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Hislory and Introduction 
The expression "Monte Carlo" is actually 

very general and called s o  after a popular city of 
Monte Carlo in Europe, famous for its cosmopolitan 
character and gambling casinos, as a result of the 
stochastic nature of gambling and of the methods. 
Thr:y are based on the use of random numbers anrl 
probnbility stntistics to invcstignlc~ prob1Ctn.c. 011c cnti 
find Monte Carlo methods used in everything from 
economics to nuclear physics. Monte Cwlo methods 

Abstract 

have been. used for centuries, but only in the past 
several decades has the technique gained the status of 
a full-fledged numerical method capable of 

, 

. 

addressing the most complex applica'tions. The 
applications vary fiom field to field, and thtre are 
dozr:ns' of subsets of Monte Carlo, even within 
phytiics. To call soincthing a "Monte Carlo" 
experiment, all one needs to do is use random 

. , 

Thls artlcle introduces Monte Car lomethds which are duerent from c o n r e n t i o ~ l  n~mietical nlethods andshow bow 
some of the methods can be applled in Physlcs,ro simrclate or solve physical proble~its. t h t w r ~ h  corrilvrrer ~vrgrrrr>rr' 
(wrltten In FORTRAN In thls ca.r@, by ruing a few cxnml~lrr toltchinff ,n doi.11 arid c/ns.~l[:ol I'lr~!!:rics r h r ~ t ~ . r ~ ~ g  rrs 
r~lrf ihess. A functional approach to  probab//ity and statisticscl is describeJJor the p,1rynre o / tbn  work r*.st~nd of 
comp/eto treatment. The fmpqflancp oJg&'saqrrencu of random n~rntbers wlth I n g e  p a r i o d ~  is demor~xrrnred ni~d 
the methods, In same fnstaniss are compared ~vith a conventional type and dflnrenccs poinred imr. 

Monte Carlo methods necessitate a fast and effcct~ue 
way to generate random numbers uni fornil y 
distributed on the interval [ The outcotnes of'these 
random samplings must be accumttlated in an 
appropriate manner to produce Ule des~ccd result, hut 
the essential characteristics of Monte Cnrlo is the use 
of random snnlplin~ tceh~~ic~lics (nnti ~rrrlrnlw cltl\ct 
nlgcl\~n to ~~~nrlipul*llc tlic oulcoihcs) I t \  :il~ive n t  a 
solution of the physical problem. 

It is natural to think that Monte Carlo 
methods are used to simulate rnndom processes, ns 
these can be described by pdf s. However, inrmy 
Monte Carlo applications have no apparent stochastic 
content, such as the evaluation of definite integrnl In 
spite' of this, one call pose the desiretl ~oluti(x1 in 
terms of pdFs, nnti \vllilc tlus trnnslirtr~~ation nrny 
seem artificial, this step nllOws thc s~stcni  to Ile 
treated ns a stochnslic process for the purpose of 

numbers to examine some problems. . simulation and hence Monte Carlo methods can be 
The use of Monte Garlo methods to model applied to simulate t l~e  system One can, thereffire. 

physical problems allows us to examine more take a broad view of the definition o f  Monte Carlo 
complex systcms than we otherlvise can. Solving nictl~ods by inclliditil? ri11,ric 1111 tnrtl~trtls [ I I : \ ~  ~l~\'crl\.c 
cqiiations which dcscribc the interactions for statistical sii~iulation of semc u~iticrlvttig slatc.tn, 
huldrcds or thousands of atom is im possible but, whether or not the system reprcscnts n ~c:tl pliystc;tl 
with Monte Carlo methods, a large system canobe 

. sampled in o number of random configurations, and 
that dnta cnn be used to describe the system as n 
whole. Statistical simulation methods may be 
contrasted to conventional numerical discretisation 
methods , which typically are applied to ordinary or 
partial differential equations that describe some 
underlying physical or msthcmatical system. In mnny 
applications of Monte Carlo, the physical process is 
simulntcd directly, with the only requirement that tlle 
physical (or mathematical) system be described by 
probability density functions (pdt's) and no need to 
even write down the differential equations thnt 
describe the behnviour of the system. Many 
applications are then pcrfonned (multiple .."trials") 
and thedesired resultistaken-as an average over the 
number of observations. In many practical 
applicntians, one can predict the statisticnl error 
(variance) in this average result, and hence on 
estimate of the nunlber of  Monte Carlo trials thnt ore 
necded to achieve a given efior. 

