ASSEMBLY LANGUAGE
PROGRAMMING

USING

MCé68000

OArulogun O.T O©Fakolujo O. A.
OOmidiora E. 0. ©OAjayi A.O.

Allri ghts' reserved
Published in May, 2005
ISBN: 978-066-755-5

No part of this publication may be reproduced, stored in a retrieval
system, transmitted or utilized in any form or any means: Electronic,
Mechanical, Photocopy, Recording or otherwise without prior

permission in writing from the copyright owners.

Printed by:
DAPSON PRINTS
TEL:01-582145,08023708279.

CONTENTE

INTRCDUCTION TO MICROCOMPUTER PROGRAMING
LANGUAGES

ASSEMBLY LANGUAGE PROGRAMMING CONCEPTS
INTRODUCTIONTOASSEMBLY LANGUAGE
PROGRAMMING

MOTOROLAMC68000 MICROPROCESSOR

MC68000 ASSEM:ELY LANGUAGE PROGRAMMING
BIBLIOGRAPHY

INDEX

25
32
80
100

101

ACKNOWLEDGMENT

The authors would like to acknowledge the following people for
helping in getting the work done, Williams Akinwumi for putting
things in order, Olaniyi Mikhail for his invaluable encouragement,
contribution and for his initial typing of the manuscript.-To all our
present and past students especially Kamal, Debo, Mayowa and
Omoros: tor their help in fixing occasional break downs of the

computer system.

We also acknowledge our: in-house pals, Biodun, Abbey and
Babygirl_Bruce. for keeping the home front lively for writing; you are
one in amillion.

Lastly, precious thanks to our tutors and senior colleagues especially,
Dr. Fakolujo, Dr. Olatunbosun, Mr. Okeyinka for giving us the chance

and propelling us to achieve.

CHAPTER ONE
INTRODUCTIONTO
MICROCOMPUTER PROGRAMING LANGUAGES

To communicate effectively between two people there must be some
set of rules, conventions, symbols, and gramma}s agreed upon. This set
is known as language. A language (system of rules, words) for
communicating with computer is called computer language. It is
designed to give precise information to a computer, Any task can be
accomplished by taking a sequence of actions. The way to describe
how to accomplish a task is to give the instructions for the sequence of
actions needed to complete it. Computer identifies a task when it is
given step-by-step instructions for the successive actions, which result
in' the.completion: of the task. Computer program is a seqﬁence of
instructions: written in a defined computer language ‘given to a
computer to have a problem solved.
Microcomputer can be programmed using binary or hexadecimal
number (Machine language), Semi-English language statements
(Assembly language or a more understandable human-Oriented
language called high-level language). Regardless of what type of
language that is used to write the program, it has to be conyerted into
appropriate binary form, because Microcomputer understands only
binary numbers.
Microcomputer programming languages can be classified into three
main groups, namely.

Machine language.

2. Assembly language.

3, High level language

5

A machine language program consists of either binary or hexauecimal
OP (operation) codes that specify actions to be performed on data
elements. Programming a microcomputer with either binary or
hexadecimal op-codes is relatively difficult and prone to error, which
are also difficult to debug, since one will deal only with numbers. The
architecture of a microprocessor determines all its instructions. These
instructions are known as the microprocessor's instruction set.
Programs in assembly and high-level language are represented by
instructions like natural- language-type statements. The programmer
finds it relatively more convenient to write programs in assembly or
high-level language than in machine language

Since the microcomputer understands only binary numbers, a
translator must be used to convert the assembly or high-level language
programs into binary machine language so that the microcomputer can
execute the programs. Figure 1.1 shows the translation the process of
translation.

{Source code}] {Assembler or {Objects code}

Assembly or high | compiler/interpreter} » Binary machine
Level language Translator Language

r

Figure 1.1: Translation of Assembly / high-level language to machine
language
An assembler translates a program writien in assembly language
(source code) into a machine language program (object code). A
compiler or interpreter converts a high-level language program
written in PASCAL, FORTRAN, BASIC, C++ etc. into a machine
language program.

3E

10

Cé

20

21

00

02

76
It is easier to detect error in hexadecimal machine language program
than in binary machine language program since each byte contains only
two hexadecimal digits.

ASSEMBLY LANGUAGE

Assembly language is amnemonic representation of a natural or native
language of'a computer called machine code. Its instructions are called
macroinstruction.

Each macroinstruction is interpreted by means of primitive actions
called microinstructions. A microinstruction is the smallest event that
can take place within a computer. It may be moving a data bit from one
register to another consisting of clocking a flip-flop. The process of
carrying out a series of microinstruction is called macroinstructions,
Process of executing a macroinstruction is called interpretation.

Each instruction in an assembly language program is composed of
three or four field as follows.

L. Label field

ik Mnemonic field (Op-code)

3 Operand field

1. Comment field (optional).

They are organized or arrange as follows:

Label Field | Mnemonic Field | Operand field | Comment Field

Assembly language equivalent to the machine language program
treated earlier that adds two 8-bit numbers is given below.

LABEL. MNEMONIC OPERAND COMMENT

START MVl A.10H ;move 10 into Accumulator

ADI 20H ;Add 20 to the contents of - Accumulator

LXT H, 0200H ; T.oad register Pair HL with 0200H
MOV M, A ; move the contents of Accumulator into
locations 0200H

HLT ; stop temporarily until Interrupt.

Obviously; programming in assembly language is more convenient
than using machine language, since each mnemonic gives an idea of the
type of operation it is supposed to perform. Therefore, with the
assembly language. the programmer does not nave to find the

numerical Op-codes from the table of instruction set.

HIGH LEVELLANGUAGE

Though, the programmer's efficiency increases while programming
with assembly language programmer; the programmer however
suffers the following anomalies.

I Programmer must be well acquainted with the microprocessor's
architecture and instructions set.

il. He must provide an OP-code for each operation that the
microprocessor has to carry out in erder to execute a
programming task.

iii. Complexity entails when writing many steps in large
program.

In order to solve the above problems; a microcomputer can however be
programmed by using High-Level Language Programs. This will rob
the programmer of direct control of the hardware and uses more
memory than other computer languages. High-level language program
comprises of Bnglish type statements designed to rectify the above
highlighted - problems in assembly and machine language
programming. Itenjoys the following characteristics:

i. The programmer neither needs to be familiar with

microprocessor internal architecture nor its instruction set.

High-level language is problem oriented.

10

1. Each statement is equivalent to a number of assembly or
machine language instructions. Examples of High Level
LanguagesareC, FORTRAN, C++, Delphi, Pascal, and
COBOL.
Like assembly language, it requires a special program for converting
the high-level language statements into machine object codes. The

program can be either an interpreter or a compiler.

I

CHAPTER TWO
ASSEMBLY LANGUAGE PROGRAMMING
CONCEPTS

An instruction manipulates stored data and a sequence of instruction
makes up a program. In general, an assembly language instruction has
two cmﬁponants namely:

1. Operation code (OP code) field

2. Operand orAddress of operand field

The OP-code field specifies how data is to be manipulated. A data item
may reside within a microprocessor register or in main memory. Thus,
the purpose of the Address field is to indicate the location of a data item.
For an example, consider the assembly language instruction below.
ADD RL, RO
Op-code Address field
Assume that the microcomputer that this instruction is meant for uses
RI as the source register and R0 as destination register. The Op-code
ADD part, of the instruction means arithmetic addition operation.
Therefore the instruction will add the contents of microprocessor
register RO to RI and save the sum inregister RO,

ie. Destination register <—— Source register + Destination register

The number and types of instructions supported by microprocessor
may vary from one microprocessor to another and primarily depends
on the architecture of a particular machine.

12

INSTRUCTION FORMATS
The following instruction formats are identifiable in assembly
language based upon the number of addresses specified in the
instruction.
1. Zero-address instruction format

2. One-address instruction format

3. Two- address instruction format

4. Three-address instruction format
|. Zero-address instruction format: An instruction that does not
require any address is called a zero-address instruction format.
Examples are STC (set carry flag), NOP (no operation), RAL (rotate
accumulator left), RET (return from exception).
2. One-address instruction format: An instruction with a single
address is called a One-address instruction format. It takes the
following format:

<Up-code> Addressl.
eg. ADDB ;Accumulator (ACC)—— ACC +register B
SUBC ;Accumulator(ACC) «—— ACC -register C
CLR DO +——={)

3. Two address instruction format: An instruction containing two
addresses is called two-address instruction. It takes the following

format:
<Qp-code>Addrl, Addr2
e.gl MOVER2, Rl ;Rl «—— R2
ADD R1, R2 ; RZ+=— R2+R1
SUB R1, R2 : R2 +—R2:=R
4. Three address instruction format: An instruction with three

addresses is called -..Zbr—address instruction. It takes the following

format:
13

<Up-code=Addrl, Addr2, Addrs
e.g. MULAB,C:C <=~— A*B

ADDA,B,C; C £ — A+B

SUBRI,R2,R3;R3 R1-R2

NOTE: The result of an operation is always saved in the destination
address of the operand. All the above formats assume the last part of
the address/operand to be the destination. It could be the reverse in
some other microprocessors. Letters A, B, C, R0, R1, R2 and R3 are
designations for microprocessor internal registers.

ADDRESSING MODES

The sequence of operations that a microprocessor has to carry out while
executing an instruction is called its instruction. cycle. The most
important activity in an instruction cycle is the determination of the
operand and destination addresses. 'The manner in which a
microprocessor accomplishes this task is known as the addressing
mode. In other words, addressing mode is the manner in which the
microprocessor calculates the addresses of source and destination
registers.

There are many variations of addressing modes, the basic ones are
stated below:

(i) Inherent/Implied Addressing Modes: The instructions using
this ‘mode have no operands, Examples: STC, CMA
(Complement Accumulator), NOP (no operation), RET (return
from exception)

(Ii) Immediate Addressing Mode: Whenever an instruction
contains the operand value, it is called an immediate addressing
mode. Theactual datatobe

14

manipulated by the Op-code is specified as part of the instruction. The
symbol # usually indicates that an instruction is in an immediate mode.

e.g. ADD#20,R0 ;RO <— RO+20 (MC68000}
MOVAX, 05 AX =—05 (Intel 8086)
ADI05 ;Acce—— Acc+05 (Intel 8085)

(ii1) Direct Addressing Mode: Instructions using this mode specify the
effective address of the operand as part of the instruction. Instructions
using this mode contain three bytes, the first byte is the Op-code
followed by two bytes that represent the address of data.

e.g. MOVE 2000, RO ; RO<=—— M(2000): content of memory
location 2000 s transferred into RO
LDA2035H ; A<—— M(2035)

(iv) Register Addressing Mode: This mode specifies the register or
register pair that contains data i.e. operand values are held in
microprocessor registers.

e.g. ADDRI,R0; R0O<—— R1+R0
MOVE R5,R6 :R6 «<—— RS

(v) Register Addressing Indirect Mode: Whenever an instruction
specifies a microprocessor register that holds the address of an
operands, the resulting addressing mode is known as the register
indirect mode. The address of the operand is specified indirectly
In aregister.

e.. MOVE (R1),(R0) :M(RO)&— (BRI

In the above instruction, if the content of R1=3000, RO = 4000,

M(3000) =0554
15

M(4000) = 0548, then the instruction copies the content of the memory
location whose address is specified in the microprocessor register R1
into the location specified into register R0. In other words, memory
location 4000 will contain 0554 after the execution of above
instruction,
LDAXB; A<—— M((BC))

This Intel 8085 instruction loads the accumulator A with the contents of
a memory location addressed by the B, C register pair. BCregister pair
contains the address.

(vi) Memory Indirect Addressing Mode: Sometimes, it is possible
that an instruction may contain the address of an address of an operand.
In such a case, the addressing mode is referred to as a memory indirect
addressing mode.

e.g. MOVE (2000), R0: RO<*———M(M(2000))
The content of memory location: 2000 will be interpreted as the address
ofthe operand to be copied into register RO.

(vii) Address Mode Based On Address Modification: In the context
of address modification, effective address (EA) of an operand is
expressed as a sum of two parameters known as modifier M or the
offset or displacement and the reference address RA. i.e. EA=RA+M.
There are four addressing modes based on this concept:

(1) Indexed Register Mode: This is used in accessing structured
data type like an array. In this mode RA is included in the instruction
and register X contains the value M i.e. modifier. The register X is
called the index register. For example, consider the declarationina

typical Pascal program,
16

VarY: ARRAY [0..9] Of integer;

and that element Y[2] is to be accessed. Let assume that variable Y
is stored inmemory location starting at $0100,

Load/move instruction such as MOVE 0100(X), D0 could be used
to accomplish this task

Analysis: 002 X
Y[0] esias
0100 —
i Move 0100 (x), DO
Y[2])
Register A
Y[2]
Y[9]
0109

If index register X contain value 0002, then effective address EA, is
givenas EA=RAHX) =0100+2
=0102

Therefore, the contents of memory location 0102 will be transferred to
the A register, which contains array element Y[2]. Other elements of the
array could be accessed in the same manner by changing the register X.

For multidimensional
17

array more than two parameters will be used to calculate the effective
address of the operand. This mode allows a programmer to carry out
array manipulations efficiently.

(ii) Base Register Mode:
In the base register mode, the parameter RA is held in a separate register
called the Base register and the offset or the modifier is included in the
instruction as offset. This mode is-useful in microprocessor that utilizes
segmented memory system.

EA = Base Register + offset

(iit) Baselndex Register Mode
In the base-index register mode, the parameter RA is held in a separate
register called the Base register which could be a data register and
another parameter known as index of the address stored in an address
register while the modifier or displacement is included in the
instruction as offset. This could be used to access a multi-dimensional
data structure such as array, records.
EA=Base Register + index register + offset

(iv) Relative Addressing Mode

In this mode, the program counter (PC) is configured as the base
register. This mode is used in writing position independent code so that
program could be located anywhere in memory. The address of the
operand is relative to the content of the program counter by a specified
16 bit offset.

