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OPTIMIZATION OF TURNING. NST 37.2 STEEL WITH UNCOATED 
CARBIDE CUTTING TOOLS 

D. A. ~o~dare' ,  and T. B. AS& 

Abstract: Selection of optimimum macI?iniilg parameters is an essential 'factor in pm.cess 
planning for efficient metal cutting operations. In this study, an artifiGi~l;aeural. nerwork- 
based tool wear predictive model and a genetic algorithm-based optinsizptibn!model were. 
developed to determine the optimuin cutting paralnettrs for .turnitlg .NST 47;2 steelIrwi& 

- u t~coated carbide cutting inserts. Multi-layer, feed-fomre, back -propagation -networb;$a?, 
used in predictive model, wliila rnwimum metal removal rate (M RR) was used :a. the. 
objective function and tool wear as so~nplcs NST 37.2 steel bars with 25mm .dinmetcrLafld 
400nrm length s workspiece and Sandvice CoromanKB uncoated carbide inse'm, 91th 
111 ternatiot~al &ndswd Organizxatjon (ISO) dedgnatio~~. SNMA 12406. Dry machinink at 
difTere~lr cutting conditions with cutting speed (v), feed rare V) and depth of cut (4 
ranging from 20.42-42.42 m d m i n ;  1 .b-2.2 rnm/rev and 0.'2-0.8mm, ~.espective!y &ere 
carried out. Eight passes of 50111rn length of cut were michined at tslcll couediiton, the 
spindle power md tool wear (flank and nose) were ~neasnred during each cutting 
operation. Results have shown that tlre predictive model 11ad acceptable accurancy and 
optitnum cutting parameters obtained were: v =42.32mmlmin, f = 2. I9  mm/rev and d = 
0,81111l-r. 
Keywords: Optimization, turning, genetic algoritl~m, artificial neural nerwork, NST 37.2 
steel. 

-XNTRUDUCTION 
NST 37.2 steel is one of the coinmerci;l 
cwbon steel grades produced by the Delta 
%eel Compmy (DSC), Altidjo, Ddta Stnte,. 
Nigeria. It is canlmonly used as shucturil 
nlember in building construction rind: for 
production of machinc colnponents. 111 t l ~ k  

I 

machining industry, carban steels are 
i popularly being machined with the 

convectional high speed steel (HSS) cutting 
tools, which are known to have sl~ort tool 
life due in part to the reductiod in tool 

! properties m el w atrd temperature generated 
at the cuuing e$ge during the cutting 
~peratien. In most cases, the steel is heat 
treated by normalitation process prior to 
luachining and then quenched and tempere-d 

again after the machining operations, which 
leads to increase in manuracturing timeiand . 
cost of pcoduction. In recent times, the need 
for an economic production of machined 
components from nraterials with supreme 
properties which are difficult-to-cut has led 

, to the development of different harder. pd 
tougher. cutting tool materials such as 
ceranlic ,and car bide grade tools (Mursec and 

. Cus, 2003; Cus ef al., 1997). However, 
application of these new generation cutting 
taql materials is not yet' popular in the . 
machining industry in Nigeria. Thus, there is 
need to determine the opumunr machining 
parameters for tunling NST 37:2 steel using 
these ,new generation cutting tools, in order 
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to promote their rapid adoption h the 
machining industry in Nigeria. 
Prediction of tool wear md tool condition 
monitoring has been extensively studied 
using artificial neural networks (ANN) by 
many resmrclwrs (Sick, 2002). Sunil and 
St~undm (2000) defined neural network as >a 
parallel processing architecture in which 
knowledge is. rcprescntcd in the S0i.m of 
weights baween Irighly interconnected 
processing elements. A number of 

- resen~-cl~ers have sported the application of 
neu1.111 network systems in too1 conditioning 

' monitoring, and prediction of toal wear or 
tml *life (Ozel and Nndgir, 2002; Elanayslr 
and Shin, 1990: Elannyar and Shin, 1992). , . 

Genetic Algori thrns (GA) are adaptive 
heuristic search nlgoiithrn premised on tl'le. 
evolurionary ideas of nzitural selection nnd - 
genetics (Goldberg, 1 999). The basic concept 
of QA is designed ro simulate processes in 
nuturn1 system necessary far eQalution, 
specificnfly those that fo.llow the principles 
first Islid down by Charles Darwin o f  survival 
of the fittest (Goldberg, 1999); As such they 
represent an intellig611 t exploitation of a 
random search within n defined search spack 
to solve a problem (Goldberg, 1999). It has 
been applied in Inany fields of engiieering. 
Not only does GA provide alternative methods 
to solving problem, it consistently 
outperfoms other traditional methods in most 
of the problems link (Zbigniew and David, 
2000). Genetic algorithm @A), a global 

aptimiation method (Goldberg, 1999), can be 
applied in various application areas including 
facility layout design, machining condition 
determination, building design, system- 
parameter estimation, and process-parameter 
optimization (Caldas and Norford, 2002; 
Islie-, 1998; Cook et al., 2000; Daren, 2001; 
Edward et nl., 2002, Tang md Li, 2002). An 
erective GA representation, ~neaningful 
fitness evaluation, good selection and 
variation are the keys of the success in GA 
applications. The appeal of GAS comes from 
their simplicity and elegance as mbust,seruch 
algorithms as well as from their power to 
discover good soIutions rapidly for difficult 
high-dimensional .problenls. 

