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Abstract

An artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between cutting and process

parameters during high-speed turning of nickel-based, Inconel 718, alloy. The input parameters of the ANN model are the cutting parameters:

speed, feed rate, depth of cut, cutting time, and coolant pressure. The output parameters of the model are seven process parameters measured

during the machining trials, namely tangential force (cutting force, Fz), axial force (feed force, Fx), spindle motor power consumption,

machined surface roughness, average flank wear (VB), maximum flank wear (VBmax) and nose wear (VC). The model consists of a three-

layered feedforward backpropagation neural network. The network is trained with pairs of inputs/outputs datasets generated when machining

Inconel 718 alloy with triple (TiCN/Al2O3/TiN) PVD-coated carbide (K 10) inserts with ISO designation CNMG 120412. A very good

performance of the neural network, in terms of agreement with experimental data, was achieved. The model can be used for the analysis and

prediction of the complex relationship between cutting conditions and the process parameters in metal-cutting operations and for the

optimisation of the cutting process for efficient and economic production.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Significant advances have recently been made in the field

of material science leading to better understanding of the

behaviour of engineering materials during processing. This

has enabled continual development and introduction of new

and novel engineering materials with superior properties

and also to a steady increase in the application of new heat-

resistant superalloys, such as nickel- and titanium-based

alloys in the aerospace industry. The introduction of these

materials in the aero-engine has led to a gradual increase of
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the engine temperature at a rate of 10 8C per annum since

the 1950s, resulting in a remarkable increase in engine

efficiency and reduction in fuel consumption [1]. These

alloys exhibit high strength to weight ratio, high resistance

to corrosion, erosion, and wear and are also capable of

retaining their mechanical properties such as hardness at

elevated temperatures relative to steel and stainless steel

alloys [2]. About 70% of the nickel and Ti alloys are usually

employed in the aerospace industry for the manufacture of

components that demands lighter, harder, stronger, tougher,

stiffer, more corrosion- and erosion-resistant materials that

are capable of retaining properties at elevated temperatures

such as in jet engines. The remainder of these superalloys is

widely used in the automobile, chemical, nuclear, medical

and construction industry.

The unique and desirable heat-resistant characteristics of

superalloys, on the other hand, impair their machinability
International Journal of Machine Tools & Manufacture 45 (2005) 1375–1385
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Fig. 1. Schematic model of artificial neural network for prediction of

process parameters for Inconel 718 alloy.

E.O. Ezugwu et al. / International Journal of Machine Tools & Manufacture 45 (2005) 1375–13851376

 IB
due to the extremely high temperature generated at the

cutting edge. This tends to deform the cutting tool, leading

to accelerated wear during machining, particularly at higher

speed conditions. The machinability aerospace alloys will

continue to decline as new materials are developed to meet

increasing demand for higher temperature-resistant

materials for more efficient aero-engines [1]. Considerable

research and development efforts have been directed,

worldwide, towards improving the machining operations

to ensure efficient and economic machining of these

superalloys by proper understanding of the behaviour of

exotic superalloys when machining at higher cutting

conditions [3].

Advances in cutting tool technology have led to the

introduction of coated and uncoated carbide, ceramic,

CBN/PCBN and PCD tools with adequate hot hardness

and toughness to withstand elevated temperatures gener-

ated at high-speed conditions. Also, machining tech-

niques, such as ramping (or taper turning), high-pressure

coolant (HPC) delivery system, hot machining, cryogenic

machining and the use of self-propelled rotary tooling

(SPRT), have been developed in recent years. A good

understanding of the behaviour and the relationship

between the workpiece materials, cutting tool materials,

cutting conditions and the process parameters is an

essential requirement for the optimisation of the cutting

process. In this regard, a significant number of investi-

gations have been carried out to understand the complex

relationship between the cutting conditions and the

process parameters in high-speed machining of nickel-

based, Inconel 718, alloy from both empirical and

theoretical standpoints. Empirical models relating tool

wear and component forces as functions of cutting speed

and coolant concentration when machining nickel-based,

nimonic C-263, alloy with PVD-coated carbide tools

have been reported [4]. Similarly, several experimental

and analytical studies have been conducted on high-speed

machining of nickel-based, Inconel 718, alloy [5–8]. It

must be pointed out, however, that these techniques are

both costly and time consuming. Computer-based models,

on the other hand, offer a more efficient and cost-

effective method in modelling the complex process

parameters.

