A PerformanceAnalysis of Delta and Huffman Compression Algorithms
*Oke A. O. , ®Fakolujo O. A, and*Emuoyibofarhe O.J

*“Department of Computer Science and Engineering
LadokeAkintola University of Technology, Ogbomoso, Nigeria
®Department of Electrical Engineering
University of Ibadan.

Email address: alitemi2006@yahoo.com

ABSTRACT

With the recent trend in Information and Communication Technology, Storage and Transfer of data and
Information are two vital issues which have Cost and Speed implication respectively. Large volume of data (text
or image) is constantly being processed on the internet or on a Personal Computer, which has led to the Upgrade
of current System. Hence the need for compression, which reduces storage capacity and effect Speed of transfer.
Data Compression is the act of reducing the size of a file by minimizing redundant data. In a text file, redundant
data can be frequently occurring characters or common vowels,

This research involves a comparative performance analysis of Huffman and Delta Compression schemes. A
compression program is used to convert data from an easy-to-use format (ASCII) to one optimized for
compactness. Huffman and Delta algorithms were implemented using C#. Result was also presented on the
efficiency of the former based on three parameters: the number of bit, compression ratio and percentage of
compression.

It was discovered that Huffman algorithm for data compression performs better, since it can store / transmit the
least number of bits. The average compression percentage for Huffman and Delta algorithm was found to be
39% and 45% respectively. Which simply implies that for a large text file, Huffman algorithm will achieve a
39% reduction in the file size and as such increase the capacity of the storage medium.

Keywords: Data compression, Huffman algorithm, Delta algorithm
1.0 INTRODUCTION

Data compression is the act of forcing data together to occupy less space or pressing data
together. Data compression reduces the size of a file by minimizing repetitive data. In a text
file, repetitive data can be frequently occurring characters, such as the space character, or
common vowels, such as the letters e and a, it can also be frequently occurring character
strings. Data compressing creates a compressed version of a file by minimizing this repetitive
data and as such produces faster transmission [5].

Most human communication is inherently redundant.this does not imply waste; rather human
beings use that redundancy as a continual crosscheck on what information is really being sent
and meant. For example, in face-to-face conversation much more information is being
exchanged than just the words. Facial expressions, tones of voice, limb positions and
movement, and other less obvious cues all contribute to the information stream flowing
between two people having a conversation. Even though much of the information is
duplicated but compression tends to remove duplication which is referred to as the
redundancy.

In other words, data compression could be said to deal with how to take a large collection of
binary bits, the life blood of digital technologies, and replaces this collection with a small
compressed version of the original bits [4].

In data communications, compression is a technique applied either in advance to information
to be transmitted or dynamically to an information stream being transmitted. The underlying

technology is essentially the same in both cases: removal of repetitive information or
expression of the information in a more compact form is used to reduce the total number of
bytes that must pass over a communication medium in order to reduce the time the medium is
occupied by a given transmission to a minimum [6].

A simple characterization of data compression is that it involves transforming a string of
characters in some representation (such as ASCII) into a new string (of bits, for instance)
which contains the same information but whose length is as small as possible. Data
compression has important application in the areas of data transmission and data storage.
Many data processing applications require storage of large volumes of data, and. the
proliferation of computer communication networks is resulting in massive transfer of data
over communication links. Compressing data to be stored or transmitted reduces the costs
involved. When the amount of data to be transmitted is reduced, the effect is that of increasing
the capacity of the communication channel. Similarly, compressing a file to half of its original
size is equivalent to doubling the capacity of the storage medium. It may then become feasible
to store the data at a higher, thus faster, level of the storage hierarchy and reduce the load on
the input / output channels of the computer system.

2.0 CODING

A code is a mapping of source messages (words from the source alphabet) into code words
(words of the code alphabet). The source messages are the basic units into which the string to
be represented is partitioned. These basic units may be single symbols from the source
alphabet, or they may be strings of symbols. Coding is a very general term encompassing any
special representation of data, which satisfy a given need.