EA=PC +offset
18

PROGRAM CONTROLINSTRUCTIOIN

In a conventional microcomputer, instructions are always executed in
the same order (sequence) in which they are presented to the computer,
irrespective of the programming language being employed. In many
real-life programs, the flow of control depends on the result of
computation. In this situation, a program can select a particular
sequence of instructions to execute based on the results of computation.
In assembly language programming the Instructions that could be used
to realize this idea are called program control instructions. This group
of instructions alters normal sequential flow of program. These
instructions can be classified into the following groups:

(a) Unconditional Branch Instruction
(b) Conditional Branch Instruction
(c) Subroutine Call and Return Instruction

(i) Unconditional Branch Instruction: This transfer the
control to the specified address regardless of the status of the
preceding program computation. The program control is
transferred-automatically without any condition testing.

e.g. JMPaddress, BRAaddress

(b) Conditional Branch Instructions: Before program control could
be transferred to another segment of the main program, condition(s)
must be tested. If condition is satisfied, the transfer of control is
effected, otherwise the normal program sequence is continued. A
conditional branch instruction works as follows:

19

lf (conditime:) then
branch to execute a new instruction
else
execute the nextinstruction.

The status of a microprocessor after executing an instruction is always
reflected in the microprocessor's status register (SR). The results of
condition testing can be obtained from the status register. The contents
of the status register are interpreted as individual bit, with each bit
(flag) representing a condition. The status register will be explained m
detail under microprocessor's programming model. We assume that the
status flags-are already ser or reset by an instruction that immediately
precedes the conditional branch instruction except MOVE
instructions. Using the status flag value, we can realize traditional
relational operators such as-equal to, not equal to, greater than, greater
than or equal to ,less than , less than or equal to and so on. These
relational operators are used for testing conditions so as to know if
transfer of program control will take place.
Forexample, consider the following MC68000 instruction sequence.

MOVE#25,D0; D0 -—25
MOVE#15,D1 ;D1=— 05
AGAIN;/SUB DI1,D0 ;D0=D0DI
BEQ END ;Jumptoaddress END, ifzero Flagis set.
SUB #05, DI : otherwise, do the following sequence of
instruction
JMP AGAIN ; Repeat the subtraction (unconditional
jump)
END: HALT ; Stop
20

In this example, let start from the instruction 2&£Q END, which means
branch to label END, if the result of the previous subtraction
instruction SUB DI, D0 is zero (i.e. Z flag =1). If the result of
subtraction is not equal to zero (i.e. Z flag =0), then execute the next
instructions ADD #35, D1, followed by JMPAGAIN and END: HALT.
The instruction JMP AGAIN is an unconditional jump tu uddress
AGAIN. Other instructions that could be used for conditional transfer
of program control are: BNE, BGE, BLE, BGT, BLT, BMI, BPL, BLS,
BHI, BCS, and BCC.

(C). Subroutine Call and Return Instruction: A subroutine is a name
that is given to a group of program instructions that collectively
perform a single function. A subroutine can be called to perform
repeatedly needed tasks such as searching, sorting, binary to ASCII
code conversion, square root, etc. Subroutine may be written,
assembled and tested separately. It replaces several lines of coae and
optimizes the (Main) calling program.

Subroutineé forms a key word in modern software approach calted
modular programming. In modular programming, large program can
be thought of as collection of independent program modules called
subroutine or set of subroutines. Modular programming encourages
préblem sharing; where a large program can be efficiently developed
within a short period of time.

Assembly language programming provides means of transferring
program control to and from subroutine within a program. The means
of transferring program control to or from Subroutines are handled by

two special instructions, namely CALL and RETURN respectively.
21

The CALL =astruction is of the form CALL Address, where the
parameter address refers to the address of the first instruction in the
subroutine. When this instruction is to be executed, the current
contents of program counter (PC) are saved onto the stack (memory)
and PC is loaded with the Address of the subroutine. Program'control is
now i1 the subroutine program. After the execution of the subroutine,
program confrol must be transferred back to the calling program. This
15 achieved by restoring the previous contents of the PC from the stack.
The RETURN instruction will perform this operation of restoring the
previous contents of PC back. Therefore the RETURN instruction
should be the last instruction of the subroutmne. it 1s of note that the
previous contents of the PC pushed onto the stack provide the address
ofthe instruction that immediately follows the CALL instruction. This
address is also known as the return address because this i§ the point
where after exiting the subroutine, the control is transferred back to the
calling program by the RETURN instruction.

The CALL instruction is similar to Intel microprocessors'
PUSH PC ; save return address on stack
IMP Address ; Branch to subroutine Address
The RETURN instruction 1s equivalent to
POPPC
The CALL and RETURN instructions have conditional and
unconditional variants These variants will be discussed later in the
next chapter. Subroutine call and return instructions are similar to
conditional and unconditional branch instructions except that program
control must be transferred back to the calling program where the
subroutine was initiated.

22

INPUT/OUTPUT INSTRUCTIONS

These instructions allow a microprocessor to perform input/output
operations through a configured input/output port. An input instruction
allows a peripheral device to transfer a word to either a register or the
main memory and similarly, an output instruction enables a
microprocessor to: transfer a word unto the buffer register of a
peripheral device. For example, we have IN and OUT instructions for
8085 for input and output respectively. Z80 provides an enhancement
to the input/output instructions, of the 8885 by providing instructions
such as INTR, OTIR that can transfer a block of words from an input
device to the main memory and from the main memory to an output
device, respectively. MC68000 has no explicit input/output instruction
but treats peripheral device, as if they are memory location that can be
written into or read from using the MOVE instructions.

INPUT/OUTPUT OPERATION

This can be defined as the transfer of data between the microcomputer
system and the external devices: There are three types of input output
operations common to microcomputer system. They are:

Programmed Input/Output (Polling I/0)

With this technique, the microprocessor executes a program to perform
all data-transfer between the microcomputer system and the external
devices via one or more register called input/output port. The main
characteristic of this type of input/output technique is that the external
devices carry out the functions as dictated by the program inside the

microcomputer memory. In other words, the
23

microprocessoi completely controls all the data transfer between the

peripheral and the microprocessor.

Interrupt Input/Output

In this technique an external device can- force the microcomputer
system to stop executing the current program temporarily so that it can
execute another program known as the interrupt service routine. This
routine satisfies the needs of the external device. After having
completed this interrupt service routine, the microprocessor returns to
the program that it was executing before the interrupt, the
microprocessor completely, controls all the data transfer. This is also

known as hardware initiated subroutine.

Direct Memory Access (DMA)

In this type of input/output technique, data can be transferred between
the microcomputer memory and external devices without any direct
microprocessor's involvement. DMA is typically used to fransfer
blocks of data between microcomputer memory. and external devices
such as hard and floppy disk drives. An interface chip called the DMA
controller chip is used by the microprocessor for transferring data via

DMA.
24

CHAPTER THREWY,

INTRODUCTION TO ASSEMBLY LANGUAGE
PROGRAMMING
The most primitive language in which programs are written in native or
host language of a computer is called assembly language. It uses
mnemonic to represent various operations performed by the computer.
Mnemonics are self-evident symbolic name that refers to'an operation,
e.g. ADD denotes addition operation

SUB denotes subtraction operation

BRA denotes branching operation

MOVE denotes copy operation
Consider a typical assembly languageinstruction given below

SUB.B Number, D3

The instruction above means subtract 8-bit number stored in memory
location named Number from the contents of a data register D3. The.B
following mnemonic indicates size of source data that the instruction -
will work on i.e. 8-bits: The data register D3 referred to in the
instruction is. a special purpose data storage element within the
microprocessor-and Number refers to memory location of the source
operand.
Programsinassembly language are represented by instructions that use
English languagetype commands. The programmer finds it relatively
more convenient to write the programs in assembly language than in
machine language. However, a translator called the Assembler must
be used to convert the assembly language programs into binary
machine language programs (objects codes) so that the microprocessor
can execute them.

25

Ar. assembs is a program that translates symbolically written
programs in assembly language into machine language. There are
various types of assemblers available today. Some of them are
described below.

(ne-pass Assembler:

This assembler scans through the assembly language program once and
translates the assembly language program. This assembler has the
problem of defining forward references. This means that a JUMP
instruction using an address that appears later in the program must be
define the programmer after the program is assembled.

Two-pass Assembler:

This assembler scans the assembly language program twice. In the first
pass, the assembler creates a symbol table. A symbol table consists of
labels with addresses assigned to them . This way labels can be used for
JUMP statements, and no address calculation has to be done. by the
user. ON the second pass, the assembler translates the assembly
language program into the machine code. The two-pass assembler is
more desirable and much easier to use because of ease of address

computation.

Macro assembler:
This type of assembler translates a program written in macro language
into the machine language. This assembler allows the programmer to
define all instruction sequences using macros. By using macros, the
programimer can assign a name to an instruction sequence that appears
repeatedly in a program.

26

The programmer canthus avoid writing an instauction sequence that 1s
required many times in a program by using macros. The macro-
assembler replaces a macro name with the appropriate instructios,
sequence each time it encounter a macro name. The difference between
a subroutine and a macro is that in the former, a specific subroutine
occurs once in a program. A subroutine is executed by CALLing it
from a main program. The program execution jumps out of the main
program and then executes the subroutine. At the end of the subroutine.
a RETurn instruction is used to resume program execution following
the CALL SUBROUTINE instruction in the imdin progiam. A
MACRO, on the other hand, does not cause the program execution to
branch out of the main program. Each time a macro occurs, it is
replaced with the appropriate instruction sequence in the main
program.

Resident Assembler:
This type of assembler assembles programs for a microprocessor in
which it is resident. The resident assembler may slow down the

operation of the processor on which it runs.

Cross Assembler:

This type of assembler is typically resident on the microprocessor and
assembles programs for another microprocessor for which it is written.
The cross assembler program is written in a high level language so that
it can run on different types of processors that understand the same

high-level language.
27

Meta-Assembler:
This type of assembler can assemble programs for many different types
of microprocessor. The programmer usually defines the particular

processor being used.

ASSEMBLER SYNTAX
As mentioned earlier in chapter one, each line of an assembly language
program consists of four fields. These ficlds are:
Label field.
Mnemonic/Op-code field.
Operand field.
4. Comment ficld.
The assembler ignores the comment field but translates the other three

i el

fields. The label field must start with-an upper case alpha character. The
assembler must know where one fields start and another ends. Most
assemblers allow the programmer to-use a special symbols or delimiter
to indicate the beginning or end of each field: Typical delimiters used
are spaces, commas, and semi-colons: and colons.

Space between each field

g between operands
s hefore a comments
ornone after alabel.

In order to handle numbers, most assemblers consider all numbers as

decimal numbers unless specified. Most assemblers will also allow

28

some ways. Using a letter following the numéer usually does this.
Typical letter used are:

B for binary

Q foroctal

Hor$ for hexadecimal.
Assemblers generally require hexadecimal numbers to start with a
digit. A 0 (zero) is typically used if the first digit is an alphabet to
distinguish between hexadecimal numbers and label. For example,
most assemblers will require the number A5H to be represented as
0ASH. Therefore, the 8085 assembler will not accept the 8085
instruction MVIA, FFH and will give error. The correct format for this
instructionis MVIA, OFFH.

ASSEMBLERDIRECTIVE

These pseudo-instructions are not directly translated into machine
language instruction. Assembler uses pseudo-instructions or directives
to make the formatting of the edited text easier. They equate labels to
addresses, assign the program in certain areas of memory, or insert
titles, page numbers efc.

In order to used the assembler directive or pseudo-instruction the
programmer must put them under the OP-code field, and if the pseudo-
instructions require an address or data, the data or address 1s put under
the operand field. Typical pseudo-instructions are: ORIGIN (ORG),
EQUATE (EQU), DEFINE BYTE (DB), DEFINE CONSTANT
(DC)and TITTLE(TTL).

ORIGIN (ORG): The pseudo-instruction ORG lets the programmer
place the programs any where in the memory. ORG address tells the:
assembler to load the program into memory starting at the specified
address. Internally, the assembler

29

mamntains program counter types register called the.address counter.
This countetzmaintains the address of the next instriction or data to be
processed. Recall that the jump instruction causes the microprocessor
to place a new address in the program counter. Similarly the ORG
pseudo-instruction causes the assembler to place a new value in the
address counter, typical ORG statements are:

ORG T000H
MOVE D1, #$02

The M68000 assembler:will generate the. following code for these
statements:

7000 3E

7001 02
The ‘ORG will»assign memory address: 7T000H to- the: first: Op-code
(MOVE D1, data), then the niext address' 7001 to the operand(02,,).
Note that'3E is the hexadéecimal code for the instruction MOVE D1,
data, for the M68000.

EQUATE (EQU): EQU assign a value iir 1ts' operand field to an
address in its label field. This allows the user t0 assign anumeric value
to a symbolic name. The user can theén use the symbolic name in the
program- instead of its numeric value. This reduces error in
programming.

Atypical example is

START EQU .$0200
This pseudo-code instruction assigns the value 0200 in hexadecimal to

the label START.
30

Another example is:

PORTA EQU 40H
MOVE #$FF, D2
MOVE D2, PORTA

In this example, the EQU gives PORTA the value 40 hex, and FF hex is
the data to be written into the D2 register by the instruction MOVE D2,
#$FF. The MOVE D2;PORTA instruction'will'output this data FF hex
inthe D2 registerto port with address 40H.

