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ABSTRACT 
 
This paper presents the application of Artificial 
Neural Network (ANN) in modeling the heat 
transfer coefficient of a staggered multi-row, multi-
column, cross-flow, tube-type heat exchanger. 
Heat transfer data were obtained experimentally 
for air flowing over a bank of copper tubes 
arranged in staggered configuration with 5 rows 
and 4 columns at different air flow rates with 
throttle valve openings at 10 - 100%. The 
Reynolds number and the row number were used 
as input parameters, while the Nusselt number 
was used as output parameter in training and 
testing of the multi-layered, feed-forward, back-
propagation neural networks. The network used in 
this study was designed using the MATLAB® 
Neural Network Toolbox.  
 
The results show that the accuracy between the 
neural networks predictions and experimental 
values was achieved with mean absolute relative 
error (MRE) less than 1 and 4% for the training 
and testing data sets respectively, suggesting the 
reliability of the networks as a modeling tool for 
engineers in preliminary design of heat 
exchangers. 
 
(Keywords: artificial neural network, ANN, heat transfer, 

staggered, cross-flow, heat exchanger) 
 
 
INTRODUCTION 
 
Heat transfer to and from a bank of tubes in cross 
flow is relevant to numerous heat exchanger 
applications, such as steam generator in a boiler 
or air cooling in the coil of an air conditioner (Kays 
and London, 1964). In these applications, one 
fluid moves over the tubes, while a second fluid at 
a different temperature passes through the tubes 
and hence, heat is exchanged between the fluids 
based on the convection heat transfer coefficient 

(McAdams, 1954). The tube rows of the bank are 
either arranged in staggered or aligned 
configuration in the direction of flow.  
 
The flow conditions within the bank are 
dominated by boundary layer separation effects 
and by wake interactions, which in turn influence 
the convection heat transfer (Incropera and 
Dewih, 2002). Hence, the heat transfer coefficient 
associated with a tube is determined by its 
configuration and position of the bank. The heat 
transfer coefficient of a tube with staggered 
configuration is higher than that associated with 
of aligned. Also, for a given configuration, the 
heat transfer coefficient in the first row is lower 
than those associated with tubes of inner rows. In 
most configurations, however, heat transfer 
conditions stabilize, such that little change occurs 
in the convection coefficient for tube beyond the 
fourth or fifth row (Plint and Partners Ltd., 1981).  
 
The modeling of these relationships has been the 
concern of many researchers. Generally, the 
average heat transfer coefficient for the entire 
tube bank is evaluated empirically based on the 
maximum fluid velocity. Different forms of 
empirical correlations have been proposed for 
airflow across tube bank with different geometry 
and configurations (McAdams, 1954; 
Zhukauskas, 1972). However, the applicability of 
these empirical models is limited to a confined 
range of flow conditions due to the complexity of 
the relationships. In this sense, therefore, artificial 
neural networks (ANNs) have been applied in 
modeling heat transfer phenomena of different 
heat exchanger applications because of providing 
better and more reasonable solutions (Islamoglu, 
2003; Islamoglu and. Kurt, 2004). Pacheco-Vega 
et al. (2001a) and Pacheco-Vega et al., (2001b) 
used artificial neural networks to model the heat 
transfer of a fin-tube heat exchanger. Díaz et al. 
(2001) has applied artificial neural network 
technique to the simulation of the time-dependent 
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behavior of a heat exchanger. Thibault et al. 
(1991) and Jambunathan et al. (1996) have 
applied neural network model for prediction of 
convective heat transfer.  More recently, Varshney 
and Panigrahi (2005) developed a neural network 
based control for a heat exchanger in a closed 
flow air circuit. Fatona (2008) has investigated the 
feasibility of using back propagation neural 
network for prediction of flow and heat transfer 
characteristics of air flowing over bank of tubes. 
 