process. 
, The 111njor components of n l\.ltrlitc Cnt lo 

mclhod, comprising the foundatiot~ of   no st Molitc 
Cq lo  applications, we: '(i) Probability distribulton 
functions (pdf's), (ii) Random number generator, (iii) 
Sampling rule - rule for sampling from the specified 
pdf s must be given, (iv) Scoring- the out con!cs nnist 
be nccutnulnted into overall tnllies or scores for llto 
quantities o f ,  interest (v) Error ostitt~ntion - mi 

estimate of ,the statisbicnl error (variance) as a 
function of the number of trials and other quantit~es 
must be determined 'nnd (vi) Vnrinnce aeductlon 
techniqr~cs- this can lend to reduction in the 
computational time for Monte Carlo simulation .a 
well. 
What is intended to be shown in this article will be 
illustration of the applicnti?n of some .Monte Carlu 
Methods and their major coniponents in the follow~ng 
areas (1) Simple .Monte G ~ l o  evaluation of ml 

integral (2) Multidimensionnl Montc Cnslo 
integration (3) Monte Cmio !Srror Annlvstr. (J) .l'l~c 
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Approach to Equifibrium - Monte.Car10 Method; and 
.(S)Radioactive Decay. 

Ran dotn number generation and.~orfte Monte Carlo 
Methods. 
Since Monte Carlo Methods are procedures that make 
use of random numbers, generation of random 
numbers of immense importance to the methods. , 
A sequence of random numbera is a set of numbers 
that have nothing to do with the other numbers in the 
sequence. The idea of a single rmdom number is 
incorrect. .In a uniform distribution of random 
numbers in the range [ To be precise, the algorithm 
gencmtc integers between 0 and, say M, and divide 
by M to return a real value within the range. An 
example called "middle square", describes generating 
a sequence of ten digit integers by sMing with. one, 
squaring it and then taking the middle ten digits from 
the nnswer as the next nwber  in the sequence. The 
sequcnce is, however, not random, as each n~unber is 
mmpletely determined from the previous. 
The power residue and linear congruent method; are, 
respectively. de scriw by equations: 
I = a1 + c mOdM (1) 
I = (ah + c)modM (2) 
The starting value (seed) of I is I where a, c an$ M 
are constants specifically chosen such that a and c 
and greater than or equal to 0 and M is greater than I 
a and c. A poor choice of thb constants can lead to 
vcry poor scquences e.g. ones with short periods. The 
chhice c=O, in the case of linear congruential method, 
obviously leads to a eomewhat faster algorithm, and 
can also result in long sequehces. This is called 
"Multiplicative congruential". M should be as large 
es possible since the period can never be longer than 
M. One's choice of M should be one near the largest 
integer that can be represented by the computer. A 
snmple nlgorithm for the power residue method is 
given below: 
STEP I :specify the three constants to be used a,c and 
m and the seed. STEP 2:substitute them into the 
equation to obtain a value, say x. 
STEP 3:if this is greater than m: set the value back to 
that of Ulc seed. 
STEP 4:whatever the case, divide the value x by m to 
get next number in sequence. 
STEP 5: substitute into the seed's position the new x 
nnd return to step 2. 
For any program making use of random number 
sequences it must be enswed that thq amount 'of trials 
used does not ~ c e e d  the periods of the sequences for 
reliable results to be obtained, other factors in order. 
Two methods are demonstrated for the purpose of 
illustration by integrating 
the function: 4* Vf- x within limits 0 and 1 with 
respect to x. The function is from the equation of the 
first quadrant of a circle of unit radius. The integer 4 