Note that, ifa label in the operand field is equated to another label in the
field, then the label in the operand field must be previously defined. For
example, the EQU statement in the instruction statement below:

BEGIN EQU START

will gencraie an error unless START is defined previously with a
numeric value,

DEFINE BYTE (DB):
The pseudo-instruction DB is usually used to set a memory location'to a
certain byte value. For example,

START DB 45H

Will assign the data 45 hex to the memory location pointed to by the
label START. With some assemblers, the DB pseudo-instruction can be
used to generate a table of data as follows:

ORG 7000H
TABLE DB 20H, 30H, 40H, 50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex,
40 hex, 50 hex occupy the next three memory locations. Therefore, the
data in memory will look like this:

31

memory content

7000 20
7001 30
7002 40
7003 50

DEFINE CONSTANT (DC): The Define constant (DC) is a directive
to the assembler to set up one or more data values as constant in
memory, for example-

CONST1 DC.B $12 ;Setup the 8-bitbyte 00010010
CONST2 DC.W $1234 ;Setupa 16-bitword

CONST3 DCB $13, $14, $BC; Set up a list of data
valuts,

The constants CONST1, CONST2, CONST3, CONST4, and CONSTS
areassigned the values $12,$1234,$13, 514, and $BC respectively.

32

CHAPTER FOUR
MOTOROLA MC68000 MICROPROCESSOR

INTRODUCTION

A series of microprocessor widely used as a controller and in PCs is the
MC68XX and MC68XXX microprocessor series developed by
Motorola. The former series of chips include MC6800, MC6801,
MC6805, MC6802, while the latter, which evolved from the former,
includes MC68000 (the subject matter), MC68010, MC68012,
MC68020, MC68030, MC68040. MC68000 ‘niicroprocessor is the
Motorola's first 16-32bit-microprocessor chip, That is, it has 16-bit
data path and capable of 32-bit internal operations. Other members of
the former series are improved versions of MC68000 microprocessor,
with many features added along the way. Its address and data register
are all 32-bit wide. It can be operated from a maximum internal clock
frequency of 25 MHz (available in several frequencies including 6, 10,
12.5,16.67 and 25MHz). It requiresa single 5v supply. It does not have
on chip clock circuitry, it therefore, require external clock
generator\driver circuit of a crystal oscillator to generate the clock
input.

OPERATING MODE:

Mc68000 can be operated in two modes, User mode and Supervisor
mode. The user mode is used to execute user programs while the
supervisor mode is used to implement operating system and protection
features by the microprocessor.

It operates in either of this modes based on the logic level of “S” bit i.e.
the supervisor flag of the status register (SR). When the 'S' bitis set i.e.
S=1; thenit

33

operate in the supervisor mode; however, when the S bitis zeroi.e. S=
0 then the user mode is assumed.
The table below shows major difference between the two modes:

Supervisory Mode Users mode
Logiclevelof 1 0
function code FC2
Enter mode by Trap, reset, interrupt ac Clearing Biwnf SR

Knowledgment, S=1 i.¢. Supervisory flag
‘System stack Supervisor stack pointer (A7) | User stack pointer')
Pointer (A7)
Available ‘Allinstructions including All except those
Instructions STOP, RESET,RTE, MOVE | Listedin

to/from SR, ANDI SR, ORI | supervisory mode.

SR, ,MOVE ta/from USPto

| (An).

1. Thelogical level of the microprocessor function code pin (i.e.FC2)
indicates whetherit's operating in either of the modes.

2. Via an instruction, program execution in supervisor mode can enter
the usermode by modifying the S bit of status register to zero, such
instructions inchide;-

MOVE to/ from SR
ORIto/fromSR
EORIto/ from SR

However, switching from User to supervisor mode can be caused by

error such' as TRAP, system reset, software reseét, and interrupts

recognition.

34

An interrupt will automatically be generated.uiprivileged instructions
solely designed for supervisor mode are executed in user mode. 68060
has three function code pins (i.e. FC2, FC1, FCO) which specify to the
external device whether it is accessing “SUPERVISOR PROGRAM
/DATA ", performing an “INTERRUPT ACKNOWILEDGE CYCLE”
OR “USER PROGRAM/DATA".

DATATYPES, INSTRUCTION SETAND ADDRESSING MODE
MC68000 supports five different data types . They are 1-bit, 4-bit BCD
digits, 8-bits (byte), 16-bits (word), and 32-bits(long word). Its
instruction set includes 56 basic instruction fypes.14 addressing
modes, and over 1000 Op-codes. It executes the fastest and slowest
instructions at 500ns {i.e. the one that copies contents of one register
into anotherregister} & 21.25us at SMHZ respectively.

It has no input and output instruction, hence, all input and output are
memory mapped. The MC68000 is a general-purpose register
microprocessor with many data registers which can be configure either
as an "ACCUMULATOR" oras “SCRATCHPAD REGISTER”. It has
seven data registers and eight address registers including the supervisor
stack pointer. Any data or address register can be used as an index
register for addressing purpose. Although, it has 32-bit internal
operated microprocessor; only the low-order 24 bits are used. It'salsoa
byte addressable processor and can address up to 16MB of memory
locations:

PROGRAMMING MODEL

The programming model of a microprocessor describes in detail all
registers that are available in the microprocessor to a programmer,
which can be manipulated. There are other registers that are not visible
to the programmer. MC68000 has

35

adequate reg%iers for various manipulations. The programming modl
of MC68000 microprocessor is shown in figure 4.1.

Leng Word

Word

Byle
15 7 o

] o1
lo2

loa
Ty >— Data
I_ 04 Reglsters

] os
¥ =] -Da.
I D?')

| a0

ETTER] a1
e I CHE G JOCHITS T AR TP e

] iaas Address
Reglsters

| aa.
]#s J
|FY

IAT

= B _}Stuc:k
|A7Z Pointers

] Program Counter

~ Figure 4.1: MC68000 Programming Model

-

_:.'__'._—'If___"f_.#'"__:_r_:

T 5 L | X N i v C | Status Reghter €

e

Negative Flag Zero F

Supenvisor Flag Overflow Flag

Carry Flsg"
Figure 4.2: MC68000 Status Register with the Flags
36

Data Registers

The processor has eight; 32bit data registers DO through D7. Data
registers hold arithmetic values and data item in form of 1-bit, 8-bit
(byte), 16-bit word, 32-bit long word and 4-bit BCD numbers. Byte
and word operations on data registers affect only the lower portion
of the registers. For example a byte size movement into a data
register affects only the 8 lowest significant bits of the register, the

restupper 24-bits are not affected.

Address Registers

There are nine, 32-bit address registers, A0 through A7 plus A7'. It uses
A7 and A7' as the user and supervisor stack pointers (USP and SSP) as
shown in figure 4.1. Address Registers are used to hold memory
pointers (addresses) and index values of an operand. Seven of the
address registers (A0 A7) are general purpose register. The eight, A7' is
the supervisor stack pointer SSP. The stack is a memory area set aside to

store data temporarily in memory in Last In First Out order (LIFO).

Program Counter
The program counter PC keeps track of the address of next instruction
to be executed. It always contains the address of the next instruction m

memory to be executed. PC is a 32-bit long register.

37

Status Regisier
The status register SR is composed of two bytes:
L user byte

2, system byte.
The user byte includes the condition code flags such as carry (C),
overflow (V), negative (N), zero {Z) and extend (X) flags as shown in
figure4.2. The functions of the fla gs are as explained below.

Carry (C): Carry flag can either be set'(1) or cleared (0). It is Set, if
arithmetic and logical operation carried out results in a carry or borrow
bit from bit 7 to bit 8 in a destination data register.. Otherwise it is
cleared.

Overflow (V): Overflow flag is set to logical level of one, if the result
of manipulation is larger than the destination register, that is the result
is no longer reliable. Otherwise V = 0, signifying that the result is still
reliable.

Zero (£): Z flag s set (1), if result of arithmetic and logical operations
is equal to numerical value zero. Otherwise, the Z flag is clear.

Extend (X): Extend flag is similar to carry flag because they are
always aﬁ'cctgd the same way as carry flag, but extend flag 1s used in
multi-precision instructions such as ADDX and SUBX. The reason for
this is that MC68000 has no instruction for addition and subtraction

with carry (ADC & SUBC).
38

Negative (N): Negative flag is set (1), if result of arithmetic and logical
operations is equal to negative numerical value. For example N flagis
set for instruction such as SUB D0, DI where DO =5, D1 = 4 is
executed. Otherwise N is cleared to zero.

The system byte includes a 3-bit interrupt mask (I, I,, I,), a supervisor
flag (S) and Trace flag (T).

Interrupt Mask: The interrupt mask bits form a binary number that
specifies the currently acceptable interrupt level. Any interrupt request
from peripheral devices whose level is less than or equal to the mask
bits are not attended to. The programmer can set the interrupt mask bit
by copying the desired level into the status register from a data register
or by performing logical operations with the status register.

Trace Flag: When T flag is set (1), the processor generates a trap
(internal interrupt) after executing each. instruction. This will allow
single stepping of instruction for debugging facility after execution of
éqch instruction. W]'.i.@_l_‘l T = 0, such facility is disabled. Execution of
ORI #58000, SR set the trace flag to one in supervisory mode and ORI
#80000,SR clears the trace flag.

Supervisor Flag: When Supervisor flag S is set to one, the system
operate in the supervisory mode; otherwise, the user mode operation is
assumed. While the supervisor mode is intended for operating system
usage, the user mode is for application program. Some instructions can
only be run in the supervisor mode. 'f'hcy are called privileged

instructions.
39

For Intel processors like Intel 80286/80386/80486, these modes are
called PROTECTED and REAL MODE respectively.

ADDRESSING MODE
MC68000 microprocessor’s addressing mode can be divided into six
basic groups:

Register Direct

Address register indirect

Immediate Address

Absolute Address

Program Counter Relative

Implied Address

REGISTER DIRECT: Register Direct Addressing Mode specifies
the register or register pairs that contain the data. In MC68000, the
eight data registers (D0 “D7) or seven address registers contain data
operand(s). For example, consider the instruction ADD 004500, DO.
The destination of this instruction is in data register direct mode. If
[004500] = 0004,; & [D0] = 0002,.: then after' the cxecutmn of the
above instructions the contentof [D0]= ﬂm}4;ﬁ+ m:m];ﬂmﬁ,,,

Another example of register direct addressing mode is MOVE D1, D4.

IMMEDIATE MODE: Instruction in this mode specifies actual data
value to be operated upon rather the address of the operand. There are
two types immediate addressing mode available in MC68000. They are

immediate mode and quick immediate modes.
40

In immediate mode, the source operand is a constant data and is part of
instruction. The data could be as long as four byte in size.

Forexample, ADD #$5000FF 005, D0;

If[DO]=0007H then after execution of the instruction,

[D0]=0007H +0005H=000CH.

The symbol #is used by Motorola to indicate immediate mode.

In quick immediate mode, the immediate data could be a value from 0
to 7. For exmnple, ADDQ #1, DO will add zmmedlat_e data 1 to DO, The
remaining upper 24 bits of the data register DO is sign extended. This
means the value of bit 7 of the D0 is copied into bits 8 -24.

IMPLIED MODE: In this mode, address of the operand is not
specified in the instruction but it is @ssumed by the microprocessor.
There are two types of implied mode in MC68000. They are implicit
and explicit.

Implicit mode does not require any operand. Registers such as PC, SP,
and SR are implicitly referenced. For example; RTE means returns
from an exception routine to main program using SR and PC registers
implicitly._?

Explicit mode on the other hand, allows loading an operand or an
address into program counter. For example, JMP address instruction

will load the address supplied into PC.

ABSOLUTE MODE: The effective address is specified as part of the
instruction in an absolute addressing mode. There are two types of
absolute addressing mode in MC68000 .They are absolute short
addressing and absolute long addressing. The former is used for 16-bit
address while the latter is used for 24-bit address.

41

For example, Consider ADD $2000, D2; is an example of absolute
short addressing while ADD.W $240200, D5; is an absolute long
addressing.

ADDRESS REGISTER INDIRECT: In address register indirect, the
instruction contains microprocessor's register(s) that contains the
address(es) of instruction operand. The address of the operand is
specified indirectly in an address register. There are five different types
of Address Re gister Indirect in MC68000.
(i) Register Indirect

(i) ;.. PostIncrement Register Indirect

(iii).- Pre-decrement Register indirect

(iv) - Registerindirect with Offset

(v) IndexRegister Indirect with offset

REGISTER INDIRECT: in the register indirect mode, an address
register (An) contains the effective address (EA): For example,
consider CLR (A1). If [A1] = $003000, then after execution of CLR
(A1), the content of memory location $003000 will be cleared to zero.
The contents of address register A1 are used as address of the operand.

POST INCREMENT ADDRESS INDIRECT: this mode is similai
toregister indirect mode, except that the. concerned address register is
incremented by '1' for byte(B), '2' for word(W) and '4' for long word
(L), atter execution of the instruction by the microprocessor.
Example: consider the instruction CLR.L (A0)+
42

This instruction clears the content of the memory location pointed to
by A0, and then adds '4'to A0 after execution because of the .L after the

Op-code.

ANALYSIS: If the contents of memory locations 005000,, & 005002,
are 1234,, & 4567,,and [A0] =005000,, then after execution, content of
005000, & 005002, are cleared to zero and [AQ] = 005000 + 4, i.e.
[A0]=005004.

Post increment mode is typically used with “MEMORY ARRAYS”
stored from “LOW TO HIGH” memory locations. For example,
supposing, 1000,, words is to be set (write ones) starting at memory
location 003000,,. The following instruction sequence can be used.

LABEL OPCODE OPERAND COMMENTS
MOVE. W #1000,D0 :load length of data into D0
MOVEA.L #$003000,A0 ; load starting address into
A0
REPEAT SET.W (A0)+ ;set a location pointed to by
AOand increment A0 by 2

SUBQ#1,D0 :decrement DO by 1
BNE REPEAT : branch to REPEAT if Z=0;
otherwise go to next

instruction.