Artificial neural networks (ANNs) are one of the most

powerful computer modelling techniques, based on statisti-

cal approach, currently being used in many fields of

engineering for modelling complex relationships which

are difficult to describe with physical models. ANNs have

been extensively applied in modelling many metal-cutting

operations such as turning, milling, and drilling [9–12].

However, this study was inspired by the very limited or no

work on the application of ANNs in modelling the

relationship between cutting conditions and the process

parameters during high-speed machining of nickel-based,

Inconel 718, alloy.
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2. Model description

There has been continual increase in research interest in

the applications of ANNs in modelling and monitoring of

machining operations [13,14]. The input/output dataset of

the model is illustrated schematically in Fig. 1. The input

parameters of the neural network are the cutting conditions,

namely cutting speed, feed rate, cutting time and the coolant

delivery pressure. The output parameters are seven of

the most important process parameters, namely component

forces (tangential or cutting force, Fz and axial or feed force,

Fx), spindle motor power consumption, machined surface

roughness, and tool wear (average and maximum flank wear

as well as nose wear).

The five basic steps used in general application of neural

network are adopted in the development of the model:

assembly or collection of data; analysis and pre-processing

of the data; design of the network object; training and

testing of the network; and performing simulation with the

trained network and post-processing of results. LI
BRARY
2.1. Experimentation/collection of input/output dataset

Machining tests were conducted on an 11 kW CNC

lathe with a speed range from 18 to 1800 rpm, which

provides a torque of 1411 N m. 200 mm diameter and

300 mm long cast solution treated, vacuum inducted

melted and electroslag remelted nickel-based, Inconel

718, alloy bars were used as workpiece. The chemical

composition and physical properties of the workpiece are

given in Tables 1 and 2, respectively. Before conducting

the machining trials, up to 3 mm thickness of the top

surface of each bar was cleaned in order to eliminate any

skin defect that can adversely affect the machining result.

Triple (TiCN/Al2O3/TiN) PVD-coated carbide (K 10)

inserts with ISO designation CNMG 120412412 were used

for the machining trials. The physical properties and

nominal chemical composition of the inserts are given in

Table 3. Cutting conditions, typical of rough turning of

nickel-based alloys in the manufacturing industry,

employed in the machining trials are shown in Table 4.

During the machining trials, the component forces were

measured using a piezo-electric tri-axial dynamometer

(Type 9257B). Signals from the dynamometer were
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Table 2

Physical properties of Inconel 718

Tensile strength

(MPa)

Yield strength

(MPa)

Elastic modulus

(GPa)

Hardness

(HRC)

Density

(g/cm3)

Melting point

(8C)

Thermal conduc-

tivity (W/m K)

1310 1110 206 38 8.19 1300 11.2

Table 3

Chemical and physical properties of coated carbide tool material

Co

(vol.%)

WC

(vol.%)

TaC

(vol.%)

NbC

(vol.%)

Hardness

(HV)

Grain size

(mm)

K1C

[MPa (mK1/2)]

Coating thickness (mm)

TiCN Al2O3 TiN

17.1 81 1.2 0.6 2000 1.7 14 4 1 0.5

Table 1

Chemical composition of Inconel 718 (wt%)

Element C Si Mn S Cr Fe Mo Nb and Ta Ti Al Ci Ni

Wt (%) 0.08 0.35 0.35 0.15 18.6 17.8 3.1 5.0 0.9 0.5 0.3 Balance
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conditioned through charge amplifiers (Type 5001) with in-

built low-pass filters of 680 Hz cut-off frequency. The RMS

values of the signals were sampled at a rate of 200 kHz with

a two-channel digital oscilloscope. The power consumption

of the spindle motor was measured with a multifunction

three-phase power meter. The roughness of the machined

surface was measured after each test with a stylus-type

instrument. Readings were taken at three different locations

and the average value was recorded. Tool wear: average

(VB) and maximum (VBmax) flank wear, and nose wear

(VC) were measured with a travelling microscope con-

nected to a digital readout device at a magnification of !25.

