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ABSTRACT Multi-layered, feed...forward, back-j ropagation artificial neural networks
(ANN) models were developed to predict friction losses in spark-ignition engines. The
friction losses were modeled as friction mean effective pressure (fmep) due to: crankshaft,
reciprocating parts, valve trains, auxiliary, and pumping systems. The developed models were
validated in relation to existing engine friction data and empirical models of Patton et ai.
(patton, K.J., Nitsche, R.G. and Heywood lB. [1989]. Development and evaluation of a
friction model for spark-ignition engines, SAE paper 890836). Results have shown that, the
mean absolute deviations of the ANN model predictions for crankshaft, reciprocating parts,
valve trains, auxiliary, and pumping systems were, respectively, 18.78,2.10, 10.57,2.66, and
8.84% in relation to the existing engine friction data, while those of the Patton et al. model
predictions were 37.50, 25.14, 60.99, 6.71, and 14.67%, respectively. The corresponding root
mean square errors were fo md to be 2.278, 1.157, 3.145, 0.678, and 2.118 for the ANN
predictions and 7.006, 12.837, ..5.889,2.277, and 3.317, respectively, for the Patton et al.
predictions. The developed ANN friction models appeared to have better end more accurate
predictions, thus it could be used as tool for designing of energy-efficient spark-ignition
engines.

Keywords: Artificial neural networks, friction losses, spark-ignition engines, energy-
efficient

INTRODUCTION Engine friction is commonly defined as the difference between indicated
work done by the working fluid on the piston and the brake work measured as output at the
crankshaft. It accounts for a considerable proportion of energy loss in engines, causes wear of
engine parts, reduces brake power and mec....anical inefficiency, and increases fuel
consumption CLl1dgreenhouse gas emissions (Basshuysen ct al., 2004; Faires et al., 1957; Fujii
et al., 1988; Lumley et al., 1999; Obert, 1948; Oyadotun, 2002). The development of
appropriate and accurate techniques for estimating engine friction and its reduction have been
major challenges faced by engines designers in the development of new energy-efficient
~~ :a..~-..;;ft&~~·nt..~!lEi"~~::f'''..watt~'l:.l~ .••.•~'~=t..:Jr.ao~o;M;i,'MIt-o'i_·
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engines (Patton et al., 1989). Studies on engine friction have a long history, going back to the
time of Leonardo da Vinci. Luminaries of science such as Amontons, Coulomb and Euler
were also involved in engine friction studies, but there is still no simple model which could
be used by designers to calculate the frictional loss for a given pair of materials in contact.
Development of new energy-efficient engines therefore necessitates the development of
appropriate techniques or strategies for mode ing and estimation of engine friction losses. For
efficient modeling and estimation of friction losses in engines, accurate and adequate
knowledge of the underlying relationships between the friction parameters and the design and
operating parameters of the engine are essential. Pioneering studies of these underlying
relationships have been mainly focused on the development of appropriate mathematical
relations such as analytical or empirical models (Rosenberg, 1982; Bishop, 1965; Oetting,
1982; Boshi et al., 1986; Uras, 1984; Amann, 1988; Betz et al., 1986; Armstrong et al., 1981;
Staron et al., 1983; Millington et al., 1968; Gish, 1958). In particular, the work of Patton,
(1989) was on the development of empirical models based on combination of fundamental
scaling laws and empirical results for prediction of rubbing losses from the crankshaft,
reciprocating, and valve-train components, auxiliary losses from engine accessories, and
pumping losses from the intake and exhaust systems. The inherent limitations and
complication of this developed empirical friction model led to development of an improved
version of the model by Sandoval and Heywood (Sandoval et a1., 2003). However, all the
developed mathematical models are complex and hence the setting up of the parameters and
how they interrelate entirely depends on the vast experience and intuition of the modeler and _
so many of the developed models have inherent deficiencies in adequately and correctly
representing the relationships between engine friction and the design and operation
parameters of the engine. As a possible solution to handling of these complexities, the use of
experimental investigation has also being proposed by many investigators (Lancasteret et al.,
1975; Adams et al., 1987; lno, 1ge4). However, experimental setup involving all of the
underlying factors between friction components, engine design and operating parameters is
cumbersome, time consuming and costly to imple nent. Hence, experimentations are limited
in scope and application in engine friction studies. These limitations in the developed
mathematical models are better handled using artificial neural networks modeling techniques
(Avula, 2002).