MOVED4,D2

43

PREDECR®MENT REGISTER INDIRECT: In pre-decremant
register indirect, concerned address register is decremented by 'l" for
byte(B), '2' for word(W)and '4' for long word(L) before using a
register. For example, Consider the instruction CLR.W-(40)
This instruction first decrements the address register A0 by "W'i.c, 2
and clears memory location addressed by AD
ANALYSIS: 1f [A0] =002004, then after execution of above
instruction, the contents of A0 is first decremented by 2; since [AU]
=002004 so therefore it will be [A0] = 002002,,. Then, the content of
memory location 002002 is then cleared to zero.
The pre-decrement mode is used with MEMORY ARRAYS stored
from High to low memory locations. For exaniple, supposing, 1000,,
words is to be cleared starting at memory location 4000,,. The
following instruction sequence can be used.
LABEL OP-CODE '~ OPERANDS < COMMENTS

‘MOVE.W #5§1000,DO : load length of data into DO

MOVEA. W #8$0004002,A0 :load starting address plus 2
Into AD
REPEAT CLR. W -(A0) :Decrement A0 by 2 and clear

memory location addressed by

AO0.
. SUBQ#1,DO ; Decrement DO by 1
 BNEREPEAT . 1fZ =0 branch to REPEAT;
Otherwise go to the next
instruction.

44

This instruction decrements A0 by 2 and wnen clears the memory
location. The instruction sequence is repeated until $1000 memory
locations have been cleared. Register A0 must initially be initialized to
004002, since the starting address is 004000,

REGISTER INDIRECT WITH OFFSET: In register indirect with
offset; the EA is determined by adding a 16 bit signed integer (offset) to
the content of an address register. For example, . Consider the
instruction MOVE.W $10(43), D3
ANALYSIS': The source operand is an address register indirect with
offset mode. Supposing [A3]=00002000,, and [002010],,=0014,

i.e. EA=002000+10 (offset)=002010
Therefore after execution, content of memory location [002010],
=0014,, will be moved to register D3,i.e. D3=0014,,

INDEXED REGISTER INDIRECT WITH OFFSET: In the index
register indirect with offset, the EA is determined by adding an 8-bit
(offset) signed integer, the contents of an address register (base
register) and a data register (index register). The index register indirect
with offset is usually used when the offset from the base address
register needs to be varied during programt execution. This mode is
usually used for accessing multidimensional data types. Size of the
index register canbe 16 bit integer or 32-bit integer value.

Indexed register indirect with offset addressing mode Instruction
arrangement is given below:

Op-code offset (Base register, Index register.), Destination
register.

MOVE.W$10(A4 D3 W), D4
45

Where 10,,1s the 8bit offset that will be signed extended to 32-bit

Ad= ﬁaseregister

D3. W=16 bitindex register (sign extended to 32 bits)

D4 =Destination data register
Analysis:-

If[A4]=00003000,,
[D3]=0200,,
Therefore, EA=[A4]+ [D3] +offset=003000-+0200+10
EA=003210

Suppose that, [003210],,=0024,,

Therefore, the low 16 bits of D4 register will be loaded with
0024,..

INSTRUCTION SET

MC68000 contains 56 basic instructions. The instruction set repertoire
is very versatile and allows an efficient means to handle high-level
language (HLL) structures like linked lists and array. As shown below,
notation 'B","W','L is placed after each MC68000 mnemonic to depict
the operand size whether it is byte, word or long word. All MC68000
instructions may be classified into eight groups as follows:

DATA MOVEMENT INSTRUCTIONS
ARITHMETIC INSTRUCTIONS
LOGICAL INSTRUCTIONS
SHIFTAND ROTATE INSTRUCTIONS
BIT MANIPULATION INSTRUCTIONS

BINARY CODED DECIMALINSTRUC TIONS
46

PROGRAM CONTROL INSTRUCTIONS
SYSTEM CONTROL INSTRUCTIONS

DATAMOVEMENT INSTRUCTIONS (DMI):

DMI instructions allow data transfers from register to register, register
to memory, and memory to register, memory (o memory.
Consequently, special data movement instruction such as MOVEM
(Move multiple registers) are possible as well as, B}fte word, long
word data transfer are also permissible. Tﬁéke ate-eleven data
movement instructions in MC68000. They are: MOVE, MOVEM,
MOVEP, MOVEQ, MOVEA, EXG, SWAP, LEA; PEA, LINK and
UNLINK.

MOVE INSTRUCTIONS
1. MOVE: Move or copy data from source to destination.

The format for basic move instructions is:
MOVE.S(EA),(EA)

Op-code operandsize sourceaddress destination Address

EA can either be a register or memory de;_nendfng on the addressing
mode used. Forexample, MOVE B. D3,DI"

The above instruction uses source & destination data register & the
operand size is 8-bit or a byte. If [D3] = 05,, & [D1] = 01,;; Then, after
the executions of the above iﬁfﬂrmatian:
[D1]1=05,,&[D3]=05,,.
e, _[DI]+~——[D3]
Another example, consider the instruction MOVE $02000, D0
47

The instruction copies the content of memory location $02000 to data
register D0. ie. [02000] ———DO

2. MOVEA: The instruction Moves data from the effective address of
source operand to an address register. The assembler syntax is:
MOVEA.S (EA),An
Op-codeoperand size sourceaddress address register
MOVEA instruction can be used to load an address into an address
register from memory or for loading an immediate data into address

register. . The
EA is calculated using the addressing mode specified in the instruction.
For example, consider the instruction MOVEA. W#82000,45

This instruction moves the immediate16bits word 2000, into the low
16-bit of A5 Address register. It signs extend 2000,, to 32-bit i.e.
00002000,

i.e.2000,, ——> - [A5]andthensiened extended to:

" [A5]=00002000,,

Consider the instruction MOVEA. L $04(A5,D2. W), A2
Assume: [AS} —ﬂﬂﬂZdSSﬂm, [DZ] 0045, ., and - [0245C9,] =
578312
Then, EA=04£00024580+0045=000245C9,,
After the execution of the above instruction, 89764512, is copied into

dataregister A2.
[A2]=89765412,,

MOVEA can use all available (14) addressing modes.
48

3. MOVEM: MOVEM instruction can be used & move multiple
registers to an effective address. It can also be used to push or pop
multiple registers to or from the stack.

Casel: Mulﬂplereglstersda 3.%“5 r; fnrexample consider
MOVEM. WBOHD??’ EM?(AEJ assume [A0]=00002000H

"W' indicates that the operand size 1s 16 bit long. Therefore, after the
execution of the above instruction, DOD7and A0 A7 contents subject to

the above assumption are:
D7 —— [00002000,] A7 ——[00002010,]
D6 — (00002002, A6 ——[00002012,]
D5 — [00002004,] A5 —[00002014,]
D4 —— [00002006,] A4 —— [00002016]
D3 ———— [00002008,] A3 — [00002018,]
D2 ——— [0000200A,] A2 —— [00002014A,
D1 —[0000200C,] AQ0— [0000201C,]
DO ——= [0000200E,] A0 — [0000201E,]

The instruction moves the lower word of data registers starting with
D7-D0 to memory locations starting at 02000, and then’ mioves-the
contents of address

49

registers starting with A7-A0, while also considering the size of the
operand by incrementing memory address by 2 for word sized operand.

Case2: Pushing and Popping multiple registers to and from the stack.
Stack is a special memory buffer used as a temporary holding area for
addresses and data. Each location on the stack is pointed to by address
register (A7 or A7) called the 'stack pointer' (SP). Stack pointer holds
the address of the last data element addéd to, or pushed onto the stack.
The last value added to a stack is also the first one to be removed or
'popped’ from the stack. Most stacks are implemented using Last In
first Out'(LIFO) structure. For MC68000 address register (A7) is the
user SP and it is either decremented or incremented depending on
whether data or addresses are popped or pushed onto the stack. When
data are pushed the stack pointer is decre >d by the data size and
incremented by the data size when data Mﬂﬁd onto the stack.
Example: Consider the instruction below;
MOVEM.LDOD7/AI A6,-(SP)

It saves (Transfer) the contents of all 8 dataregisters, 'Do D7' and seven
address registers '"AQA7' onto the user stack. However, the order 'A6
A0 is first stored into the stack, followed by the data registers in the
order D7-DO ; regardless of the order in the register list. Also, the
addressing mode of this instruction as provided is ina pfe—d&cremant
register indirect mode. Meaning that, address register will be
decremented by the operand size before using the register. That is, if SP
1s pointing to the location 00002007 before execution, numeric value 4

is subtracted from SPto give new top of the stack (NTOS).
50

NTOS 1s given as 000020007 4 = 00002003. 1hen, the registers are
pushed to memory locations starting from NTOS. The pushed data can

be popped back by using the instruction

o VEMLCS&I-. DO-D7/A0-A6

The above instruction will restore the registers' contents starting from
D0-D7 and then AO-A6 because the stack is implemented using LIFO

order,

USESOFTHE STACK

1

Stack 1s an excellent temporary store for content of registers, if
values in registers are to be preserved.

During programming, when a subroutine is called the program
saves a return address on the siack 1.e. the location in the
program to which the subroutine is to return to.

High-level languages creaie an area on the memory for
subroutine. Itis called the stack frames where local variables are
created while the subroutine is active.

MOVEQ: MOVEQ instruction moves the immediate 8-bit data
in the instruction into the specified data register. It copies a
small literal to a destination. The 8 bit data is then sign extended
to 32 bits,

Assembler Syntax: MOVEQ #data, Dn
Forexample: (i) MOVEQ.L#d8, Dn moves the immediate 8
bit data into the low byte of data register Dn.

(ii) MOVEQ.L #$8F, D5

The instruction copies $FFFFFF8F intoD5 i.e. D5<—— FFFFFF8F

51

5. MOVEP: MOWEP instruction transfers data between data register
(Dn) and alternate byte of memory locations, starting at the location
specified by “d (Ay)” and incremented by the operand size. Data
transferred can either be two (w) or Four (L) bytes. High order byte 1s
transferred first, and low-orderbyte is transferred last.

Syntax: MOVEP Dn,d(Ay) or MOVE Pd (Ay), Dn.
Register indirect with offset (displacement) is the only addressing
mode used with this instruction. If the address is even. all the transfers
are made on the high order half of the data-bus; else if address is odd all
the transfers are made on the low order halfof the data bus.

Forexample, MOVEPL $002 H(Ai?), DI
D_}f}"&it Address \ﬂé‘irinﬂrion

Let [A2]= 00002000
EA=[A2]+offset =>0020+00002000
;- Computed EA= 00002020
If 1002020]=02

[002022]=04

[002024]=06

[002026]=08
Therefore, after execution of the above instruction; 02040608H will be
containedin D1 i.e.[D1]=02040608H.

6. EXGand SWAPINSTRUCTIONS:
EXG: EXG instruction exchanges the 32-bit contents of two registers.

SYNTAX: EXG Rx, Ryi.e. Rx —— Ryi.e. Rx=Ry
52

Rx or Ry can be any data or address register. Flags ure not affected.
It exchanges only 32-bit long words. The data size does not have to
be specified after the instruction.

SWAP: SWAP instruction exchanges 16-bit halves of a data register.
SYNTAX: SWAP Dn
For example, SWAP D6
If [D6] =21043184
After execution;

[D6] =31842104 ;184 2 ‘ 04 D6

7. LEAAND PEA INSTRUCTIONS:
LEA: Load Effective Address (LEA) instruction moves an effective
address (EA) from source operand into a speciﬁe& address register
(An). The effective Address is calculated using the addressing mode
employed in the instruction..

SYNTAX: LEA(EA), An
Size is long byte (32 bit), where EA specifies the actual data to be
loaded into the register An.

For example, (i) LEA $00256011, A4
. [A4] $00256011
(i) LEA $ 04 (A5, D2. W), A3.
If [A5]=0000200016

(02}=0026{6

. EA=offset +{AS5] + [D2] =04 +00002000 +0028
53

1615 0

. EA=0000202616
The calculated EA 1s copied into address register A3.
NOTE: The instruction above 1s equivalent to MOVEA.L #500002026,

A3
The remarkable difference is that while the 'EA' in LEA EA, An

specifies
the actual data to be loaded into address register (An). EAin MOVEA
EA. An specifies the address of data to be loaded into An.

PEA: PEAinstruction computes an effective address and then pushes it
(32-bit adaress) onto the stack. The default EAsizeis long word.
SYNTAX: PEA(EA)
Forexample: PEA 8§ 7504 (A5)

If[AS5]=00400100

Then, EA=00400100+7504
EA=00467604.
... The computed EA is pushed onto the stack.

9. LINKAND UNLNK INSTRUCTIONS:
As stated above, stack is used by High-level languages to create an
area called stack frame to create local variables when subroutine is
called. These variables can then be used by the subroutine for
computations. The MC68000 LINK and UNLNK instructions are
used for the purpose of reserving memory locations and releasing

memory location when using stack for subroutines respectively.

54

LINK: LINK instruction is usually used at the beginning of a
subroutine to allocate stack space for storing local variables and
parameters for nested subroutine calls.
SYNTAX: LINK An, #-displacement.
i Contents of specified address register An are pushed onto the
stack.
i The address register An is loaded from the updated stack
pointer after the push,
i.e. An=SP=SP-N where 'N'is the size of the operand.
iii The 16 bit sign extended #-displacement is-added to the SP
computed in (ii)
i.e. SP=SP + (- displacement).
For example, consider:
LINK A0, #40
i.e. 40 bytes of memory spaces are to be allocated to the subroutine
as provided by the displacement in the instruction.
If [A0] = 00002100 &
[SP] = 00004104
Using above syntax for LINK instruction;

PUSHING: pushing [A0] onto stack

[A0]=00002100 L] [A0]
00004104
(i) UPDATING: SP=SP-N S
=00004104-4 00004100 (NTOS)
—

SP = 00004100
(iii) ADDING DISPLACMENT TO SP - B

SP = SP + (-displacement)

=00004100 + (-40)
55

=000040C0
Therefore, locations 00004100 to location 000040CO0 are available for
the subroutine to use. A0 can be used as the base register for accessing
the 40 bytes allocated spaces for the subroutine.

