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ABSTRACT

Adsorption refrigeration technology has been intensively investigated in many countries of the world
because of its potential for competing with conventional vapour compression refrigeration and its
environmental friendliness.

A solar-powered adsorption refrigerator using activated carbon/methanol pair was designed and
fabricated. A mathematical model was developed based on the thermodynamics of the adsorption process,
heat and mass transfer equations of the collector/generator/absorber components and simplified
idealization of the condenser and evaporator components. The partial differential equations generated
from the analysis were transformed into explicit finite difference forms for numerical solution. The model
was used to compute the collector plate, bond and adsorbent temperatures, and the COP. The model was
validated by using data from experiments performed on a solar powered activated carbon/methanol
refrigerator and from published works.

The predicted peak plate, tube and adsorbent temperatures were102, 88 and 86°C respectively which
compared favourably with 109 peak plate, 95 tube, and 85°C adsorbent temperatures from published
works. The COP of the modelled refrigerator using imported activated carbon ranged from 0.0340 to
0.0345 compared to 0.0300 to 0.0550 recorded in the literature while the COP achieved from the
experimental rig using locally manufactured activated carbon ranged from 0.0163 to 0.0200. Reducing the
tube thickness from 5 mm to 1.5 mm led to a gain of 80.0% in COP. The adsorbent parking density of
550 kg/m® gave an optimum COP, while a decrease of plate thickness from 1.5 mm to 1.0 mm increased
the COP from 0.0338 to 0.0352.
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INTRODUCTION

) A country like Nigeria in tropical Africa has an aftractive potential for solar energy
applications. The demand for space cooling and refrigeration follows the pattern of availability of
solar energy. The most promising applications are vaccine storage and food storage [1]. Many
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agricultural products like fruits, vegetables, meat, milk, fish, etc. can be maintained in fresh
conditions for significantly longer periods of time if they are stored at low temperatures [2]. As a
result of these problems, sharp differences exist in food supplies between the harvest and off
harvest periods. High market value agricultural products are usually abundant and cheap during
meharvestseawnblnscaroeandexpensweatoﬂlertlmesp] Development of an appropriate
refrigeration system will help in reversing this trend.

Anyanwu et al., Khattab et al., Gadalla et al. [6-8] reported a thermodynamic design
procedure for solid adsorption solar refrigerator. The mathematical model is based on the
thermodynamics of the adsorption process, heat transfer in the collector plate/tube
arrangement, and heat and mass transfers within the adsorbent/adsorbate layer. Temperature
was also predicted to within 5°C.

Antonio Pralon Ferreira Leite er al. [9] presented experimental thermodynamic
cycles and performance analysis of a solar-powered adsorptive icemaker that uses
activated carbon-methanol pair in hot humid climate. The maximum regenerating
temperatures were 100.1°C, 87.3°C and 92.7°C, with an ice production of 6.02, 2.10
and 0 kg by square meter of projected area, for cycles of clear sky, partially cloudy
and overcast days.

Thus, the main focus of this study is the development and evaluation of a solar-
powered adsorption refrigerator using activated carbon/methanol pair. This simulation
work will help us to find out the effects of system components, adsorbent properties and
local climate on the performance of the refrigerator.

1. CROSS SECTION OF SHEET AND TUBE

Figure 1 is the modelled solar adsorption refrigerator while Figure 2 shows the absorber
plate of the solar collector divided into nodes.

As shown in Figure 3, the temperature distribution between tubes can be derived if we
assume that the temperature gradient in the flow direction is negligible.

1.1. ENERGY BALANCE EQUATION FOR COLLECTOR/GENERATOR/ ADSORBER.
The energy balance equation for this component is given by:

aT T
pC, —=Qn Up(T — Tomp) + Qg +K6 = (1.1
. ax
Q= hsgmada 1.2)
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Figure 1. Sectional view of the adsorption solar refrigerator
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1.2. THE COLLECTOR PLATE
The finite difference equation for the collector plate is:

Tp(t+1 i+1) = Tp(t i+1) ~ C [[Qn UL(Tp(t,H-l) -~ Tamb(t))]A
(1.3)
Tp(t,l+2) kN Tp(t,i+1) Tb(t) - Tp(t,l+1)
-+ i
R, Ry

Tp(t+1,!+1) = Tp(t,H—l) C [[Qn UL(Tp(t.t+1) - amb(t))]‘4
(1.4)

Toi+2) — Tpeivr) . Toe) — Tp(t,l+1)]
+ +
R, Ry

C; = ppCpplxe, (1.5)

1.3. FDE FOR THE MID-PORTION (BOND)

The finite difference form of the energy equation for the mid-portion will be obtained
using assumption (iv), (v) and (ix). The FDE becomes:

At )
Toe+1.i) = Toces) G [@n — UL(T" bty = Tambe))|Ac

(1.6)
2( pti+n) = To) (Tad(t.e) i 10))
R,
) (D% - D?)
Cs = PpCppWpep + PoConWoes + ppec,,p,n—o-r— ()]
. [ (1.8)
T = Tpey ¥ | Toceivn) — T
b(t) b(t) [ p(ti+1) — b(t)] W, Rl
Equation (1.8) gives the exposed surface temperature of the mid-portion Iloeje.et al (1995)
Boundary condition for equation (1.6) is:
=T, Tedte-1) — T,
Testvonis ™ Tadied +_{Tb(t) ad(t.e) + ad(te-1) — Yad(te) + Qg] (1.9)
C R, R

Cs = Paa|Cpaay + (X + cpr) Vi (1.10)
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1.4. FDE FOR THE ADSORBENT
The FDE for the adsorbent is given by:

