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ABSTRACT

The estimation of multiple characteristics using Probability Proportional to Size (PPS)
sampling scheme has introduced some complexities in sample surveys. It requires
transformation of auxiliary information into probability measures and the utilization of
correlation coefficient between study variables y and measure of size x. Existing
estimators of finite population characteristics are rigidly specified by a fixed order of
positive correlation between y and x and are assumed efficient for all populations.
However, the assumptions break down when the study variables are negatively
correlated with measure of size. In this study, a linear class of estimators that are

functions of moments in positive and negative correlation coefficients were proposed.

Using laws of proportions and probability measure theory, a class of alternative linear

estimators %

g,c were developed for use in PPS sampling schemes. Using linear

regression model with slope B and well-behaved error term ¢, the expectation of c™

standardized moment of the study variable given by

Cc Cc 2 <
Y Hy _ X—Uyx E—l¢ _ . c _ 20y 2 . .
E (—Jy ) =F [,6‘ (—Jy )+ (—Uy )] ,¢ =1,2,3,4 with g¢ = (p ag) provided a link
between moments in correlation coefficient and distribution of the target population,
where p is the correlation coefficient, u,,pu,,p. and of oy ,07 are means and

variances of y,x & respectively. The minimum variance was used as optimality

A

criterion for comparing the performance of ¢

g,c With the conventional estimator

namely, Hansen and Hurwitz’s estimator Ty, and other existing alternative
estimators namely, Amahia-Chaubey-Rao’s estimator (Z4cgr), Grewal’s estimator
(7¢), Rao’s estimator (7z) and Ekaette’s estimator (75) under the PPS sampling
design. Using the general super-population model with parameter g, the expected
Mean Square Error (§MSE) was derived for the estimators and their relative
efficiencies were then computed. Empirical studies with samples drawn from four
populations, namely; Population I,II, Il and IV having correlation coefficients,

p = 0.16,0.39, —0.32 and — 0.775 respectively were conducted.

The derived transformation for generalized selection probabilities defining the class of
1-p°€
N

linear estimators IS Pig = +ppi; c=1234 where

. . 1 " .
pi = %,X =¥Vx; orp; = %,Z =YNgz,z = - for positive and negative



correlations respectively. Provided that CV, < CV,,y, <V, K, <K, and p? <1 for
both positive and negative correlations where CV,,y,,K,and CV,,y,, K, are
coefficients of variation, skewness and kurtosis of x and y respectively and p? is the
coefficient of determination, £, . with ¢ = 2 was the best estimator for population I,
while £, - with ¢ = 1 was the best estimator for population | in terms of relative mean
square error for positive correlation. Under the same conditions and for negative
correlation, %, . with c = 2 and 4 were the best estimators for populations 11l and IV
respectively in terms of relative mean square error. At g =0, ¢&EMSE(T)) =
131.293 < EMSE (tyy) = 134.3,EMSE (1,) = 826.5 < EMSE (tyy) =

1043.0, EMSE(,) = 254.3 < EMSE(fyy) = 329.7 and EMSE(%,) = 266.3 <
EMSE (Tyy) = 229.2 for Population I, II, Il and IV respectively. Similarly, when
g =1, éMSE(t,,) < EMSE(tyy) for all populations. However, at g =2, Ty is
relatively more efficient than the alternative estimators. All estimators converge to
Tyy When p = +1 and to 75 when p = 0.

The developed alternative estimators accommodated all dimensions of correlation
coefficients. The derived estimators also reflected the structure of population

distribution and enhanced its power of estimation.
Keywords: Probability proportional to size, Multiple characteristics, Standardized

moment, Population distribution.
Word Count: 483
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CHAPTER ONE

INTRODUCTION

1.1 Preliminaries

In this thesis, we consider the development of alternative estimators of
population total Y, of a real variable y defined on a survey population of known
number N of identifiable units, i = 1,2, ...,N. To realize this, we consider sampling
schemes that are considered complex in the sense of differing from simple random
sampling (SRS) with replacement (WR) or without replacement (WOR).

We shall consider 7, the estimator of population total using both design and
model postulations connecting the study variables y and the selection probabilities p;

Throughout this study, finite survey population will be assumed.

For an uninterrupted flow of discussions in later chapters, we present the basic
concepts and definitions in this section.

A finite population g is a collection of a known number, N of identifiable
units labelled 1, 2, ..., i, ..., N; 9={1,2,...,i,...,N}, where i stands for the physical unit
labelled i. Let the unit y; be associated with the variable i, (i=1,2,...,N), then we
associate vector of real numbers y = (y1, Y2, ..., Yn) With @, where y is the study
variable which is assumed unknown. Thus, we are interested in estimating a parameter

function 6, say, population total,

T= ?’21 Vi B |
and
SE=(N-1D1YL (y; - V)? 1.2

By choosing a part of the population from g and observing the values of y only on the
units in the sample. A sample is a part of a population. It is drawn either with

replacement (WR) or without replacement (WOR). In WR sampling, it is a sequence:



S = {il,iz,...,in};l < it < N, t = 1,2,...,7’1

i; denoting the result of the t" draw. Here, i; is not necessary equal to i.. Usually, a
non-zero probability of selection is allocated to every unit that is selected in the

sample  at any specific draw.
Under WOR sampling, a sample is a sequence
s ={iy, iy inh 1 <i, < N,i, #i fort # t' (= 1,2,..,N),
as repetition of units in s is not permitted.

Let A be the minimum o-field over @ and p be the probability measure

defined  over A such that p(s) is the probability of selecting s satisfying

p(s)>0
v p(s)=1} 1.3

then a random sample is selected using a sampling design p. Obviously, a sampling
design (SD) is a function defined as

P:S - [0,1]; Ysesp(s) =1 1.4
where,
S = {s:sep}

An ordered design p(s) is called fixed size design (FS design) if n(s) is constant
for all se g such that p(s) > 0. For this constant sample size, we have FES(n) design.

Godambe(1982) stated that this occurs when
[v(s) # n] - [p(s) = 0], seS. .15

The probability of inclusion of a population unit in the sample is defined as the  total
probability assigned to a population unit for being included in the sample in all

draws.

