 0.902419 0.012762
66000 31118 0.890570 0.011197
il ; 7000 3.1116 0.801380 | 0.010654
8 8000 31440 0891746 T 0.000970
8 | oo | 3,1430 | 0.895615 - 0.009111
10 1000 31416 | 0.897257 0.008973

N=1000 P1=3.1432 VAR.=0.816658 DEP=0.00081666 ERR 2 = 0.028577
N=1000,000 PI=3.1467 VAR.=0.783971 DLP=0.00000078 ERR 2 =0.00085
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Fable 3

Error Analysis [or 10 Measurements
ol 10,000 ‘L'rials each

SET | PI |37 D.DEVIATION
""'T“ 314087 7 0.896342
931446 0.804922
3 [31337 0.806822
4 [3.1405 0.890015
I AR C0.ONIA76
6 [3.1302 0-906212
7 [3:1461 0.887876
R EREED 0.802418
0 131510 0.887R60
10 [3.1473 0.881664
Table 4
Tesu.of Sety of Measurements
NO OF P STANDARD IND
SETS DEVIATION | MEASURE
10 | 3.140263 0.006836 0.008817
20 13:.144758|  0.007308 0.008963
30 3143187 0.010242 0.008860
10 31442300 0.009863 ©{1.008783
50 3140771 0.008813 1.009051
60 3141552 0.010472 0.008918
70 |3.a41006 0.000418 0.0088953
80 3140614 0.000618 0.000055
90 [3.140763|  0.009213 (0.008845
100 3141583 0.009213 "0.009026
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Tahblé i
Error Analysis for 10,000 Trials
divided into 10 Sul=-Divisions

SET | I STD.DEVIATION,
I [3.2987 0.385163
01312548 0.896554
3 |3.12378 0000514 |
4 310540 T 0.928137
3 ] 3.09936 0.919046
6 |3.11333 0.024043 E
7 347206, 0:853061

8 3363767 - 0.850370
9 1317371 0.002643

[ 10 [ 3.16699 0.887293 |

"Table 6

Test of Sub-Divided Measurenients
divided into 10 Sub-Divisions

DIVISIONS | TRIALS | Pl | ST DEV.TERROR
[ 1w 1000 [3.14040 ' 0.02a340 | 0.008332
20 . 600 3.7446G3 | 0.052807 | 0.011808
30 | 333 1313359 [ 0.010853 | 0.007439
) 230 3.14056 | D.052051 | 0.008372
50 - [T 200 [3a3v14 10076028 | 6.010752
60 C 66 [ 3.13139 | 0.066032 | 0.008525
70 |12 3148717 0.078806 | 0.000419 |
80 125° | 3.13105 | 0.085247 T0.000531
90 111 [ 3.15185 | 0.084398 | (.008896
1w T 100 3.14625 | 0.OR18Y7 | N.OUSIY0
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. . Tabla 7
Using Sample Mean Mothod swith Sequence of Petind 2.
SET | TRIALS PIr | ST.DEV. | ERROR.
U000 | 3.4824 | 0.696599 | 0022028
2 2000 :3.1817 | 0.696881 | 0.015583
3 | 3000 |3.4820] 0.696614 | 0.012718
AT TTI000T T 804821 0.606406 [ 0.011011
5 5000 | 34819 [ 0.696692 |, 0.009850
6 “6000  ['3.4820 | 0.696645 ;| 0.008004
7 | 7000 | T348207| 0696754 | 0.008328 ]
8 8000 1231819 | 0.696908 | 0.007792
9 9000 |'3.4819 " 0.696964 | 0.007347
W | 0000 | 3.4810 | 0.697391 | U.006974

==, lU,‘OO_L} Pi=3.4825 Std, Dev. = (.702892 lurr = 0.002223
= 100000 Pi= 3.4911 .Sl'(l.l)cv. = (1617101 Ere.= 0.000617

; Talle 8 ;
Errvor Analysis [or 10 measurements of 10,000 Trialy
each Usinp, Sequence of Period 2

STD DEVIATION

SET T PI
1 | 3.481856 0.69731
S 2 | 3agino 0.697445
3 |3.181861 0.697395
4 [ 3.481836 0.697301
5 3481710 0.697445
6| 3481861 0.697395
7 3481856 0.697391
(R dARITIO 0.897445
977 3.181861 0.697395
10 [ 3.1B1836 0.607391
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Table 9
Frror Aunalysis [ur 10,000 Trials Divided into
10 -Measurements for Sequence of Period 2

SET L YSTD.DEVIATION
L 248240 [ 0.696590 .
2 3.48245 0.696633
3. | 3.18240 0.696509
14 3.48240 I W11
5 TAROYS 0.697136
6 | 348240 | 0.696633
7 1318210 0.696599
8 3.480035 0.607136
9 [2a8245] 0496633
10 [348210] 0.696509
Table 10 .

Table 10: Test, of Sub-Divided Measurements

(DIVISIONS [TRIALS [STD.DEVIATION | EREOK
1 1000 0001381 0.000437
2 | A0 - 0.002181 0.000488
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Graphs of both were plotted and a third graph showed A little trick was used to draw the decay graph
the paltern obtained from the equation of radioactive  (Figure 7) of the poisson distribution procedure on
decay N(t) = Noe )\t. the same scale as the others, an averaged particle for
every ten steps was taken and recorded as number of
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parent particles left per unit time. It worked because
of the large value 3,000 used in dividing.

The result (Figure 7) shows the mean and variance
for the exponential distribution of which the decay
equation is an example, the variance being the square
of the mean which is itself the inverse of the decay
constant. The same sequence was used to generate the
simulated decays but.the one through “unaided”
application deviated quite differently. Hence the need
to generate random numbers according to particular
distribution in some cases. The Poisson distribution,
however, faired much better with its graph and report
on renmraining prent particles; as confirmed by
calculation through the decay formula.

Conclusion

Working with Monte Carlo methods can be
easy, representative of the de sired process or
operation and fun but requires gréat care in some

instances. This is because not the same sequence of °

random numbers can be applied in all physical
processes and the same degree of accuracy expected
in nll cases. The way most, -if not all, compnlc?s
gencrate random numbers is such that at the end of a
certain program which uses random numbers, when a
new program which uses random numbers as well, is
started it makes use of the same sequence used by the
earlier program picking each number in the same
order.

Special sequences can be developed (sequences
according to specific distributions) for different
processes or operations so that better results are

P

achieved. Special purpose algorithms (found in
numerical libraries) are used in this situation. General
purpose method according to an arbitrary distribution
function can also be nsed instead, an example being
“rejection technique”, i.e. HHit-Miss method, which
was described earlier. However this method is not
suitable for distribution with one or more large peaks.
Another method which is suitable for relatively
simple distribution functions is the “inversion
technique”. The inversion techniques has the
following steps: (1) Normalisation of the distribution
function to get a pdf, (2) integration of the pdf
analytically from the minimum x o an arbittary x,
representing the prob ability of choosing a value less
than x and (3) Equating this to a uniform number and
solving for x. The resulting x will be distributed
according to the pdf. This method is -considered
efficient.
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