UNLNK: UNLNK is used at the end of a subroutine before the
RETURN instruction to release the reserved local area and restore the

stack pointer contents.
SYNTAX: UNLK An
An SP;
(SPy+—*An;

For example, UNLK A0, the mstruction will restore all the 40 byte
locations reserved with LINK A0, #-displacement, instruction above.
Smce Al — =GR

.. SP=00004100
and (SP)+ ———=A0
SP=SP+4 {popping}
=00004100+4

Updated SP=00004104
;. Content of the memory location pointed to by SP is transferred into
AD.

[A0]=00002100
The reserved memory locations have been de-allocated with UNLK
instruction.

2. ARITHMETIC INSTRUCTIONS
Arithmetic instructions are used to manipulate data. It allows the
following:
(a.)To pertorm 8-bit,16-bit,and 32-bit additions and subtractions.
56

(b.) To perform 16-bit by 16-bit multiplicatn (Both signed and
unsigned) and 32-bit by 16-bit division (Both signed and
unsigned).

(c.) Compare, clear and negate operations

(d.) Extended arithmetic instructions for performing multi-

precision arithmetic.

(e.) Testinstruction for comparing operand with zero.

(F). Test and set instruction which can be used for synchronization

ina
Multi-Processor system.

ADDITIONAND SUBTRACTION INSTRUCTION

ADDITION: :

There are various types of addition instructions depending on the state
of source operand. The' sourcé operand can be an immediaie data,
contents of a data register or an address. - The destination register is

always a data register. Basic addition instructions are as discussed
below:

ADD:
Add the content of the source register to the destination register. The
assembler syntaxis as follows:
ADD(EA), (EA)
Operation: EA - «—— (EA) + (EA)
Forexample, consider i. ADD.WDI1,D2
11| D1]=0050 and [D2 |=0008 then after execution of the above
instruction [D20]=0050+0008=0058H

ii. ADD.W $12200,D0
57

I£[122003]=0050H and [D2]=0008 then after execution of above
instruction [D2]=[12200]+[D2]
[D2]=0050+0008=0058H

ADDI:

ADDI instruction adds immediate data to a register or memory
location. The immediate data follows the word instruction. The
assembler syntax is as follows:

ADDI #data, (EA)
Operation:
(EA)=— (EA)+data
i. ADDLW#0012,$100200
[f[10020]=0008 then atter execution of above
instruction [100201=0012+0002=0014H

ADDQ:
ADDQ instruction adds immediate integer data between 0 and 7 to the
register or memory location in the destination operand.
The assembler syntaxis ofthe form:
ADDQ#dx (EA)

Operation:
(EA) «—— (EA)+dx
where, dx is an integer between 0'and 7.

L ADDQ.W#02H,D1

1f [D1]=0020H then after execution of above instruction

[D1]=[D1]+#02
58

[D1]=0020H+02H

[D1]=22H
SUBTRACTION:
All subtraction instructions subtract the source from the destination
operand. The source operand can be an immediate data or an address.
There are also three types of subtraction instruction. They are as

discussed below.

SUB:
Subtracts the content of source register vo the destination register. The
assembler syntax ts as follows:
SUB (EA),(EA)
Operation: EA«<—— (EA)-(EA)
E.g. i SUB.WDI1,D2
If[D1]=0005 and [D2]= 0008 then after execution ofabove
instruction [D2] = 0008+0005=00003H
ii.SUB.WD2,$1222H
If [1222]=0070H and [D2]=0005H then after execution of above
Instruction
[1222]=[12200]-[D2]
[D2]=0070-0038=0048H

SUBI:

The instruction subtracts an immediate data from a register or memory
location. That is, from the effective address of a destination operand.
The immediate data follows the word instruction. The assembler

syntaxisas follows:

SUBI #data, (EA)
59

Operation:
(EA) ——(EA) data
for example, consider i. SUBLW #0012,$100200
[f[10020]=0008 then after execution of the above instruction,
[10020]=0012-0002=0010H

SUBQ:
The instruction subtracts an immediate data (0 to 7) from the contents
of register or memory location in the destination operand The
assembler syntax is of the form:

SUBQ#dx ,(EA)

Operation:
(EA) ——— (EA)-da
where, dx is an integer between 0 and 7,
Forexample, consider i.SUBQ.W#02H, D1
If[D1]=0022H then after execution ot above

instruction [D1]=[D1]-#02
[D1]=0022H-02H
[D1]=0020H
MULTIPLICATION AND DIVISION INSTRUCTIONS

MULTIPLICATION:

Multiplication nstruction set includes both signed and unsigned

multiplication of integers. Basic multiplication instructions are as

discussed below.
60

MULS:
Multiplies two 16-bit signed numbers and provides 32-bit result. The

assembler syntax is as follows:

MULS (EA),Dn
Operation;

(Dn),, «<— (EA),* (Dn),,
forexample: MULS #-02H,D3
If[D5]= 0003H therefore [D5]=0003 *-02
=-6,=~FAH
the result is however sign extended to 32-bit
i.e. [DS5),,=FFFFFFFAH.

MULU:
Multiplies two 16-bit unsigned numbers and provides 32-bit result.
The assembler syntax 1s as follows:

MULU (EA),Dn

Operation:
(Dn)y;e— (EA), * (Dn),

forexample- MULS (A0), D5
If (A0)=0010200,[10200]=0300H and [D5]=0200H
Then [D5]=06000H

the result is however sign extended to 32-bit

[D5],, = 00006000H.
61

DIVI#N .
Division instruction set includes both signed and unsigned division of

integers.

DIVS:
DIVS instruction divides two signed numbers with each other. The
high
Word of data register Dn contains the remainder and low word contains
the quotient, The assembler syntax is as follows:

DIVS(EA),Dn

Example, Consider DIVS#2,D1
If[D1]=-5,,=FFFFFFFBH then after execution,
[D1]=-5/2= FFFFFEH
The valueis sign extended to 32-bit.

>"| FFFF | FFFE
'

REMAINDER QUOTIENT
Atter execution of DIVS, the remainder is always the same sign as the
dividend unless the remainder is equal'to zero. Internal interrupt is
automatically generated when division by zero occurs.

DIVU:
DIVU 1s similar to DIVS except that the division 1s Unsigned. The
assembler syntax is as follows:

DIVU (EA),Dn
Example Consider DIVS#4,D1
If [D1]= 14,,=000000EH then after execution [D1]=14/4 =3
Remainder 2
The value is sign extended to 32-bit.

62

Pl | oo0=2 ooos]

} |

REMAINDER QUOTIENT
Division by zero-using DIVU instruction causes internal interrupt and

Vilag s set
ieV=1

COMPARE,CLEARAND NEGATE INSTRUCTION
CLEAR: CLR
CLR instruction clears the content pointed to by the effective address.
The assembler syntax is of the form:
CLR{EA):
Operation:
(EA) 7, O

Example. (i) CLR.LDS. Clears the contentof 32-bit dataregister D5

If [D5]=22224444, then after execution [D5]=0000000
(ii.;, CLR.L (A0)+. Clears the content of where address
register AU pomtsto. [f(A0)=00002420H then

(00002420) <0
(00002421 0
(00002242) +——— 0

{ﬂﬁDDZéES] ==t
A0 is incremented to = 00002224,

63

NEGATL:
NEG instruction negates the content pointed to by the effective
address. The assembler syntax is given as:
NEG (EA);
Operation:
0-(EA) — (EA)
Example: Consider NEGW (A0)
If[A0]=00200000H and [200000]=5,, then, after negating
[200000]=-5,, =FFFFBH (Sign extended to word length)

COMPARE:
CMP instruction compares the source operand with the destination
operand. In such comparison, the source operand is subtracted from the
destination operand without affecting the destination operand. The
condition code flags are set or cleared to show the result of comparison.
MC68000 Compare instructions and their corresponding assembler
syntax areas follows:

CMP : CMP(EA),Dn ;full range of operands

CMPA : CMPA(EA), An ;Valid address operands only

CMPI: CMPI #d , Dn ;d may be immediate byte, word
or long word

CMPM: CMPM (Ay)+ ,(Ay)+ ; Compares contents of
memory with memory.

Example: CMP.W (AQ), D6

If [A0] =00100020H and [100020]=0007H and [D6] =0009H then,

after execution of the above insl:mcﬁun; N=C=X=V=Z=0, [AD]
=01000020H, [100020]=0007H and [D6]=0009H.

64

TESTINSTRUCTIONS:
TST instructions subtract zero from the content of an effective address.
The assembler syntax 1s given as:
TST (EA);
Operation; (EA)-0 » Flags affected.
Example: Consider TST. W (AQ)
IT[A0]=00300000H and [300000] =FFFFH then after execution of the
above instruction, operation FFFFH-0000H is internally performed
and Z=V=C=0and
N=1.

TESTAND SETINSTRUCTIONS: (TAS)
.This_ instruction is similar to TST instruction. It allows only a byte
operand. The value of the byte operand is tested and the N and Z flags
are affected accordingly. If the result of test is equal to Zero then Z flag
is set, else Z=0, N=1 and bit 70f EA is setto 1. The assembler syntax is
given as;
TAS (EA);

Operation:

If (EA)=0 then Z=1,N=0 else Z=0 and N=1 then, bit 7 of EA is

set to 1.

Example: TAS (0200000106); If [00200000] = 02H then

comparing with Zeroi.e.

02-00=02H.Therefore [EA] 7 O. Hence Z=0, N=land bit 7 of

65

3 LOGICALINSTRUCTION
These aie instructions such as AND, OR, EXOR (Exclusive-Or),
and Logical NOT used for all sizes of integer data operands. The
contents of address register are not use as an operand.
The assembler syntax are as follows:
AND: AND(EA),Dn
AND Dn,(EA)
ANDI: ANDI#d(EA)
ANDI #d, SR; A word operation that affects all
bits of SR
ANDI #d, CCR; A byte operation that affects
CCRonly.
EOR: EOR Dn,(ea)

EORI: EORI#d,(ea)
EORI #d. SR; A word operation that affects all

bits of SR
EORI #d, CCR; A byte operation that affects
CCR,
OR: OR (EA), Dn;
ORI: ORI#d,(EA);
ORI#d,(EA):
ORI#d,(EA);
NO1: NOT(EA);
Examples:

i) AND DI,DS;
If [D5} =FFFFH and [D1] =0001H the logical AND of D1 and
DSie D14~ D5 gives 1111(F) 1B LTIE 1T1(Fie
D5

G000(0)0000(0) 0000(0)0001(1) _i.e DI

[D5] = 0000 0000 0000 0001, =0001H
66

(i)

0sH

(111)

(iv)

ORILB #05, D2;
If [D2] =04H then logical OR immediate D2 and 05Hi.e D2 V

0000000100 (04H)
0000000101 (05H)
0000000101 (05H)

EXOR.W D1,D2; i.e[D2]? [D2] EXOR [D1]
If [D1] =FFFFH and[D2] =AAAAH the logical EXOR of DI
andD2s 1ITI(E) TLIIE TTTIE TH{F) ie. DL

1010(A) 1010 010 010(A)1e. DI
0101 0101 0101 0101, =5535H
NOT.BD5.

If[D5]=02H i.e.- 0000 0010, then, by inverting yields
1111 1101,=FDH

1. SHIFTAND ROTATE INSTRUCTIONS

These instructions perform shift operations to left and rnight and
rotation operation with or without X flag. All shift and rotate
operations can be performed on either data registers or on memory
contents. Register shifis and rotates support all operand sizes (Byte,
word and long word)and allow a shift count, which is specified as
part of the instruction. Memory shift and rotates are for word
operands only, and only single bit shifis and rotates are allowed

The assembler syntax of arithmetic and logical shift to the left and
right instruction are as follows:

67

Arithmetic Shift to the Left:
ASL: ASL Dx, Dy ;Shift Dy anumber of times specified by
Dx ASL#d,Dn ; =d=8§

ASL(EA) ; Shift memory contents pointed to by EA once.

Diagrammatic representation:
e ———

C Dy

X
Example: Consider (i) ASL. W D1, D5. If [D1] =0002H and [D5] =

9FFOH, then Shifting D5 twice can be diagrammatically represented

[}
o=

1001 1111 11110000 |
o | Toont 11 111¢ 0000 .
1 AR
0 0111 1111 {1100 0000 o
”

After execution of the above instruction, the content of Flag C and X
as specified after second shift is 0 ie. C= X =0 and [D5] =
TFCOH.

65

ii) ASL.B #03,D2; Shifts D3 three times
0

7
I
ps| 0000 0101 -—

0 0000 10910 [—
Lo k™ First shift
060T 0100 . —

clo t
0 :I_ Second shift

X

=

[} 0010 1000 |,
= " Third shi

0 X Third shift

Therefore, C=X=V =0 and [D2] =28H

Arithmetic Shift to the Right: These instructions arithmetically shifi
right destination operand and still retains the sign bit.

ASR: ASR Dx,Dy ;Shift Dy anumber of times specified
by Dx ASR #d,Dn ;l1=d=§

ASR (EA) :Shift memory contents pointed to by
EA once.

