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ABSTRACT 

This study  in^^ the characmisation of the dyamic responses of Jdmensional Lorenz md Rgslec models by Lyapunov's 
exgowits wing wpth but laborious- to implement G r a b  SSchmid orthogonal rules over wider range of models driven parameters. 
The study alw verifies a new prqmsed model fw the validadon of Lyapunor's spectrum wben tb requisite matrix depends on 
ps i t i a s  on tbe &el attmtw~ Madels and the conesponeting Lyapmv's spectmms were simulated by appropriately decting 
G r a b  %hi& ertbfgottal rules and using three diffmnt detailed constant step Rwe-Kutta algorithm. The FORTRAN-90 coded 
a i p f t h s  were validated using IiteratuPe resuits reported by Vladhk &Lovim (2003). Thestability of Lyqnmv's exponents 

e s t i m a t e ~ i o n ~ ~ ~ i a r h e r ~ e d ~ ~ ~ r i o d o f ~ ~ ~ ~ ~ ~ . ~ h e h r ~ d w a s c ~ t & s d a t  0=10- 

-28, and ' ' 2+8. Thb mge mrara bath square ud mcbngtdlu gemetries. ~imilsrl~, WJer model was cbcter ised at 

a=r=-02 d ' pd 6 .  'Ibis range has potentid to drive the model both periodically and chmtically depending on the choicw 

4 offl .The validrution of the largest Lyapunov's exponents C ) in Msler model suffered the bighest relative absolute percentage error 
of 14.28 while its absolute errur is one of the lowst (0.01). The remaining five Lyapwuv's exponents (three Born Zorenz and two 

Imm R(Wa) rufhrsd rehive &solute percentage error of $ 2.00. J&httod Lyapunov's cxponcntr r r m b b  Tor estimate reset 

periodslo.Thc most .stable algorithms was found to be Butcher's modified fif€h order faowed respectively by fourth (RK4) and 
fiWl m) order. BstEmation ~SLyapuflov's exponents" in IUIsler mdel  was &und to be inseaithe to algorithms due to its reiative 
tow degree of nonlimmBy when compand wi& LBI.enz m$d It was established that thol sun of Lyapunov's spectnun is the same 
as the average ofttam ~fvg&&ion square mrttrix over large bration regardless of dependence on position variable or not This study 
denmastrated fhat fhe uWy of Lyapunbv's exponent3 as response uharacterising tool of dynamic systems driven by different 
p%ramders combWionjusti& its laborious estimatGon by Gab Scbrnidt method. 

1. INTRODUCTION 

Simulati~n and eh&mti.on of notl9.tatfom-y systems 
dynamics is an impQsYant area where resear& e&rb need to 
be intensBed. N0-q dynaaical system arise in 
appkat io~l~~ but tittle eBxt has been made in tam of the 
c h r a c t ~ m n  of swh systems as mst standard notions in 
nonlineis dynamics such as the Lyquwv exponents and 
fb%d d m d o n s  are developed for stationary dymmioal 
systems (Ruh et al, 2008).Their paper pro@ a h e w o r k  
far c W d * -  Murstatonary d y m h i d  systems 
Retedngthepresencerrf~haosina@namicalsy&mIsan 
importar& problem that is soloed by measuring the largest 
Lyapmv q o a e n t  ;(Michael bt ai, 1992)Lyapm 
exponents qu~0.W the exponential divergence of initially 
dose state-space t@eutwies and estimate the mownt of 
.ahas in a system. The& paper presented a neiv m&od for 

tbe, largest Lyqunotc exponent fkom an 
eqwbmtd time series. Thc paper reported that.thie largest 
Lyqmov expamt is an wuratt method became it Eakea 
advantage af d l  the available data Rmufts of their study 
showed that the algorithm is esy to implement, and 
robust to changes in the embedding dimension, size of data 
set, fecomfruction delay, a d  wise ievet G i o v d  ei a1 
(ZOlQ) dmwkfkd the response of a chaotic system by 

