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ABSTRACT

This study investigated the characterisation of the dynamic responses of 3-dimensional Lorenz and Risler models by Lyapunov’s
exponents using popular but laborious to implement Grahm Schmidt orthogonal rules over wider range of models driven parameters.
The study also verifies a new proposed model for the validation of Lyapunov’s spectrum when the requisite matrix depends on
positions on the model attractor. Models and the corresponding Lyapunov’s spectrums were simulated by appropriately effecting
Grahm Schmidt orthogonal rules and using three different detailed constant step Runge-Kutta algorithms. The FORTRAN-90 coded
algorithms were validated using literature results reported by Vladimir Golovko (2003). The stability of Lyapunov’s exponents

estimate variation was studied in the range of estimate reset period of2 <7 =16 The Lorenz mode! was characterised at & = 10, P
28 andl$P=<28

. This range covers both square and rectangular geometries. Similarly, Résler model was characterised at

=Y==02 and2 RES 6. This range has potential to drive the model both periodically and chaotically depending on the choices

of # The validation of the largest Lyapunov’s exponents ( l' ) in Résler model suffered the highest relative absolute percentage error
of 14.29 while its absolute error is one of the lowest (0.01). The remaining five Lyapunov’s exponents (three from Lorenz and two

. < . S 5
from Rasler) suffered relative absolute percentage error of — 2.00. Estimated Lyapunov’s exponents stabilise for estimate reset

pt:rimiS 10 The most stable algorithms was found to be Butcher’s modified fifth order followed respectively by fourth (RK4) and
fifth (RKS5) order. Estimation of Lyapunov’s exponents’ in Résler model was found to be insensitive to algorithms due to its relative
low degree of nonlinearity when compared with Lorenz model. It was established that the sum of Lyapunov’s spectrum is the same
as the average of trace of variation square matrix over large iteration regardless of dependence on position variable or not. This study
demonstrated that the utility of Lyapunov's exponents as response characterising tool of dynamic systems driven by different

parameters combination justify its laborious estimation by Grahm Schmidt method.
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1. INTRODUCTION

Simulation and characterization of nonstationary systems
dynamics is an important area where research efforts need to
be intensified. Nonstationary dynamical systems arise in
applications, but little effort has been made in terms of the
characterization of such systems, as most standard notions in
nonlinear dynamics such as the Lyapunov exponents and
fractal dimensions are developed for stationary dynamical
systems (Ruth et al, 2008).Their paper proposed a framework
for characterizing nonstationary dynamical systems.

Detecting the presence of chaos in a dynamical system is an

important problem that is solved by measuring the largest
Lyapunov exponent (Michael et al, 1992).Lyapunov
exponents quantify the exponential divergence of initially
close state-space trajectories and estimate the amount of
chaos in a system. Their paper presented a new method for
calculating the largest Lyapunov exponent from an
experimental time series. The paper reported that the largest
Lyapunov exponent is an accurate method because it takes
advantage of all the available data. Results of their study
showed that the algorithm is fast, easy to implement, and
robust to changes in the embedding dimension, size of data
set, reconstruction delay, and noise level. Giovanni et al
(2010) characterized the response of a chaotic system by