The prediction performance of these developed 
neural networks models in different fields of 
engineering applications has demonstrated high 
generalization capability and robustness of 
technique in modeling of complex and non-linear 
heat transfer relationships in heat exchangers. 
The objective of this present study is to 
investigate the feasibility of applying artificial 
neural networks (ANNs) for modeling the 
convection heat transfer coefficient of air flowing 
over a staggered, multi-row, multi-column, cross-
flow, tube-type heat exchanger 
 
 
MATERIALS AND METHODS 
 
Experimentation 
 
The cross-flow heat exchanger apparatus (Model 
TE.93/A, Plint Engineers, England) was used for 
the purpose of data gathering. The experimental 
setup is shown in Figure 1. Air at ambient 
temperature (working fluid), driven by a centrifugal 
fan powered by a 1 hp electric motor at a constant 
speed of 2,500 rpm, is blown perpendicularly over 
a bank of cylindrical copper tubes arranged in 
staggered configuration of 5 rows and 4 columns 
inside the working section. The nominal 
dimensions of the working section and the 
configuration of the tube bank are shown in Figure 
2. The air flow rate over the tubes is regulated by 
a throttle valve attached to the discharge end of 
the centrifugal fan. The nominal dimensions and 
properties of the copper tube are given in Table 1, 
while the properties of the working fluid are given 
in Table 2. 
 
One of the copper tubes is heated to a maximum 
of about 900C with an electric heater and a K-type, 
0.2 mm diameter thermocouple (DSS, AK28M 
Model) was imbedded at the centre of the tube 
was used to measure the temperature of the tube. 
The thermocouple voltage output is wired to digital 
multimeter (DSS, AK28M Model), which is 
connected Pentium® 4 laptop computer to record 

the measured temperature. The heated tube is 
then inserted into the spaces provided in the 
working section at middle points of each 4 row of 
the tube bank. At each row position, the rate 
cooling of the tube as indicated by a 
thermocouple embedded at its centre was 
recorded at the rate of 1 data per second by the 
computer for 10 different flow rates with throttle 
valve at 10, 20, 30, 40, 50, 60, 70 ,80, 90 and 
100% openings. The air velocity over the tube 
bank at different openings was measured with a 
total head tube connected to an inclined water 
manometer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Experimental Setup. 
 

1: Electric motor, 2: Fan, 3. Air outlet, 4: Throttle 
opening, 5: Working section, 6: Electric heater, 7: Total 

head tube, 8: Test element, 9: Thermometer, 10: Air 
inlet, 11: Computer, 12: Digital multimeter, 13: Control 

panel, 14: Inclined manometer. 
 
 

The Reynolds number (Re) of air flow is 
determined using the relation: 
 

μ
ρVD

=Re                       (1) 

 
where,  ρ  =  density of air,  

V  =  mean velocity of air 
D  = outside diameter of tube 
μ  =  viscosity of air.  

 
For the purpose of estimating the heat transfer 
coefficient, it is assumed that the whole of the 
heat lost from the tube is transferred to the air 
flowing past it.  
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where,   h =   coefficient of heat transfer 
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q&  =   rate of heat loss 
A1 =   effective surface area of tube 
T  =    temperature of tube 
TA =   temperature of air.  

 
In a period of time (dt) the temperature drop (dT) 
is given as: 
 

mcdTdtq =− &         (3) 
    

where, m  =   mass of tube 
   c   = specific heat of copper tube. 
 
Combining Equations (2) and (3) and eliminating 

 gives the following: q&
 Figure 2: Nominal Dimensions of the Working 

Section with Staggered Tube Arrangement. 

( ) dt
mc
hA

TT
dT

A

1=
−
−

      (4)  
 

 Table 1: Dimensions and Properties of the 
Copper Tube. Integrating Equation (4) gives: 

  

( ) ( )
mc

thA
TTTT AeAe

1
0loglog −=−−−   (5) 

Description                                      Quantity 
External diameter of tube (d1) 0.0125 m 
Internal diameter of tube (d2) 0.0115 m 
Thickness of tube (t)   0.0005 m 
Mass of tube (m)   0.0274 kg 
Length of tube (l)   0.125 m 
Effective length of tube (l1)  0.1334 m 
Surface area of tube (A)  0.004891m2 
Effective surface area of tube (A1) 0.00522 m2 
Specific heat of copper (c)   308 J/kg 0C 

 
where, T0 =  tube temperature at time (t )= 0. 
 