Let s 3 i denotes all samples S that include the i unit for a given sampling

design and s 3 i, j denote all samples S that include the i"™ and j™, j#i , 1<j<N, then the



first order and second order inclusion probabilities are 7; and 7;; respectively, defined

by

T = X2 P(5) .16
and

T = Zsai,j p(s) W17

A sampling scheme (SS) gives the conditional probability of drawing a unit at
any draw given the result of the previous draws. It specifies the conditional
probabilities

pr(ir\il,f L] ir—l) ...1.8

Hanurav(1962) stated that for any given sample design, there exist at least one

sampling scheme which realizes this design.

Now, when a sample has been selected, data is usually collected from the field. We
define this data set as:

d = {(k,y;), k € S} 1.9

It is assumed here that the data so collected is free from response and
measurement errors  and is correct. Upon this data set and using the PPS sampling

scheme, an estimator
T =e(s,y) ..1.10

which is a function defined on @xR" (with R" being the N-dimensional Euclidean
space) such that for a given (s,y), its value depends on Y only through those i for ies.
This brings to bear the desirable properties of a good estimator which include,
unbiasedness, admissibility, efficiency as well as sufficiency. The common
expectation of every researcher is that the  desirable estimator be unbiased.

Basically, an estimator is unbiased for Y with respect to a sampling design p if
E,(e(s,y)p(s) =Y vy e RV

= Yses(e(s,y)p(s) =Y 2111



where E, denotes expectation with respect to sample design (SD) p is true. When

(1.11) is false, then the estimator under consideration is biased.

A combination of sampling design p and estimator 7 is called a strategy denoted by

H(p, 7). H(p, ) is also unbiased for Y if (1.10) holds true and its variance
V{H(p,t) = E(f = Y)? ..1.12

Following the non-existence result, Godambe and Joshi(1965) developed
admissibility criteria for an estimator 7 in the class C which is uniformly better than
1. This along with work by Basu(1971) opened up the modern scope of inference with
respect to finite population, Rao(1966a) made a surprising revelation when he
proposed alternative estimators in ~ PPS sampling scheme that appeared to be more
efficient than the conventional unbiased estimators even though the estimators were

biased.
For this reason, we consider the Mean square error (MSE).
The MSE of 7 around Y with respect to sampling design p is
MSE(%) = E(t = Y)? = Yses(2(s,¥) = Y)?p(s)
= E(t — E(%))*+ (E(®) — Y)?
= V(%) + (B(%))? 113

A sampling design SD(p) for an estimator £ (say) is said to be better than another
design SD(p’) in the sense of variance if variance of SD(p) is less than the variance of

SD(p’) for another estimator 7, that is,
L@ <KE)VyeRrY 114

with strict inequality holding for at least one Y. This comparison is only possible when
the sampling design is kept fixed. Similarly, a sampling strategy H(p, 7) is said to be

better than another strategy H’(p’, ’) in the sense of variance if
V{H(p, )} < V{H'(p )}V y € RY ..1.15

with strict inequality holding for at least one Y.
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Next, we extend these strategies under the super-population (SP) model set up.
In actual practise, information about the study population is not known. In the absence
of this information, it is possible to utilize SP model to formalize the prior knowledge
of the population under study.

Super-population model is usually imposed to give an idea about the relative
performance of strategies appropriate to the model (Mukhopadhyay, 1996). Under this
set up, a survey population is looked at as a random sample from super-population and

inference is drawn about population parameter from a prediction theorist viewpoint.

Assume that y=(y1,¥2, ...,yn) IS a particular realization of a random vector
Y=(Y,Y, ..Yn) having a joint density &, indexed by a parameter vector
0 = (04,0,,...,6;),0€0, parameter space, then &, belongs to a class of

distribution C={&,}. Therefore, C is called a super-population model.

Now, given a sample S and corresponding y-values. Let X=( X1,X2, ...,XN),
Xi > 0 be the corresponding auxiliary information, then & is usually modelled to reflect
the auxiliary information so that one can estimate the unknown parameters and infer

on the finite population.
Let the model based unbiased ¢ -unbiased or estimator be defined as
() =1,V €O and Vs:p(s) > 0 ..1.16

and &, v and C denote the expectation, variance and covariance with respect to super-

population distribution &,.
It is design —model based unbiased if
E¢(t,) =1,V0 € O. 117
For comparing estimators under super-population model, the expected MSE is
EMSE{(p,®)} = EE(t —Y)’Vy e RV ..1.18

is best utilized when it is desirable to predict the total of the current population
from which the sample has been drawn from. For comparison of estimator t and t’,

say, interms of MSE, we have



EMSE{(p,7)} < EMSE{(p,t)}Vy e R ..1.19

In this work, the criterion for judgement under super-population model is the
expected variance of an estimator under a given sampling strategy. Consequently, the
role of the super-population model £ is to choose between different strategies and has

nothing to do with our final inference, which depends on the sampling design.

With respect to a given super-population model &defined on RV, we shall

define the followings:

ui = [ y:dé, 1<i<N
of = [(yi — w)?dé, 1<i<N ..1.20
Oij = J i —.Ui)(f(yj —,uj)df, i#j=1,..,N

So that the expected variance is

v =¢&V{(p, 1)} = [V(r)d¢ .1.21

Let C denote the class of distributions & of Y satisfying the followings:

i Wi = Bx;, 1<i<N
ii. of =ax!, a>0,g=0, 1<i<N
iii. 0;; =0, i#+j=1,..,N
where

C=o0;;,v=0’andy; are the covariances, variances is the expected value

g

respectively.

Smith(1938), Jessen(1942), Mahalanobis(1944) and Brewer(1963) have shown
that the value of the parameter g lies between 0 and 2 as it relates to a sampling

design.

The major interest in this study pertains to PPS WR or WOR sampling upon
which the robustness of our estimator will be investigated in terms of the expected

mean square error (MSE).



be

1.2 Use of Auxiliary Information in Surveys.

In survey sampling, information on a highly positively correlated auxiliary
variable x with the study variable y is used to estimate the population parameter .
most often, these information may be available in one form or the other and if used
intelligently, it leads to the sampling strategies with higher efficiency compared to
those in which no auxiliary information is used. The auxiliary information could take
different forms for some population units. This could be  in the form of parameters
say, t(y). Examples are, u,, C,, CD(x) which are the population mean, coefficients of
variation and determination of x respectively, and so on and this information could be

known exactly or approximately.