The artificial neural networks (ANN) approach provides a viable solution in mitigating the
complexities in developing mathematical models. At present, ANN is emerging as the
technology of choice for many applications such as pattern recognition, system identification
and control (Mellit et al., 2006; Fadare, 2009). ANN is a branch of Artificial Intelligence (AI)
and is an intelligent data-driven modeling tool that is able to capture and represent complex
and non-linear input/output relatio ships that cannot be captured by traditional statistical
methods such as regression which may only be efficient in handling cases where the variables
have linear relationship (Stitch et al., 2000; Cavuto, 1997). ANN has been applied to spark-
ignition engines to model the torque, specific fuel consumption, brake power, output torque
and exhaust emissions (Glen et al., 2.005; Yncesu et a1., 2007; Deh-Kiani et al., 2010; Kara,
et al., 2010). However, to the best of the authors' knowledge, there is no study reported in
literature on the application of ANN nodel for prediction of friction losses in spark-ignition
engines.
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The objective of this present study was to apply ANN in the development of engine friction
mean effective pressure models for modeling and prediction of crankshaft, reciprocating,
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valve, auxiliary and pumping friction losses in spark-ignition engines. The proposed ANN
friction models can be used as an enicient tool by engine designers fer the design and
performance assessment of spark-ignition engines for energy efficiency.

MATERIALS AND METHODS
Assembly and preprocessing of dataset, The data used in this study were obtained from two
sources: (1) the friction models developed. by Patton et a1. (1989) were used to generate the
dataset for forty in-line spark-ignition engines from the Bosch Automotive Handbook (Bosch,
2007). The design parameters of the engines are given in Table 1. The dataset were generated
for engine speeds ranging from 500 to 75C0 rpm, and (2) experimental data of some selected
engines were obtained from existing literature. The dataset assemblage was done for each
engine friction component; crankshaft, reciprocating group, valve group, auxiliary group and
pumping group. For the development of the friction models, 606 dataset were used for the
crankshaft friction model, 608 for the reciprocating friction model, 612 for the valve friction
model, 762 for the auxiliary friction model and 608 for th pumping friction model. The
dataset for each friction component was normalized to range between -1 and +1 and then
partitioned into training (50%), testing (25%) and validation dataset (25%).

Design of the ANN model. Multi-layer, fe d-forward, back-propagation hierarchical
networks with different stn ctures were designe using the Neural Network Toolbox for -
MATLAB® 7.0 (R14). The models co isisted of t!2!ee layers of neurons: "input layer",
"hidden layer" and "output layer" (Figure 1). The choice of input/output parameters of the
friction component models was based on the parameters used in the Patton et al's model,
while the number of neurons in the hidden layer was varied ranging from 5 to 20 in steps of 5
to determine the optimum structure of the network required for each friction component
model. The input/output paran eters 0 the models are given in Table 2.
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Fig. 1: Typice multilayered Al'-JN with (13-8-4) structure

Training and testing of the neural network models. Three back-propagation learning
algorithms were investigated for each of the friction component: Levenberg Marquard (LM),
Scaled conjugate gradient (SGC) and _ csilient bzck propagation (RP). The early stopping
technique was used to improve generalization cc:p,l')ility of the network and to prevent the
network from over-fitting the training dataset. Over-fitting occurs w ien the network becomes
too used to the training dataset and thus fails in predicting other data outside the training
dataset (Demuth etal., 20(0)
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The training process was terminated when the threshold ofMSE = 0.001 or when the number
of iterations equal to 1000 was attained. The mean-square error (MSE) and the correlation
coefficient (R-value) between the actual and ANN predicted values of the friction mean
effective pressure were used to determined the predictive accuracy of the network models.
The best network structure and learning algorithm for each friction component model was
determined based on lowest MSE value, number of iterations and highest R-value.

