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Abstract: Selection of optimimum machining parameters is an essential factoriin.process
planning for efficient metal cutting operations. In this study, an artificial neural wetwork-
based tool wear predictive model and a genetic algorithm-based optimization'mode! were
developed to determine the optimum cutting parameters for turning NST 37.2 steel with.
uncoated carbide cutting inserts. Multi-layer, feed-forare, back —propagation network was
used in predictive model, while maximum metal removal rate (MRR) was used as the
objective function and tool wear as samples NST 37.2 steel bars with 25mm diameter and
400mm length s workspiece and Sandvice Coromant® uncoated carbide inserts with
International Standard Organizxation (1SO) designation SNMA12406. Dry machining at
different cutting conditions with cutting speed (v), feed-rate (f) and depth of cut ()
ranging from 20.42-42.42 mm/min, 1.0-2.2 mm/rev.and 0.2-0.8mm, respectively were
carried out. Eight passes of 50mm length of cut were machined at each conediiton, the
spindle power and tool wear (flank and nose)-awere” measured during each cutting
operation. Results have shown that the predictive model had acceptable accurancy and
optimum cutting parameters obtained were:'v =42.32mm/min, /= 2.19 mm/rev and d =
0.8mm.

Keywords: Optimization, turning, gen€tic algorithm, artificial neural network, NST 37.2
steel. -

INTRODUCTION .

NST 37.2 steel is one of the commercial
carbon steel grades produced bywthe Delta
Steel Company (DSC), Aladja, Delta State,
Nigeria. It is commonly used as structural
member in building “construction and’ for
production of machinc componcauts. In the
machining industry,/ carbon steels are
popularly  being- machined with the
convectional high speed steel (HSS) cutting
tools, which are known to have short tool
life due in part to the reduction in tool
properties at elevated temperature generated
at the cutting edge during the cutting
operation. In most cases, the steel is heat
treated by normalization process prior to
machining and then quenched and tempered

again after the machining operations, which
leads to increase in manufacturing time'and
cost of production. In recent times, the need
for an economic production of machined
components from materials with supreme
properties which are difficult-to-cut has led
to the development of different harder and
tougher cutting tool materials such as
ceramic and carbide grade tools (Mursec and

.Cus, 2003; Cus er al, 1997). However,

application of these new generation cutting
tool materials is not yet popular in the
machining industry in Nigeria. Thus, there is
need to determine the optimum machining
parameters for turning NST 372 steel using
these new generation cutting tools, in order

Journal of The Nigerian Institution of Mechanical Engineers / Vol. 2, No. |, March, 2010



FADARE AND ASAFA g
Optinization of Turning NST 37.2 Steel with Uncoated Carbide Cutting Tools

to promote their rapid adoption in the
machining industry in Nigeria.

Prediction of tool wear and tool condition
monitoring has been extensively studied
using artificial neural networks (ANN) by
many researchers (Sick, 2002). Sunil and
Saundra (2000) defined neural network as a
parallel processing architecture in which
knowledge is. represented in the form of
weights  between  highly interconnected
processing  elements. A number of
- researchers have reported the application of
neural network systems in tool conditioning
"~ monitoring and prediction of tool wear or
tool life (Ozel and Nadgir, 2002; Elanayar
and Shin, 1990: Elanayar and Shin, 1992).

Genetic  Algorithms (GA) are adaptive
heuristic search algorithm premised on the
evolutionary ideas of natural selection and
genetics (Goldberg, 1999). The basic concept
of GA is designed to simulate processes in
natural  system necessary for evolution,
specifically those that follow the principles
first laid down by Charles Darwin of survival
of the fittest (Goldberg, 1999). As such they
represent an intelligent exploitation of a
random search within a defined scarch space
to solve a problem (Goldberg,~1999). It has
been applied in many fields of engineering.
Not only does GA provide-lternative methods
to  solving  problem,. it  consistently
outperforms other traditional methods in most
of the problems, lifikk (Zbigniew and David,
2000). Genetie_algorithm (GA), a global
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optimization method (Goldberg, 1999), can be
applied in various application areas including
facility layout design, machining condition
determination, building design, system-
parameter estimation, and process-parameter
optimization (Caldas and Norford, 2002;
Islier, 1998; Cook et al., 2000;-Daren, 2001;
Edward et al., 2002, Tang and Li;»2002). An
effective  GA representation,» meaningful
fitness evaluation, good  selection and
variation are the keys.of the success in GA
applications. The appeal of GAs comes from
their simplicity and elegance as robust search
algorithms as<well ‘as from their power to
discover good solutions rapidly for difficult
high-dimensional problems.