Tripathi (1973, 1976) identified three ways in which auxiliary information could

utilized. These include;

I At the pre-selection stage or design stage. Here, auxiliary information
could be used for stratification or to form clusters;

ii. At the selection stage by use of probability proportional to size WR or
WOR;

iii. At the post selection stage or estimation stage by using such estimators like
ratio, regression, difference or product estimators for the population

parameter of interest.

Higher precision could be achieved by using the auxiliary information for dual

purposes of selection and estimation procedures (Tripathi, 1969, 1973).

In this study, auxiliary information giving rise to measure of size (or probability
normed-size measure) is assumed at both the selection and estimation stage under
linear regression, ratio, product and difference estimators as demonstrated in the
works of Singh, Singh, Tailor and Allen(2002) and Singh and Tailor(2005).

As a slight deviation from the usual estimators, we considered the statistical
distributional properties of a target population under linear regression model for
which the intercept parameter is zero to generate the expectation of the study
variable in the linear regression model and the expectation of the c" standardized

moment of the study variable given the measure of size variable.



These moments provide important information useful in specifying or
definingan  estimator. We define the coefficient of variation (CV), coefficient of
determination (CD), coefficient of skewness (y) and coefficient of kurtosis (K) as the

parameter realized by these moments. These are defined as;

ay 1N 2 1/2
Cy =#—,Where oy = |y 2i=1 (Vi — iy) ] : 122
y
1
My =3 X1y .1.23
2
(D=p*=1-5,0<p"<1 124
y
L 3
Yy =E(yla—3#y)'3 ..1.25
and
K _ E(J/i_“y)4 1 26
2 E— 21

Generally, the c™ central moment is defined by

Ei—m) =i —m)p(y)dy  c=1234 .1.27

The essence of these moments is to provide a link between statistical properties
enumerated above with the population correlation coefficient and by doing so, provide

criteria for defining an estimator under the linear model.



1.3 Complex surveys

In order to estimate the parameters of a survey population like population total or
mean, various sampling strategies have been developed premised on the kind of
information required. Thus, in large-scale surveys, data on several characteristics of
the study population are collected. Usually, selection of units from the population
rarely involves just simple random sampling (SRS). Instead, more complex sampling
schemes are employed to reflect complex underlying population structure. Most real

life surveys employ the following features namely;

I combination of sampling schemes;

ii. auxiliary or supplementary information which are known to assist in
realizing a more efficient estimate of parameters when properly
utilized,

iii. transformation of auxiliary variable used in calculating selection
probabilities and utilizing the correlation between the study variables

selection probabilities.

Unequal probability sampling (UPS) otherwise called probability proportional
to size (PPS) sampling scheme is employed in complex surveys as it is suitable to

designs and estimation of parameters in multiple character surveys.

Earlier works in complex surveys include that by Neyman(1934) on stratified
random sampling, optimal allocation and logic of inference based on confidence
intervals and Sukhatme (1935) on Pilot samples to implement Neyman allocation.

Conventional and the existing alternative estimators of population total have
always assumed positive correlation between the study variables and the selection
probabilities. However, it is known that correlation coefficient could also be negative

in which case, there are a few literatures addressing this area.

Importantly, the existing estimators have always been assumed to be the best for
all populations and conditions. This is not always the case following the non-existence
of a uniformly most efficient estimator theory by Godambe(1955) and Basu(1971).
For these reasons, this work is intended to utilize the available information about the
study populations in order to develop alternative linear estimators in PPS sampling

with replacement (WR) and without replacement (WOR) designs.
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1.4 Alternative Estimators

The concept of “alternative estimators” denotes unconventional estimators or
estimators that are different from the usual ones. The idea of alternative estimator is
similar to that of hypothesis testing in which the usual hypothesis is the “null”
hypothesis while the alternative hypothesis provides an option different from the usual
one. Srivastava and Srivastava(2009) identified five standard senses of alternative
hypothesis in which one population (or estimator in this case) is said to be located to
the right of the other.

Specifically, suppose that the study variable of interest is y; {i=1,2,3,...,N}. Let
the measure of size variable be x; {i=1,2,3,...,N} from which selection probabilities
pi=xi/X are derived. Let p;* be the selection probabilities realized through certain
transformation of p;. Then, we can define a conventional estimator £, and an
alternative estimator say, %, . in terms of p; and p;g* respectively. The hypothesis

would be:

H,: MSE(%,) = MSE(%,,.)
against the alternative

Hy: MSE (%) # MSE(£,,) .

Certainly, if MSE(%.) > MSE(%,.), then the alternative estimator would be
preferred, where MSE (£.) and MSE (%, ) are mean squared errors of the conventional

and alternative estimators respectively. It is worth to note that the estimators under

comparison could all be biased or unbiased.

In this study, we draw inspiration from the works of Godambe(1955,1956),
Rao(1966a, 1966b), Basu(1971), Amahia, Chaubey and Rao(1989), Grewal(1997) and
Ekaette(2008) to develop alternative estimators when positive correlation between y
and p; exists and further insight from the contributions of Bedi(1995) and Bedi and
Rao(1997) to develop alternative estimators with negative correlation coefficient
between y and p;.

10



1.5 Aim and Objectives of the study

The major aim of this study is to develop a class of alternative linear estimators

for use in multi-character surveys.
The specific objectives include:

i To propose generalized selection probabilities under linear framework
for both negative and positive correlation between the study variables
and selection probabilities by utilizing the " o(c =1, 2 3, 4)
standardized moment of the study variable;

ii. Modifying the conventional Hansen and Hurwitz estimators for use
under conditions of negative correlations;

iii. Utilize the proposed transformations to develop alternative linear
estimators in PPSWR and PPSWOR designs;

iv. Investigate the consistency of some specified estimators under normal,
theoretical distributions namely, normal, uniform, gamma and chi

squared distributions.
1.6 Justification

The conventional estimator in PPSWR sampling and PPSWOR sampling
schemes is useful only when it is assumed that the correlation coefficient between
study variables and measure of size variables is positive. This is not always the case;
correlation coefficient may be zero in the sample (as in Rao’s estimator) or a negative

quantity.