In communications systems, coding can be said to be the altering of the characteristics of a
signal to make the signal more suitable for an intended application, such as optimizing the
signal for transmission, improving transmission quality and fidelity, modifying the signal
spectrum, increasing the information content and providing error detection and/or correction.

3.0 DATA COMPRESSION

Data and programs are almost invariably entered in alphanumeric form, and the internal
operation of computers, makes extensive use of alphanumeric codes. Alphabetic characters
must be coded in binary form in order to store in computer memories (binary form because
computer memories process it data in binary). These characters are letters such as A, a, B, b
and so on.

A wide spread code for alphabetic characters is the American Standard code for information
interchange (ASCII). ASCII [1] contains all the uppercase and lowercase English letters, the
ten numeric digits and symbols. Another popular code for representing characters is the
Extended Binary Coded Decimal Interchange Code (EBCDIC). ASCII has become an
international standard published by the American National Standards Institute. It is an 8-bit
code. 7 bits define one of 128 characters and the 8th bit is an optional parity bit.

Review of Related works

Early compression work mainly focused on disk space savingsand 1I/Q performance [9,10] and
15]. However. later works acknowledgesthat compression can also lead to better CPU
performance,as long as decompression costs are low [12]

Dictionary based domain compression, a lightweight compressionmethod where data values
are mapped to fixedlength codes, is used in the implementation of many applications andhas
been a subject of extensive research [8]. Entropycoding techniques, including Huffman

encoding [14],are considered heavy-weight techniques. Both Huffman and arithmetic
encoding have beenstudied and modified [12, 9, 11,13].

The Huffman algorithm and its variants using the Canonical Huffman coding scheme have
been reported in [11] to be effective and efficient in data compression. The canonical
Huffiman coding is a reordering of the nodes of a Huffman tree so that shorter codes have
smaller code values than longer codes and codes with the small length. In [16], C-Store was
used to delta code data for column-wise storage and compression.

3.1 HUFFMAN CODING

Huffman coding assigns each column value a variable length code chosen so that more
frequent values within the column are assigned shorter codes.

The basic idea here is assigning short code words to those input blocks with high probabilities
and long code words to those with low probabilities. Huffman code can be categorized under
the lossless fixed to variable code. The algorithm for constructing a Huffman code to
represent items with given relative frequencies of occurrence proceeds in two phases [3]. First
one constructs a Huffman tree based on the relative probabilities. Second, using the Huffman
tree, one constructs the code words that go with the given relative frequencies. A simple
example will illustrate the idea involved as shown in fig 3.1 and table 3.1.

A code is needed to represent 10 types of information (a - j) with relative frequencies.

Table 3.1.Information to be coded.
Information | a b c d ¢ f g h i]

Frequency 17 3 6 9 27 5 4 13 14 |2

In all there are 100 items to represent. One begins the tree by assigning a vertex of a tree for
each item, labeled so that the relative frequencies increase from left to right. We construct a
tree by adding a new vertex to the previously existing construction by selecting the two
vertices (say v and w) in the current structure with the smallest labels (in a case of a tie, any
two is picked) and adding a new vertex to the structure with a label which is the sum of the
labels at v and w. The new vertex is placed above and between the two vertices v and w. The
tree is now used to construct the code words associated with the ten number of information as
explained below.

The top vertex of the tree (the root) is labeled with a blank string. As we move down the tree,
the next vertex one gets to is labeled with a binary string by appending 0 or 1 to the right
according to whether one moves to the next vertex by taking a right branch or a left branch.
(e.g. “a” vertex has the string”010” associated with it). This process winds up assigning short
codeword to characters which occur frequently and long codeword to characters that rarely
occur.

Fig. 3.1 Huffman Tree

Table 3.2. Code table

X a |b c d e f g h i j

CODE | 010 [11110|1010 [110 00 1011 [1110 | 100 011 11111

32 DELTA ENCODING

Recall the use of the Greek letter delta (6) science, engineering, and mathematics to denote
the change in a variable, the delta encoding also refers to several techniques that store data as
the difference between successive samples (or characters), rather than directly storing the
samples themselves. Fig. 3.2. Shows an example of how this is done. The first value in the
delta-encoded file is the same as the first value in the original data. The subsequent values in
the encoded file are equal to the difference (delta) between the corresponding value in the
input file, and the previous value in the input file.