The tool rejection criteria for roughing operation were

used in the machining trials in accordance with ISO

Standard 3685. An insert was rejected and further machin-

ing discontinued when any or a combination of the

following criteria is reached: SITY
 O

F

Table 4
†
 average flank wearR0.4 mm

R

Cutting parameters
†
 maximum flank wearR0.7 mmE
†
 nose wearR0.5 mm

Machining conditions

Cutting speed (m/min) 20, 30, 40, and 50

†
 surface roughnessR6.0 mmIV
Feed rate (mm/rev) 0.25 and 0.30

Depth of cut (mm) 2.0–3.5 (ramping)

Coolant pressure (bar) 110, 150, and 203

Coolant concentration (%) 6.0

Cutting geometry

Cutting tool insert CNMG 120412

Tool holder MSLNR 252512

Approach angle (8) 40.0

Side rake angle (8) 0.0

Clearance angle (8) 6.0

Back rake angle (8) K5.0

Cutting fluid type

Emulsion oil (alkanolamine salts of the fatty acids and dicyclohexy-

lamine)
2.2. Pre-processing of input/output dataset

The generalisation capability of the neural network is

essentially dependent on: (i) the selection of the appropriate

input/output parameters of the system; (ii) the distribution of

the dataset; and (iii) the format of the presentation of the

dataset to the network. For this model, the input parameters

used are the four main cutting parameters, while the

output dataset are the seven process parameters. In total,

20 machining tests were conducted and a total of 102

input/output dataset pairs were collected during

UN
the machining tests. The experimental design and the data

distribution of the input/output dataset for each test are

given in Table 4.

Prior to the use of the datasets, principal component

analysis was performed, using the Matlab subroutine

prepca, to test the correlation between the input and

output dataset. Result shows that each of the four

selected cutting parameters (input dataset) accounts for

more than 98% variability in each of the process

parameters (output dataset). Before training the network,

the input/output datasets were normalised within the

range of G1, using the Matlab subroutine premnmx. The

normalised value (xi) for each raw input/output dataset

(di) was calculated as

xi Z
2

dmax Kdmin

ðdi KdminÞK1
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where dmax and dmin are the maximum and minimum

values of the raw data.
2.3. Neural network design and training

The network architecture or features such as number of

neurons and layers are very important factors that determine

the functionality and generalisation capability of the

network. For this model, standard multilayer feedforward

backpropagation hierarchical neural networks were

designed with MATLAB 6.1 Neural Network Toolbox

[15]. The networks consist of three layers: the input, hidden

layer, and output layer. In order to determine the optimal

architecture, four different networks with different number

of layers and neurons in the hidden layer were designed and

tested. In general, the networks have four neurons in the

input, corresponding to each of the four cutting parameters

and one neuron in the output layer, corresponding to each of

the process parameter. Networks with one or two layers and

with 10 or 15 in the hidden layer(s) were used as shown in

Table 5. For all networks linear transfer function ‘purelin’

and tangent sigmoid transfer function ‘tansig’ were used in

the output and hidden layer, respectively. Seven different

networks were designed for each of the process parameters.
Table 5

Correlation coefficient between the network predictions and the experimental value

parameters

Training algorithm/

regularisation

Levenberg–Marquardt with Bayesian regularisation

No. of hidden layers 1 1 2 2

No. of neurons in the layer 10 15 10 15

Surface roughness (Ra)

Training 0.9551 0.9394 0.9889 0.9

Test 0.9726 0.9535 0.9938 0.9

Entire 0.9566 0.9394 0.9901 0.9

Cutting force (Fz)

Training 0.5095 0.5094 0.6429 0.6

Test 0.4949 0.4955 0.7164 0.7

Entire 0.5026 0.5027 0.6595 0.6

Feed force (Fx)

Training 0.7215 0.7069 0.7638 0.7

Test 0.8153 0.7993 0.8666 0.8

Entire 0.7475 0.7345 0.7913 0.7

Power consumption (p)

Training 0.9664 0.9656 0.9743 0.9

Test 0.9274 0.9443 0.9674 0.9

Entire 0.9571 0.9606 0.9727 0.9

Average flank wear (VB)

Training 0.9807 0.9810 0.9959 0.9

Test 0.9790 0.9798 0.9982 0.9

Entire 0.9802 0.9804 0.9965 0.9

Maximum flank wear (VB)

Training 0.9864 0.9877 0.9921 0.9

Test 0.9952 0.9955 0.9980 0.9

Entire 0.9883 0.9894 0.9933 0.9

Nose wear (VC)

Training 0.9810 0.9817 0.9973 0.9

Test 0.9852 0.9871 0.9980 0.9

Entire 0.9828 0.9838 0.9976 0.9
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The networks were trained with Levenberg–Marquardt

algorithm. This training algorithm was chosen due to its

high accuracy in similar function approximation [3,15]. In

order to improve the generalisation of the network, different

‘regularisation’ schemes were used in conjunction with the

Levenberg–Marquardt algorithm. The automatic Bayesian

regularisation and the Early stopping regularisation were

used (see Table 5).