noted that the ~alunt ion happens to be equivalent to 
the value of pi. 
The first method. This method, can be v~ewed 
graphically such that the area of a pnrticular fi~nctiocl. 
which is to be determitred, is represenlcd \vitIii~l n 
larger, regular area or shape whose area is kno\m and 
an algorithm developed so that ratio of number of 
rnndouily picked coocdit~ntcs ~vllich Tnll \v i l t \cr l  
represented area of the filnctiorl to tolnl n~i~nhcr of 
coordinates generated (which should nllvnys fnll In 
thpse for the larger area) gives the nren of thc 
hc t ion  when multiplied by area of the largcr shape. 
The evaluation of the function of the first quadrnnt 
(AT3CD) (Pigr~ru 1) of n ctrclc of \~n!t  r:ldit~s \ V I ~ I I I I I  n 
square, using tlus ii~ethod in the coinl>trtrr progrnnr 
algorihn. reveals thnt incrcnse .in tri:tl uunrher$ 
increases @I$ ac curacy of lhe method. The table 1 of 
results for a particlilar sequence of'random numbers 
of over 8 million corlnts ns period is givrcl Irrlo~v. 
V~luc of pi using Ilil-Miss Metllatl 
Actunl Value of pri=3. 
I415926535897932384626433832795 
The logarithm of the errors in the value. when plotted 
against the total trials made, gives a graph (figure 2) 
showing that the greater the total trial number, the 
better the accuracy, that is,.for large trial total, sny N, 
error approaches zero as inverse of square root of N. 
This is revealed from the values "DEP". \vllich is the 
ratio of the error in the \~oldc of pi to the 11 it11 told N, 
cnlc~ilated for two inslnnces, as seen in the result. It 
establishes the relotionship betwcen error nnd ?rial 
total. 
The second and final method for the purpose of this 
article is the "Sample Mean" method (F~gure 2)- In 
definite integration, with liniits a and b manipulation 
is made such that il probability distribution function' 
f(x) is defined to be Il(b-a) for a c x < nnd zero for 
any other vnlues and inlrodu~cecl into tl~c ~r\t~prill (I>\. 
dividing the originnl fi~nction) nit11 1I1r c\ripr~~nl 
integrnl vicwcd ns the csprctntin~l valtrr of tlrc 
functiori in it $0 that n final cxprcssiorl of lllc for 
@-a)M*4 -x (3) 
is sbtained, where b=l and a=O for tlus particular 
example. USING SAMPLE MEAN METHOD 
(Table 2). 
It can be seen that the values fluctuate for smail Gal 
totals but steadily approach thg true value as trials 
increase. With trials of 1,000,000, accurady to 2 
decimal places can be snid to be ncl~ieved nnd higher 
accufacies obtained wilh increase in trial total (N). By 
dividing variance by total trial number ("DEP") and 
the .fact. that there is correfpondence between error 
and variance, one can observe, as shown by the la$ 
four lines of data in the in the result, t h ~ t  the 
approximate hctional' dependence of error on N is 
such that error approache's zero as inverse of square 
root N, for large N. When a trial ,total is squared. 

in the expression ensures the area of the circle is what square root of its error is obtained. "ERROR 2" show 
is obtained when the integration is cniried out since ap proximate deviation from true pi ohlnincd by 
fhcre nro four quadrants in any circla. It ahould be 
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dividing standard deviation by square root of tiial 
total. 
When the lines of algbrithm or actual code lines used 
in the two methods ate compared the sample mean 
method is seen to take a shorter time to exe cute and 
this, in addition to the fact that it gives better resat 
for the same number of -trials, ,makes it a better 
choice. Typically, the hit-miss method takes more 
than twice the computational time required by the 
sample mean method for a considerable trial total. 
Sitnpson's rule, .a conventional numerical method, 
requires lots partitions, or iterntions, to be able to 
obtain a very accurate value of pi. A particular result 
is shown below , 

VALUE OF PT USMO SIMPSON'S RULE: 
PARTITIONS MADE = 1 19 
SI'Ml'SONS OITJES PI- 3.13861 1 
However, it gives a good result for a small partition 
total of 1 19, comparing with values for the trial of 
1000 obtained in the previous methods. Judging from 
the code needed to have used Simpson% ~ l e ,  it can 
be considered to be inefticient with computer time 
compared with the pravious Monte Carlo methods. 
The clloice of using one method instead of the other 
then depends on the objectives of the programmer. It 
would however be a bad choice to use conventional 
methods for multidimensional integration as the-error 
introduced 
would increase and considerable computer time will 
be wasted. 
3 Error Analysis 
This involves a way of obtaining the error present 
from any evaluation so that the degree of accuracy of 
a parlicular method used can be verified. This will be 
dcrnonstrated by integrating the function mentioned 
earlier for evaluating pi, taking trial to bg 10,000 
trials, and obtaining the standard deviation of the 
measurements. The second is by dividing the 10,000 
trials into sub-sets and the standard de.viation also 
obtained of the measurements. The second is by 
dividing the 10,000 trials into sub-sets and the 
standard deviation also obtained. In the first case, the 
question "How.can one tell if only 10 measurements 
will give 'the desired accuracy?".still remains, and, 
appropriately,'can one tell whether 10 sub-divisions 
are appropriate in the second case? These suggested 
trying various options and andysing the results. It 
should be stated that, as observed fiom previous 
work, standard deviation of B single measurement is 
incorrect as error in value of pi obtained at any time, 
hence the need for the above procedures. 
It is worth remembering that the variance, square of 
standard deviation, of m measurements is given by: 
(4) 
where 
( 5 )  
('4 
Results to demonstrate the first procedure reveal that 
standnrd deviation of each set'of measurements does 
not give the darrect error (Table 3). but values 