Previous studies on alternative estimators have defined PPS estimators with
respect to positive correlation coefficients between the study and measure of size
variables. However, these estimators are rigidly specified by the claim that a particular
estimator is best for all study populations. Also, existing alternative estimators only
consider the distribution of the target population with respect to the correlation
coefficient p. In this work, we add the standardized moments in the study variables

under linear framework.

Thus we developed a class of alternative linear alternative estimators that

utilize moments in correlation coefficient and takes into cognisance the distributional

11



properties of the survey population. The cases of negative and positive correlation
coefficient between the study variables and selection probabilities are also

investigated.
1.7 Significance of the study

The general class of alternative linear estimators defined by moments in
correlation coefficient is intended to introduce flexibility in the definition of estimators
for survey population. As every population possesses unique properties, their
estimators would definitely have different specifications. This is further justified by
the non-existence theorem of a uniquely efficient estimator for all populations due to
Godambe(1955) and Basu(1958, 1971).

This procedure allows the use of precise estimators under different set-ups.
1.8 Scope and Limitation of the study.

Our study considered only linear transformations of the selection probabilities
for use with homogenous linear estimators (HLE). It limits itself to uni-cluster and
uni-stage sampling schemes. However, the findings of this thesis can be easily

extended to those designs which are mostly applicable in large scale surveys.

1.9  The arrangements of this thesis

In addition to this introductory chapter which contains the various definitions
and explanation of basic concepts used in the sequel, the present work contains five

more chapters as follows:

In chapter two, we presented detailed review of existing literature that bothers
on historical developments in sampling methodologies and hence, PPS sampling
scheme. In other word, we showed the various developments from inceptions up to the
point we are making our contributions with the aim of providing estimators that will

depend largely on information obtained from moments of the target population.

In chapter three, we made some propositions leading to the development of
the methodologies needed in this research. Firstly, we utilized the laws of direct and
inverse proportions to propose transformations of selection probabilities in both cases

of positive and negative correlation coefficients that will be needed. This is because;

12



they are pivot elements for defining PPS estimators. The transformed selection
probabilities p; were generalized under linear regression model and by this
generalization, a link between correlation coefficient and the statistical properties
defined by the first four standardized moments of the study variables was established

so that we could estimate the desirable parameters of the study population.

By the methodologies above, we postulated that under the linear model, first
order correlation coefficient p! was given by the ratio of the coefficient of variation of
y and coefficient of variation of x; p? was linked with coefficient of determination; p3
was linked with skewness while p* was linked with kurtosis. The range of the

specification parameter c, was also defined.

In chapter four, we developed a class of linear estimators 7, . defined by the
range of the specification parameter c¢=1,2,3,4 and utilized them in the process of
estimation and inference. This scenario was conducted under certain transformation

for both cases of positive and negative correlation under PPSWR and PPSWOR designs.

We utilized the technique of Rao-Hartley and Cochran(1962) to study the
relative efficiency of the estimators in this class at varying correlation for n > 2,
specifically, n = 5. Similarly, the super-population model is utilized for comparing our
estimators with some existing estimators that fall in this class as well as conventional

estimators.

In chapter Five, we presented the various results of analysis for the four study
populations with sample of sizes n = 2 and n = 5 for both sampling design and super-
population model for the proposed and conventional estimators. We further
investigated the consistency of the proposed estimators under some theoretical
distributions namely, normal, uniform, gamma and chi-squared distributions. Thus,
selection probabilities were simulated under normal, uniform, gamma and chi-square
distributions and various estimates as well as their relative efficiencies were computed
for both sampling design and super-population model for g =0, 1, 2; p =0, 0.1, 0.5,

0.9, 1 and the estimate of the correlation coefficient for the target population, p.

Comparison of estimates for realized by the class of linear estimators was also made.

13



Chapter six presented the summary of the major results reported in this work.
The areas of possible future extension of works contained in this thesis are also

included.
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CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction.

In this chapter, a review of related literature pertaining to unequal probability
sampling is presented. We shall introduce various developments in survey sampling
that led to the realization of multi-character survey and then, discuss various PPS

sampling schemes with respect to their designs and estimation using direct responses.
2.1 Trends in Sampling

In the study of sample surveys and random experiments, Dalenius(1962)
observes that the development of statistical theory and methods has grown
tremendously in response to demands for tools to cope with the problem of uncertainty
which arises when dealing with observations exhibiting variability. These studies are
guided by the necessity of being able to measure the degree of uncertainty and the
desire to regulate these uncertainty, which is a central problem in the theory and

method of statistical inference.

The credit of placing “sample survey theory and method” within realm of
random experiment is largely due to Neyman(1934) in whose paper marked the
beginning of the concept of “probability Sampling”. Madow(1948) obtained a result
in probability sampling which was generalized. Turkey(1950) advanced the analytical
tools for deriving higher moments using polykays as well as the derivation of moment
coefficient of the k-statistics in the works of Wishart(1952).

The need to regulate the degree of uncertainty required the choice of criterion,
that is, the measure of efficiency and the techniques for using it. Neyman(1934)
introduced the criterion of minimizing the variance subject to fixed sample size. Yates
and Zacopany(1935) gave a more general formulation of minimum variance (MV)
subject to fixed cost and vice versa which has govern the design of large sample today.
The area of inference have been explored by various scholars including
Royall(1971a,1971b), Rao and Singh(1973), Royall and Cumberland(1981a,1981b),
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Das and Tripathi(1978) and Mukhopadhyay(1977,1978,1984,1991), and
Godambe(1982).

The development of basic models meant for schemes used in survey also took
various dimensions. Neyman(1934) formulated and solved the problem of the best
allocation of sampling units among strata in stratified sampling. Jessen(1942)
demonstrated the efficiency to be achieved in using a ‘panel” when estimating changes
in time. Hansen and Hurwitz(1943) extended the theory of sampling from finite
population to cover complex designs and also introduced a scheme for multi-stage
sampling using probability proportional to size to efficiently determined measure of
size for selecting primary sampling units. Cochran(1946), Madow(1949), Yates(1948)

developed the theory of systematic sampling.