For training with the Levenberg–Marquardt combined with

Bayesian regularisation, the input/output dataset was divided

randomly into two categories: training dataset, consisting of

two-thirds of the input/output dataset and test dataset, which

consists of one-third of the data. When the networks were

trained with Levenberg–Marquardt combined with Early

stopping, the input/output dataset was divided in three sets:

training, test, and validation. One-half of the data was used as

training set, one-quarter as test set and one-quarter as

validation set. IB
RARY
2.4. Testing and performance of the network

The performance capability of each network was

examined based on the correlation coefficient between the

network predictions and the experimental values using
AN L
s using the training, test and entire dataset for different network and training

Levenberg–Marquardt with Early stopping regularisation

1 1 2 2

10 15 10 15

849 0.9913 0.9945 0.9965 0.9968

936 0.7728 0.7805 0.7383 0.8224

870 0.9009 0.9075 0.8990 0.8858

430 0.6706 0.4475 0.6112 0.5626

164 0.4178 0.5031 0.2842 0.2158

595 0.5509 0.4753 0.4696 0.4204

713 0.8363 0.9413 0.8915 0.9225

405 0.3749 0.1686 0.2111 0.2416

865 0.6593 0.6324 0.6158 0.6323

748 0.9769 0.9874 0.9686 0.9985

697 0.8805 0.8791 0.9218 0.8827

735 0.9301 0.9361 0.9426 0.9313

946 0.9851 0.9996 0.9973 1.0000

981 0.8991 0.8953 0.8961 0.9157

954 0.9352 0.9375 0.9376 0.9415

923 0.9776 0.9933 0.9997 1.0000

979 0.9478 0.9262 0.9460 0.9265

935 0.9512 0.9401 0.9631 0.9439

893 0.9880 0.9982 0.9931 0.9935

928 0.9273 0.8905 0.8812 0.9329

906 0.9569 0.9404 0.9469 0.9466

AD



Fig. 2. Correlation between the predicted values of the neural network model and the experimental data for prediction of surface roughness using the training

(a) and entire (b) datasets.
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the training, test and entire dataset. The best results, obtained

from 10 different trials using different random initial weights

and biases, for each process parameter are listed in Table 5.

Generally, as shown in the table, networks with two hidden

layers and 10 neurons in each layer, trained with Levenberg–

Marquardt algorithm combined with Bayesian regularis-

ation, gave the best performance for each of the process

parameters. It can also be seen that the increase in the number

of neurons in the hidden layer from 10 to 15 has no significant

improvement on the performance of the networks. Thus,

network having two layers and 10 neurons in each hidden

layer (4-10-10-1), trained with Levenberg–Marquardt algor-

ithm and Bayesian regularisation, was chosen as the

optimum network and used for development of this model.

The performance of the model for prediction of surface

roughness using the training and entire dataset is shown in

Fig. 2. The correlation coefficient of 0.99 was obtained

between the entire dataset and the model predictions. The

percentage error of the model prediction was also calculated

as the percentage difference between the experimental and

predicted value relative to the experimental value. The error

distribution of the model for the prediction of surface

roughness using the entire dataset is shown in Fig. 3. The

error has a uniform distribution pattern about zero with a

mean value and standard deviation of K0.87 and 7.16%,

respectively. The result shows that 84% of the entire dataset

have the percentage error ranging between G10%. Accep-

table results were also obtained for all the other process

parameters. This demonstrated that the models have high

accuracy for predicting the process parameters.
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Fig. 3. Error distribution of the neural network model for the prediction of

surface roughness using the entire dataset.
3. Simulation and results

3.1. Effect of cutting conditions on the process parameters

Based on the optimised network parameters, ANN model

was developed to predict each process parameter based on
the cutting conditions, with a high degree of accuracy within

the scope of cutting conditions investigated in the study.