investigating  ensembles  trajectories.  Time-periodic
stimulations were experimentally and numerically explored.
Result showed that a large average response is not necessarily
related to the presence of standard forms of synchronization.
The stability of the response, by introducing an effective
method to determine the largest nonzero eigenvalue -y, of the
corresponding Liouville-type operator, without the need of
directly simulating it was equally studied. It was found that
the exponent 1y, is a dynamical invariant, which complements
the standard characterization provided by the Lyapunov
exponents. A method for characterizing the predictability of
complex chaotic systems based on a generalization of the
Lyapunov exponent was presented by Boffetta and Celani
(1998). The method was illustrated on a toy system with two
time scales and on a model of fully developed turbulence
where universal features were found. The study was able to
demonstrate that in systems with possess different
characteristic time scales; the predictability time can be an
independent quantity of the leading Lyapunov exponent. It
was found that Finite Size Lyapunov Exponent is expected to
converge to the leading Lyapunov exponent for very small
errors while for larger errors, A(S) is decreasing with S and
thus the FSLE analysis predicts an enhancement of the
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predictability time at large tolerances. The authors reliably
demonstrated this method using a toy model with two
timescales and in a Shell Model of turbulence where universal
scaling law for the error growth rate was found. According to
Ying-Cheng and Zonghua (2004), a chaotic attractor from a
deterministic flow must necessarily possess a meutral
direction, as characterized by a null Lyapunov exponent. The
authors in their paper demonstrates that for a wide class of
chaotic attractors especially those having multiple scrolls in
the phase space, the existence of the neutral direction can be
extremely fragile in the sense that it is typically destroyed by
noise of arbitrarily small amplitude. A universal scaling law
quantifying the increase of the Lyapunov exponent with noise
was obtained. A new three-dimensional continuous
autonomous chaotic system with ten terms and three
quadratic nonlinearities was presented by Qais and
Mohammad (2011). The new system contains five variational
parameters and exhibits Lorenz and Rossler like attractors in
numerical simulations. The basic dynamical properties of the
new system were analyzed by means of equilibrium points,
eigenvalue structures. The authors were able to employ
Lyapunov Exponent in exploring some of the basic dynamic
behaviour of the system. Gleison et al paper proposed a
procedure by which it is possible to synthesize Rossler and
Lorenz dynamics by means of only two affine linear systems
and an abrupt switching law. Comparison of different (valid)
switching laws suggests that parameters of such a law behave
as codimension one bifurcation parameters that can be
changed to produce various dynamical regimes equivalent to
those observed with the original systems. Topological
analysis was employed to characterize the resulting attractors
and to compare them with the original attractors. The paper
provides reliable guidelines that are useful in synthesizing
other chaotic dynamics using switching affine linear systems.

Extensive literature study reveals that the characterization of
the dynamic responses of 3-dimensional Lorenz and R@sler
models by Lyapunov’s exponents using a renowned but more
tasking Grahm Schmidt orthogonal rules over wider range of
models driven parameters has not been significantly explored.
The hallmark of this paper is to address this research gap.

2. THEORY AND METHODOLOGY

The Lyapunov’s spectrum of Lorenz and Rosler dynamic
systems were estimated by Grahm Schmidt orthogonal rules
using three different counstant step Runge-Kutta methods.
Marco Sandri (1996) gives details of Grahm Schmidt
orthogonal rules. Similarly, the FORTRAN-90 coded
algorithms were validated using literature results reported by
Vladimir Golovko (2003). It is to be noted that in a chaotic
system the largest Lyapunov’'s exponents is positive and
negative or zero otherwise, see Michael et al (1993). The
relevant first order system and variation rate equations are
listed in equation (1) to (14).

Lorenz Weather Model:

This is a mathematical model for thermally induced fluid
convection in the atmosphere proposed by Lorenz in 1993
(see Francis, 1987).

X=0o(-X) )
1:'=,oX—Y—XZ' )

7= X¥- BZ 3)

The steady solutions of the rate equations (1) to (3) were
sought for numerically and simultaneously using constant
step fourth, fifth and Butcher’s (1964) modified fifth order
Runge-Kutta methods. These three Runge-Kutta methods are
tagged respectively RK4, RK5 and RKS5B. In equations (1) to
(3), we have X = Amplitude of fluid velocity related variable
while Y and Z measures the distribution of temperature. The
parameters O and p are related to the Prandtl number and

Rayleigh number, respectively, and the third parameter J isa

geometric factor, The variation equation is given by matrix
equation (4).