The development of basic models follows some schemes of classification namely:

i the simple random sampling group comprising the, Y, R and Y models as
can be seen in the works of Basu(1958) among others;

ii. Stratified sampling which became very prominent owing to the problem of
how best to stratify a population into a fixed number L, of strata. In this
regards, progress have been made in determining optimum number of strata
as well as developing computationally simple methods for approximating
the exacts solution;

iii. systematic sampling as a solution to the problem of measuring the degree
of uncertainty;

iv. Sampling n > 1 with unequal probabilities as a scheme developed by
Hansen and Hurwitz(1943) which is characterized by sampling with
replacement. The need for more efficient estimator gave rise to the use of
sampling without replacement;

V. another aspect is the sampling scheme which selects a sample from the
population to the sum of the measure of size with unequal probabilities
which is often used in the selection of primary units in multi-state sampling
scheme.

Our interest in this study is the estimation of sampling schemes under probability

proportional to size otherwise, called PPS sampling.
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2.2 Unequal probability sampling

Marriot(1990) defined the term Unequal probability sampling (UPS) as a
method of sampling in which the units are selected with probability proportional to

size (PPS) measure related to the characteristics under study.

Unequal probability sampling is either with replacement called Unequal
Probability Sampling With Replacement (UPSWR) otherwise called Probability
Proportional to size with Replacement (PPSWR) sampling or Unequal Probability
sampling Without replacement (UPSWOR) otherwise called Probability Proportional
to size Without Replacement (PPSWOR) sampling.

The theory of UPS with replacement was developed by Hansen and
Hurwitz(1943). Prior to this development, there existed other sampling theory and
practices as contained in the work of Neyman(1934) among others that assumed that
the probability of selection within each stratum would be equal. Since then,
considerable progress has been made with the contributions of many workers in the
development of this area of study thereby, realizing tremendous progress over recent

times.

Many works have been done covering the aspects of sample selection from a
given universe and it has been shown that UPS provides more efficient estimator of
population parameter than obtained from equal probability sampling. Thus, the
theoretical framework by Hansen and Hurwitz(1943) otherwise called HH has become

a cornerstone for the developments that sprang up in this area of study.

Madow(1949) proposed the use of systematic sampling with unequal
probability to avoid the possibility of units being selected more than once.
Midzuno(1950), and Narain(1951) considered the problem of sampling with varying
probability without replacement. This was followed by Horvitz and Thompson(1952)
who gave the theoretical background, Yates and Grundy(1953) and Sen(1953) who
studied a more general method of sampling without replacement (WOR) and with
varying probabilities, pointing out that the variance of the population parameters under
Horvitz-Thompson estimator (HTE) is uniquely determined by the first and second

order inclusion probabilities of units in the sample for a chosen design. Usually, the
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value of the auxiliary variable is chosen such that it is closely related to the study

variable.

Attempts have been made to develop fixed sample size sampling designs with
inclusion probabilities proportional to size (IPPS) measure called nPS design due to
Hanurav(1967). Many sampling designs such as those due to Yates and Grundy(1953),
Hanurav(1962), Fellegi(1963), Rao(1963), Hajek(1964), Caroll-Hartley(1964),
Durbin(1967),  Sampford(1967), Vijayan(1966,1968), @ Mukhopadhyay(1972),
Sinha(1973), Sengupta(1981), Gupta, Nigam and Kumar(1982), Saxena, Singh and
Srivastava(1986), Arnab(2001), Adhikary(2009), Alodat(2009) were developed using
HTE.

Apart from sampling strategies consisting of nPS design and corresponding
HTE, some other procedures of interest were developed. These include the Rao-
Hartley-Cochran(1962) otherwise called RHC procedure, Midzuno(1950,1952) and

Chikkagoudas(1967) which make use of several estimators other than HTE.

Procedures developed by Midzuno(1950,1952), Lahiri(1951),
Sankarnarayana(1969), Despande(1978) gave unbiased estimation for ratio estimators.
Mukhopadhyay(1972) and Sinha(1973) attempted to obtain sampling designs realizing
a second order inclusion probabilities. This problem was also considered by
Harzel(1986).

Das(1951), Raj(1956) and Murthy(1957) have suggested certain special
estimator for use with YG(1953)’s draw-by-draw procedure. Works reviewing various
sampling designs can be found in Brewer and Hanif(1983), Chaudhuri and Vos(1988)
and Mukhopadhyay (1982).

Recent developments in the theory of PPS sampling have covered the areas of
estimation involving indirect responses otherwise called, Randomized Responses (RR)
whose estimation technique was developed by Warner(1965). The works of
Arnab(1990), Chaudhuri  and  Adhikary(1990),  Chaudhuri(2001a,2001b),
Chaudhuri(2002), Chauhudri and Pal(2002), Sidhu, Bansal and Singh(2007),
Chauhudri and Dihidar(2009) and Chauhudri(2010) have advanced the studies in this

area as pertaining estimation of population proportions and totals.
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2.3  Probability Proportional to Size With Replacement Sampling.

Sampling with replacement is described by Rao(1966a) thus ““ a fixed number
of ‘n’ units is selected with replacement in contrast with simple random sampling
without replacement where units are selected without replacement so that all the units
in the sample are distinct.

Hansen and Hurwitz(1943) proposed the idea of sampling with probability
proportional to size without replacement. Under this scheme, one unit is selected at
each of the n-draws. For each i™ unit selected from the population, a selection

probability is given as
p; = "; 2.1

where x; is the measure for i™ population unit and X = >N«

Using the notations defined above, Hansen and Hurwitz(1943) gave the estimators of
population total Y, as

%HH=12y—f ..2.2

whose estimator of the variance V (% ) 1S

V(7 ) =

:SlH

ii - ...2.3

i=1 p|

and the possible unbiased estimators of population variance are given as

i=1

N B 1 n h_’\ 2
V(THH)_n(n—l)ZKpi THHJ .24

and

V(7 ) = v 1)2 3 (—-—'Jz .25

=1 j=1, j=i | pj

Rao and Hartley(1962) proposed a method for estimation of variance that

always have smaller variance than the standard estimator in sampling with unequal
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probability and with replacement. This method does not entail heavy computation,
even for a sample of n>2 and it enjoys the advantages of exact variance formula for
any population size as compared with the asymptotic variance of Rao and
Hartley(1962).