Diagrammatic representation using 16 bits register content:

15 0
Dy e

— Ix

69

(i) ASR.WD1,D5.1f[D1]=0001H and [D5]=9001H then
Shifting D5 once can be diagrammatically represented as:

1001 0000 { 0000 0001 |

1100 1000 0000 0000 J7 ,m

Therefore after execution, C = 1, X =1 and V =0 and contents of
D5=CB00H
Logical Shift to Right:
LSR: LSR Dx, Dy ;Shift Dy a number of times specified by
Dx LSR #d,Dy :1=d= &
LSR (EA) :Shift memory contents pointed to by EA

once.
Diagrammatic Representation:
Dy i __D
kxample; (i) L-_JITSR.B DI, D3; If [D1] =02 and [D5] = FFH
D5

111l (1

71 0117 1111 ﬁ
First shift
|]

— 0011 1111
Second shift
70

Therefore after execution of the above instruction C=X =l and vV =
Oand D5=3FH
Logical shift to left: follows the same pattern with Logical shift to
right except the direction of the shift is to the left of the reader.
LSL: LSL Dx,Dy ;Shift Dyinnumber of times specified by
DX LSL #d,Dy ;1=d=8

LSL(EA) : Shift memory contents pointed to by EAonce

Rotate to the Left and Right (ROL and ROR) Instructions:
These instructions rotate contents of a register or memory
depending on numbers of rotation specified.

Diagrammatic representation of ROL:

e

Dy :

Example: Consider ROL.B#02,D2; IF [D2]=DIHANDC=1.

C .
1 e 1101 (0001 L

“

Contents of D2 register and carry flag before execution

&
|1_ < 1010 {0011 #
L= Firstrotation
C .
1 | 0100 |[0111 "
Second rotation

71

Therefore, alier execution of the above instruction C=1 and D2 = 4711

Diagrammatic representation of ROR:

|
T | i
R ;

Forexample: ROR#03, D2
If[D2]=B1 and C=1. Thenrotating D2 thrice gives:

f l =
. P |
| 1011 | 0001 o1
Before rotation
» 1101 | 1000 NP
Firstrotation
| - 0110 | 1100 Ll
Second rotation |
1 [————
——1-0011 | 0110 L0
Third rotation

C=0and D2 =36H after execution of the above instruction.
ROXR is another rotational instruction that is similar to ROR but

X-flagig included in the rotatios

Diagrammatic representation of ROXR is given as:
I
- I
—{— Ty
 W—
X

72

For example: ROXR.W D2, D1: Supposing [D#=F201H, [D2]
=0003H C=0 and X =1then rotation through X flag looks like:

22 4

X

D1 C
1111 p_ﬁlﬂ! 0000 0001 _0|
Before executing ROXR
1111 1001| 0©O0CO 0000 1

Firstrotation with X flag

Second rotation with X flag

So that [D1]=FC80H, C=X=0after execution.
ROXL instruction is similar to ROL but X-Flag is included in the
rotation. Diagrammatic representation of ROXL is given below:

C

For example: ROXL.W D2, D1; Supposing [D1] =F201H, [D2]
=0003H,C=0 andx =1, thenrotation through X flag looks like:

Eiy <

1111 .1100] 1000- 0000 | O]

C X D1
0 [1110 0010 0©CO00 0001
Before execution of ROXL
| | 1100 0100 0OCOO0 0011
First rotation

3

1 1 '1000 1000 0000 0111

Second rotation

Third rotation
After the third rotation, [D1]=100FH and C=X=1.

6. BITMANTPULATION INSTRUCTIONS:

These instructions are used to test and modify the state of any specified
bit (0-31) in a data register or any specified bit (0-7) of a byte in
memory. The state of the specified bit affects the Z-flag. if the bit is zero
then Z=1 else Z=0. These instruction and their' corresponding

assembler syntax, and examples are given as follows:

BCHG: Tests the state of the specified bit and Z flag will reflect
complement of the tested bit.-After this the bit is inverted in the

destination operand. The assembler syntax is of the form:

BCHG Dn, (EA); Dn holds the bit position
BCHG #data, (EA); daia specifies the bit position

Forexamples. BCHG DI1,A0;

IF[A0]=0040220, [040220]=06H and [D1]=2i.e.
74

b7 bebs bd bib2bl b0

” !
0000 0110/ “

The instruction changes bit 2 to (), we have:

b7b6b5b4 b3b2blbU

After, [040220] = 02H and Z-flag =0..(reflects the complement of
b2)

BCLR: the instruction causes Z flag to contain complement of the
specified bit and then clears the specified hit'in the destination operand
tozero. The assembler syntax is ofthe form:

BCLR Dn, (EA); Dn holds the bit position

BCLR #data, (EA);

Forexample: BCLR #3,%004000;

IF [004000]=08. That s,

h7b6hSha bibaBiko

0000 1000
Before clearing bit3.to'0
b7b6b3bd - b3b2blb0

After, [003000] = 00H and Z-flag =0.
75

BSET: The mstruction causes Z flag to contain complelment of tae
specified bit and then sets the specified source bit in the destination
operand to one. The assembler syntax 1s of the form:

BSET Dn, (EA); Dn holds the bit position

BSET #data, (EA); immediate data holds the bit position
Forexample: BSET #6,$004020;

IF [004020]=ABH. Thatis,
b7b6 b5 b4 b3 b2 bihi

1010 1011

Betoresetting bit5to |
b7b6bSb4 b3 h2blbo

4110 1011
|

After, [0040201=EBHand Z-flag =1.

BTST: Tests specified source bit in the destination operand and
the result of testing reflect in the Z- flag(complement of the tested
hit). The assembler syntax is ot the form :

BTST Dn, (EA); Un holds the bit position

BTST #data, (EA): immediate dafa holds the bit
positionl.

3. BINARY CODED DECIMAL (BCD) INSTRUCTION:
Four bits in binary coded decimal represent each of the decimal
digits of a number. For example, the number 4530, is
representedas 01000101 0011 0000

76

They in BCD. MC68000 binary coded decimal istructions include
ABCD, SBCD AND NBCD. They are used for carrying out
manipulations involving BCD arithmetic.

ABCD: ABCD instruction adds the source operand to the destination
operand along with the extend bit of X-flag and stores the result in the
destination operand. Addition is performed on BCD data. The
assembler syntax is given as.
ABCD Dy, Dx; Dx=DX,,+ Dy, +X-flag
Example:
Consider ABCD DI1,D2
If[d2]=15,and [d]1]=25,,and x=0. then
D2=15,+25,+0
[D2]=40,,and x=0 and z=0.

SBCD: This instruction is similar to ABCD except that it
subtracts two BCD operands taking into consideration the X flag,
which serves as borrow from bit 4 to bit3. The syntax 1s given
below:

SBCD Dy, Dx; Dx=DX,,-Dy,,-X-FLAG

NBCD: This instruction negates BCD operand. The assembler
syntax is given below.

NBCD Dx; Dx=~(Dx): l'scomplement of Dx

8. PROGRAM CONTROL INSTRUCTIONS: Program control
instructions provide 'means of controlling the sequence of
execution of the instructions ina

77

program. Transfer ot program flow using program control mstructions
can be divided into four categories:
i) Unconditional transfer of control

ii) Conditional transfer of control

iii) Transferof control to subroutine

iv) Return ofcontrol from subroutine.

i) Unconditional Transfer of control:
Under this category; program control instructions transfer control to
the computed effective address in the instruction, These instructions
are JMP and BRA.
JMP: Transfers control to the effective address unconditionally by
coping the EA into PC. The assembler syntax is given as:
JMP (EA);
Forexample: JMPLOOP
Causes the address label LOOP to be set up in the PC, so that
instruction in location LOOP 1s the next to be executed.
BRA: Is an unconditional branch always instruction. It transfers
control to address label specified in the instruction field. The assembler
syntax is givenas:
BRA <displacement>

I'he eftective address in JMP instruction is an absolute address, while
that of BRA isan address calculated as a displacement from the value of
the PC.

if). Conditional Transfer of control:

Fhis category.of instruction causes'the program o continue execution
at a point other than the next instruction in sequence following the
current instruction depending on the result of a condition tested in the
preceding instruction.

78

facilitate the assembly language -implemeniauon of high level
language control structures like IF-THEN, WHILE-DO, REPEAT-

UNTIL etc. They are divided into three classes.
(a). Bec instructions. (b). Dbee Instructions and (c). Sce instructions

a) Bcee . instructions: [hese .instructions are conditional branch
instructions. The suffix ‘cc' is one of fourteen possible conditional
branch instruction in the MC68000 instruction set corresponding to the
flag bits of Condition Code Register (CCR) (lower byte of status
register). The result of testing for a condition affects the CCR. Table 4.2
shows all such possible conditional branch instructions, the condition
at which the transfer takes place and the affected flags

INSTRUCTION CONDITIONTESTED | AFFECTEDFLAG
BEQ L;"'-:jii'a-l tozero Z=1
BNE Notequal to zero 7=0
BMI " 1.0 Minus. N=1
BPL ._ positive N=0
BGT Greater than ZANvV)=0
. BLT lessthan @ Nv V=1
BLE Less than orequal to ZANVV)=I
BHI ; Higher than CAZ=0
BLS Lowerthanor same CVZ=1
BCC Carry clear G=0 .
BCS Carry set C=1

79

BVS Overflow set =]
BVC Overflow clear =()

Table 4.2: Conditional Branch Instructions

In-this type of transfer of control, the suffix 'cc' is the condition being
tested.' For example, BCS tests if carry flag is set due to preceding
instruction. If the condition is true then the branch takes place and the
PC s loaded with the address to branch to else PC is unaffected and the
next instruction in sequence is fetched and executed. Some possible
illustrations are shown below:

a). ADD.BDI, D3; [D3] «—— [D3] +[D0]
BLT NEG; Branch to address label NEG, if result stored
inD3islessthan
b). SUB.BDI, D3; [D3] =——[D3]-[D0]

BEQ SAME; Brarich to address SAMF if the result stored

In D3 is equal to zero; else continue the next sequence of
instructions.

c) CMPD_I, DO; Compare D1 with D0;
BEQ SAME; Branchto SAME ifD1=D0

d). CMPL.B #$41, D0; Comparean immediate data byte with
DO;

BLT BELOWD(; Branchto BELOWDO0if D0<41

BEQEQUALDO: Branchto EQUALDOifD0=41

BGT ABOVED®; Branchto ABOVEDOif D0>41
80

E). MOVEQ#5,D7;[D7] «— 5 (counwer)
LOOP: MOVE (Al)+, (A2)+; copy (A1) to (A2) and increment
registers
SUBQ#1, D7; Decrement counter
BNE LOOP; repeat copying until counter=0.

b) DBcce Instructions:

These instructions test condition, decrement register contents and
branch to the specified address if condition is true. They are used to
provide ‘a more compact and comprehensive loop instruction. The
suffix 'cc’is the same as in the previous examples (Bec instructions).
General assembler syntax for this class of conditional instructions is
gi\;ﬂn as:

Dbce Dn,<Label=;
That is. tests condition, decrement and transfer control to address label
providedin the instruction if condition is fulfilled. The instruction is
cffected as ‘ollows:
(1) If the ceadition speciiied in'¢e’ is Ay then exit from the loop and
jump to the next instruction, .i.e. PC=PCH%2.

(i1) If the condition specified in'cc'is ﬁ{rsé then the low word of D0 is
decremented and the laop is re-entered.
Cunsidf:r:; loop below:
MOVEQ#5,D2; |D5] «———35
LOOP: ADD#2,D0; [DO0je——[DO]+2
SUBQ#1,D2; [D2] «—— [D1] -1
BGTLOOP;

MOVE D0, D6
81

Can be re-written using Dbec instruction as follows:
MOVEQ#5,D2; [D5] «—5

LOOP: ADD#2,D0; [D0] «e——— [DO]+2

DBNE D2, LABEL; Test if DZ%[', if true the loop is

re-entered, else D0 is copied into

bRy

MOVE D0, D6

¢) Sceinstructions:

These instructions set the byte contained in the EA according to the
condition of the status register ec contained in the instruction. If the
condition is true then all bits of the byte are set to 1, otherwise, all bits of
the byte areresetto 0.

Syntax: Scc(EA)

iii) Transfer of control to Subroutine:

Program control instructions under this cate gory transfer control from
main program to subroutine either through branching or jumping.
These instructions assembder syntax are given below:

BSR: BSR<LABEL>;Branchtosubroutine

82

(iv) Return of control from subroutine:
These transfer control from the subroutine to main program after
execution of the of last instruction in the subroutine. These
instructions are:
RTR ; Return from subroutine and restore condition codes.
RTS ;Return from subroutine.

9. SYSTEM CONTROL INSTRUCTIONS: System control
instructions are privileged instructions, trap generating
instructions and instructions that use or modify status registers.
These instructions are summarized as follows:

PRIVILEGED INSTRUCTION
STOP: stops program execution:
RTE; Return from exception
RESET; software reset for external devices.
Move An, USP; Move An to the User stack pointer (A7).
TRAP GENERATING INSTRUCTIONS
Chk (EA), Dn; if Dn <0 or Dn > (EA), then Trap, else do
nothing.
TRAP#n; go to Trap vector numbern
TRAPY; generate Trap on overflow;

STATUS REGISTER OPERATION
ANDI#D,CCR
EOR#D,CCR
MOVE SR, (ea)

ORI#D,CCR
83

CHAPTER FIVE

MC68000 ASSEMBLY LANGUAGE PROGRAMMING
INTRODUCTION

Following the introduction of Motorola 16-32bit microprocessor,
MC68000 in previous chapter it is essential to understand in detail how
assembly language programs are written using its -instruction
repertoire.

MCG68000 has been selected as a good example for introducing
assembly language due to the following reasons:

(i) Its state-of the-art architecture and assembly language are
easy touse, and understand.

(11) It supports up to five data types. They are 1-bit, 8-bit or byte,
word (16- bit), long-word (32-bit) data types.

(iii) It has moderately sophisticated architecture incorporating
many facilities found only on more powerful minicomputer
and mainframe computers.

(iv) Assembly language written for it is upwardly compatible with
c;ther latter version Qf Motorola microprocessor.i.e.68010,
68008, 68020 and 65030.