obtained in ~ a b j e  4 arc consistent with the error 
obtained in. previ ous evaluations where nctual pi 
value minus calculated ones gave the efror involved. 
Also Table 4 shows that any set o~iiicnsurei~ients can 
be approprinte by sn\.ing conijlutcr t111ic .llie 
interpretation of the standard devintioii for, say I0 
measureinents. is Ulat F has 68.3GYn chancc of hc111g 
within 0.006836 of the trui tilean, where 1: is ttic 
estimafe. 
It is observed, from Table 4, that sets of mensrirernent 
ahove 20 give larger stnndnrd tlcvintion, ~ I I I  nll  Iinvc 
more or less same "2ND MEASUIZE OF E R R O R  
"2ND MEASURE" gives values of errors determined 
for each in orlother way. It is by di\-itling stncldn~;l 
devintion for n singlc iiicnsurc~nc~it in 11 svI ll~c 
sqlidre root of lrinl.lc~lcil  (10,000 in Illis cnsc). I r o 11 
should be nolcti that "S'I' 1)13VIA'I'ION" of I':~t!lc I is 
calculated fiom the mean of the number or scts uscd. 
,each set having 10 measuremects. 
With the second procedtlre siniilnr steps nrc hkcn l~ut 
trial total (10,000) .is divided into equal pnrtitiorn. 
The standard dewation of the'suh-divisions is given 
by square root of the expregsion below: 
(7). 
As expecled, Eom the' third table. stnlidnrti dc\.inlioil 
,of the functions of a single division does riot give 
accurate error involved. . Table 4 reveals that the 
.standard deviation of each set of sub-divisions is also 
' incol1si"sent with previous errors, hut the expressioris 
gives consistency. and is the error involved rccordcii 
as "ERROR. a 

It ig observed that 10 subsets might he Ule llrcfernhle 
choice of sub-divisions. ns 20 Iaas ligller probnhle 
error and picking niost above 20 only tnke coinpiltcr 
time without improving on Ule error. 
To drive lio~ne the pcriiil or using n gopd sccliicltcc or 
random numbers, a bad sequence of period ol' period 
two is generated and the results analpsed tnking the 
following constants: 5, 0 and 32 as a. c and In. 'fie 
power residue method is used for this pllrposc First, 
to cnlculnte pi for varying trial ~iuln\)crs. $11 tr cd>\*io~is 
that the.values ohtnined for pi are oTf the ninrk, and 
even got worse for large total trials, as denioristrated 
by sample Mean method and the integrnl used 
previously. 
The two procedures mentioned earlier nre also 
affected as values turned deterministic. For Uie first 
procedure (10,000 trials each), it can be seen that the 
values of pi repeat tliemsbl'ves with the same period. 
two, the sequence used and Table 6 couldn't bc 
generated (unlike before) as variance of the 
measurements for each group is negative which 
wouldn't give real standard deviations. 
Similar problems (error in value of pi and repetition 
are observed when the second procedure is used and 
its Table 10 shows "calculated error" for only two 
sets of subdivisions, since the variance of the 
remaining yield negative values. 