The objective of the study was to develop 
an artificial neural network-bed toal 'war 
predictive model and a genetic algorithm- 
based optimimiion model to determine the 
optimum cutting parameters for turning NST 
37.2 steel with new generation uncoated 
carbide cut&ng inserts using the maximum 
metal ternoval rate (MMRR) as the objective 
tirnctidn and tool wear as constraints. 

MATERIALS AND METHODS 
Workpiece . 
Samples of NST 37.2 steel bars were obtained 
from Delta State Co~~~pany (DSC), AIadja, 
Nigeria. The chemical composition and the 
mechanical af 'the steel are shown 
in Tables 1 and 2, respectively, The 
microstructure of the steel is shown in Figure 
I. 
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Table 2: Mechanical properties of NST 37.2 steel 
Pro pe rties Average value 
Yield Strength ( ~ I r n ' )  245.41 
'rtmileAStrength (MN/m2) , 342.33 
Eldngation (%I 18.48 
Reduction in Area (%) 15.05 
'Young Modulus (GPa) 198.50 
Hardness (BHN) ' 48.5 
Density (glcn13) ' 8.15 

Table 1:  hemid id cor$pfby 

(Source: As&, 2007) 

' 

, 

Macl~ining operations 
Stmight turning oberations were carried 
out on M300 Harriso~l-type lathe with 
speed range of 40 and 2500 1pm. The 
latbe was driven by 2.25 kW Kapak 
inductions motor. Carbide inserts 
produced by Sandvic ~ o r o m t '  were 
used for the machining trials. A tool 
l~older was used to hold the inserts. The 
~nachining conditions investigated are 
listed in Table 3, while the experimental 

ELement Ghrnposjtion by wej&h (%I 
C 0.333 

setup is shown in Figure 2. For each of 
the machining condition, eight passes of 
50 Am length of cut were made without 
applicatiotl of coolant. At the end of 
each pass, spindle power, nose wear and 

... flank wear wore measured using digital ' multimeter and by mews of machine 
. vision system d~lveloped by Fadm and 
Qili (2009), respectively. 

Jnurttrtl uJ'IKc Njgerinrr I~istirurit!a rfMrcl~ntiici~i Ett~~~rtwrn / Yo/. 2, Nu. I ,  Mrrrdd, 2010 
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The tool rejection criteria for roughing 
operation were used in the machining 

' 

experiments in accordance to 
In terftntianal .Standard Organization 
(ISO) 3685 Standard (150, 19771, The 
cutting insert WBS rejected and further 

mnchining discontinued when any or 
combination of the following criteria 
was reacGed: Flank wear 2 0.7mm, 
Nose wear 2 0.5mm, Surface 
roughness 1 6.Opm and Catastrophic 
failure. 

Workpiece 

Cutti11g tool 

T w i  flank IYB) and [Nw weam 4-1 . 

Spindle poww (P 

Length of cut [I) 
I 

Pig. 2: ~xperiniental setup 

Table 3: Mwchivling condilions 
Cutting pameter Value 
Sp.eed , v (mmlmin) 20.42 29.06 42.42 

Feed Rate, J(mrn/rev) 1 .L) 1.8 2.2 
Dwth of Cut. d (mm) 0.2 OA 0.8 

3 Devulopment of the neural network- 
bitscd tool wear predictive modd 

New1 Network .Toolbox for M A T L ~ @  
(Howard and Beale, 2000) was used to 

- design the m~hti-layer, feed-forward, back- 
propagation neural networks. The basic, 
steps invdved in designing the network 
were: collectiodgcneration of input/ctutput 
darnset; pre-processing of data (partitioning 
af dataset); design of the neural network 
objects; training and testing of the neural 
network; simulation and prediction with new 

input data sets; and analysis and post 
processing of predicted result. 
The cutting speed (v), Feed rate V), depth of 
cut (4, length of cut (0 and spindle pbwer 
(P) were used as input parameters, while 
flank and nose wear were used as output 
palmameters. - The configuration of the 
network is shown in Figure 3; .The . 
input/output dataset were first no&d 
with MATLAB" function, 'presfd ', in order 
ta obtain inputs with zero mean nod unity 
variance. f n addition, principaI component 
analy~is~was carried out on the dataset using 
a Matlab function, 'prepcu '. -The concept 
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I . - 

was to eliminate tl~ose components that dataset with 'posrd: Eight-eight (88) of the 
contribute less than 99% to the variation in . domet was used as ~rs l in ' in~  dataset, wl~ile . . 
datasets. The output 61: 1l1e network was Iuter 24 was as thk test dataset. . 
converted to the or-iginstl fwn~at of the 