Thus, the influence of the cutting conditions on the process

parameters can be studied using the model.N LI

3.1.1. Effect of cutting speed on the process parameters

Cutting speed is one of the most important cutting

parameters in metal-cutting operations. Its influence on the

process parameters: surface roughness, cutting force, feed

force, power consumption, average flank wear, maximum

flank wear, and nose wear over the speed range of

20–50 m/min was examined using the neural network

model at constant feed rate of 0.25 mm/rev, coolant pressure

of 110 bar and cutting time of 312 s. Results of the neural

network predictions and the experimental values are shown

in Fig. 4(a)–(g). Fig. 4(a) shows that the predicted surface

roughness increased significantly with increasing cutting

speed. The deterioration experienced in the machined

surface with increase in cutting speed can be attributed to

the presence of chatter and tool wear at higher speed

conditions. The pattern of the predicted component forces

(cutting and feed force) was similar as illustrated in Fig. 4(b)

BADA



Fig. 4. Neural network prediction of the influence of cutting speed on surface roughness (a), cutting force (b), feed force (c), power consumption (d), average

flank wear (e), maximum flank wear (f), and nose wear (g) at constant feed rate of 0.25 mm/rev, coolant pressure of 110 bar and cutting time of 312 s.
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and (c). It can be seen that the cutting force reduced

significantly (Fig. 4(b)), relative to the feed force (Fig. 4(c))

when the cutting speed increased from 20 to 35 m/min.

Further increase in cutting speed, from 35 to 50 m/min,

resulted in rapid increase in both cutting and feed forces.

The effect of cutting speed on component forces is in two

contrasting phenomena. On one hand, as the cutting speed

increases, the tool–chip contact length decreases and the

temperature at the cutting zone increases, leading to

softening of the workpiece material [16]. There is, therefore,

U
 a reduction in the shear strength of the workpiece, hence, the

drop in component forces [17]. On the other hand, as the

cutting speed increases above 30 m/min, tool wear increases

(Fig. 4(e)–(g)), consequently increasing the component

forces. These, therefore, suggest that the optimum cutting

speed is 35 m/min.

Fig. 4(d) shows that the predicted power consumption

dropped slightly with increase in cutting speed from 20

to 25 m/min and then increased exponentially with

increase in cutting speed from 25 to 50 m/min.



Fig. 5. Neural network prediction of the influence of feed rate on surface roughness (a), cutting force (b), feed force (c), power consumption (d), average flank

wear (e), maximum flank wear (f), and nose wear (g) at constant cutting speed of 30 m/min, coolant pressure of 110 bar and cutting time of 312 s.
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The trend can then be explained by the corresponding

reduction and increase in both component forces and tool

wear. In terms of minimum power requirement, the

optimum cutting speed is found to be 25 m/min. The

predicted tool wear, as shown in Fig. 4(e)–(g), followed

a similar pattern. A partially linear reduction in average

flank wear (Fig. 4(e)), maximum flank wear (Fig. 4(f))

and nose wear (Fig. 4(g)) was obtained with increase in
cutting speed from 20 to 30 m/min. No significant

difference was observed in both average flank wear and

nose wear unlike gradual increase in the maximum flank

wear. Further increase in cutting speed above 35 m/min

resulted to a general increase in all the tool wear modes,

suggesting that the optimum cutting speed at which

minimum process parameters can be obtained is in the

range of 25–35 m/min.



Fig. 6. Neural network prediction of the influence of coolant pressure on surface roughness (a), cutting force (b), feed force (c), power consumption (d), average

flank wear (e), maximum flank wear (f), and nose wear (g) at constant cutting speed of 30 m/min, feed rate of 0.25 mm/rev and cutting time of 774 s.
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3.1.2. Effect of feed rate on the process parameters

The effects of feed rate on the process parameters are

presented in Fig. 5(a)–(g). Fig. 5(a) shows a reduction in

the surface roughness value when the feed rate increased

from 0.24 to 0.28 mm/rev, contrary to expectation. This

reduction can be associated with the corresponding

reduction in nose wear with increasing feed rate up to
0.27 mm/rev (Fig. 5(g)). This clearly shows that nose wear

has a big influence on the surface roughness generated.