Rao(1978) looked at the robustness in large samples of the Hansen and
Hurwitz strategy considering the population to be divided into two domains of sizes
N; and N, in which case, the units in each domain obey the super-population
model. Rao(1978) also compared the average biases of the two strategies assuming
the size variable in the two domains to be independently and identically distributed
gamma variable. Here, Rao(1978) concludes that the ratio estimator in SRSWR may

perform better than the usual PPS estimator in PPSWR sampling scheme.

Royall and Herson(1973) and Godambe and Thompson(1977) considered
specifically a situation in which the model failure of super-population model consists

of latent order polynomial term in x or an intercept 3o,

Brewer(1979) pointed out that the Rao- Hartley(1962) use of stratified
balances sampling scheme was a result that depended on the variance function in the
primary model. Therefore, he proposed a combined estimation and selection scheme
for use in large scale enterprise and establishment surveys. Brewer(1979) also
demonstrated that his estimator is design-unbiased and subject to this constraint, has

minimum expected variance under super-population model.

The advantage of Brewer’s scheme over the Rao-Hartley’s(1962) scheme is
the removal of size stratification and it further allows for more general variance
function thus, permitting a more efficient relationship between selection probability

and unit size.

To enhance the efficiency of the HHE, Rao(1966a) introduced the idea of
multiple characteristics and utilized the value of zero correlation coefficient in

defining his estimator of population total.

Works ascertaining the validity of this estimator was carried out by
Pathak(1966) and Rao(1993a,1993b). This introduced a new dimension in the study of
PPS sampling schemes leading to various estimators by Bansal and Singh(1985),
Amahia-Chaubey and Rao(1989), Kumar and Agarwal(1997), Grewal(1997), Ekaette
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(2008), Singh and Horn(1998), Mangat and Singh(1993), Srivenkataramana (1980),
Sahoo, Sahoo and Mohanty(1994) among others. These estimators shall be properly

discussed in latter section under multi-characteristics.
2.4 Probability Proportional to size Without Replacement Sampling.

The concept of Unequal probability sampling without replacement was first
used by Madow(1949) having utilized it with systematic sampling to avoid situation in

which a unit is selected more than once.

Narain(1951) provided theoretical framework and selection procedure for this
scheme which was fully developed by Horvitz and Thompson(1952) who suggested
the estimator of population total, 747, popularly called HTE for use with unequal

probability sampling without replacement defined by

A _ Yi

Thr = Dies - ..2.6
Whose variance was given as

A (1-m;) (i —mim;)
V(tyr) = ZN 171—7371'2 + Zﬁvzl j'v:l,j;f:i#yiyj W20

L= T[iT[]'

which Godambe and Joshi(1965) showed that under super-population model, the
variance of Horvitz Thompson estimators attains lowed bound for any sampling

design with the bound given as
EyEp(Gyr — V)2 23XV, 6 (ni - 1) ..2.8

Sen(1953), Yates and Grundy(1953) provided an alternative expression of the variance

of Hansen and Hurwitz estimator as

2
n 1N N (mimj—my) (yi i
Vevr(Byr) = =SN_ SN ) 02X ..2.9
SYG( HT) 9 4i=1 Z]—l,]il mij LI 7

They showed that for n=2, it is a non-negative variance estimator. However,
Sen(1953) have showed that for n = 2, zj; >7yr; for all i # j when selection is made
without replacement. Specifically, Vijayan(1968) identified the condition for which

the HT and YSG estimators are unbiased and efficient, specifically, for a finite

population consisting of N units and a positive valued auxiliary variable, taking the
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n
X X
value of x; and given a positive integer n satisfying max X <= =" then we
i n n

seek to find a sampling procedure satisfying the following conditions:

ii. each sample contains n distinct units;

iii. 7y >0
iv. i STO 5
’
V. -3 > £ for B not too close to zero
TTi7T 5

]

Conditions (i) and (ii) above ensure the optimality of the sampling method in
the Bayesian sense as proved by Godambe(1955) and Hajek(1958). Condition (iii)
ensures the existence of unbiased variance estimator and (iv) ensures non-negativity of

the SYG’s estimator. Condition (v) ensures the stability of SYG’s estimator.

Rao(1963) proved that under the Midzuno(1952) and SYG(1953) selection
procedures for zpswor , the YSG estimator is always positive. Rao and Singh(1973)
used the Brewer(1963) selection procedure to compare the HT and the YSG estimators
for n =2, employing a wide variety of population in which case, findings showed that
the estimator of YSG is more stable than that of Horvitz and Thompson(1952). Brewer
and Hanif(1983) and Shahbaz(2004) and Shahbaz and Hanif(2003) showed the same

result.

The usual issue of concern in the application of the HT estimator is that the

variance estimator of HT and that of SYG all require the computation of the joint

inclusion probability, =;;, and they are very difficult to apply especially as the

ij
computation of 7; becomes very cumbersome. Several workers in the area of study
have attempted to find approximations to the variance of HT in such a way that it does

not involve the computation of 7z;;’s. A simple approximation of 7 in terms of 7;’s
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) 1 . ..
and 7y’s for selection procedure that ensures that p;= Eﬂ'i, otherwise, z;=2p, is given

by Brewer(1963), Rao(1965), Durbin(1967) and Sampford(1967) as,

Brewer and Hanif(1983) gave two approximation of 7;;’s:

2 2
7 y=Ar,m +B(r+7 )+ C(ri+7s)

nz _nzﬂ.? 2

where A=———, B= = and C = n

Approximation Il

This is given as

n?-> z? (n*-2)[n*-3 771 (n-2)[n*-3 7]

..2.10

2211

..2.12

and it has been found that this approximation performs well even when a few values of

;i are close to unity with each term being less than half of the proceeding one. The

problem with this approximation is that it may not perform well when any 7z;’s is

close to unity.