The plot of loge (T-TA) against t yields a straight 
line of slope (M) as: 
 

 
mc
hA

M 1−=         (6)  
 

 Table 2: Nominal Properties of the Air. 
From which the heat transfer coefficient (h) is 
calculated as: 

 
Description                             Quantity 
Ambient temperature (TA) 302 oK 
Barometric pressure (pA)             99,325.19 N/m2 
Density at pA and TA       1.138 kg/m3 
Spec. heat at const. pres. (cp) 1012 J/Kg oC 
Viscosity (μ)   1.82E-05 kg/ms 
Thermal conductivity (k)  0.0259 J/ms 0C 

 

M
mc
Ah 1−=     (7) 

 
The fully developed Nusselt number (Nu) is 
evaluated by 

  
It is also assumed that temperature gradient 
within the tube thickness is negligible, so that the 
thermocouple embedded at the centre in the inner 
diameter gives a true indication of the effective 
surface temperature of the tube. The rate of heat 
loss from tube to air is given by: 

k
hDNu =     (8) 

 
where,   k  =  thermal conductivity of air 

D  =  outside diameter of tube. 
   

( )ATThAq −= 1&             (2) The Nusselt numbers for different Reynolds 
numbers and row position numbers of the tube 
are given in Table 3.   
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Table 3: The Nusselt Number for Different Row and Reynolds Number. 
 
Row 
 No. Reynolds number (Re) 
(Rn) 3,529 4,555 6,442 7,890 10,186 13,666 16,425 18,222 19,857 20,875

1 13.45 16.09 18.96 21.29 22.93 24.48 25.03 25.88 27.36 27.36 
2 16.24 18.73 21.45 24.25 25.34 27.05 29.38 28.60 29.69 30.15 
3 17.49 21.84 24.95 27.36 28.60 29.84 32.41 33.65 33.03 32.41 
4 21.37 22.54 25.80 28.37 32.95 34.20 35.67 35.67 35.75 36.61 

 
 
 
Design of neural network 
 
Neural Network Toolbox for MATLAB® (Math 
Works, 2001) was used to design the neural 
network. The basic steps adopted in the design 
are as follows: experimentation and collection of 
data; analysis and pre-processing of data; design 
of the neural network; training and testing of the 
neural networks; simulation and prediction with 
the neural networks; and analysis and post-
processing of predicted result. 
 
The data collected during the experiment were 
used as input/output datasets for training and 
testing of the network, the Reynolds number and 
row position number were used input dataset, 
while the Nusselt number was used as the output 
dataset. Prior to the training of the network, the 
datasets ware normalized to values between –1 to 
+1 using the MATLAB® function ‘premnmx’. The 
ith normalized dataset then becomes: 
 

12
minmax

min −
−
−

=
dd

dd
x i

i                    (9) 

 

Where, xi   =   ith normalized dataset  

 di    =   ith raw dataset 

 dmin =    minimum raw dataset. 

dmax  =    maximum raw dataset 

 

A standard back-propagation, multiplayer, feed-
forward network was designed using the 
MATLAB® function ‘newff’. The network work 
consists of three layers: input layer; hidden layer; 
and output layer. The number of neurons in the 
input and output layers are determined generally 
by the number of input and output parameters, 
which in case, are 2 and 1 respectively. The 

number of neurons in the hidden layer however is 
chosen arbitrarily based on experience. Different 
network configurations with 1 and 2 hidden layer 
with the number of neurons in each hidden layer 
was varied from 1 to 5 were investigated to 
determine the optimum network configuration that 
gives the best generalization capability. A typical 
network configuration with 2-5-5-1 is shown in 
Figure 3. The tan-sigmoid transfer function 
‘tansig’ were used in the hidden layers, while 
linear transfer function ‘purelin’ was used in the 
output layer. 
 

Nu

Input
layer

Hidden
layer

Output
layer

Re

Rn

 
 

Figure 3: Network Configuration with 2-5-5-1 
Neurons for Heat Transfer Prediction.  

 
 
The network was trained using MATLAB® 
function ‘train’ with the ‘weights’ and ‘biases’ 
initialized to random values. Before the training 
the data set was divided randomly into training 
and test data set. Seventy-five percent of the 
data set was used as training set, while the 
remaining 25% was used in testing of the 
network. The Levenberg-Marquard training 
algorithm ‘trainlm’ was used in the training of the 
network. During the training the ‘weights’ and 
‘biases’ of the network are adjusted so as to 

The Pacific Journal of Science and Technology               –320– 
http://www.akamaiuniversity.us/PJST.htm                                              Volume 9.  Number 2.  November 2008 (Fall) 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



minimize the mean square error (MSE) between 
the experimental data and the predicted values.  
 