In designing assembly language programs, unlike high level language
where compiler performs data allocation 1o registers automatically,
programmer must decide what goes in to any of the data registers and
memory; address to a distinct address register;. the type of data and
address acquisition by the microprocessor for each of the program
microinstructions. Programming in assembly language requires in-
depth understanding ofa particular microprocessor instruction set and

84

its architecture. Assembly language programs are used to code device
drivers to link peripherals with operating system.

PROGRAMMINGTOOLS

Programming tools are used to translorm precise requirement
specification of a problem into a program. Among these tools are
algorithm, pseudo code, and flowchart etc.

Algorithm is a set of instructions (unambiguous) that describes the
step to be followed inorder to carry out atask or an activity. When these
finite instructions are represented using different-symbols for various
classes of operations performed in solving atask, a flowchart results.
However, a convenient way of transforming problems into assembly
language program 18 to use pseudo code or fake code as an intermediate
step.

Pseudo code is a way of expressing algorithms in top-down and
structured version. With this tool, the programmer can concentrate on
what to do and leave the details of how to actually carry out individual
actions until later stage. Tt is normally written in levels. The first level
shows the major actions invelved in problem solving while the latte
levels shows the details of how to actually carry out actions specified
in the previous level.

Consider a sequence of actions involved in writing a program to acts as
a simple calculator. The first level and second level pseudo code are as

follows.
85

FIRSTLEVEL PSEUDO CUDE
Simple-Calculator
Get variable
Get operator
Calculate result
Printresult

End Simple calculator.

second level elaborates on each of individual actions as follows.
SECOND LEVEL PSEUDO CODE
Simple-Calculator
Get_variable
-Getx
-Gety
(et operator opf]
Calculate_result [z]
-Determine operator and calculate
~Ifop []="+"then [z] =x+y else
-Ifop []="-"then [z] =x-yelse
~Ifop [|="*"then [z) =x*y else

=Ifop []=""then [z] =x/y else

Generare Error
Printresult

End_Simple_calculator.
86

Process of elaboration continues until the point at which each action at
the pseudo code level can be replaced by a relatively small number of

instructions in a computer language:

SEQUENTIALASSEMBLY LANGUAGE PROGRANMIS
These are programs without program control instructions. They are
extensively used to program simple arithmetic operation that does not

require iteration or branching,

Example: Given the following expressions write an appropriate
assembly language program for the expressions.

(a)Y:=A+B

(b)Y:=5A 3C

(c)Y:=5A/3C

Solution:

Ifvariable A and B arerepresented in memory as follows:

Y = A | +| B lﬂnntentﬂfadd.

$2222 $2000 $2001
87

First level pseudo code |Second level pseudo code
Addition Addition
Get_variable Get_variable
Process variable -LetAl pointto var A
Store_result -Let A2 point to var B
End_addition -Copy contentof Al to DO
-Copy contentof A2 to D1
1 Processvariable
-Manipulate Dland DO with ADD
Store_result
Copyresulttovary
End_addition
The program goes thus:

LEA A,Al; Al poinistoa

LEA B,A2; A2 pomntstovarB

MOVE (A1), DO; DO+——(M (A1)
MOVE (A1), DO; DO«——(M (A1)
ADD DPO,D1;DI1 [DO]+[D1]
MOVEDI, $2222; var Y=———DI1
HALT; Stop

(b) Supposing variables A and B are located at address location $3000
and $4000 respectively. First level and second level pseudo code

are as follows.
w8

— —

First level pseudo code

Secondlevel pseudo cmﬁe

Subtraction
Get_variable
process

Store_result

End_Subtraction

Subtraction
Get_variable
-Let Al pointto$3000
-Let A2 pointto $4000
-Copy contentof Al to DO
-Copy content of A2 to" 1
Process
-Multiply DO with'5
-multiply D1.with 3
-Manipulate Dland DO with SUB
Store_result
End_Subtraction

The program goes thus:

MOVEA#$3000,A1; Al «————33000

MOVEA #54000, A2; A2<———— $4000

MOVE (A1), D0; D0 +———— [M (A1)]

MOVE (A2),D1; D1<——— [M(A2)]

MULU#5,D1 ;Dl<——— DI*5

MULU#3,DO ;DO<———DO*3

SUBDL, D0 ;D0+—DO-DI1

HALT; Stop

89

(C) Modifying the pseudo code solution for example (b) above by
changing SUB to DIV, we have the following lines of assembly
language instruction for example C.

MOVEA#53000,A1; Ale——5§3000

MOVEA#$4000,A2; A2<—— $4000

MOVE (A1), D0; DO+«——— [MS(Al)]

MOVE (A2),D1;D1<— [MS(A2)]

MULU #5,D1; D1 <————D1*5

MULU#3,D0; DO<————DO0*3

DIVD1,D0 ;D0«——DO/DI

HALT; Stop

NON-SEQUENTIALASSEMBLY LANGUAGE PROGRAMS
The preceding section shows the sequential execution of instruction by
conventional computer. There are occasions whereby the
microprocessor 1s force to execute an instruction or set of instructions
out of the normal sequence. These instructions that facilitates non-
sequential execution of programs are called branching instruction.
Branch instruction can- either be conditional or unconditional.
Unconditional “branch instructions transfer control to the address
specified in the instruction. Examples are BRA and JMP instructions.
Conditional branch instruction on the -other hand, : forces the
microprocessor to take one or more courses of action depending on the
result of prior action or instruction. There are fourteen conditional
branch instructions of form Bee in MC68000 instruction repertoire.
Table 4.2, in chapter three shows MC68000 conditional branch
instructions.

90

Hlustrations:
A conditional branch instruction takes an argument or an operand,
which is the address of the statement to be taken if the condition/ test is
true. For example, consider:

ADDD2, D3

BMIERROR

MOVE D3, D4 ; beginning of the ELSE part

ERROR: MOVED3,D5 ; beginning of the THEN part

In the above sequence of instructions. if N=1 1.e. negative flag in CCR,
then a branch to the line addressed by label ERROR is made, and
moves D3 into D5 else itmoves D3 into D4.

However, if N#l in the above illustration, ELSE part is executed, the
execution falls through to the THEN part which is not the intended
action to pﬂrfonn:agherefuretn cater for both conditions independently,
anunconditional branch instruction canbe used as follows,

ADD D2,D3
BMIERROR
MOVE D3,D4

BRAEXIT
ERROR: MOVED3,D5

EXIT: HALT

The flow chart for the above code fragment is shown in figure

A START)

w

D2&D2+D3

D4 =D3

(STOP)’
Figure 5.1: Flow Chart for Conditional Branch Instruction

TEMPLATES FOR CONTROLSTRUCTURES

Ramiliar control structures in high-level language can be readily
represented- in templates in assembly language. This pattern of
assembly language code can then be modified to suit similar
conditional and iterative programming circumstances. Table 5.1
below shows the basic high-level language control structures and

equivalent templates in assembly language.

92

—

HIGH LEVEL LANGUAGE|EQUIVALENT TEMPLATES IN
CONTROL STRUCTURE |ASSEMBLY LANGUAGE
IF (D0=D1) THEN ACTION1 CMP D0,D1;Perform test
BNE EXIT ; If D0+#/D1 then exit
Else execute Action!
ACTIONI:.....c0nmm
EXIT: HALT; Stop
IF (D0=D1) THEN ACTIONI ELSE CMP DO,D1;Perform test
ACTION2 BNE ACTION2 : If DO[JD1 then
Action2
Else execute Actionl
ACTIONI1...
BRA EXIT;
ACTION2::......
EXIT: HALT; Stop
FOR Z=1TOP MOVE #1,D2 ; Load loop counter
BEGIN D2, With 1
ACTIONI...
e O ADD #1,D2:increment loop counter
END. CMP #P+1,D2; Test for end of loop

BNE ACTIONI,; If not end of the
loop then go round again

Else exit

EXIT: HALT: Exit from loop

93

WHILE (D0=D1) Do ACTIONI TEST: CMP DO,D1; Perform test

BNE EXIT :IfD0#D1 then exit

L

Flse carry out action 1
REPEAI ACTIONI...
ACTIONI1 CMP DO,D1; Carry out test
UNTIL DO=D1 BNE ACTIONI :Repeatas long as

DO#%,D1
EXIT: HALT; Exit from loop

Table 5.1: Control Template for High 1 evel Language and Assembly

Language

PROGRAMMING ILLUSTRATIONS:
1. Write an MC68000 assembly language program equivalent of

the following

segment of Pascal program code:
a Sum: =1;
Fori:=1To 14 DO

Sum: =sum+1;

b. Sum:=u;1=1:
Repeat
Sum: =sum + A[i];
it By d b

Until (i=15);
04

C. If (x>y)then

If (x<z)then
X:=xt1
Else
z:=z+2
Else
y:=y+2;
Solution:
(a) MOVE#1,D0 ; Load loop counter, DO,With 1

MOVE#1, DI; Initialize sum with 1
NEXT :ADDDO,DI;[D1]<—— [DO]+[D1]
ADD#1,D0;[DO] <————[DO]+1
CMP#15,D0; Perform test
BNE EXIT
EXIT: JMPEXIT

bl. LEA SUM,AQ;AOQ «—— SUM
LEAAALAL o A

CLRDO; [DO] ¢——— 0
MOVE#14,D1; DI ¢———DI +14

NEXT: ADD (A1)+,D0; D0 DO+ (M (Al)); AL <——A1+2
DBF DI1,NEXT, DecrementD1 andbranchuntil D11s-1
MOVE DO, (AO);

END JMP END:
95

Yes

y=y+3

z=z+2
S

LEAX,Al; Al «—X

LEA Y:A2; A2 <—Y
LEAZ A3;A34—Z

MOVE (A1).DO;
CMP(A2),N0O; Compare x with'y
BGT NEXT;
ADD#3,(A2);y=y+3
BRAFINISH;

NEXT: MOVE (A3),D1:
CMPDI1,D0; compare x withz
BLTNEXTADD;
ADDI#2Dl;z=2z+2
BRA FINISH;

NEXTADD: ADDI#4,DO; x=x+4

FINISH: JMP FINISH;
96

2. Write a 68000 program to compute Z"i_, Xi*Yi, Where N=100
Solution:
ORG $004000;
LEAY,AO;letA0pointtovarY
LEAX, Al;letAl pointtovar X
MOVE#99.D0; let DO be counter
CLRDI1;DI servesas sumof X +Y,
LOOP: MOVE (A0)+,D2
MULS (A1)+,D2;
ADDD2,D1;
DBF DO,NEXT;
NEX1 : IMPNEXT, stop

3. Write a 68000 program to-compute ", X;/N . Where i =1 and N

=500. 53
Solution:
ORG $001000;
LEAX, A0; A0 pointto var X (X))
CLR.BDI.

MOVE #500, D0: load loop counter DO with 500
NEXT: MOVE (A0)+,D2; copy X, intoregister D2
MUL D2, D2; square D2
ADDD2,D1;D1=2X/

SUBI#01, DO; decrement loop countei
27

BNE NEXT;
DIVS#500, D2; D25 X'/N
BRAFINISH;

FINISH: JMP FINISH; Stop

1. Write a 68000 programto set 100,, consecutive bytes starting from
location 003000H.
Solution:
MOVEAL.L #53000, AO; load A0 with starting memory
location
CLEDO;
ADD #99,.D0
LOOP: SCC. B (A0)+; set contents of the memory location pointed to by
Al
DBF D0,LOOP; decrement D0 and repeat the LOOP until
D0 =-1
HALT; Stop
5. Write a 68000 program to clear 100,, consecutive bytes starting
trom location 3000H.
Solution:
MOVEA.L#3$3000,A0:; load effective address into A0

CLKE DU,
ADD #25,D0; loop counter

LOOP: CLR .L(AQ)+; clears four consecutive bytes at once
DBF DO, LOOP; repeat loop until D0 is minus.

HALT:
98

6. Write a 68000-program segment to transfer 500 bytes of data from
memory location named TABLE 1 to another memory location named
TABLE2..

Solution:
LEA TABLEI, AU; let A0 point to the beginning of the
firsttable
LEA TABLE2,Al;letAl pointtothe second table
MOVE #500, D0;
NEXTBYTE: MOVE.B (AO)+,(Al)+
DBNEDO,NEXTBYTE,
END JMP END;

/. Write a program to determine whether the content of memory
location 3000H is odd or even. If the content is even, add 00H to
location 4000H else add FFH to location 4000H.

Solution:

For a number to be even, its LSB must be equal to zero otherwise, the

number is
an odd number. i_:l_ﬂiﬂ_gﬂlﬂ_l Even | 00000101 | Odd

MOVEA#8$3000,A0; load the address of the data to be tested into AD
MOVEA #84000, A2; load the address to store resulf into in A2
MOVE(AQ), DO; load the data into register DO

LSR #1,DO; test the LSB of the data

BCCEVEN,; ifthe LSB is zero then go to the label EVE

MOVE #$FF, (A2); else store FF in result location

BRAEND;

EVEN: MOVE #8$00, (A2); store 00 in the result location
99

Terminate the program
MC68000 Program equivalent to the above algorithm:

; MC68000 program to find the highest data in a table of data stating at
location

: MYTABLE and the set of data are terminated by ASCII character “A".
; The highest data is to be stored in location MAXDATA and its location

storedin

; memory location MAXLOC
MAXDATA DC.B ; variables declaration in
MAXLOC DCL : memory

MYTABLE DCB
LEAMYTABLE, A0 ; A0 <=—— 4000H
MOVE.B(AO0),DO ;D0 «— largest +— (AO)

TEST: CMPI'A' | (AQ) ; Testifdata="A"
BEQ END ;ifequal terminate
CMP(AD), DO : Compare data
BLESRC-HIGHER. :Branchiflargest<(AO)
NEXTLOC :MOVE.LAO,DI : Increment address
ADDI#HI, DI :register AQ tonext
MOVEADILAO ; location
BRA TEST ; next comparison

SRC-HIGHER: MOVE(AQ), D0 ; copy data into largest.
ADR_OF _DATA:MOVE.LAO,D7 ;addressofthelargestelement.