Harzel(1986) suggested another approximation of 7;; as

rl-7z)+7;1-7)) néﬂ-i
Ut N -2 TINZD)(N=2)
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which may produce negative values of 7;;.

Hanif and Ahmad(2001) proposed another approximation to z;; as

a,+a
72'”:( ]ﬂ'iﬂ'j
2
214

where a; and a; are carefully chosen in which case, they showed that

so that when substituted in the variance formula of Horvitz and Thompson, we obtain

2

N n-1 Yi Y

V(y' )= (- L=,
(yHT) ;7[|( n—ﬂ'iﬂ-i(ﬂ'i nj

..2.16

Rao(1961) derived an expression for the variance of systematic sampling using the

relation as

TR RS 1

n. T

n-1(3, 5 7wl o)V ¥
| | 2 [izl:Zﬁi Z.Zﬂj](ﬂi n]
+2(n_1)(iﬂiyi—%-2”?j

n3

2.7

which is accurate to order N°. Rao(1961) further showed that the asymptotic variance

formula to order N° for a sample (n=2) is

et (YY) s L) vy
V()= 2 2)(m 2] 2[Zni 4-Zﬂjj[ﬁ 2)
+A(ZN:72iyi—%.Z7r?j

..2.18

where A =3/32 for Narain(1951) procedure, 1/8 for Caroll-Hartley(1964) repetitive
procedure and ¥ for random systematic procedure of Goodman and Kish(1950).
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Rao(1963) further showed that the approximate formula of order n® for a

sample of size n is

V()= Y- [L_zj

n, \z; n
I

..2.19

The work by Shahbaz(2004), Sahoo, Mishra and Senapati(2005), Senapati, Sahoo
and Mishra(2006), Adhikary(2009) bothered on the improvement of PPS estimators
and so, developed new estimator of population total following the method of Horvitz
and Thompson(1952), Murthy (1957) and the Durbin (1967) selection procedure.
Efficiency of the new estimator was compared with various existing estimators for a
sample of size 2 and also derived a Design-based and Model-based variance and found
out that Model based variance achieved the Godambe-Joshi lower bound. There are
several other developments in this area of variance estimation which could further be

exploited.
2.5  Estimators in PPS sampling with replacement for multiple characteristics.

Studies involving estimation of population parameters relating to several
population characteristics gave rise to the use of auxiliary variable which provides a
measure of size for selecting a sample of units with PPS sampling scheme. Here, it
might happen that some of the study variables are poorly correlated with the selection
probabilities used for PPS sampling scheme while some may be highly correlated with
the study variable. It is also possible that the dimension of the correlation coefficient
could be positive or negative.

The work of Hansen and Hurwitz(1943) and propositions by
Mahalanobis(1944) and Godambe(1955) prompted further studies in PPS sampling
scheme and hence the developments in this area of knowledge. Work on the analysis
of dispersion in sample survey involving multiple characteristics was done by
Chakravarti(1954) with less emphasis on estimation of parameters of interest.
However, there was remarkable development in the area of estimation and inference in
the following decades. This was again prompted by the need for design and analysis of
complex surveys as in Hajek(1958), Hartley and Rao(1962), Chikkagourdas(1967)

and Hanif and Brewer(1980) among others in order to firstly address the problems of
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developing economies in the 1960’s and 1970’s and secondly, develop the theory of

survey sampling.

Rao(1966a) in his study of the number of chickens in a farm (Y) and the farm
size (X) being the auxiliary variable saw the variables of study to be poorly correlated.
Thus, he proposed an alternative estimator when the study variable and the auxiliary

variable are unrelated defined as

A 1 [
t=-yN 2 ..2.20
n p;
where
« 1
pl - N'

For this, he demonstrated that the estimators though biased, are likely to have smaller
Mean square error (MSE) than the corresponding conventional unbiased estimator
particularly in small samples. Again it is argued that the bias of such estimators are
same for all sample sizes unless the study variable and the auxiliary variable are

uncorrelated, in which case, they are unbiased.

Bansal and Singh(1985, 1989, 1990) observed that the circumstance
considered by Rao(1966a) is not a common occurrence in the real life since population
correlation between the study and auxiliary variable is never exactly zero. Thus Bansal
and Singh(1985) suggested an alternative estimator to cater for the correlation that
might have existed between the study and auxiliary variable. Here, it is assumed that
the variables under consideration are poorly correlated. Again, this estimator
comprises a transformation that is non-linear in nature and is assumed efficient for all
populations. To appreciate the beauty of this work, we specify the linear estimator of

the form:
T = Z?I:l bSiIsiyi .2.21

1, ifi€s
where I;; =10,if i € s’ and bsi is weight not dependent on yi but is design specific,

Thus the estimator proposed by Bansal-Singh(1985) is given as,
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A 1 i " _
t=1Eh, pi=A+1/N)'PA+p) -1 222

Amabhia et al(1989) observed that the work of Bansal and Singh’s(1985) made
mention of bias of the new estimator which was expected to be smaller than
Rao(1966a) but did not derive any expression for bias or compare them. They further
argue that it is not quite usual to assume that the expected value of the residual

variance takes a well known form while using super-population model as used by
Bansal and Singh(1985). Again, it is observed in Amahia(1989) that the use of p; is
without motivation except that it reduces to P; when p=1 and 1/N when p=0.
Importantly, the values of p’ are in some cases, negative and in most cases, do not

sum to unity.

On this note, Amabhia et al(1989) provided simpler alternative estimators of the
population total when there is positive correlation between the study and auxiliary
variable. One of such estimator is:

LS 1 i * 1-—
= TPl = o .2.23

satisfying all the boundary conditions of a probability normed-size-measure.

Grewal(1997)’s estimator mimics that of Amahia but with the transformation

1— 1/3
pi = ——+p'Pp, .2.24

and observed that in some cases, it performed better than the Amahia et al’s(1989)
estimator.