7=A®77 ' 4)

In equation (4), 77 and 77 are variation velocity and position
vectors and A is square matrix of the partial derivatives of
relevant rate equations like equations (1) to (3), see equation
(5). Grahm Schmidt orthogonal rules involve seeking steady
solutions of equations (1) to (4) simultaneously starting from
prescribed initial conditions and noting that matrix A may be
time dependent. However it is highly recommended that the
choice of initial conditions for equation (4) satisfy ‘7}(0)' —ii i
This will enable determination of length ratio given by
equation (6) after a recommended time interval 7,,, —#, =T
called reset period has elapsed. The localised Lyapunov's
exponents (A) can be obtained using equation (7) while
necessary normalisation to unit absolute value before next
time calculations can be effected using equation (8). The
slope of line of best fit to plots of logarithm of absolute length
ratio and time correspond to local Lyapunov’s exponents ( 4

)
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ISSN: 2049-3444 © 2012 - IJET Publications UK. All rights reserved.



International Journal of Engineering and Technolog‘_\g !IJET! —Volume 2 No. 9, SeEtember, 2012

n(z;t;)
IU(T; tk)l

Substitution of equations (1) to (3) in ;zquation (4) results in
Lorenz variation equation (9).

U(O;tk) =

h - o 0 )|n

mi=|pP—Z -1 =X |\m,
* Y X _/3 s

©

It is important to note that the trace of matrix A in equation
(9) is independent of position on the attractor of Lorenz and
according to Michae (2000), it is the sum of the Lyapunov’s
spectrum., Thus as a useful check for the validity of
Lyapunov’s estimate algorithms the sum of Lyapunov’s
spectrum for Lorenz model must be trace (A) =

—(1+o+p0).
ROSLER Chemical Reaction Model:

This is a model motivated by the dynamics of chemical
reactions in a stirred tank proposed in 1976. It consists of
three first order rate equations and involves three driven
parameters ( &, ¥, [4), see equations (10) to (12).

X=—(Y+Z)

(10)
Y=X+a¥

(11)
Z=y+2Z(X )

(12)

Substitution of equations (10) to (12) in equation (4) results in
Résler variation equation (13).

Moo AN [
h=|1. @ 0 P
z o @-m)ln,

(13)

The steady solutions of the rate equations (10) to (13) were
sought for numerically and simultaneously using constant
step fourth, fifth and Butcher’s (1964) modified fifth order
Runge-Kutta methods. The calculation of the Lyapunov’s
exponents was done using equations (6) to (8). A useful check
for the validity of Lyapunov’s estimate algorithms for Rosler
model proposed by the present study is given by equation
(14) because the trace of matrix A in equation (13) is
dependent on variable position (X) on the attractor. This is
equivalent to average of trace of A taken over large iterate

™).

1 N

Sum of Lyapunov’s Spectrum = —}-\;Z(a + X, — 1)
i=1
(14)

Driven Parameters and Initial Conditions Setting:
Common to all studied cases are constant time step (Al =
0.01), transient period (1000 Af) and steady solution period
(15000 At ). Similarly initial conditions (X, Y, Z) was set at

(1, 0, 1) while initial conditions for equation (4) are (1,0,0),
(0,1,0) and (0,0,1) in X, Y, and Z-directions respectively.

Lorenz Model:
Driven parameters setting are o =10, p©=28, and
1< <2.8. The square and rectangular geometries are

covered by the range of /. However for validation of

FORTRAN-90  coded algorithms F = % =2.6667 and

Lyapunov's exponent’s estimation reset period (i.e. 7=

LEERP) equal (10 At).

Risler Model

Driven parameters setting are @=y==0.2 and2 < £ <6.
Francis (1987) recommended this range of /£ to enable
observations of periodic and chaotic responses. However for
validation of FORTRAN-90 coded algorithms £ = 5.7 .

3. RESULTS AND DISCUSSION

Table 1 gives algorithms validation results referencing
literature results of Vladimir Golovko (2003).