Further increase in feed rate above 0.28 mm/rev gave a

rapid increase in the surface roughness value. This result

indicates that the optimum feed rate is 0.28 mm/rev. An

increase in feed rate produces a linear increase in

both component forces and the power consumption



Fig. 7. Neural network prediction of the influence of cutting time on surface roughness (a), cutting force (b), feed force (c), power consumption (d), average

flank wear (e), maximum flank wear (f), and nose wear (g) at constant cutting speed of 30 m/min, feed rate of 0.25 mm/rev and coolant pressure of 150 bar.
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(Fig. 5(b)–(d)). The average flank wear increased with

increase in feed rate up to 0.28 mm/rev, and subsequently

levelled off with further increases (Fig. 5(e)), while the

maximum flank wear increased steadily with increasing

feed rate (Fig. 5(f)). On the other hand, nose wear reduced

when the feed rate increased from 0.24 to 0.27 mm/rev and

increased with further increase in feed rate (Fig. 5(g)).
It can therefore be concluded that the optimum feed rate,

corresponding to the minimum surface roughness and nose

wear, is within the range of 0.27 and 0.28 mm/rev.
3.1.3. Effect of coolant pressure on the process parameters

The delivery pressure is considered as one of the most

important factors in a high-pressure assisted jet cooling
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system. The reduction in the temperature at the cutting

edge, improvement in tool life and chip breakability

achieved with this system depend to a great extent on the

delivery pressure [18]. The influence of coolant pressure

on the process parameters is shown in Fig. 6(a)–(g).

Fig. 6(a) shows that the predicted surface roughness

remained constant with increase in coolant pressure from

110 to 130 bar. It then increased with increase in coolant

pressure from 130 to 170 bar before dropping rapidly

when the pressure increased from 170 to 210 bar. There

was a steady reduction in cutting force with increase in

pressure (Fig. 6(b)) due probably to reduction in the tool–

chip contact length due to the hydraulic wedge created by

the HPC jet at tool–chip interface [19]. A slight increase

in feed force was obtained when the pressure increased

from 110 to 150 bar followed by a rapid reduction when

the pressure increased from 150 to 210 bar (Fig. 6(c)).

The power consumption dropped steadily with increase in

the coolant pressure (Fig. 6(d)), similar to the cutting

force. This can also be attributed to the reduction in both

tool–chip contact length. Fig. 6(e)–(f) shows the effect of

coolant pressure on tool wear. An initial increase was

observed in both the average and maximum flank wears

with increasing coolant pressure. Further increase in

pressure above 150 bar generally lowered the predicted

flank wear. An initial reduction in nose wear was obtained

with increase in pressure up to 130 bar followed by a

steady rise up to 190 bar after which there was a reduction

with further increase in pressure from 190 to 210 bar

(Fig. 6(g)).

3.1.4. Effect of cutting time on the process parameters

The influence of cutting time on the process parameters is

shown in Fig. 7(a)–(g). Fig. 7(a) shows that increase in

cutting time has no defined influence on the surface finish

generated. Prolonged machining results in steady increase in

both component forces, power consumption, average and

maximum flank wears, and nose wear as illustrated in

Fig. 7(b)–(g).

It is important to note that the experimental values for all

the process parameters were very close to the predicted

values, except for the predictions of the component forces

(Figs. 4(b) and (c)–7(b) and (c)) where the differences were

high due to the low correlation coefficient between the

measured and the predicted values from the model, which

are 0.6595 and 0.7913 for cutting force and feed force,

respectively, while that for other process parameters are in

excess of 0.9 (Table 5). This shows that the model

prediction has a high degree of accuracy.
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4. Conclusions
1.
 The multilayer network with two hidden layers having

10 ‘tangent sigmoid’ neurons trained with Levenberg–

Marquardt algorithm combined with Bayesian
regularisation was found to be the optimum network for

the model developed in this study.
2.
 A good performance was achieved with the neural

model, with correlation coefficient between the model

prediction and experimental values ranging from

0.6595 for cutting force to 0.9976 for nose wear

prediction.
3.
 The optimum cutting speed at which minimum process

parameters were obtained is in the range of 25–

35 m/min, while the optimum feed rate, corresponding

to the minimum surface roughness and nose wear, is

within 0.27 and 0.28 mm/rev.

Y

4.
 A consistent reduction in cutting force was achieved with

increase in coolant pressure due to reduction in tool–chip

contact length as a result of the hydraulic wedge created

by the coolant jet at the tool–chip interface. The effect of

coolant pressure on tool performance is more pro-

nounced on the maximum flank wear than other wear

modes. LIB
RAR
5.
 Prolonged machining results in steady increase in both

component forces, power consumption, average and

maximum flank wear, and nose wear.N 
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