Cuttlhg sp&d (Y} 

Feed rate Ifl- - 
Depth of cut (d) 

- 
Lengkh of cul O)-b 

Spindle power {P)-t 

Ftank war  

Nose wear 

Input Hidden Output 
layer tayer 1-r 

Fig. 3: Canfigurntian of Artificial Neural Networks 

: hvenberg-hlarquardt learning . MATLAB 6.5. The search procedure of 
algorithm was used together with Bayesian obtaining optimum cutting parameters wsls 

regularization in training e aeud  - implemented as shown in the flow- chart 
networks. The g i g  ' w i g  ' and (Figure 4). 
'purel i~'  activation functions were used in 
the input, hidden layer, and output layer, Popuhtion rcptmentu tion/initiulization . 

respectively. Four different networks A population of 100, string length of 5 
structures (5-20-5-2, 5-$20-2, 5-10-5-2 and . and 10 generations were used in the 
5-20-2) were investigated in order to model. The cutting speed varied from 
determine the best network structure 20.42 to 42.42 rnmlmin, being speed 
required for the predictive model.. . range cansidered during the experiment. 

The depth of cut ranged from 0.2 to 0.8 
Developrner~t of tlic genctic algorithn~- n ~ n ~  wliile the feed rate was between 1.0 
based uptiinis* tioo modcl atld 2.2 ~nndrev. The cutting length was 

between 0 and 400 nun. Therefore, a 
The .Genetic: ~ l ~ r i t l m  (GA) was string of possible soiutio~~ contains all 
implemented with self written codes using - . the inputs to-the trained neural network. 

1 
7 

.. <; 
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VAUAHIZ AND MAFA 
. Op~in~imth o~furnh~ NST37.2 Scrol with UnnxrteJ Curbhie Clt~titrg TOOIS 

Fig. 4: FIQ& chart for the proposed genetic algorithm-based optimization model 

The objective ru'unction to be optimized was 
the maximum metd ~~emovnl rate (MMRR), 
which is expressed mathematically as (Trent 
and Wright, 2000): 
MMRR=vx f xd (1) 
where v is surface speed (rnndmin), f is f e d  
rate (rndrev) and d is depth of cut (rnm). 
The ANN predicted tool wear for both flank 
n ~ ~ r l  nose wear wew nppl id as constraints in 
the optimisotion.of the objective function, 

2Selection of Viable Strings in Population 
The selection function chooses parents for 
the next generation based on their fitness 
function. The Roulette's wheel deterministic 
selection algorithm was used for the 
mndonlized selection of viable strings 
among the population in each generation. 
Once a solutiol~ had been chosen as the first 
parent in the mating pool, i t  coirld not .be 
used as the second parent anymore. 
However, $..a soIu$ion was used as the 
second parent, i t  could be elevated to the 
position of  the first parent during further 

4 

selection. The technique undermines the firs 
parent Erom condescending while allonh; 
the h o n d  parent to be elevated. 

c'rossover ' 

Crossover enables the algorithm to extm 
the best genes h m  different individuals an 
recombines them into potentially superic 
cl~ildrea. One point crossover mecbanisx 
was used to combine two individual string 
to generate mother two different strings. , 
crossover' probability of 0.5 which connotr 
that each string Is crossed in haif and eat 

half is then combined with second half ( 

another string was urilized. 
t 

Mutation 
Mutation adds to the diversity of 
population and, thereby, increases tl 
likelihood that the algorithm would genera 
individuals with better fitness values, Sin 
the symbols in the strings were continuo. 
variables, snlaII vntues of variation we 
applied to the strings using the Gaussi. 
distribution. Gaussian adds a randc 

. number, or mutation, chosen from 
Gaussian disrribution, to 'each entry of t 

36 
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FADARE: AND ASAI:A 
O p ~ I ~ ~ i a t ~ m t  qfntrning WSI'37.1 Steel wirh Umrwtcd Curblrle Ctrt~&~ Tools 

parent vector. A nornlaiized random 
numbers of zero (rnea~) and 0.5 (standard 
deviation) were added to the cutting speed . 
wide 0 and 0.01 were added to the depth of ' .  
cut and fee$ rate. 

