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Abstract  This work presents the artificial neural network(ANN) modeling for sacrificial anode cathodic protection of low 
carbon steel using Al-Zn-Sn alloys anodes in saline media. Corrosion experiments were used to obtain data for developing a 
neural network model. The Feed forward Levenberg-Marquadt training algorithm with passive time, pH, conductivity,% 
metallic composition used in the input layer and the corrosion potential measured against a silver/silver chloride(Ag/AgCl) 
reference electrode used as the target or output variable. The modeling results obtained show that the network with 4 neurons 
in the input layer, 10 neurons in the hidden layer and 1 neuron in the output layer had a high correlation coefficient (R-value) 
of 0.850602 for the test data, and a low mean square error (MSE) of 0.0261294. 9 
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1. Introduction 
Corrosion is the destruction of material resulting from 

exposure and interaction with the environment[1]. While 
common usage typically associates corrosion with metals, 
the destruction of non-metallic materials as a result of ex-
posure to sunlight can be considered as corrosion[1]. The 
economic cost of corrosion was estimated some years ago by 
the US Department of Commerce to be approximately 5% of 
the Gross National Product[2]. However corrosion not only 
has an economic cost it can present a threat to life through the 
collapse of a structure or to the environment through the leak 
of toxic chemicals[3]. To control corrosion effectively, the 
accurate modeling and prediction of corrosion behaviour is a 
fundamental requirement[4]. Artificial neural networks are 
computational systems that simulate the Neurons or simple 
processors of a biological nervous system and have been 
used to solve complex engineering problems like corrosion 
[4,5]. Basically, all ANNs have a similar topological struc-
ture or architecture[5]. The interaction of the neurons in the 
network is roughly based on the principles of neural science. 
The neural network can learn both static and dynamic prop-
erties autonomously based on the past history of the meas-
urement data and then act in such a way that a better solution 
can be obtained under unknown environmental conditions. 
Hence they are suitable for problems where pattern  
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recognition is important and precise computational answers 
are not required[4,5]. 

Different researchers have attempted at various times to 
deploy the neural network technique for the prediction of 
corrosion rate, which have yielded very good prediction 
results compared to mechanistic models[4,5,8]. 

Yu Sun et al[9] studied the microstructure-property rela-
tionship of a titanium (Ti-6Al-4V) alloy with Artificial 
neural networks. His results showed very good agreements 
between experimental and ANN model. Tomislav Rolic et 
al[10] estimated the corrosion of steel guitar strings in the 
artificial sweat solution using neural networks. From mea-
surements and training results a high correlation coefficient 
and low mean absolute error between measured and esti-
mated output values were observed. As opposed to a deter-
ministic approach corrosion potential data (polarization 
curves) on metallic glasses, corrosion rate and weight loss 
data on carbon and alloy steel and crevice corrosion data on 
grade-2 titanium have been used for comparison and future 
prediction of the alloys’ corrosion behavior using ANN[11, 
12]. 

Artificial neural networks have also found increasing 
usage along side mechanistic approaches in determining 
evolution of corrosion rate and yield strength in certain 
Mg-Rare Earth alloys[13] and modeling pit growths in high 
strength aluminum alloys[14]. 

However, some of these applications are advanced mod-
eling techniques that are not readily available to the corro-
sion engineer who may be interested in creating his/her own 
neural network model for the corrosion problem at hand. 
Hence this paper seeks to demonstrate an attempt to create a 
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successful neural network model for an Al-Zn-Sn sacrificial 
anode protection system using a simple and straightforward 
modeling strategy. 

2. Materials and Method 
2.1. Material 

The chemical composition of the low carbon steel sample 
used is presented in Table 1. The cast aluminum anodes used 
were Al-Zn(5%)-Sn(0.1%), Al-Zn(7%)-Sn(0.1%) and Al- 
Zn(10%)-Sn(0.1%). 