The mean square error is computed as: 
 

( ) ( ) ( )( )∑∑
==

−==
Q

k

Q

k

kakt
Q

ke
Q

MSE
1

2

1

2 11
 (10) 

 
where,    Q   = number of the dataset 

 e(k) = network error 
 t(k) = experimental value  
a(k) = network predicted value 
 

The target parameters for the termination of the 
training process were set at MSE<10-5 or when 
the number of iterations is equal 300. The 
prediction performance of the neural networks 
was evaluated based on the mean relative error 
(MRE) in percentage between the predicted and 
the experimental values according to the following 
expression: 
  

( ) ( )100
)(

1(%)
1
∑
=

−
=

Q

k kt
kakt

Q
MRE  (11) 

 
where,    Q  =  number of the dataset 

t(k)  =  experimental value 
a(k) =  network predicted value. 

 
 
RESULTS AND DISCUSSIONS 
 
The network prediction performance for the 
different configurations with 1 and 2 hidden layers, 
with the number of neurons in each hidden layer 
varying from 1 to 5, were investigated. During the 
training process the ‘weights’ and ‘biases’ of the 
networks were adjusted so as to minimize the 
mean square error (MSE) between the 
experimental data and the ANNs predicted values. 
The results show that the network model with two 
hidden layer having 5 neurons in each layer (2-5-
5-1) with a 20 training cycles and MSE of  
1.49x10-5 was found to be the optimum network 
with the best performance.  
 
The minimization in MSE during the training 
process of the optimum network is shown in 
Figure 4 for the training and testing data sets. The 
prediction performances of the network using the 
training and testing data sets are shown in Figure 
5 and Table 4 respectively.  
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Figure 4: Reduction in MSE During the Training 

Process for the Network with 2-5-5-1 
Configuration. 
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Figure 5: Comparison Between the Experimental 

Data and the Neural Network Predictions for 
Training Dataset. 

 
 

Table 4: Comparison Between the Experimental 
Data and the Neural Network Predictions for 

Testing Dataset. 
 

 
Rn 

 
Re 

Nu, 
Experimental 

Nu,  
ANNs 

RE 
(%) 

1 4555 16.09 15.74 2.20 
1 13666 24.48 23.40 4.43 
1 20875 27.36 27.61 0.92 
2 7890 24.25 23.16 4.51 
2 18222 28.60 29.88 4.48 
3 4555 21.84 20.48 6.24 
3 13666 29.84 30.36 1.74 
3 20875 32.41 33.04 1.94 
4 7890 28.37 29.40 3.64 
4 18222 35.67 36.25 1.63 

MRE (%) = 3.17. 
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Figure 5 and Table 4 show that the network has 
MREs of 0.48 and 3.17% for the training and 
testing data sets respectively. The maximum 
relative errors were approximately 1.91% (from 
Fig. 5) and 6.24% (from Table 4). respectively. 
 
 
CONCLUSION 
 
In this paper, ANNs model has been developed 
for the prediction of the convection heat transfer 
coefficient of air flowing over a staggered, multi-
row, multi-column, cross-flow, copper tube-type 
heat exchanger. The model has high prediction 
performance with mean relative error (MRE) less 
than 1% for the training data set and less than 4% 
for the testing data sets respectively. The ANNs 
model can therefore be used as a modeling tool 
for preliminary design of heat exchangers.  
 
 
NOMENCLATURE 
 
D outside diameter of element (m) 
d inside diameter of element (m) 
l length of element  (m) 
l1 effective length of element  (m) 
A surface area of element (m2) 
A1 effective surface area of element (m2) 
m mass of element (kg) 
c specific heat of copper element (J/kg 0C) 
pA barometric pressure (N/m2) 
TA  temperature of air (oK) 
V  mean velocity past element (m/s) 
ρ density of air (kg/m3) 
cp specific heat of air at const. pres. (J/Kg oC) 
μ viscosity of air (kg/ms) 
k  thermal conductivity of air (J/ms 0C) 
T temperature of element (oK) 
M  slope of cooling curve 
q&   rate of heat transfer to air (J/s) 
h  coefficient of heat transfer (J/m2s 0K) 
Nu Nusselt Number   
Re   Reynolds Number  
Rn row position number of the test element 
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