investigating efisembles trajectories. Time-periodic 
shmlations were experhatally and numerically explored. 
Result showed that a large average response is not necessarily 
related to the pmence. of standard forms of synchronization. 
The stability of the response, by introducing an effe~tive 
method to d e t d n e  the largest nonzen, eig~nvalue q, of the 
correspon- Liouville-type aperaztor, without the need of 
directly simulating it was equally studied. It was found that 
the exponent 7, is a dyasmical invariant, which complements 
the standard ChmcterizEltion provided by the Lyapunov 
mponents. A method Eor chterizing the predicWity of 
complex chaotic systems based on a generalization of the 
Lyspunov exponcllt was presented by Bofktta and Celani 
(1998). The method was itlustmted on a toy system with two 
t h e  s d e s  and aa a model of filly developed turbulence 
where universal features were found. The study was able to 
demonstrate &at in systems with possess different 
c-stic time d e s ;  the predictability time can be an 
independent qwtity of the lead ' i  Lyapunav exponent. It 
was f a d  that Flnite Size Lyapunov Exponent is expected to 
converge to the l d g  Lyapuwlv exponent for very small 
emJm while Ebr larger errors, A(S) is decreasing with S and 
thus the FSLE analysis predicts an enhancement of the 
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predictability time at large tolerances. .The authors reliably , 

demonstrated this method using a toy model with two 
timescales and in a Shell Model of turbulence where universal 
scaling law for the error growth rate was found. According to 
Ymg-Cheng and Zonghua (2004), a chaotic attractor fiom a 
deterministic flow must necessarily possess a neutral 
direction, as chara~terkd by a null Lyapunov exponent The 
authors in their paper demonstrates that for a wide class of 
chaotic attractors especially those having multiple scrolls in 
the phase space, the existence of the neutral direction can be 
extremely fragile in the sense that it is typically destroyed by 
noise of arbitrarily small amplitude. A universal scaling law 
quantifying the increase of the Lyapunov exponent with noise 
was obtained. A new three-dimensional continuous 
autonomous chaotic system with ten terms and three 
quadratic nonlinearities was presented by Qais and 
Mohammad (201 1). The new system contains five variational 
parameters and exhibits Lorenz and Rossler like attractors in 
numerical simulations. The basic dynamical properties of the 
new system were analyzed by means of equilibrium points, 

' 

eigenvalue structures. The authors were able to employ 
Lyapunov Exponent in exploring some of the basic dynamic 
behaviour of the system. Gleison et al paper proposed a 
prokedure by which it is possible to synthesize Rossler and 
Lorenz dynamics by means of only two f i n e  linear systems 
and an abrupt switching law. Comparison of different (valid) 
switching laws suggests that parameters of such a law behave 
as codimension one b i b t i o n  parameters that can be 
changed to produce various dynamical regimes equivalent to 
those observed with the original systems. Topological 
analysis was employed to c m  the resulting attractors 
and to compare them with the original attractors. The paper 
provides reliable guidelines that are useful in synthesizing 
other chaotic dynamics using switching a m e  linear systems. 
Extensive literature study reveals that the characterization of 
the dynamic responses of 3-dimensional Lorenz and RBsler 
models by Lyapunov's exponents using a renowned but more 
tasking Grahm Schmidt orthogonal rules over wider range of 
models driven parameters has not been significantly explored. 
The hallmark of this paper is to address this research gap. 

2. THEORY AND METHODOLOGY 

The Lyapunov's spectrum of Lorenz and Rosler dynamic 
systems were estimated by Grahrn Schmidt orthogonal rules 
using three different constant step Runge-Kutta methods. 
Marco Sandri (1996) gives details of Grahm Schmidt 
orthogonal rules. Similarly, the FORTRAN-90 coded 
algorithms were validated using literature results reported by 
Vladimir Golovko (2003). It is to be noted that in a chaotic 
system the largest Lyapunov's exponents is positive and 
negative or zem otherwise, see Michael et al (1993). The 
relevant first order system and variation rate equations are 
listed in equation (1) to (14). 

Lorenz Weather Model: 

This is a mathematical model for thermally induced fluid 
convection in the atmosphere proposed by Lorenz in 1993 
(see Francis, 1987). , 

X = o ( Y - X )  

7 
The steady sdlutiom of the rate equations (1) to (3) were 
sought for numerically and simultaneously using constant 
step fourth, fifth and Butcher's (1964) modified fifth order 
RungaKutta methods. These three Runge-Kutta methods are 
tagged respectively RK4, RK5 and RUB.  In equations (1) to 
(3), we have X = Amplitude of fluid velocity related variable 
while Y and Z measures the distribution of temperature. The 
parameters d and p are related to the Prandtl number and 

Rayleigh number, respectively, and the third parameter /? is a 
geometric fsctor. The variation equation is given by matrix 
equation (4). 