The objective of the study was to develop
an artificial neural network-based tool wear
predictive model and a genetic algorithm-
based “optimization model to determine the
optimum cutting parameters for turning NST
37.2 steel with new generation uncoated
carbide cutting inserts using the maximum
metal removal rate (MMRR) as the objective
function and tool wear as constraints.

MATERIALS AND METHODS
Worlipiece

Samples of NST 37.2 steel bars were obtained
from Delta State Company (DSC), Aladja,
Nigeria. The chemical composition and the
mechanical properties of the steel are shown
in Tables 1 and 2, respectively. The
microstructure of the steel is shown in Figure
1.
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Fig. 1. Microstructures of the NST 37.2 sieel (x 100)

Table 1: Chemical corhpositioﬁ by weight (%) of NST 37.2 steel

Element Composition by weight (%)
C 0.331
S 0.011
Si 0.15
Mn 0.69
| P 0.018
Fe 98.8

(Source: Asafa, 2007)

Table 2: Mechanical properties of NST 37.2 steel

Properties Average value

Yield Strength (MN/m ) 245.41
Tensile Strength (MN/m?)  342.33

Elongation (%) 18.48
Reduction in Area (%) 15.05
Young Modulus (GPa) 198.50
Hardness (BHN) 48.5
Density (g/cm’) 8.15

~’(Sourc«:: Asafa, 2007)

Machining operations

Straight turning operations were carried
out on M300, Harrison-type lathe with
speed range ‘of 40 and 2500 rpm. The
lathe was driven by 2.25 kW Kapak
inductions . motor. Carbide inserts
produced by Sandvic Coromant® were
used for the machining trials. A tool
holder was used to hold the inserts. The
machining conditions investigated are
listed in Table 3, while the experimental
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setup is shown in Figure 2. For each of
the machining condition, eight passes of
50 mm length of cut were made without
application of coolant. At the end of
each pass, spindle power, nose wear and
flank wear were measured using digital
multimeter and by means of machine
vision system developed by Fadare and
Oni (2009), respectively.
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The tool rejection criteria for roughing
operation were used in the machining
experiments  in  accordance  to
International Standard  Organization
(ISO) 3685 Standard (18O, 1977). The
cutting insert was rejected and further

machining discontinued when any or
combination of the following criteria
was reached: Flank wear > 0.7mm,
Nose wear >  0.5mm, Surface
roughness > 6.0pm and Catastrophic
failure.

_~ Chuck
- I _ o Tail stock
A (A /
Workpiece
LT
-l_ - o]
4 —HﬂH‘-“""--—H_
Cutling tool
Digital
"’f,‘."i'“ete' T Tool holdér
-
\\ / Tool flank (VB) and nose (NB) wears —p=]
T Cutting speed (v) —»= Computer with
L Feed rate (f) —»=  MATLAB:
—— Spindle power (P)—®={ GA and ANN
Depth of cut (d) —p= -
Length of cut (1) —»
Fig. 2: Experimental setup
Table 3: Machining conditions
Cutting parameter Value
Speed, v (mm/min) 20.42 29,06 4242
Feed Rate, /(mpi/rew) 1.0 1.8 2.2
Depth of Cut,«/ (mm) 02 04 0.8

3 Development of the neural network-
based tool wear predictive model

Neural Network” Toolbox for MATLAB®
(Howard and' Beale, 2000) was used to
design thewmulti-layer, feed-forward, back-
propagation. neural networks. The basic
steps winvolved in designing the network
wetre: collection/generation of input/output
dataset; pre-processing of data (partitioning
of dataset); design of the neural network
objects; training and testing of the neural
network; simulation and prediction with new
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input data sets; and analysis and post-
processing of predicted result.