BRANEXTLOC
104

FINISH :WOVEAD7,AO s fransfer address of largest data

‘into AQ
MOVE.LAO,MAXLOC ;copyaddress of the highest data to memory
MOVE.B (AO), MAXDATA ; copy the highest data into memary

END

9. Write a 68000 assembly language program to load 10UH consecutive
memory locations, starting at address 2000H, with the sequence of data 0
J1.2.34...

Solution:
, 68000 program toload 100H consecutive memary locations starting at
; addresses 2000H with the sequence ofdata0, 1,2, 3,4,

MOVEA#§2000,A0
GLR.BDO
MOVE #8100, D1
NEXT: MOVE DO, (A0)+
ADDI#1,D0
DBNE D1, next
FINISH: JMP FINISH

10. Draw flow chartand write a program to add together the numbers 1 to 20 and
store the final, resultin memory location S0CAH

102

Solution

; program to add together the number

1 : 1 to 20 and stores the final, resultin
cC = LEASUM,AO
CLRDO
l MOVE#21,DO
Sum=Sum+C| EXT:ADD(A0), DO
¢ C =C+1 ADD#1,DO
v CMPDO D1
No BNENEXT
MOVE (AO), & 90CA
END :JMPEND
(90CAH) «— sum|
|
[]
Flow Chart Program

11. Write a 68000-assembly language program for the simple
calculatoralgorithm treated earlier in chapter five.

Solution

; Assembly language to implement simple calculator operation

; Z=X [+,-,*, /1Y using the pseudo codes given in chapter five. X, Y, Z
and the ;operator are variables assigned to memory locations VARI,
VAR2 RESULT ;and OPERATOR respectively.

ORG 4000
103

VART : DC.W

VAR2 : DCW
OPERATOR: DC.B

RESULT: DSL
ORG4100
LEAVAR1,A0
LEAVAR2, Af
LEAOPERATOR, A2
LEARESULT,A3
MOVE (A0), DO
MOVE (A1), D1
MOVE (A2), D2
CMPI'+' D2
BNE SUBTR
ADDD1,D0
BRASTORE
CMPI',D2
BNE MULT
SUBD1,D0
BRASTORE
MULT: CMP™, D2

BNE DIVDE
MULD1,D0
BRASTORE
CMP'f', D2
BNE ERROR
DIV.D1,D0
BRASTORE
TRAP#0
MOVE DO, (A3)
END

SUBTR:

DIVDE:

ERROR:
STORE:

: memaory location for X

:memory location for'Y

; memory location for operator [+,-,%, /]
- storane location for 2

point to variable in memory
, pointto variable in memory
; pointto variable in memory
: pointto variable in memory
;get varX
;get varY
- get operator
.determine operatortype
ifoperator?'+'goto SUBTR
X=X+Y
storeresult
; determine operator type
ifoperator 2™ goto MULT

; determine operator type
.ifoperator?"™ goto DIVDE

; determine operator type
;ifoperator ?''goto ERROR

:Z= X [OPERATOR] Y

104

BIBLIOGRAPH

Bacon, J. (1986): The Motorola MC68000: An Introduction
to Processor, Memory and Interfacing, Prentice-Hall, New

York.

Rafiquzzaman, M. (1998): Microprocessor: Theory and

Applications, Mac-Graw Hill, Singapore.

Hall, D.V.(1983): Microprocessor and Digital Systems, Mac -

Graw Hill, Singapore.

Clements, A. (1999): Principles of Computer Hardware,

Oxford University Press, New York.

105

MC68000, 33, 35, 97, 98, 99, 100, 102,
103

Address Registers, 37

Addressing Mode, 13, 35, 40

Addressing Modes, 14

Algorithm, 85, 101, 103

Arithmeiic Instructions, 46, 56

Assembler, 5,9, 26, 27, 28, 29, 30, 32,
48, 57,58, 59, 60, 61, 62, 63, 64,
65, 66,67,74, 75,76, 77. 78, 81, 82

Assembler Directive, 29

Assembler Syntax, 28

Assembly Language, 4, 7, 8, 21, B4, 85,
103

Binary Coded Decimal Instructions, 46
Bit Manipulation Instructions, 46,74

Compiler, 5, 11, 84
Conditional Branch, 19, 90
Control Struciures, 92

Data Movement Insiruciions, 46, 47
Data Registers, 37

Data Types, 33

Direet Memary Access, 24

Flow. Chart, 92; 102
High-Level Language, 4, 5, 11, 27, 46

Instruction, 5, 6, 7, 8,9, 10, 12, 13, 14,

15,16, 17, 18, 19, 20, 21, 22,23,
25, 26,29, 30, 31, 34, 35, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 62, 63, 64, 65, 67,
68, 71,72, 73, 14,75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 90, 91

INDEX

106

Instruction Formats, 13
Instruction Set, 35, 46
Interpreter, 5, 11
Interrupt, 8, 24, 36, 39

Linker, 9
Logical Instructions, 46

Machine Language, 4

Memory, 10, 12,1516, 17, 18, 22, 23,
24,25, 29,300 31, 32, 35, 37,42,
43, 44, 45,47, 48, 49, 50, 51, 52,
54, 55,56, 58, 59, 60, 64, 67, 68,
69, 70,71, 74, 84, 87, 98, 99, 101,
102,103, 104

Micrecompulter, 4

Microprocessor, 5, 6,9, 10, 12, 14, 15,
16, 18, 20, 23. 24,25, 27, 28, 30,
33,34, 35, 40, 41, 42, 84, 90

Mnemonic, 8

Op Code, 9
Operating Mode, 33
Org, 29,30, 31,97, 103, Lus

Program Conrtrol, 19, 47, 77
Program Counter, 37
Programing Language, 2, 4
Programming, 5, 36, 84, g5
Programming Model, 20, 35
Pseudo Codes, 103

Shift And Rotate Insiruciions, 46, 67
Stack, 51

Status Register, 36, 38

Subroutine Call, 19, 21, 22

System Control Instructions, 47, 83

Translator, 5, 25

Unconditional Branch, 19, 90

	ui_bk_arulogun_assemly_2005_05(2)-1.pdf
	ui_bk_arulogun_assemly_2005_05(2)-2.pdf
	ui_bk_arulogun_assemly_2005_05(2)-3.pdf
	ui_bk_arulogun_assemly_2005_05(2)-4.pdf
	ui_bk_arulogun_assemly_2005_05(2)-5.pdf
	ui_bk_arulogun_assemly_2005_05(2)-6.pdf
	ui_bk_arulogun_assemly_2005_05(2)-7.pdf
	ui_bk_arulogun_assemly_2005_05(2)-8.pdf
	ui_bk_arulogun_assemly_2005_05(2)-9.pdf
	ui_bk_arulogun_assemly_2005_05(2)-10.pdf
	ui_bk_arulogun_assemly_2005_05(2)-11.pdf
	ui_bk_arulogun_assemly_2005_05(2)-12.pdf
	ui_bk_arulogun_assemly_2005_05(2)-13.pdf
	ui_bk_arulogun_assemly_2005_05(2)-14.pdf
	ui_bk_arulogun_assemly_2005_05(2)-15.pdf
	ui_bk_arulogun_assemly_2005_05(2)-16.pdf
	ui_bk_arulogun_assemly_2005_05(2)-17.pdf
	ui_bk_arulogun_assemly_2005_05(2)-18.pdf
	ui_bk_arulogun_assemly_2005_05(2)-19.pdf
	ui_bk_arulogun_assemly_2005_05(2)-20.pdf
	ui_bk_arulogun_assemly_2005_05(2)-21.pdf
	ui_bk_arulogun_assemly_2005_05(2)-22.pdf
	ui_bk_arulogun_assemly_2005_05(2)-23.pdf
	ui_bk_arulogun_assemly_2005_05(2)-24.pdf
	ui_bk_arulogun_assemly_2005_05(2)-25.pdf
	ui_bk_arulogun_assemly_2005_05(2)-26.pdf
	ui_bk_arulogun_assemly_2005_05(2)-27.pdf
	ui_bk_arulogun_assemly_2005_05(2)-28.pdf
	ui_bk_arulogun_assemly_2005_05(2)-29.pdf
	ui_bk_arulogun_assemly_2005_05(2)-30.pdf
	ui_bk_arulogun_assemly_2005_05(2)-31.pdf
	ui_bk_arulogun_assemly_2005_05(2)-32.pdf
	ui_bk_arulogun_assemly_2005_05(2)-33.pdf
	ui_bk_arulogun_assemly_2005_05(2)-34.pdf
	ui_bk_arulogun_assemly_2005_05(2)-35.pdf
	ui_bk_arulogun_assemly_2005_05(2)-36.pdf
	ui_bk_arulogun_assemly_2005_05(2)-37.pdf
	ui_bk_arulogun_assemly_2005_05(2)-38.pdf
	ui_bk_arulogun_assemly_2005_05(2)-39.pdf
	ui_bk_arulogun_assemly_2005_05(2)-40.pdf
	ui_bk_arulogun_assemly_2005_05(2)-41.pdf
	ui_bk_arulogun_assemly_2005_05(2)-42.pdf
	ui_bk_arulogun_assemly_2005_05(2)-43.pdf
	ui_bk_arulogun_assemly_2005_05(2)-44.pdf
	ui_bk_arulogun_assemly_2005_05(2)-45.pdf
	ui_bk_arulogun_assemly_2005_05(2)-46.pdf
	ui_bk_arulogun_assemly_2005_05(2)-47.pdf
	ui_bk_arulogun_assemly_2005_05(2)-48.pdf
	ui_bk_arulogun_assemly_2005_05(2)-49.pdf
	ui_bk_arulogun_assemly_2005_05(2)-50.pdf
	ui_bk_arulogun_assemly_2005_05(2)-51.pdf
	ui_bk_arulogun_assemly_2005_05(2)-52.pdf
	ui_bk_arulogun_assemly_2005_05(2)-53.pdf
	ui_bk_arulogun_assemly_2005_05(2)-54.pdf
	ui_bk_arulogun_assemly_2005_05(2)-55.pdf
	ui_bk_arulogun_assemly_2005_05(2)-56.pdf
	ui_bk_arulogun_assemly_2005_05(2)-57.pdf
	ui_bk_arulogun_assemly_2005_05(2)-58.pdf
	ui_bk_arulogun_assemly_2005_05(2)-59.pdf
	ui_bk_arulogun_assemly_2005_05(2)-60.pdf
	ui_bk_arulogun_assemly_2005_05(2)-61.pdf
	ui_bk_arulogun_assemly_2005_05(2)-62.pdf
	ui_bk_arulogun_assemly_2005_05(2)-63.pdf
	ui_bk_arulogun_assemly_2005_05(2)-64.pdf
	ui_bk_arulogun_assemly_2005_05(2)-65.pdf
	ui_bk_arulogun_assemly_2005_05(2)-66.pdf
	ui_bk_arulogun_assemly_2005_05(2)-67.pdf
	ui_bk_arulogun_assemly_2005_05(2)-68.pdf
	ui_bk_arulogun_assemly_2005_05(2)-69.pdf
	ui_bk_arulogun_assemly_2005_05(2)-70.pdf
	ui_bk_arulogun_assemly_2005_05(2)-71.pdf
	ui_bk_arulogun_assemly_2005_05(2)-72.pdf
	ui_bk_arulogun_assemly_2005_05(2)-73.pdf
	ui_bk_arulogun_assemly_2005_05(2)-74.pdf
	ui_bk_arulogun_assemly_2005_05(2)-75.pdf
	ui_bk_arulogun_assemly_2005_05(2)-76.pdf
	ui_bk_arulogun_assemly_2005_05(2)-77.pdf
	ui_bk_arulogun_assemly_2005_05(2)-78.pdf
	ui_bk_arulogun_assemly_2005_05(2)-79.pdf
	ui_bk_arulogun_assemly_2005_05(2)-80.pdf
	ui_bk_arulogun_assemly_2005_05(2)-81.pdf
	ui_bk_arulogun_assemly_2005_05(2)-82.pdf
	ui_bk_arulogun_assemly_2005_05(2)-83.pdf
	ui_bk_arulogun_assemly_2005_05(2)-84.pdf
	ui_bk_arulogun_assemly_2005_05(2)-85.pdf
	ui_bk_arulogun_assemly_2005_05(2)-86.pdf
	ui_bk_arulogun_assemly_2005_05(2)-87.pdf
	ui_bk_arulogun_assemly_2005_05(2)-88.pdf
	ui_bk_arulogun_assemly_2005_05(2)-89.pdf
	ui_bk_arulogun_assemly_2005_05(2)-90.pdf
	ui_bk_arulogun_assemly_2005_05(2)-91.pdf
	ui_bk_arulogun_assemly_2005_05(2)-92.pdf
	ui_bk_arulogun_assemly_2005_05(2)-93.pdf
	ui_bk_arulogun_assemly_2005_05(2)-94.pdf
	ui_bk_arulogun_assemly_2005_05(2)-95.pdf
	ui_bk_arulogun_assemly_2005_05(2)-96.pdf
	ui_bk_arulogun_assemly_2005_05(2)-97.pdf
	ui_bk_arulogun_assemly_2005_05(2)-98.pdf
	ui_bk_arulogun_assemly_2005_05(2)-99.pdf
	ui_bk_arulogun_assemly_2005_05(2)-100.pdf
	ui_bk_arulogun_assemly_2005_05(2)-101.pdf
	ui_bk_arulogun_assemly_2005_05(2)-102.pdf
	ui_bk_arulogun_assemly_2005_05(2)-103.pdf
	ui_bk_arulogun_assemly_2005_05(2)-104.pdf
	ui_bk_arulogun_assemly_2005_05(2)-105.pdf
	ui_bk_arulogun_assemly_2005_05(2)-106.pdf