RESULTS AND DISCUSS!.ONS
Optimization of network parameters. The performance indicators in terms of the MSE
value, number of iterations and R-value were used to determine the optimum network
parameters of the different friction component model. The best network structure for each
model is shown in Tables 2.

Model Validation
Crankshaft friction model. For the crankshaft friction model, a comparison between the
experimental data, Patton, K. Jet al's model predictions and ANN predictions was made for
a Ford 1.61.The result of the comparison is presented in Figure 3. As shown in Figure 3, the
Patton et a1.'s model predictions and the experimental data agreed quite well only at engine
speeds ranging from 500 - 2000 rpm and deviated widely at speed range beyond 2000 rpm.
The mean absolute deviation cf the Patton, et al's predictions from the actual data was
37.50%. However, the ANN predicted values and the experimental data showed better
agreement for the entire speed range considered with mean absolute deviation of 18.78%.
The root mean square errors of the Patton et a1.'s and ANN predictions were respectively
7.006 and 2.278.

Reciprocating friction mode. The comparison between the experimental data, Patton, K. J
et al's model predictions and AN)J predicted values are shown in Figure 4. The Patton, K. J
et al's model predictions were consistently higher than the experimental data with mean
absolute deviation of 25.14%, while the correspondingvalue of2.l0% was obtained for the
ANN predictions. The root mean square errors of the Patton et a1.'s and ANN predictions
were respectively, 12.837 and 1.157.

Valve friction model. Figure .5shows the comparison between the experimental data, Patton
et al.'s model predictions a..'1CA1\N . redicted values for the valve friction of a new dataset
for a Ford 2.31 engine. The mean absolute deviation of Patton et al's model predictions and
the ANN predictions from the experimental values were 60.99 and 10.57%, respectively. The
root mean square errors of the Patton et al's ar d ANN predictions were respectively 15.889
and 3.145.

Auxiliary friction model. In VCl idating the auxiliary group friction model, datasets for a
Volkswagen l.31 engine and the Patton et al's model predictions and the ANN predictions
were compared with the expe imental data (Figure 6). Patton et al's model and the ANN
model predicted the auxi iary friction with high degree of accuracy and mean absolute
deviation of 6.71 and 2.66%, respectively. The root mean square errors of the Patton, K. J. et
al.'s and ANN predictions were 2.277 and 0.678, respectively.
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Pu ping friction model. h validating the pumping group friction model, dataset for a
Volkswagen 1.61 engine and corresponding values of mean absolute deviation of 14.67 and
8.84%, respectively were obtained for the Patton et al.'s model and the ANN model predicted
va.uesff'igure 7). The respective root mean square errors of the Patton et al.'s and ANN
predictions were 3.317 and 2.118.

1JnlO"~"',Uli"~~~~~~IV..~X-.J.~Ol':'r::I1i?"':.l'~-tIo.liin\.a::..""''a.:!t'tl.l.JM.¥4.tt'',.;'i1!j_ot~S1."!tI!SlaJi''~.:tIfUra-.::~1!lIIu:. .••tt.~.•.1.tI;i;,ii~~",,"""""=-===
l\l:VlechE 24th AGM & ~;ternatio!la! Confere-ice - ~eg0~, :-,;iZ;~i;:::'October 12-14, 28! 1 - 45

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Table 1: Design parameters of the engines used to generate the friction data using the
Patton et al. models

Swcep
Compression Bore, Stroke, No. of No. of volume.

SIN Vehicle/Enginc make Ratio (mm) (mm) cylinder valves (crrr')