The cutting speed (v), feed rate (f), depth of
cut (d), length of cut (/) and spindle power
(P) were used as input parameters, while
flank and nose wear were used as output
parameters.  The configuration of the
network is shown in Figure 3. The
input/output dataset were first normalized
with MATLAB® function, ‘prestd’, in order
to obtain inputs with zero mean and unity
variance. In addition, principal component
analysis was carried out on the dataset using
a Matlab function, ‘prepca’. -The concept

Journal of The Nigerian Institution of Mechanical Engineers / Vol. 2, No. 1, Marclh, 2010



) FADARE AND ASAFA
Optimization of Turning NST 37.2 Steel with Uncoated Carbide Cutting Tools

was to eliminate those components that
contribute less than 99% to the variation in
datasets. The output of the network was later
converted to the original format of the

R T e e e TR A —————

dataset with ‘postd’. Eight-eight (88) of the
dataset was used as (raining dataset, Whl't..
24 was as the test dataset.

—* Flank wear

—» Nose wear

Input Hidden
layer layer

Fig. 3: Configuration of Artificial Neural Networks

Levenberg-Marquardt
algorithm was used together with Bayesian
regularization  in
networks. The ‘logsig’, ‘tansig’ and
‘purelin’ activation functions were used in
the input, hidden layer, and output layer,
respectively.  Four  different networks
structures (5-20-5-2, 5-5-20-2, 5-10-5-2 and
5-20-2) were investigated in order to
determine the best network structure
required for the predictive model..

Development of the genctic algorithm-
based optimisation model

The Genetic  Algotithm. (GA) was
implemented with self written codes using

3

learning

training the neural -

Qutput
layer

MATLAB “6.5. The search procedure of
obtaiping, optimum cutting paramelers was
implemented as shown in the flow. chart
(Figure 4).

Population representation/initialization
A population of 100, string length of 5
and 10 generations were used in the
model. The cutting speed varied from
20.42 to 42.42 mm/min, being speed
range considered during the experiment.
The depth of cut ranged from 0.2 t0 0.8
mm while the feed rate was between 1.0
and 2.2 mm/rev. The cutting length was
between 0 and 400 mm. Therefore, a
string of possible solution contains all
the inputs to the trained neural network.

Journal of The Nigerian Institution of Mechanical Engineers / Vol. 2, No. 1, March, 2010




S
S—

-

Selech oplunzation citen ael genaiabe
il poprudition

FADARE AND ASAFA

W Compute fiteas faetion of mdvaduld

Optimization of Turning NST 37.2 Steel with Uncoated Carbide Cutting Tools

-

| 7 sthig
Muaton
I £ pply ool wear eniteris via ANH
’ ;
Cicesover e o
¥ 7 opimaatiin,_Yes
t cntens s
. salufied? ~
Selectuon e
i Copute final lilness wineet _ ]
o l
l Ot cpptunal seseht ]
a—_—
End
t\__ _.._,..f)

Fig. 4: Flow chart for the proposed genetic algorithm-based-ptimization model

Evaluation of objective function

The objective function to be optimized was
the maximum metal removal rate (MMRR),
which is expressed mathematically as (Trent
and Wright, 2000):

MMRR =vx [ xd (1)

where v is surface speed (mm/min); fis feed
rate (mm/rev) and d is depth-of cut (mm).
The ANN predicted too)'wear for both flank
and nose wear were applied-as constraints in
the optimisation of the-objective function.

2Selection of Viable Strings in Population
The selectionfunction chooses parents for
the next_generation based on their fitness
- functions. The Roulette’s wheel deterministic
selection. ‘algorithm was used for the
andomized selection of viable strings
among the population in each generation.
Once a solution had been chosen as the first
parent in the mating pool, it could not be
used as the second parent anymore.
However, if. a solution was used as the
second parent, it could be elevated to the
position of the first parent during further

36

selection. The technique undermines the firs
parent from condescending while allowin;
the second parent to be elevatéd.

Crossover

Crossover enables the algorithm to extrac
the best genes from different individuals an
recombines them into potentially superic
children. One point crossover mechanisi
was used to combine two individual string
to generate another two different strings. .
crossover” probability of 0.5 which connote
that each string is crossed in half and eac
half is then combined with second half ¢
another string was utilized.

Mutation
Mutation adds to the diversity of
population and, thereby, increases tl

likelihood that the algorithm would genera
individuals with better fitness values. Sin
the symbols in the strings were continuo
variables, small values of variation we
applied to the strings using the Gaussi
distribution. Gaussian adds a randc
number, or mutation, chosen from

Gaussian distribution, to ‘each entry of t
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parent vector. A normalized random
numbers of zero (mean) and 0.5 (standard
deviation) were added to the cutting speed
while 0 and 0.0] were added to the depth of
cut and feed rate.