At Kad21r
Taag+1.) = Taa@i) + G "__A'r—'(Tad(t,Hl) — Taaen)tp + ((Tad(t,i—l) = Tad(t,i))rm) + Qg] (1.11)

Cs = Paalpaay + (X + cpr) Ve ’ (1.12)

A relationship exists between the concentration, pressure and temperature via the Duibinni-
Astakhov (D-A) equation in the form stated below (Anyanwu et al., 2005)

X = p(T)Wyexp [—D (T n Psg)) ] (1.13)

This equation (1.13) can be easily differentiated with respect to time in order to obtain the
rate of change f concentration. This will give:

dx _ ol BOYT B\"\|[dinP _ hsg (T — Tw)]
2 o (nB2) ™ o (- (B [ e Tl

The pressure field is given by the equation (Anyanwu, 2005)

P = exp(7.509329 — 1004.576T;} — 246199T;Z + 1.91914 x 107T;3)(mbar) (1.15)
1.5. THE CONDENSER
Water-cooled condenser is employed because of its effectiveness.

Teona = 159.6 + 0.4575T 5 (1.16)

The variation of saturation pressure with condenser temperature for methanol is given by
this equation, Khattab ( 2006):

Poona = (18 587 — — 02055 ) 117
cond TNGFY S Teona — 3429 a0

The total mass of methanol generated is given by the equation:

My = | Xinitiat — XfinatJAPDVpiny; (1.18)
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1.6. OVERALL HEAT TRANSFER COEFFICIENT
This is given as defined by Khattab (2006):

-1

N ng 1 (T + Tamp )(Tp* + Tamp) _
v I, [ra "Rl (6 +oousotngn) + 2t e o
f = (1+ 0.089h,, — 0.1166h,E,) (1.20)
e =043 (1 —%) (121)
C = 520(1 — 0.00005182), for 0 < B < 70°, for 70° < B < 90°, use § = 70° (1.22)
hy = 2.8+ 3.0xWS (123)

2. RESULTS AND DISCUSSION

The mathematical model developed was employed in a computer algorithm using
FORTRAN programming coding language. This was then run on a personal compute with
sufficient memory facilities to carry out the simulation exercise. The hourly solar radiation data
obtained at the test location in Ibadan was used for the program run. The average condensing
temperature of the evaporative condenser used was 24°C while the evaporating temperature of
the evaporator was -10°C. The simulator was used to predict the refrigerator performance using
the insolation data obtained for ten days in Ibadan. The peak plate (102° C), tube surface (85° C)
temperatures and commencement of methanol generation were accurately predicted. The results
of the sensitivity tests are presented in Figures 4-12.The predicted plate, tube and adsorbent
temperatures are shown in Figure 4. For the same number of tubes of constant thickness, Figure
5 is pointing to_the fact that there is significant improvement in refrigerator performance with
decrease in plate thickness. Figure 6 demonstrates the effect of tube thickness on the performance
of the refrigerator.

An increase in tube thickness with all other parameters remaining constant leads to a
decrease in the efficiency of the refrigerator. Figure 7 shows a direct relationship between the
refrigerator coefficient of performance and adsorbent packing density, APD. Figure 8 shows the
dependence of the refrigerator performance on the overall heat transfer coefficient (Up). It
indicates that for the system to perform optimally the collector must be designed such that
leakages (heat losses) are minimised during the heating operation of the activated carbon and
methanol. The information from Figure 9 is that the performance of the refrigerator is not a
strong function of adsorbent thermal conductivity when other parameters are held constant.
Figure 10 shows the dependence of the system performance on plate thermal conductivity up to a
particular point while other parameters are held constant. It means that a material with thermal
conductivity in the range of 41-50 W/m.K will be appropriate for the machine. Figure 11 reveals
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a direct relationship between plate absorptivity and transmittance of the glass cover. The
predicted plate temperature and measured temperature are shown in Figure 12. They follow the
same pattern.
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Figure 4. Predicted Plate, Tube (Mid-Portion) and Adsorbent Temperatures
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Figure 12. Predicted Plate Temperature vs. Measured Plate Temperature
CONCLUSIONS

The transient analysis of a solar powered solid adsorption refrigerator using activated
carbon/methanol pair has been undertaken in a simulation exercise. The predicted peak
plate temperature is 103°C while the measured peak temperature was 102°C. This is in good
agreement with the works of Anyanwu et al. ( 2001) and Iloeje er al. (1995) who obtained
peak plate temperatures of 109°C and 104°C respectively. Khattab ef al. (2004) using
reflector arrangement to enhance heat transfer in the collector obtained peak temperature of
110°C. Khattab ez al. (2006) with the aid of glass shells within the adsorptive bed obtained
a peak temperature of 130°C. Antonio Pralon et al. (2007) reported a peak temperature of
100°C for a solar-powered adsorptive icemaker in hot humid climate. This program can
therefore be used for parametric and design optimization studies of a solar-powered
adsorption refrigerator.
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NOMENCLATURE
Cp specific heat capacity kJ/kg/K
E emmitance
E, extinction coefficient m’
Fy diffuse ratio
Fp dust factor
fs shading factor
D constant in Dubinin equation
h,, wind heat transfer coefficient WimK
hsg latent heat of vapourisation kJ/kg
k thermal conductivity Wim/K
hey isosteric heat of sorption kJ/kg
L length m
m mass kg
ng number of glass cover
Npi number of pipes
P pressure bar
Q heat flow rate kJ/s
Q heat energy kJ
R specific gas constant kJ/kg/K
S tilt correction factor
T temperature K
U, overall heat transfer coefficient Wim*/K
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