I Mazda AZ Wagon 0.7Ti 10.5 65 66 3 12 657
2 Toyota Yaris 1.0i 10 69 66.7 4 16 998
3 Opel Astra 1.2i 10.1 72.5 72.6 4 16 1199
4 Daihatsu Charade 1.3i 9.5 76 71.4 4 16 1296
5 Mazda Demio 1.3i 9.4 71 83.6 4 16 1324
6 Ford puma l.4i 10.3 76 76.5 4 16 1388
7 Polo 1.4 10.5 76.5 75.6 4 16 1390
8 Rover 214 lAi 10.5 75 79 4 16 1396
9 Honda Civic Aerodeck 1.5i 9.6 75 84.5 4 16 1493
10 Mazda 323[' 1.5i 9.4 78 78.4 4 16 1498
11 Fiat Multipla 1.6i Bipower 10.5 86.4 67.4 4 16 1581
12 Honda HR-V 1.6i 9.6 75 90 4 16 1590
13 Ford ESCOli 1.6 10.3 76 88 4 16 1597
14 Alfa Romeo 145 1.6i TS 10.3 82 75.65 4 16 1598
15 Fiat Bravo 1.8i 10.3 82 82.7 4 16 1747
16 Renault Laguma Break 1.8i 9.8 82.7 83 4 16 1783
17 Mitsubuishi Carisma 1.8 GDi 12.5 81 99 4 16 1834
18 BMWZ31.9 10 85 83.5 4 16 1895
19 Hyundai Coupe 2.0i 10.3 82 93.5 4 16 1975
20 Seat Coi..oba 2.0i 10.5 82.5 92.8 4 16 1984
21 Ford Mondeo 2.0 10 84.8 88 4 16 1988
22 Mazda 626 Wagon 2.0i 9.7 83 92 4 16 1991
23 Lancia Delta 2.0 Turbo HPE 8 84 90 4 16 1995
24 Chrysler Sebring 2.0i 9.6 87.5 83 4 16 1996
25 Peugeot 206 2.0i 10.8 85 88 4 16 1997
26 Lexus IS 200 2.0i 9.6 75 75 6 24 1988
27 Mercedes-Benz CL 500 8.5 89.9 78.7 4 16 1998
28 Toyota Picnic 2.0i 9.5 86 86 4 16 1998
29 Mercedes-Benz SLK 200 10.4 89.9 78.7 4 16 1998
30 Opel Astra 2.0i 10.8 86 86 4 16 1998
31 Opel Sintra 2.2i 10.5 86 94.6 4 16 2198
32 Mercedes-Benz SLK 230 compressor 8.8 90.9 88.4 4 16 2295
33 Volvo C70 2.3i 8.5 81 90 5 20 2319
34 Oldsmobile Alero 2.4i 9.5 90 94 4 16 2392
35 Dodge Caravan 2.4i 9.4 87.5 101 4 16 2429
36 Volvo V70 2.4i 10.3 83 90 5 20 2435
37 BMW 323i Touring 10.5 84 75 6 24 2494
38 Volvo S80 2.8 T6 8.5 81 90 6 24 2783
39 BMW 328i 10.2 84 84 6 24 2793
40 LenIS GS 300 3.0i 10.5 86 86 6 24 2997
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Table 2: Optimum network parameters of the friction component models

Mocel Input parameters Output Network Tralning No. of Correlation MSE
parameter Structure Algorithm iterations coefficient

Crankshaft (1) Diameter of main (I) Crankshaft 7-20-1 LM 4 1.000 0.004
Friction bearing; (2) Bore; (3) friction mean

Stroke; (4) lumber of effective
cylinders; (5) Engine pressure
speed; (6) Length of main
bearing; (7) Number of
main bearings

Reciprocating (I) Mean piston speed; (2) (1) ':!-IO-I RP 50 0.756 0.006
Friction Bore; (3) Engine speed; Reciprocating

(4) Diameter of friction mean
reciprocating bearing; (5) effective
Length of reciprocating pressure
bearing; (6) Number of
main bearings; (7)
Number of cylinders; (8)
Intake manifold pressure;
(9) Atmospheric pressure;
(10) Compression ratio;
(II) Stroke; (12)
Reciprocating group
exponent

Valve (I) Engine Speed; (2) (1) Valve 9-;5-1 LM 26 1.000 0.003
Friction Number of shaft bearings; friction mean

(3) Bore; (4) Stroke; (5) cf.ective
Number of cylinders; (6) pressure
Number of valves: (7)
Maximum valve Eft; (8)
Coefficient for oscillatory
hydrodynamic; (9)
Ccefficient for mixed
hydrodynamic