Application to Some l'l~uicol E.rcrt~~ples 
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The Apprwch to Equilibrium 
An ideal gas of identical. distinguishable 

particles in a box for which inter action might be 
ignored and the box is isolated is considered. The 
initial state of the system is . m h  fhat dlpglticles are 
in the leA half of the box and distribution occurs 
when a small slide. covering a hole in th? middle, the 
point of division of the box in two, is removed. One 
assumption wade is that one padcle passes though 
the hole in a unit time. This section answers questions 
likc, "nt time t, what is the average nurnher of 
particles IcR in the left half of the box?". "Whnt is Ule . 
probable equilibration time?': This illustrations 
demonstrates for total'particles of 10, 20 and 40, three 
different systems. Tht'equilibrium state is achieved 
by a system when, afler some time, its macroscopic 
state does not change in time except for small raodom 
fluctuations. 
Tho algorithm of the program is such thnt it enswcs 
only the first time when the particles are equally 
spread out is r ccded  as equilibrntion time since only 
small fluctuetions follow later. A sample algorilhm is 
given below: 
STEP 1 : Specify the constant initial amount in the left 
half of the box. 
STEP 2: Allow appreciable time for equilibration, 
say, ten times mount. 
STEP 3: Initialize variable to hold equilibration time 
STEP 4: Find the ratio of &les in the lelbhalf to . 
totnl and compare with random number 
STEP 5: If ratio is less than or equal, then a particle . 
moves to the right, else, it moves left. 
STEP 6: Repeat step8 4 and 5, each time ch%cking 
when, first, half of the total remains in the left ubtil 
time nllowed elapse 
STEP 7: Another system may be worked for, say, 
doubling the former, and step 2 la r e m e d  to: 
The results below are for a particular sequence of 
tundom numbers. 
l'ARTICLf7,TOTAL = 10 
PARTICLE LEFT lN LEFT PART 4 
M P R .  T W S )  TO REACH EQUlLIBKIUM = 9 
PARTICLE-TOTAL P 20 
PARTICLE LEFT IN LEFT PART = 10 
APPR. TIME(S) TO REACH EQUILIBRIUM = 32 
PARTICLETOTAL = 40 
P m n c L E L E m w   EFT PART = 18 
APPR. TIME!@) TO W H  EQUILIBRIUM = 50 

It is observed thnt the systenl approacllcd equ~lihrlu~li 
(Figtke 3) rnrd for more initial, total pnrticles it took 
longer time to approach equilibrium (Figures 4 and 
5), as expected. Since the tendency in nature is 
towards disorder (equilibradon, in this case) 
The next graph (Fig~ue 6) tias gcnerntcd Iiy n 
program twitten to mlnpare Ulc appcwcli tq 
eq~iilibrium for five diflerent trials nnci thcir averngcd 
value using constant to91 particles or 10. Again their 
initial position is tile len Iinlf of thc hou n r d  otltcr 
nssutnptioiis nlc ns in IIlc cntlicr csn~rllrlr 1 lr~lcr l l~r  
~netllod of nchievi~~g'rcs~~lts is silltilrl~ t o  t l r  ~ ~ I I I I C I  

The relative magnitude'of the fluctuntions can he 
determined for each unit time after equilibril~rn is 
reached, where " " represents -n  time avernge. the 
siandard devintiort a is tlie squnre rocrt of (<?I 2 - < 
>2) and n is the svcrngc nun~hcr of patitlcs i n  tltc 
left half of the box. 
'I'he grnpli of thc e\.crngctl t ~ ~ l ~ t c  (1:i~ulr 6 )  is scc11 lo 
lie mid-wny ns espectctl. 

Rodinactive Decw 
Radioactive decay is truly n rnntlotn process 

and it provided the first evidence that the laws Ulat 
govern the sub-atomic world are statistical. With the 
choice of a system of initial, parent particle numhcr . 
of 100, decay constant 0.01 nnd dumtion of 300 
seconds, radioactive decay was simtdated using tile 
'sequence of rand0111 lilrlnbcrs gcrlcrntcd hy tlic 
computer. Two si~n~tla'tions 
were pcrfog~ed. ?he hrst contpnrcs 111c- rnndom 
numbers with the constant prohahility of decny. ) of n 
pyticle (where \) is ihe decay constant nnd L is in I 
second in this case) with the assumption that each 
particle has constant probability of dccny p a  unit 