RESULTS AND DISCUSSION

Sclection of best network structure

for the tool wear predictive model

The performances of the different network
structures investigated are given in Table 4
in terms of the sum of square error (SSE),
- sum of square weight (SSW), fhumber of
effective parameters (NOEP) and number of
iteration required for convergence during the
- training process. Comparing the results for
the networks, the network structure 5-20-5-2
with the smallest SSE of 0.7466 and number

Optinuzation of Turning NST 37.2 Steel with Uncoared Carbide Cutting Tools
-————--_—._————_———————.—7_—__.—_—_'_____—-—__'_

of iteration of 90 was selected for the
development of the tool wear prediction
model. Similarly, the predictive performance
of multilayer percetron artificial neural
networks trained with six backpropagation
learning algorithms for lorecasting of solar
radiation data have shown to be dependent
on the learning algorithm (Fadare et al,
2010) and network structure such-as type
and number of neurons in<the input and
hidden layer, and number-of layers in the
hidden layer in the netweorks (Fadare and
Olugasa 2009). In these previous studies, the
network structure (5-10-1) and Levenberg-
Marquardt (LM). learning algorithm were
identified as the” optimum  network
parameters required for best performance.

Table 4: Performance of the ANN tool wear predictive model

Network SSE SSW NOEP Number of
Architecture iterations
5-20-5-2 0.7466 38 145 90
5-5-20-2 27.68 32 39 578
5-10-5-2 8.42 63 80 250
5-20-20-2 97.77 3 11 ] ) 2000

Cutting Condition Optimization

Model

Optimum machining paranieters™ (cutting
speed, feed rate and dépt-of cut) for
maximum metal removal .rate (MMRR)
without violating the./tool flank wear
constraint was eterptined  with  the
optimization model. Flie algorithm was run
for different mumbers of population and
generation _in ‘order to study the effects of
population number and generation number
on thesmaximum MRR at the beginning of
the first generation and the end of the last

~generation  for chosen population and
generation  numbers.  The  optimum

performance of the optimization model was
achieved at population of 100 and
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generation size (number) of 100, while the
optimum cutting parameters were obtained
as cutting speed (v) of 42.32 mm/min, feed
rate (f) of 2.19 mm/rev, and depth of cut (d)
of 0.8 mm with the corresponding maximum
metal removal rate (MMRR) of 74.14
mm*/min. Similarly, Ko and Kim (1998) has"
also applied genetic algorithm model to
determine the optimum cutting parameters
for turning high carbon steel (JIS, S45C)

with Tungsten carbides tools (TNMG
160412-B20) using the same objective
function (MMRR) and tool wear as

constrain and obtained optimum parameters
(d = 0.3 mm, /= 0.055 mm/min, v = 1200
rpm and MMRR = 19.8 mm]/min), while
Chien and Tsai (2003) obtained optimum
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cutting parameters (v = 88.94 m/min, d =
1.5411 mm, /= 0.179 mm/rev and MMRR =
24.54 x 10° mm’/min) for turning 6 cm
length of 17-4PH stainless steel with
Valenite VN8 (P10) coated TiN cutting
tools. The maximum metal removal rate
(74.14 mm’/min) obtained in this study for
turning mild steel was higher than the value
for high carbon steel (19.8 mm?®min) and
stainless steel (24.54 x 107 mm*/min)
reported by Ko and Kim (1998) and Chien
and Tsai (2003), respectively. The relative
softness of mild steel compared to high
carbon steel and stainless steel and the high
mechanical properties of the new generation
cutting tool used in this study may be
attributed to the high maximum metal
removal rate obtained.

CONCLUSIONS
The following conclusions are drawn
from-the study.

o The neural network-based tool
wear  model  with  network
structure of 5-20-5-2 trained with
automatic Bayesian regularization
gave the best performance despite
the small dataset used.~in the
training.

e Generally, the magnitude of flank
wear was significantly higher than
nose wear in/ all “the cutting
conditions censidered except at
cutting. condition (v = 2042
mm/min, = 2.2 mm and /= 0.4
mm) where nose wear was higher
than flank ‘wear.

o The “optimisation model with
population and generation
numbers cqual to 100 gave the
best performance. .

e Optimum cutting condition was
, found to be: cutting speed of
-42.32 mm/min, feed of 2.19

s ]

3

8

mm/rev and DOC of 0.8mm with
corresponding MRR of 74.14 mm®
/min
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