Original data stream: 17 19 24 24 21 15 10 89 95 96 96 95 94 94 Q0.

L

Delta encoding: -3 -6-579 6 1 0 -1 -1 0 4.

Delta coding is a branch of universal code. With universal codes it is not necessary to know
the exact probabilities with which the source messages appear; but it is sufficient to know the
probabilities distribution only to the extent that the source messages can be ranked in
probability order. By mapping messages in order of decreasing probability to code words in
order of increasing length. Delta encoding is one of the universal coding schemes, which map
the set of positive integers onto the set of binary code words [2].

To code a number, the following algorithm holds:
e Write it in binary.

e Count the bits, remove the leading one, and write that number in binary preceding
the

Previous bit string.
e Subtract 1 from the number of bits written in step 2 and prepend (affix) that many
zeros. The code begins

Integer Binary code
1 1
2 0100
3 0101
< 01100
5 01101
6 01110
7 01111
8 00100000

Table 3.3 Elias code generation.

Source message | Frequency | Rank Codeword
g 8 1 delta (1)=1
f 7 2 delta (2) = 0100
e 6 3 delta (3) = 0101
d 5 4 delta (4)= 01100
space 5 5 delta (5)= 01101
c 4 6 delta (6)=01110
b 3 7 delta (7)=01111
a 2 8 delta (8) = 00100000

Source message is the alphanumeric characters, frequency is the number of occurrence of the
character in the message, and rank is the order of most frequency character: the most
frequency character is ranked one (1), followed by the next most frequent and etc. codeword
is the code generated.

4.0 RESULT

The message “go go gophers” was implemented using Huffman and Delta algorithm. The
code generated from the two algorithms along with the ASCII equivalent is as shown in table
4.1 and analyzed below:

Table 4.1. Bits generated for the different codes

Character | ASCII Code | HUFFMAN Ceode | DELTA Code

G 11100111 10 1

0 01101111 01 0100

Space 00100000 111 0101

P 11110000 000 01100

H 11101000 0011 01101

E 01100101 0010 01110

R 01110010 1101 01111

S 11110011 1100 00100000

Standard code (ASCII) will store the message as
11100111 01101111 00100000 11100111 01101111

g 0 Space g o
11100111 01101111 11110000 11101000 01100101
g 0 p h e
11110011

s

Huffman code will store the message as
10 01 111 10 - 01 111 10 01 000 0011

g 0 space g 0 space g 0 P h
1101 1100
r s

Delta code stores message as

00100000
Space
01110010
r

0010
e

10100 0101 1 0100 0101 I 0100 01100 01101 01110

g 0 space g O space g O p h
01111 = 00100000
r s

Since data Compression is of great importance in the area of data storage and transmission,

Discussion will centre on the two areas.

4.1 DATA STORAGE

The first parameter for which the compression algorithms were evaluated is the number of bit
stored / transmitted: from fig. 4.1, it is discovered that Huffman algorithm for data
Compression performs better, since it stores the least number of bit. Also when a text file has
a number of characters occurring frequently, there is every tendency of achieving a better
compression than one with characters that do not occur frequently. This can be seen from the
difference that occurs in the number of bit from Table 4.2. for samples S1 and S2, 104 being
the same number of bit for both samples in ASCII (uncompressed form) but 37 and 40 for

€

sample S1 and sample S2 in Huffman and Delta (compressed form) respectively.