'time, and this probnbility must be tnucli lesser U~nri I .  
While the second uses poisson distribution. \ \ i t l ~  
random numbers conlpnred with vnryiitg probnbilit ics 
of decay, NA At, where each pnrticlc l ~ s  co~ulnnt 
prc1lrnl1ilily rind N is tllc I U I I ~ I I I  ptt111cIt. tt1111t1tc1 l ~ * ~ l  
nncr litlrc t 'I'l~r , rnisson tlist~ i1~11t l r l t l  111 t r r r c l l l ~  r 
involvpd dividing. 191 3,000 i n  lllis cilsc. rllc i l l ~ r r ~ t ~ ~ r t  

into smnller periods ensuring tllc prnbnllllily for 1s a 
lot lesser than 1, as a rule. The probability of 
obskving, say. n decays is P = P - P)"' rn for m 
divisions. Where p is the probability of a siugle decny 
per division &d C represents Cornhination 
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.Error Ax~slyelie lor 10 Measurerhnnt~ 
csl.  i0.000 'fii~b each 
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n b l k  f i  
Error Annlysis for 70,0011 Triztls 

diviricd into 11) Siil~TJivisiorls 
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'khla 7 
I:~iig S nmpla !vlifl?nn hlct,had with Sctlilanc.e of F'ctiorl 2. 

'J!able 8 
Error .Jia~l~sis for 10 r~~eavurer~~er~ls  ul l U , O O O  ' k i ~ l n  

eadi t l s i n ~  Sequeilce uf Pcriocl 2 
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Table 9 
Error A11~1,yvi~ hr 10,000 Trials Dividcti into 
10 .iI(?uurt~metlCs for Sequcnar? of Pariot] .2 
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Graphs of both were plettsd and a third graph showed A little trick was lased to draw thc decay graph 
the paltcm obtained fiom the equation of radioactive (Figure 7) of the poisson distrihdii~n proccdtue on 
decay N(t) = NoeJ\t. the same scale as the others, an nwrnged .particle for 

every ten steps was taken and recorded as number of 
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parent particles left per unit time. It worked because 
of the large value 3,000 used in dividing. 
Tho result (Figure 7) shows the mean and variance 
for the exponential distribution of which the decay 
equation is an example. the variance being the square 
of the mean which is itself the inverse of the decay 
constant. The same sequence was used to generate the 
simulated decays but .the one through "unaided" 
application deviated quite differently. Hence Uie'need 
to generate random numbers according to particular 
distribution in some cases. The Poisson distribution, 
however, faired much better with its graph and report 
on remaining prent particles; as confirmed by 
calculation tluough the decay formula. 

Conclusion 
Working with Monte Carlo methods can' be 

easy, representative of the de sired process or 
opcrotion nnd fun but requires great care in some 
instances. This is because not the same sequence'of 
random numbers can be npplied in all physical 
processes and the same degree of accuracy expecteb 
ill nll cnqcs. Tlia way most, if not nll, c o t ~ i p d c ~ s  
gencralc random numbers is such thnt at thc cntl of n 
ccrtnin program which uses random numbers, when n 
ncw program which uses random numbers.as well, is 
started it makes use of the same sequence used by the 
earlier program picking each number in the same 
order.. 
Spccinl sequences can be developed (sequences 
according to specific distributions) for different 
processes or operations so that better results are 

achieved. Special plapose nlgorithms (fc~uuid iri 
n~unericnl librnries) are used iri this silrrnhcw Gctlernl 
purpose method nccottlirig to nri nrllitrnrv ~ I~s t t i \~ i t t t (~ t~  
filnctio~i cnti also I?c I I < ~ F I  irislc:t(I. 1111 c ~ : t ~ ~ r l j l ~  11ctrlg 
"rejection technique", i.e. flit-Miss ~ncth~wl. \vllicli 
was described earlier I.Io%vever tliis metllcxi IS not 
suitable for distribution with one or more large peaks 
Another method which is suitable for relntivclv 
simple tlistrihr~tiori litrictior~s is llic "inw.crsio~ 
technique". The inversion techniques has Ute 
following steps: (1) Normnlisntion of the distribution 
function to get a pdf, (2) integration of  the pdf 
analytically fkotn the rninitnrrln s to nn nlllihnry s. 
representing tile prnb nhility or choosing n \pnlite less 
than x and (3) Equnting,this to a uniform nrlrnber and 
solving for x. The resulting x will be distributed 
according to the pdf. This method is considered 
efficient. 
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