0 

, #  

In equation (4), q and 77 are variation velocity and position 
vectors and A is square matrix of the partial derivatives of 
relevant rate equations like equations (1) to (3), see equation 
(5). Grahm Schmidt orthogonal rules involve seeking steady 
solutions of equations (1) to (4) simultaneously starting from 
prescribed initial conditions and noting that matrix A may be 
time dependent. However it is highly recommended that the 

choice of initial conditions for equation (4) satisfy lq(0)1= 1. 
This will enable determination of length ratio given by 
equation (6) after a recammended time interval tk+, - fk = a 
called reset period has elapsed. The localised Lyapunov's 
exponents ( A )  can be obtained using equation (7) while 
necessary normalisation to unit absolute value before next 
time calculations can be effected using equation (8). The 
slope of line of best fit to plots of logarithm of absolute length 
ratio and time correspond to local Lyapunov's exponents ( A 
1. 
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. (81 
Substitution of equations (1) to (3) in equation (4) results in 
Lorenz variation equation (9). 
( 1 

The steady solutions of the rate equations (I@ to (13) were 
sought for numerically and simultaneously lising constant 
step fourth, fifth and Butcher's (1964) modified fifth order 
Runge-Kutta metho'ds. The calculation of the Lyapunov's 
exponents was done using equations (6) to (8). A useful check 
for the validity of Lyapunov's estimate algorithms for Rlisler 
model proposed by the present study is given by equation 
(14) because the trace of matrix A in equation (13) is 
dependent on variable position (X) on the attractor. This is 
equivalent to aversgc of trace of A taken over large iterate 
(N). 

It is important b note that the trace of matrix A in equation 
(9) is independent of position on the attractor of Lorenz and . 
according to Michae (2000), it is the sum of the Lyapunov's 
spectrum. Thus as a usefid check for the validity of 
Lyapunov's estimate algorithms the sum of Lyapunov's 
spectrum for Lorenz model must be trace (A) = 
-(l+o+P>. 

R~SLER Chemical Reaction Model: 

This is a model motivated by the dynamics of chemical 
madons in a stirred tank proposed in 1976. It consists of 
three first order rate equations and involves three driven 
m e t e r s  (a, y, p), see equations (10) to (12). 

i = - ( Y + z )  , 

(10) 

Substitution of equations (10) to (12) in equation (4) results in 
Rlisler variation equation (13). 

I N  
Sum of Lyapunov's Spectrum = - (a + X, - p) 

N i-i 

Driven Parameters and Initial ~ondi t iohs  Setting: 
Common to all studied cases are constant time step (At  = 

0,O I), transient period (1 000 & ) and steady solution period 
(15000ht). Similarly initial conditions (X, Y, Z) was set at 
(1, 0, 1) while initial conditions for equation (4) are (1,0,0), 
(0,1,0) and (0,0,1) in X, Y, and Z-directions respectively. 

Lorenz Model: 
Driven parameters setting are 0=10, p =28, and 

1 S p12.8. The square and rectangular geometries are 

covered by the range o f p .  However for validation of 

8 
FORTRAN-90 coded algorithms P = - = 2.6667 and 

3 
Lyapunov's exponent's estimation reset period (i.e. T= 

LEERP) equal (10 At). 

Riisler Model 

Driven parameters setting are a = y = =0.2 and 2 5 ,u 5 6. 
Francis (1987) recommended this range of p to enable 
observatioris of periodic and chaotic responses. However for 
validation of FORTRAN-90 coded algorithms p = 5.7 . 

Table 1 gives algorithms validation results referencing 
literature results of Vladimir Golovko (2003). 

Table 1: Lyapunov's spectrum of Lorenz ( P  =2.6667) and Riisler ( p  4.7) models using fourth order 
RungeKutta method 

ISSN: 2049-3444 O 2012 - IJET Publications UK. All rights reserved. 