Table 1: Lyapunov’s spectrum of Lorenz ( f =2.6667) and Résler ( 1 =5.7) models using fourth order
Runge-Kutta method

Lyapunov’s spectrum and trace (A)/average trace (A) validation

Lorenz model Risler model
’II 37 ,-[3 Trace (A) ;{I ‘11 ;LJ Average trace (A)
Actual Spectrum 091 0.00 -14.47 -13.56 0.07 0.00 -5.39 -5.32
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Current Estimate

0.92 -0.01 -14.57 -13.67 0.08 0.02 -5.42 -5.32
Absolute error 0.01 0.01 0.10 0.11 0.01 0.02 0.03 0.00
Relative absolute % error 1.10 .1.00 0.69 0.81 14.29 2.00 0.56 0.00

Though the largest Lyapunov's exponents »(ﬂ,) of Rosler
model suffered the highest relative absolute percentage error
of 14.29, its absolute error is one of the lowest. The
remaining five Lyapunov’s exponents (three from Lorenz and
two from Résler) suffered relative absolute percentage error
of < 2.00. Similarly trace (A) in Lorenz model and average
trace (A) in Résler model suffered respectively 0.81 and 0.00
relative absolute percentage error. Overall results in table 1

‘with  Lyapunov’s

are acceptable as establishing the validity of algorithms
developed for the present study.

The variation of estimated Lyapunov’s spectrum ( 4,, 4, , 4;)

exponent's estimation reset period
(LEERP) for constant one full time step (NRKI1) and
constant two half-steps in one time step (NRK2) are given in
tables 2 to 5.

Table 2: Variation of estimated Lyapunov’s spectrum (A4, 4,, A;) with Lyapunov’s exponent’s estimation reset
period (LEERP) in Lorenz model using NRKI. ’

LEERP Reset Runge-Kutta Algorithms
Period RK4 RKS RKS5B
AlAh | A AL A AL A
2 0.87 | -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.90 | -0.01 | -14.55
4 0.87 | -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.90 | -0.01 | -14.55
6 0.87 | -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.90 | -0.01 | -14.55
8 0.87 [ -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.90 | -0.01 | -14.55
10 0.87 | -0.01 | -14.52 | 092 | -0.01 | -14.58 | 0.89 | -0.01 | -14.55
12 0.86 | -0.01 | -14.52 | 092 | -0.01 | -14.58 | 0.89 | -0.01 | -14.55
14 0.87 | -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.89 | -0.01 | -14.55
16 0.86 | -0.01 | -14.52 | 0.92 | -0.01 | -14.58 | 0.89 | -0.01 | -14.55

Though referencing table 2 , there is observed variation in Lyapunov’s spectrum over Runge-Kutta algorithms, the trace (A) remain
the same ( -13.67) for algorithms and range of Lyapunov’s exponerit’s estimation reset period (LEERP).

Table 3: Variation of estimated Lyapunov’s spectrum (A4, 4, , 4;) with Lyapunov’s exponent’s estimation reset
period (LEERP) in Lorenz model using NRK2.

LEERP Reset Runge-Kutta Algorithms
Period RK4 RKS5 RKSB
AlAh | A ALl A |A|A] 4
2 092 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
4 092 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
6 0.92 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56 :
8 092 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
10 092 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
12 0.92 | -0.01 | -14.58 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
14 092 | -0.01 | -14.57 | 0.88 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56
16 0.92 | -0.01 | -14.57 | 0.89 | 0.00 | -14.55 | 0.90 | 0.00 | -14.56

Table 3 refers there is observed variation in Lyapunov’s spectrum over Rung;:“l(utta algorithms however the trace (A) remain the
same ( -13.67) for algorithms and range of Lyapunov’s exponent’s estimation reset period (LEERP).

< 3

Table 4: Variation of estimated Lyapunov’s spectrum (4, 4, , 4;) with Lyapunov’s exponent’s estimation reset
period (LEERP) in Rosler model using NRK1.

LEERP Reset Runge-Kutta Algorithms
Period REK4 RKS RKS5B
2 0.081002]-542 | 008 | 0.02]|-542 ] 0.08 | 0.02 | -5.42
4 0.08 |1002)-542|0.08 |002]|-542 | 0.08 | 0.02 | -542
6 0.08 ] 0.02]-542] 008 |002]-542 ) 0.08 002 |-542
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8 0.08 | 0.02 | -542 | 0.08 | 0.02 | -542 | 0.08 | 0.02 | -5.42
10 0.08 | 0.02 | -5.42 | 0.08 | 0.02 | -542 | 0.08 | 0.02 | -5.42
12 0.08 | 0.02 | -5.42 | 0.08 | 0.02 | -5.42 | 0.08 | 0.02 | -5.42
14 0.08 | 0.01 |-542 | 0.08 | 0.01 | -542 | 0.08 | 0.01 | -5.42
16 0.08 | 0.01 | -5.42 | 0.08 | 0.01 | -5.42 | 0.08 | 0.01 | -5.42