Auxiliary C) Engine Speed (I) Auxiliary 1-15-1 LM 100 !.OOO 2.119 X

Friction friction mean '0""·
effective
pressure

Pumping (1) Atmospheric pressure; (I) Pumping 9-,0-1 LM 83 0.996 13.387
Friction (2) Intake muniro~d friction mean

pressure; (3) Mean piston effective
speed; (4) Number of pressure
valves; (5) Intake valve
diameter per bore; (6)
Exhaust valve diameter
per bore; (7) Coefficient
for roller follower; (8)
Coefficient for L:;~!1iating
hydrodynamic; (9)
Coefficient fur oscillatory
mixed

~~ ••••.•• 'IP:'«-~ ••.~!.~~~~~. ~£~~~
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-+- Experimental data __ Patton at. a! model -'-.k~..ANN model

o+-----~------~------,_----~
500 1500 2500 3500

Engine spood (rpm)
4500

Fig. 3: Comparison between experimental, Patton et al's model and ANN predicted values
for crankshaft friction of a Ford 1.61engine

-+- Experimental data -a- PaUon at. a! model -.-ANN model

90 I I
80F -------"
"~~-~~~.~
~ 50 $-== - -.-----
~ 40 , - (... - ---

- 30 -If-- -----------

~~]--------------------------------------
IO+---~-~--__-_.--r_-~

2000 2500 3000 3500 4000 4500 5000
Eng!ne speed (rpm)

Fig. 4: Comparison between experimental data, Patton et al's model and ANN prediction
for reciprocating friction using a Malhe 86 x 83.5 engine

-o-Experimenta! data __ Patton at. al model --.-ANN model

1Cf).2 1500 2000 2500 3000 3500 4000
Engine speed (rpm) ,

Fig. 5: Comparison between experimental data, Patton et aI's model and ANN predictions
of valve friction for a Ford 2.31engine
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-+- Experimental data Patton at. a! model -tor-ANN model

2000 2500 3000 3500
Engl!\3 speed (rpm)

4000

Fig. 6: Comparison between experimental, Patten ot al's model and ANN predictions of
auxiliary friction for a Volkswagen l.3l engine

--t>-Experimen!a! data ~PeHon et. al model ·-.•-Af\oN model
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~~~J~~-~~!
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oIr----~--.
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Englr.1:! speeu (rplIl)
4500

Fig. 7: Comparison between experimental, Patton et a1model and ANN model of
pumping group friction for a Volkswagen 1.61engine

CONCLUSION. Multi-layer, feed-fo Nard, back-propagation hierarchical neural
networks with different structures were designed using the Neural network toolbox for
MATLAB® 7.0 to model and predict the friction mean effective pressure (fmep) due to:
crankshaft, reciprocating parts, val te trains, auxiliary, and pumping systems in spark-
ignition engines. In training of models, the predictive performance of three (3) learning
algorithms: Levenberg M rouarr' (LM), Scaled conjugate gradient (SGC), and Resilient
back propagation (RP) were investigated. T~lC ~M algorithm-trained models gave more
accurate predictions except £01' the reciprocating friction model where the RP algorithm
gave the bc"; predictions. The mean absolute deviations of the Al:\1N model predictions for
crankshaft, reciprocating . arts, valve trains, auxiliary, and pumping systems were,
respectively, 18.78,2.10, 10.57,2.66, a c. ~.8L!·% in -ela~ionto t'ie existing engine friction
data, while those of the Patton et al. model predicti: ns were 37.50, 25.1.4, 60.99, 6.71, and
14.67%, rcspecti .ely. The corresponding roo! mean square errors were found to be 2.278,
1.157,3.145,0.678, and 2.118 for the A10; predictions and 7.006,12.837, 15.889, 2.277~
and 3.317, respectively, for the Patton, K. J. ct al. predictions. Hence, the developed
neural networks models have great prowess in understanding the underlying input and
output relationships and so arc excellent tools '.'0;: developing reliable engine friction
models.
!!!!!!~!!!!!!!!!!!!:~~~ __ !::;!!:~!!,"""'~~!?:7~"-!>!ru~~~~~"r~ ..~~,,!!!_!!!,,!!!!!!!!!!!!-O!!!!!_!!!'!!l!!!!!!~!!!!!!!!!!!!!!!!!!!!
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