Actual Spectnun 

Lyapunov's spectnun and trace (A)/average trace (A) validation 
Lorenz model R6sler model 

4 
0.91 

4 
0.07 

4 
0.00 

4 
0.00 

4 
-14.47 

Trace(A) 

-13.56 
4 

-5.39 

Average trace (A) 

-5.32 
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Though the largest Lyapunov's exponents (4) of R6sler are acceptable as establishing the validity of algorithms 
developed for the present study. 

model suffered the highest relative absolute percentage error 
of 14.29, its absolute error is one of the lowest. The 
remaining five Lyapunov's exponents (three fiom Lorenz and The variation of estimated Lyapunov" spectrum ( 4 ,A , i$ ) 

two &om Rijsler) suffered relative absolute percentage error k i th  Lyapunov's exponent's estimation reset period 
of I 2.00. Similarly trace (A) in Lorenz model and average (LEERP) for constant one h l l  time step -1) and 
trace (A) in Rasler model suffered respectively 0.81 and 0.00 constant two half-steps in one time step (NRK2) are given in 

relative absolute percentage error. Overall results in table 1 tables 2 to 5. 

Table 2:Variation of estimated Lyapunov's spectrum (4, 4 , 4 )  with Lyapunov's - exponent's estimation reset 
period (LEERP) in Lorenz model using NRK1. e 

0.02 
0.02 
2.00 

0.08 
0.01 
14.29 

Though referencing table 2 ,  there is observed variation in Lyapunov's sp&trum over Runge-Kutta algorithms, the trace (A) remain 
the same ( -13.67) for algorithms and range of Lyapunov's exponent's estimation reset period (LEERP). 

-13.67 
0.11 
0.81 

Table 3: Variation of estimated Lyapunov's spectrum (/2,,4,A,) with Lyapunov's exponent's estimation reset 
period (LEERP) in Lorenz model using NRK2. 

-5.42 
0.03 
0.56 

Current Estimate 
Absolute error 

Relative absolute % error 

Table 3 refers there is observed variation in Lyapunov's spectrum over Runge-Kutta algorithms however the trace (A) remain the 
same ( -13.67) for algorithms and range of Lyapunov's exponent's estimation reset period (LEERP). 

i i 

Table 4: Variation of estimated Lyapunov's spectrum ( 4 ' 4 ,  4 )  with Lyapunov's exponent's estimation reset 
period (LEERP) in RZisler model using NRK1. 

-5.32 . 
0.00 
0.00 

-0.bl 
0.01 
1.00 

0.92 
0.01 
1.10 
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Table 4 refers, there is no observed variation in Lyapunov's spectrum over Runge-Kutta algorithms, the trace (A) remain the same ( - 
5.32) for algorithms and range of Lyapunov's exponent's estimation reset period (LEERP). 

Table 5: Variation of estimated Lyapunov's spectrum (&,4,4) with Lyapunov's exponent's estimation reset 
period (LEERP) in Riisler model using NRK2. 

Table 5 refers there is observed insignificant variation in Lyapunov's spectrum over Runge-Kutta algorithms however the trace (A) 
remain the same ( -5.36) for algorithms and range of Lyapunov's exponent's estimation reset period (LEERP).The variation of 
estimated Iargest Lyapunov's exponents (ELLE=&) with Lyapunov's exponent's estimation reset period (LEERP) for constant 

one full time step -1) and constant two half-steps time step (NRK2) are given in figures 1 to 2. Similarly, the variation of 
estimated largest Lyapunov's exponents (ELLE= 4 ) with parameters are given in figures 3 to 6. 

ELLE in Lorenz Model using NRKI 

0.93 

0,92 

0.91 

w 0.90 
A 
-I 

0.89 

0.88 

0.87 

0.86 
2 4 6 8 10 12 14 16 

LEERP 

Figure 1: Variation of estimated largest Lyapunov's exponents (ELLPA) with Lyapunov's exponent's estimation reset period (LEERP) 

in Lorenz model using NRIC1. 
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. ELLE in ~ o r e n i  Model using NRK2 

0.93 

0.92 

0.92 

0.91 

q 0.91 
.J 

0.90 

0.90 

0.89 

0.89 

0.88 
2 4 6 8 .  10 12 14 16 

LEERP 

Figure 2: Variation of estimated largest Lyapunov's exponents (ELLE=&) with Lyapunov's exponent's estimation reset period (LEERP) 

in Lorenz model using NRK2. 