Table 4 refers, there is no observed variation in Lyapunov’s spectrum over Runge-Kutta algorithms, the trace (A) remain the same ( -
5.32) for algorithms and range of Lyapunov's exponent’s estimation reset period (LEERP).

Table 5: Variation of estimated Lyapunov’s spectrum (/4,, 4, , ;) with Lyapunov’s exponent’s estimation reset
period (LEERP) in Rosler model using NRK2.

LEERP Reset Runge-Kutta Algorithms
Period . RK4 RKS RK5B
AlAh|lA|AlA|A AL A
2 0.08 | 0.01 | -5.45 | 0.08 | 0.01 | -5.45 | 0.08 | 0.01 | -5.45
4 0.08 | 0.01 [-545 | 0.08 | 0.01 |-545 | 0.08 | 0.01 | -5.45
6 0.08 | 0.01 | -5.45] 0.08 | 0.01 | -5.45 | 0.08 | 0.01 | -545
8 0.08 | 0.01 [-545] 0.08 | 0.01 | -5.45 | 0.08 | 0.01 | -5.45
10 0.08 | 0.01 |-545|008 | 001 |-545]| 0.08 | 0.01 | -5.45
12 0.07 | 002 ) -545 | 0.07 | 0.02 | -545 | 0.07 | 0.02 | -5.45
14 0.08 {002 |-545|008 | 002 |-545| 0.08 | 0.02 | -5.45
16 0.07 { 0.02 ] -545 | 0.07 | 0.02 | -5.45 | 0.07 | 0.02 | -545

Table 5 refers there is observed insignificant variation in Lyapunov’s spectrum over Runge-Kutta algorithms however the trace (A)
remain the same ( -5.36) for algorithms and range of Lyapunov’s exponent’s estimation reset period (LEERP).The variation of

estimated largest Lyapunov’s exponents (ELLE=2.|) with Lyapunov’s exponent’s estimation reset period (LEERP) for constant
one full time step (NRK1) and constant two half-steps time step (NRK2) are given in figures 1 to 2. Similarly, the variation of
estimated largest Lyapunov’s exponents (ELLE= 4, ) with parameters are given in figures 3 to 6.

ELLE in Lorenz Model using NRK1
0.93
0.92 = = — _ —~— =
0.91
w 0.90 —e— RK4
E}l ; = ) —a— RK5
0.89 RKSB
0.88
0.87
o & + : N —‘\4’
086 L ] B L) L] ]
2 4 6 8 10 12 14 16
LEERP

Figure 1: Variation of estimated largest Lyapunov’s exponents (ELLE= /1[ ) with Lyapunov’s exponent’s estimation reset period (LEERP)
in Lorenz model using NRKI.
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ELLE in Lorenz Model using NRK2
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Y oot IEE:
0s0 - RK5B

0.90

0.89

0.89 = = S

0.88 T T T T T T

2 4 8 8 10 12 14 16
LEERP

Figure 2: Variation of estimated largest Lyapunov’s exponents (ELI...Eﬂ/l1 ) with Lyapunov’s exponent’s estimation reset period (LEERP)
in Lorenz model using NRK2.

Figures 1 and 2 refers, the estimated largest Lyapumov's exponents (ELLE= A, ) remain fairly stable up to LEERP of ten (10). The

ELLE by RK4 are all lower than ELLE by RK5B while ELLE by RKS5 are all higher over the range of LEERP in figure |.However

role play change observed between RK4 and RKS3 in figure 2 compared with figure 1 in term of position relative to ELLE variation
by RK5B.