RESULTS AND DISCUSSION 
Selection of best network structure 
for the toot wear predictive model 
The performances of tlze different network 
seuctures investigated are given in Table 4 
in term of the sum of square error (SSE), : 

- sum of square weight (SSW), number of . 
efTective pammeters (NOEP) and number of . 

iteration required for wnvergence during the 
training process. Comparing the results for 

- the networks, the network structure 5-20-5-2 
with the smallest SSE of 0.7466 and number 

of iteration of 90 was selected. fir the 
development of -the toot wear pedi~iion 
model. Similarly; the predictive pctformancc 
of m ultiiayei percetron artificial neirral 
networks trained with six backpropagation 
learning algoritl~ms fo'r furccustit~g of solar 
radiation data have shown to be, dependent 
on the l e d 6  'algorithm (Fadare et ul, 
2010) and network structure such .as type 
and number of neurons in the input and 
hidden Iayer, and number of layers in the 
hidden layer in the network (Fadare and 
Olugasa 2009). In these previous studies, the 
n-ork structure (5- 1 0- 1) and Levenberg- 
Marquardt ELM) learning algo cithm were 
identified m the optimum network 
parameters required for best perfom31ce. 

Table 4: Performance of the ANN tool wear predictive model 
SSE SSW NQEP Network Nu~ilber of 

- 
Arebti#eccuru iter~~tions 
5-20-5-2 0.7466 88 I45 91, 

5-5-20-2 27.68 ' 32 3Y . .  578 
5-1 0-5-2 8.42 8 80 250 

5-20-20-2 97.77 3 ,  1 l 2000 

Cutting Condition Optimiza tida 
Modd 
Optimun machining parameters (cutting 
speed, feed rate and dept af cut)' for 
maximum metal removal rate (MMRR] 
without violating rl~e tool Dank wear 
constraint was deterinined with the 
optimization model, The algorithnl was run 
for different numbers of population and 
gei~eration in order to study the effects of 
population num bec 4 generatiou number 
on the maximu11 MRR at the beginning of 
c h i  first generatiotl'ru-rd the end of the last 

4 generation for chosen populatiaa md 
, generation . numbers. The opthum 

perfdrmance of the optimization model was 
achieved at population of 100 and 

generation size (number) of 100, while the 
optimum cutting pammeters were obtained 

' ascuttingspeed(v)oE42.32~rnin,feed 
rate V) of 2.19 d r e v ,  and depth of cut (4 
of 0.8 mrn with the correspolldii~g maximum 
metal removal rate (MMRR) of 74.14 

: mm3/rnin. Sinzilarly, KO and Kim (1  998) has * 
also applied genetic algorithm li~odel to 
deteci~~ine tlze optjl-llum cutting parameters 
for turning ligk carbon steel (JlS, S45C) 
with Tungsten carbides touts (TNMG 
1604 1 2-820) using Ihe same objective 
function (-1 and tool wear as 
constrain and obtained optimum p m e t e r s  
(d = 0.3 mm, f = 0.055 mndmin, v = 1200 
rpm and MMRR. = 19.8 mm3/rnin), while 

' C11ien and Tsai (2003) obtained optimum 
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FAOARE AEJD ASAFA 
optituh~w dntntia m37.2 with u-~rd ~hrblrle cult/* rods 

I 
1 

cutting parameters (v = 88.94 d m i n ,  d = 
1.541 1 mm,j'= 0.1 79 ilmdrev and MMRR = 
24.54 x mm3/min) for turning 6 ern 
length of 174PH stainless steel with 
Vdenite YN8 (P10) coated TiN cutting 
tools. The maximum metal removal rate 
(74.14 rnrn3/nlin) obtained in this study for 
turning mild steel was higher than the value 
for high carbon steel (1  9.8 mm3/min and 2 staialess . steel (24.54 . x 105 mm h i n 3  
~zported by KO and Kim (1998) and Chien 

- and Tsai (20031, respectiveliy. The relative 
softness of mild- steel compared to high 
carbon steel and shinless steel and the higha 
mechanical properties of the new generation 
cutting tool used in this study may be 
attributed to the high maximum metal 
removal rnte obtained, 

CONCLUSIONS 
TIze following concl~sions are drawn 
from. the study, 

The neural network-based tool 
wear mddel with network . 
shucturc of 5-20-5-2 trained with 
automatic Bayesian regularization 
gave 'the best performance despite 
the small darner used in the 
training. 
Generally, the. magnitude of flank 
wear was significantly higher thnn 
nose wear in a11 the cutting 
conditions considered except at 
cutting. condition (v = 20.42 
mn~lmin, d = 2.2 mm and f = 0.4 
mm) where nose wear was l~igher - 
than flank wear. 

i The optimisatian nmdel with 
populntion and generation . . .  

numbers equal to 100 gave the 
best performance. s 

Optimum cutting col~dition was 
, found to be: cutting speed of 
.='42.32 nunlmin, feed of 2.19 . 

d r e v  and DOC of 0.8rqm with 
corresponding MRR of 74.14 mm3 
/min 
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