Figures 1 and 2 refers, the estimated largest Lyapumov's exponents (ELLE= 4 ) remain fairly stable up to LEERP of ten (10). The 
ELLE by RK4 are d l  lower than ELLE by R U B  while ELLE by RK5 are all higher over the range of LEERP in figure 1 .However 
role play change observed between RK4 and RK5 in figure 2 compared with figure 1 in term of position relative to ELLE variation 
by RKSB. 

The estimated largest Lyapumov's exponents (ELLE- 4) in Rijsler model remain constant (0.0.08) over all LEERP algorithms and 

using NRKI. However at NRK2 ELLE of 0.07 was recorded at LEERP values of twelve (12) and sixteen (1 6) across algorithms. It is 
concluded that estimation of Lyapunov's spectrum in R6sler model is less sensitive to algorithms. 

ELLE in Lorenz model 

1.20 

1.00 

0.80 

! 0.60 
I l l  

RK5B 

0.40 

0.20 

0.00 
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 

Geometric ratio 

Figure 3: Variation of ELLE with geometric ratio ( P ) in Lorenz model using NRKl and LEERP of ten (10). 
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Figure 3 refers, it is concluded that all the'geometric ratio (1 5 P 5 2.8) can drive the Lore& model chaotically because ELLE are 

positive. The zoomed of variatibn of ELLE with geometric ratio in Lorenz for 1.1 5 P < 1.4 using NRKl and LEERP of ten is 

given in figure 4. This is doni: to enable the magnification of variation of ELLE with algorithms for the P -region that suffered 
significant variation in figure 3. Figure 4 refers, the most stable algorithms is RK5B foIlowed by RK4 and RK5 respectively. 

ELLE in zoomed Loreriz model 

1.20 

1 .oo 

0.80 

---1 RK4 
!! 
A 0.60 
W 

0.40 

0.20 

0.00 
1.10 1.15 1.20 1.25 1.30 1.35 1.40 

Geometric ratio 

Figure 4: Variation of ELLE with geometric ratio ( /3 ) in Lorenz model using NRKl and LEERP of ten (10) in the region f P 1.4. 

Figure 5: Variation of ELLE with parameter ( ,U )in Rasler model using NRKl and LEERP of ten (10). 

ELLE in Rosler model 

Figure 5 refers, it is concluded that there are possibilities of period and chaotic responses in the parameter range ( 2 5 ,LA 16) 
because ELLE takes both negative and positive values. The three algorithms (RK4, RK5 and RK5B) are fairly equally stable over 
the studied parameter range. The zoomed of variation of ELLE with parameter in R6sler model for 5.8 I ,U I 6 using NRKl and 

0.12 - 

0.10 -. 

0.08 - 

0.06 
!! 
J 
W 

0.04 

0.02 

0.00 

-0.02 
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LEEW of ten is given in figure 6. The magnification of variition of ELLE with algorithms for the selected p -region shows that fhe 
variation is less significant with respect to algorithms.   ow ever, algorithms (RK4) becomes unstable for higher parameter ( p )  
compared with RK5 and RKSB., 

Figure 6: Variation of ELLE with parameter ( p ) in R5sler model using N w l  and LEERP of ten (10) in the region 5.8 < ,fl L16 

ELLE in zoomed Rosler model 

4. CONCLUSIONS 

0.12 - 
0.10 

0.08 

0.06 
A 
A 
W 

0.04 - 

0.02 - 

0.00 - 

-0.02 - 

This study shows that the utility of Lyapunov's exponents as 
response characterising tool of dynamic systems driven by 
different parameters combination justify its laborious 
estimation by Grahm Schmidt method. Also, this study shows 
that accuracy of estimated Lyapunov's exponents depends on 
dynamic system degree of nonlinearity, algorithms, 
estimation reset period and time stepping details. 
Comparatively with fourth and fifth order Runge-Kutta 
algorithms, the coding of modified Butcher's fifth order 
algorithms is laborious. However it is the most stable to use 
to estimate Lyapunov's exponents in all the cases studied. 
Furthermore, this study established that the sum of 
Lyapunov's spectrum is the same as the average of trace of 

Parameter 

? \ 
-.F- - , / 

\. 

variation square matrix over large iteration regardless of 
dependence on position variable or not. 

I 1 1 

5.30 5.85 5.90 5.95 
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