THE LENGTH OF BIT IN STORAGE MEDIUM

Standard Code (ASCII)

Number of characters: 13
Number of bit per character: 8

Word length: 13 * 8

Total bits (in storage): 104 bits

Huffman Code

Since it represents character with variable length: .
Total bits = the sum of the number of bit represented by each character.
Total bits (in storage): 37 bits

Delta Code
It also represents its character with variable length:
Hence Total bits (in storage): 43 bits

COMPRESSION CHART
This chart provides a graphical representation of the result analyzed based on the compression
algorithms. The samples tested are as follows:

S1 = go go gophers

S2 = this is a boy

S3 = go go gophers gum gum gophers

S4 = go go gophers gum gum gophers go go gum

S5 = peter piper picked a peck of pickle pepper

S6 = go go gophers gum gum gophers go go gum gumgum gophers

S7 = peter piper picked a peck of pickle pepper a peck of pickle pepper peter piper picked, if
peter piper picked a peck of pickle pepper where is the peck of pickle pepper peter piper
picked

Table 4.2. Number of bits stored / transmitted

TEXT ASCII | HUFFMAN | DELTA
S1 104 37 43
S2 104 40 52
S3 232 93 110
S4 312 120 131
S5 344 139 150
S6 440 173 192
S7 1488 633 673

The first parameter of evaluation is the number of bits stored / transmitted using
uncompressed ASCII, compressed HUFFMAN and DELTA bits against character text as
shown on Table 4.2. The same information is represented in Fig. 4.1.

UNCOMPRESSED Vs COMPRESSED

S1 S2 S3 sS4 S5 88 S7

Fig.4.1.Uncompressed and Compressed data

The second parameter is the compression ratio of both algorithms and fig. 4.2. Shows
Huffman having a higher Compression ratio.

Compression Ratio of Huffiman Vs Delta

Fig. 4.2. Compression ratio of Huffman versus Delta

The third parameter of evaluation is percentage of compression. From Fig. 4.3, Huffman
algorithm has the least percentage of compression.

% Compression of Huffman Vs Delta

—+— HUFFKMAN
—8—-DELTA

Samples

Fig. 4.3 Compression percentage of Huffman and Delta

4.2 COMMUNICATION TRANSMISSION STREAM

The sample “go go gophers” was transmitted over a communication line, using a serial data
transfer, figs. 4.4, 4.5 and 4.6 show the bit stream of the message sent for the normal ASCII
format, the generated Huffman and delta code. **In serial transfer of data, a character is
transmitted with a start bit, two stop bits and the character bit of the different format. In the
order start bit, character bit: starting with the least significant bit and stop bit.

—— e —_— ' —_—
' t I 1 1] [[1 1 1 ' 1 1 i 1] 1 1 I I []
—_— 1 i (S J S—) L] | S— L) ! L] U —) i 1 i

— L . . r g l—‘ ———

| 1 (]] | 1 ! 1 |] 1 1 | |] |]] 1 I]
—_— | —) | S—] 1 1] —_]] 1 —_ 1)

. . - i s — ' —

) i 1 1 [}) I) 1 1 1) I) 1)) 1 1] 1
—_——)] | —)] ! L J [} L e L 1 1] =0
— — . " g e ———

1 L)] 1) 1 () 1 1 L) L))

—_ L) L] L] —]] '

— —— i " — ey, —_— —
] 1 [} [} '])) L) 1)) [})]) [}] 1) L]))
B L ! —_ el i | S—) —_ —] —_ i]

—_— — fr— —_— —_—
1 '] 1]]] 1]]]] 1] 1] 1]]) ' '
—_—— | N—) ' | S— | — —_ 1 [L] L] —
— . ' — e ' —_—
[})))]])) 1) 1] 1]]] 1]] ' 1 L)
—_— i D —) | S——— i —J — i —_—] O
—_—
)] 1 ') L] '] [}]) 1)] 1 I [} 1)))
) —)] | S—]] 1) () L 1 L (] il]) L L
—_—
' i

&g Fig. 4.6. Bit stream for transmission of “go go gophers” in DELTA

5.0 DISCUSSION OF RESULT

The compression algorithm that performs better was evaluated on three parameters. These are:
the number of bits stored / transmitted the compression ratio and the percentage of
compression. It was discovered that Huffman algorithm for data compression performs better,
since it can store / transmit the least number of bit as shown in fig.6. Fig.7 shows Huffman
having the higher compression ratio. Fig.8 also reveals Huffman having the least percentage
of compression. The average compression percentage was calculated for all samples as 39%
and 45% for Huffman and Delta algorithm respectively. Which simply implies that for a large
text file, Huffman algorithm will achieve a 39% reduction in the file size and as such increase
the capacity of the storage medium. In transmission, the effect will be to reduce the time the
transmission channel is occupied and as such result in faster transmission as shown in fig.4.