The estimated largest Lyapumov’s exponents (ELLE= 4, ) in Risler model remain constant (0.0.08) over all LEERP algorithms and

using NRK1. However at NRK2 ELLE of 0.07 was recorded at LEERP values of twelve (12) and sixteen (16) across algorithms. [t is
concluded that estimation of Lyapunov’s spectrum in Résler model is less sensitive to algorithms.

ELLE in Lorenz model
1.20
1.00
i
vl .&.&"WJ“
BN L AN Ve ey
A_sa faRnd Arﬁfg‘!
s r,a,«m*‘:?r"“"ﬁ“"f
Apt W —— RK4
oo Wi
A
0.40
|
0.20
0-00 T L] L) L] L L L] T
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80
Geometric ratio

Figure 3: Variation of ELLE with geometric ratio ( ﬂ ) in Lorenz model using NRK1 and LEERP of ten (10).

ISSN: 2049-3444 © 2012 - IJET Publications UK. All rights reserved.



International Journal of Engineering and Technolog! !IJET! —Volume 2 No. 9, Segtember, 2012

Figure 3 refers, it is concluded that all the geometric ratio (1< [ <2.8) can drive the Lorenz model chaotically because ELLE are
positive. The zoomed of variation of ELLE with geometric ratio in Lorenz for 1.1< /#<1.4 using NRK1 and LEERP of ten is

given in figure 4. This is done to enable the magnification of variation of ELLE with algorithms for the B -region that suffered
significant variation in figure 3. Figure 4 refers, the most stable algorithms is RKS5B followed by RK4 and RKS respectively.

ELLE in zoomed Lorenz model
1.20
1.00
0.80 -
' - —2 R4
w . J
w AL W :
RK5B
0.40 U
0.20
0.00 T T T : .
1.10 145 1.20 1.25 1.30 1.35 1.40
Geometric ratio

Figure 4: Variation of ELLE with geometric ratio ( ﬁ) in Lorenz model using NRK1 and LEERP of ten (10) in the region 1.1 < ﬁ <1.4.

ELLE in Rosler model

0.12

0.10

0.08 W B iy -

0.06 - L L —  _RK4
' { —RK5

RK5B

ELLE

0.04

0.02

0.00 - = T T T T T T

2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00
-0.02

Parameter

Figure 5: Variation of ELLE with parameter ( /) in Risler model using NRK1 and LEERP of ten (10).

Figure 5 refers, it is concluded that there are possibilities of period and chaotic responses in the parameter range (2< £ <6)
because ELLE takes both negative and positive values. The three algorithms (RK4, RKS5 and RK5B) are fairly equally stable over
the studied parameter range. The zoomed of variation of ELLE with parameter in Rosler model for 5.8 < £ <6 using NRK1 and
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LEERP of ten is given in figure 6. The magnification of variation of ELLE with algorithms for the selected 1 -region shows that the
variation is less significant with respect to algorithms. However, algorithms (RK4) becomes unstable for higher parameter ( 1)

compared with RKS5 and RK5B.

ELLE in zoomed Rosler model
0.12
0.10 /\
/\ / \
B

0.08 h < \
w 008 ——=RK4
= -~ RK5
s

0.04 RK58

0.02

0.00 L} L} T

5.80 5.85 5.90 5.95 6.00
-0.02
Parameter

Figure 6: Variation of ELLE with parameter ( £ ) in Résler model using NRK1 and LEERP of ten (10) in the region 5.8 < 11 <6,

4. CONCLUSIONS

This study shows that the utility of Lyapunov’s exponents as
response characterising tool of dynamic systems driven by
different parameters combination justify its laborious
estimation by Grahm Schmidt method. Also, this study shows
that accuracy of estimated Lyapunov’s exponents depends on
dynamic system degree of nonlinearity, algorithms,
estimation reset period and time stepping details.
Comparatively with fourth and fifth order Runge-Kutta
algorithms, the coding of modified Butcher’'s fifth order
algorithms is laborious. However it is the most stable to use
to estimate Lyapunov’s exponents in all the cases studied.
Furthermore, this study established that the sum of
Lyapunov’s spectrum is the same as the average of trace of
variation square matrix over large iteration regardless of
dependence on position variable or not.
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