In this work, the Levenberg-Marquadt training algorithm 
was used to develop a network for predicting the corrosion 
potential of low carbon steel in saline media. Corrosion 
experiments were mounted to obtain the necessary data for 
training the networks.  

2.2. Methods 

2.2.1. Preparation of Samples  
The low carbon steel specimen with dimensions of 50mm 

x 50mm x 1mm (eight pieces) were neatly cut and polished 
in a sequence of emery papers until a smooth finish was 
obtained. They were cleaned by rinsing under running tap 
water, distilled water and acetone. This was done a number 
of times to ensure that there were no traces of corrosion 
products on the metal surface 

Table 1.  Chemical composition of low carbon steel 

Element % Composition 
C 0.0329 
Si 0.0077 
S 0.0186 
P 0.0109 

Mn 0.2918 
Ni 0.0209 
Cr 0.0182 
Mo 0.004 
V 0.0011 
Cu 0.0405 
W 0.0065 
Co 0.0025 
Al 0.0172 
Pb 0.0072 
Zn 0.0049 
Fe 99.5268 

2.2.2. Experimental Data 

Electrochemical measurements were carried out on the 
low carbon steel specimens with 25 cm2 exposed geometric 
surface, protected with the aluminum alloy anodes immersed 
in 1M and 0.5M NaCl solutions. The potentials were meas-
ured against an Ag/AgCl saturated reference electrode using 
a DT9205A digital multimeter. All measurements were 
carried out at a temperature of 298 K. The pH and conduc-
tivity were measured. The experiment run lasted for 630 
hours. 

2.3. Neural Network Application for the Sacrificial 
Anode Protection System 

The MATLAB ® neural network toolbox was used for the 
ANN modeling. The system was used to assess the potential 
difference required to control sacrificial anode cathodic 
protection systems and to predict corrosion rate. A network 
with two hidden layers was used. This number is chosen 
randomly as the selection of the number of neurons was 
specified by trial and error. For the potential difference as-
sessment, the input layer received the variables (time of 
exposure, pH, conductivity, metal composition of the anode). 
The output layer gave the potential difference as network 
result. 

The tan-sigmoid transformation function was used in the 
first hidden and in the second layer, a pure line function. The 
Levenberg Marquadt feed forward neural network training 
algorithm was used with 107 samples.  

3. Results and Discussion 
3.1. Results 

Table 2 shows the correlation results and mean square 
errors using neural networks.  

Figure 1 shows the bar chart chart of the mean square er-
rors and the corresponding network structure revealing that 
structure 10 had the best performance.  

Figure 2 Shows the plot of electrode potentials versus 
exposure time for the steel samples Immersed in 1M NaCl 
solution and protected with different aluminium anodes. It 
shows that the steel sample protected with Al-Zn(0.5%)- 
Sn(0.1%) had the best performance of the three anodes 
throughout the experiment run.  

Figure 3 shows the plot of electrode potentials versus 
exposure time for the steel samples immersed in 0.5M NaCl 
solution. It shows that the steel sample protected with 
Al-Zn(10%)-Sn(0.1%) performed best of the three anodes. 

Figures 4 and 5 show a comparison between the experi-
mental and modeled potential values for the low carbon steel 
sample in 1M NaCl solution. 

3.2. Discussion of Results 

3.2.1. Effect of Exposure Time on Potential 

Within the first 72 hours of the experiment the low carbon 
steel samples protected with Al-Zn-Sn anodes with varying 
compositions gave negative potentials. The steel sample 
protected with Al-Zn(10%)-Sn(0.1%) had a more negative 
potential of up to -0.97V after about 350 hours of exposure in 
1M NaCl and -0.73V after 300 hours in 0.5M NaCl though 
the anode showed some form of fluctuations possibly due to 
uneven corrosion[7]. The more electronegative values of low 
carbon steel show that the Al-Zn(10%)-Sn(0.1%) anode is 
corroding quite fast in 1M solution. However the steel sam-
ple protected Al-Zn(5%)-Sn(0.1%) had a less negative po-
tential of -0.87V after 350 hours of exposure, implying that 
the anode is not corroding as fast as that containing 10% Zn 
and hence a better anode material in 1M NaCl solution and 
that with 5% Zn performing better in 0.5M NaCl. 
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Table 2.  Correlation and MSE for different Network Structures 

