LAUTECH Journal of Engineering and Technology 1(1) 2003: 1-5

GENERALIZED ANALYSIS OF THE MULTI-WELL INTERFERENCE TEST IN
, HYDROCARBON RESERVOIRS.

Falade, G. K.; Isehunwa, S. O
Department of Petroleum Engineering
University of Ibadan, Nigeria.

Abstract

This study presents a generalized analytical formulation of the Multi-Well Interference test
problem using the concept of the source and sink functions as a tool for solving the basic
interference equations. The much broader case, featuring inner well boundary conditions with
skin and storage factors at both the active and the several observation wells, is considered. The
general nature of the formulation allows for the analyses of non-homogeneous reservoirs and
hence the concepts of reservoir directional permeability and the related issues of reservoir
principal axes of permeability were addressed. Most of the published cases of interference
tests were identified as limiting cases of the generalized formulation.

Introduction

Pressure Transient Analysis has become a
very important tool for reservoir
characterization. The most commonly used
pressure transient analysis technique is the
single well test, either in form of pressure
drawdown or pressure build-up tests. These
tests are based on the easy assumption of
homogeneous reservoirs, and are therefore
limited to the evaluation of volume-
averaged horizontal permeability of the

reservoir zone contacted during the test. In .

view of the averaging process of these tests
.they are  notoriously incapable of
quantifying lateral variations in reservoir
properties no matter how severe.

-Multi-well interference tests, featuring an
active well and one or more observation
wells do, unlike the single-well tests,
present powerful alternative means of using
well test as a reservoir characterization tool.
In this kind of interference tests, reservoir
parameters that relate to inter-well
properties, such as the problems of
directional permeability in heterogeneous
reservoirs, are addressed. Directional

permeability has very strong implications in
non-homogeneous reservoirs when external
energy input in form of fluid injection is
required to augment natural reservoir
energy. In these cases, good understanding
of the nature of reservoir heterogeneity, and
the directional permeability are very
important in order to choose the optimum
fluid flood pattern orientation that would
reduce the adverse effects of fluid
channeling on area sweep efficiency.
Similarly, in order to optimize production
from horizontal wells, knowledge of
directional permeability and/or the principal
axes of reservoir permeability are essential
so that wells are preferably drilled
orthogonal to the direction of maximum
permeability.

A few papers have recently been published
on the evaluation of directional
permeability using multi-well interference
tesis(l’z)‘ none of these has attempted a
unified treatment of the problems of
heterogeneity and possible directional
permeability in interference well test . In
this paper we will attempt to formulate the
interference well test equations in a



generalized form _using the concept of
source functions. This formulation would
be sufficiently general such that cases
involving homogeneous reservoirs can be

considered as special cases, and therefore
most  of the published interference
equations can be seen as limiting cases of
the generalized equation.

Problem Formulation

We consider the case of tests with a single active well and several observatlon wells as shown
in the schematic below.
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The relevant distances between any observation well 'R' and active well 'P' are as indicated in
the schematic. The pressure response at the observation well 'R' due to a production pulse at
the active well 'P', is affected by pressure interference from all the other wells within its
- neighborhood. The level of interference due to each of these surrounding wells is normally a
function of the rate at which the well is produced as well as its distance from the observation
well. The pressure response function at the wellbore of the observation well .can be expressed,
in Laplace space, usmg the principle of superposnlon in space in a generalized interference
equation given as
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In this equation, it is pertinent to note that the distance designation, rppp and rprr must each be
unity since they describe the distance of the active well from the active wellbore location and
the ‘observation well from the observation wellbore location respectively. The factor ;
represents the weighting function that reflects the level of pressure dominance of any particular
. adjoining well at the observation wellbore.

Pressure Profiles at The Observation Well

Using the above solution scheme, the pressure equations at all the ‘N’ observation wells, taking
account of their respective wellbore Skin factor (Sgr), can be expressed as:
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Equation 2, contains parameters op and og; which can be related through the use of wellbore
Storage constant (Cpgrr) and the other wellbore boundary conditions to obtain:
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o is the ratio of the fluid production rate at the observation wellbore ( j=R ) to the production
rate at the active wellbore (P).

Equation 3 is a set of N indicial equations, one equation for each of the observation s in the
multi-observation well test.

Pressure Profiles at The Active Well

Proceeding as in the observation well case, the pressure response equation at the only active

well, taking cognizance of the pressure interference from all the observation wells, can be
expressed in Laplace space as:
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And the single indicial equation that relates @g;s and @p is given as:
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Equations 3 and 5 constitute a set of (N+1) simultaneous equations from where all the functions

op, (og;, j = 1,2,3....N) can be evaluated. These equations can be expressed in terms of Vector
- Matrix notation as: : ‘
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The larger the number of the observation wells involved in the interference test, the larger the
indicial matrix equation that needs to be solved, and the more complex the analyses of the test
results.



If there were only two observation wells and one active well, then N=2 and R= 1,2; and the
indicial equation is reduced to a 3x3 matrix-vector equation given as:
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where a;; are defined as follows: ‘
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Using equation (8), the indicial matrix equation for the three well interference test can be

solved for the weighting parameters ®gr;, ®r2 and @p in order to construct the test response
equations. Even for this seemingly simple case, the test response function could, in theory, be
complex and unwieldy.

By far the most commonly used interference test geometry is the two-well interference test
geometry™>*”®_ For the very simple but general case of the two-well test (one observation
~well and one active well) N is unity; thus N=1=R. The md101a1 response equation reduces to a
2x2 matrix-vector form given as:
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Equation 9 can be solved for wpand orr. using Crammér’s rule to obtain:
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Using Equation 11 in 2 for a two-well situation where N=1=R, the pressure profile at the
observation well R can be expressed in the form:
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Similarly, using equation 11 in 4, we can express the pressure response equation at the active
well as:
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In equations 12 and 13, the function A is given as:
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Applications

If in a two-well interference test, for which generalised equations 12 and 13 are applicable, we
assume that the observation well is shut in, as is usually the case, then the parameter or
appearing in these equations becomes identically zero. - Under this condition, Equations 12

representing the pressure response functions at the observation well would simplify to the
following: :
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While equation 13 for the active wells pressure response profile simplifies to equation 16 given
as:
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The denominator of both equations 15 and 16 remains as:
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It is perhaps interesting to note the symmetry of equation 14, and by extension, the entire
equation 15, in (Cpp, Sp) and (Cors, Sxe). These sets of parameters can be interchanged without
changing the value or meaning of the entire pressure response function. Equation 15 is a very
elegant demonstration of the mathematical proof of the ‘Reciprocity Principle’®.  This
principle suggests.that it would not matter which of the two wells involved in the interference
test is used as the observation well, the pressure response measured would be same.
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If in the two well test system, the source
function G(rppg,A) is assumed to be the
instantaneous line source solution in
Laplace space, these equations 15 and 16
readily simplify to the interference
equations commonly published in the
Petroleum Engineering literature(*'?).

CONCLUSIONS

A new set of generalised formulations has
been developed for pulse test configurations
with multiple observation wells. The
formulations uses the concept of source
functions in Laplace space with the
principle of superposition in space to
“account for the different locations of the

various observation wells within the test -

domain. The new formulations allow for
wellbore Skin and Storage factors to exist
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