It is also observed when we have a text file having a number of characters occurring frequently, there
is every tendency of achieving a better compression than one with characters that rarely occurs taking
a larger percentage. This can be seen from the difference that occurs in the number of bit in Table 4.2
for sample S1 and S2. 104 being the same number of bit for both samples in ASClI(uncompressed

form) but 37 and 43 for sample S1; and 40 and 52 for sample §2 in Huffman and Delta(compressed
form) respectively.

6.0 CONCLUSION

Huffman algorithm was discovered as better of the two schemes on the premise of the
parameters of comparison, which supports (accounted) for the use of this algorithm in many
compression processes. The advantage of Huffman coding is in the average number of bits per
character transmitted. In addition, communication costs are beginning to dominate storage and
processing costs, so that Huffman algorithm which is a variable “length-coding scheme”
reduces communication costs and consequently results to faster transmission.

REFERENCES
[1]. Alan Clement (2000). Principles of Computer Hardware, Oxford Press, United
Kingdom.
Third edition.

[2]. Elias, P.(1987). Interval and Recency Rank Source Coding: Two On-line Adaptive
Variable-Length Schemes. IEEE Trans. Inform. Theory 33, 1

[3]. Parker, D.S. (1980). Conditions for optimality of the Huffman Algorithm. SIAM J.
Comut. 9, 3 (Aug.), 470-489.

[4]. Reghbati, H. K. (1981). An overview of Data Compression Techniques. Computer 14, 4
(Apr.), 71-75.

[5]. Regis J. BUD Bates and Donald W. Gregory.(2000). Voice & Data communications
Handbook. McGraw-Hill Publisher, New Delhi.

[6]. Shannon, C. E. and Weaver, W. (1949), The Mathematical Theory of Communication,
University of Illinois Press, Urbana, III.

[7]. Steven W. Smith. (1999). The Scientist and Engineer Gmde to digital signal Processing.

[8]. Antoshenkov G, Lomet D, and Murray J.(1996) Order preserving string compression. In
ICDE,

[9]. Cormack G. (1985), Data Compresson on a Database System. CACM, 28(12).
10

[10] Goldstein, J., Ramakrishnan, R. and Shaft U. (1998), Compressing relations and indexes.
In ICDE.

[11] Raman V. and Swart G.(2006) Entropy compression of relations and querying of
compressed relations. In VLDB.

[12] Ray G, Haritsa J, and Seshadri S.(1995) Database compression: A performance
enhancement tool. In COMAD.

[13] Zandi A, lyer B, and Langdon G.(1993) Sort order preserving data compression for
extended alphabets. In Data Compression Conference.
(14]

Huffman D.(1952) A method for the construction of minimum-redundancy codes. In
Proceedings of the [.LR.E., pages 1098-1102.

[15]

[16]

[yer B. R and Wilhite D.(1994) Data compression support in databases. In VLDB.

Stonebraker M,Wong E, Kreps P, and Held G.(1976) The implementation and design
of INGRES. ACM Transactions on Database Systems, 1(3):189-222.

11

	ui_art_oke_performance-1.pdf
	ui_art_oke_performance-2.pdf
	ui_art_oke_performance-3.pdf
	ui_art_oke_performance-4.pdf
	ui_art_oke_performance-5.pdf
	ui_art_oke_performance-6.pdf
	ui_art_oke_performance-7.pdf
	ui_art_oke_performance-8.pdf
	ui_art_oke_performance-9.pdf
	ui_art_oke_performance-10.pdf
	ui_art_oke_performance-11.pdf