 No. of Iterations 
Correlation Coefficient(R-Value) Mean Square Error (MSE) e-2 

Training Validation Testing Training Validation Testing 
2-5-1 24 0.800092 0.811596 0.770030 3.83112 5.85046 4.33157 

2-10-1 11 0.771729 0.742407 0.861787 4.78746 4.07154 2.75595 
2-15-1 48 0.846507 0.717939 0.798170 3.73605 5.19064 5.46547 
2-20-1 22 0.798150 0.766909 0.851286 3.20208 8.20451 3.01428 
3-5-1 13 0.817244 0.796208 0.772418 2.90510 8.69564 4.36268 

3-10-1 19 0.797581 0.813279 0.812208 3.66967 5.19056 3.79440 
3-15-1 9 0.828406 0.813750 0.729404 4.26745 3.19910 3.67971 
3-20-1 10 0.831410 0.804441 0.754775 3.55374 4.62663 4.72951 
4-5-1 13 0.776210 0.817973 0.846558 3.99940 4.71449 3.77262 

4-10-1 9 0.799574 0.840233 0.850602 4.51663 2.61294 2.75250 
4-15-1 17 0.800274 0.809670 0.823734 3.61581 3.62052 3.79745 
4-20-1 21 0.819010 0.809670 0.823734 3.61581 3.62052 3.79745 

 

3.2.2. ANN Modeling Results 

From the results of the performance of twelve network 
structures are presented in table 2 and fig 1 it is evident that 
of all twelve structures used the 4-10-1 structure had the best 
R-value for test data set (0.850602), training data set 
(0.0799574), and validation data set (0.840233). The accu-
racy of this prediction is further indicated by the low mean 
square error (MSE) which ranged from 0.0261294 to 
0.0451663. The number of iterations for the five structures 
ranged from 9 to 24. 

 
Figure 1.  Plot of Mean Square Error (MSE) Vs Network Structure 

 
Figure 2.  Plot of Electrode Potentials versus Exposure Time for Low 
Carbon Steels Immersed in 1M NaCl solution 

 
Figure 3.  Plot of Electrode Potentials versus Exposure Time for Low 
Carbon Steels Immersed in 0.5M NaCl solution 

 
Figure 4.  ANN Modeling results compared with Experimental Results for 
steel protected with Al-Zn(5%)-Sn(0.1%) anode in 1M NaCl 

The 4-10-1 structure which was chosen as the one with the 
best predictive ability converged in nine (9) iterations with 
four (4) variables in its input layer ten (10) number of neu-
rons in the hidden layer and an output layer. The structure 
was so selected as the R-value of a network reflects the 
ability of a network to predict well[6] i.e. its value should be 
as close to unity (1) as possible. Hence more importance is 
attached to the R-value than to the speed of the network in 
making the prediction.  
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Figure 5.  ANN Modeling results compared with Experimental Results for 
steel protected with Al-Zn(5%)-Sn(0.1%) anode in 0.5M NaCl 

4. Conclusions 
Based on the experimental data this work has shown that;  

1) An effective neural network model for an Al-Zn-Sn 
sacrificial anode system was created using a standard com-
mercial package with nearly all the trends noticed in the 
experimental data captured by the network. 

2) Artificial neural networks can be used to predict quite 
accurately the corrosion potential of low carbon steel in 
saline media. 

3) There is a need to conduct further experiments, use a 
larger data set and apply other neural network techniques to 
test their performance over the Levenberg Marquadt tech-
nique. 
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