Singh and Horn(1998) also proposed an alternative estimator for estimating
population totals in multi-character survey sampling when certain variables have poor
positive correlation and others have poor negative correlation with selection
probabilities. They showed that the estimators proposed by Hansen and Hurwitz
(1943), Rao (1966), Singh, Singh and Shukla(1993) and Sahoo et al. (1994) are
special cases of the proposed estimator.
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Singh and Tailor(2003, 2005) suggested series of estimators of population

totals under certain transformations of selection probabilities among which include the

followings:

. 1\ (1=p)(1+p) 140)/2 _7PA=P)/Z N 1-p)a+
pii=(1+7) @+ A+ p) (3)@P—1 225

« _ A-p)+p) 1 1 n 1 - 296

Pio=—7—+3lpA+p)p] —p(1—-p)p;] 2.
where

pi =X =3, x 2.2
and

pi =X =2k ..2.28
with

X—nx; N
zp === X ==X 229

The transformations combined two forms of selection probabilities as well as
two dimensions of correlation in a single scheme. They are non-linear in nature and
hence complex. Another estimator proposed by Singh, Grewal and Joarder(2004) has
the transformation defined by

—-p(1-p)/2 —
)P(1+P)/2(pi—) (1) (1-p)(1+p) ..2.30

pi = (o m

They also proposed a general class of finite population parameter estimators in
multi-character survey and showed that the proposed estimator by Bansal and
singh(1985) and Amahia et al(1989) are special cases of the general class of estimators
for PPSWR strategy. The general class based on Taylor’s approximation, defined the

estimator as:

N 1
T, =2,y (HP)) .231

with variance
N 1
v(ty) =~ (XY yPpi(H@))? — (Bl yi piH (0:)] .2.32

with H(p;) satisfying the regularity conditions.
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Ekaette(2008) observed that the claim by Singh, Grewal and Joarder(2004) of
having the estimator by Bansal and Singh(1989) in the generalized linear class of
estimators is not true as the transformation used by them does not always satisfy all
the boundary conditions of normed size measure namely, 0<pi<l and YV p, = 1.

Therefore, Ekaette(2008) proposed an alternative estimator defined by

n _ 1N yipi
Tg,a —-;;zh=1757' ..2.33
with

1—p¢
pi’ =——+p"pi

where p* satisfying all the boundary conditions.

Recent developments include the works of Gajendra, Singh and Singh(2010) that

considered multi-auxilliary variables and post-stratification.
2.6 PPS estimators under negative correlation.

When the auxiliary variable x is negatively correlated with the study variate y,
Robson(1957) proposed the product estimator of the population mean or total and was
further developed by Murthy(1964).

Since then, a lot of development have been made in this area of product
estimator including the works of Srivenkatarmana(1980), Singh(1986), Menedez and
Ferrales (1989), Agrawal and Jain(1989) and Sahoo(1995). Studies on multivariate
product estimators that deal with auxiliary information include the work of
Olkin(1958), Singh(1967), Lui(1990), Agarwal and Panda(1993), Singh, Singh and
Shukla(1993) proposed a general class of product type estimator under super-

population model and also multivariate product estimators.

Works that utilized the coefficient of variation in estimating the finite
population total include that of Das and Triparthi(1980), Sisodia and Dwivedi(1981),
Singh and Upadhyaya(1986), Pandey and Dubey(1988), Singh and Singh(1998), Singh
and Taylor(2005), Singh and Kumar(2009) among others.

Scholars such as Sahoo, Sahoo and Mohanty(1994), Bedi(1995), Bedi and
Rao(1997), Singh and Horn(1998), Sahoo(1995), Sahoo, Mishra and Senapati(2005),
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Sahoo, Das and Singh(2006) and Sahoo, Senapati and Mongaraj(2010) worked on
negatively correlated characteristics with complex transformations of the selection
probabilities with little applications to PPS sampling schemes. Thus, the question on
the efficiency of the estimators under PPS sampling schemes was not properly

addressed.

To devise an estimator in PPS sampling scheme when it is apparent that the
regression slope indicates inverse relationship between the study and measure of size
variables we shall show that Hansen and Hurwitz’s(1943) estimator only requires a
little modification under certain law of variation to realize an estimator for negatively

correlated variables.

2.7 Moments in correlation coefficient

Classical regression estimation makes the assumption of normality of model
components and based on this assumption, estimation is made. This assumption does
not always hold as in most cases, researchers involved in empirical researches deal
with samples drawn from population and apart from being highly variable, are non-
normal. Conventional and alternative estimators in probability proportional to size
(PPS) sampling utilized the correlation structure based on this assumption without
regards to assumption failure. It is based on this note that we examine the failure and
suggest alternative estimators that will be applied under assumption failure.

Dodge and Rousson, (2000,2001) showed that, in the context of linear models,
the response variable will always have less skew than the explanatory variable and this
also applies to the kurtosis of the two variables. These facts can be used to determine
the direction of dependence specifically, using third and fourth order moments, and
information concerning the deviation of variables from normality. Thus modelling the
variables is sensitive to various data distributions, sample size and simple correlation
structure. Other workers in this area include Muddapur(2003), Shimizu and
Kano(2006), Sungur(2005), Rovine and von Eye (1997), Rodgers and Nicewander,
(1988).

We shall show the theoretical relationship between correlation coefficient and
other statistical properties such as coefficients of variation, determination, skewness

and kurtosis from the statistical moment perspective. Here, we draw inspiration from
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works of Roger and Nicewander(1988), Dodge and Rouson(2000), Sungur(2005),
Dodge and Yadegari(2009) to establish the theoretical relationship between correlation

coefficient and other statistical properties that are related by the model

where ¢ is an error random variable independent of x. The model coefficients are o and
S which are model intercept and slope respectively. In ratio estimation, it is usually
assumed that the intercept parameter is zero. The covariance between x and y is given
by

Cov(x,y) = E[(x — E[x])(y — E[yD] = Boi +2.35

and the correlation coefficient is

_ Cov(xyy) _ Ox
Py = T ety = B - ..2.36

where o, and o, are standard deviation of x and y respectively.

Let y be the response variable and x be the explanatory variable. Then, the
skewness of x and the skewness of y are defined by the third moment, that is,

_ E(X_E(x))3 _ H3x

yx = T = aé 237
and
_EG-E@)® _ K3y
Y = 3 =3 ...2.38

respectively.
The fourth moment, the kurtosis of x and y, is

Kx =T=0—;} ...2.39
and
_ 4
K, = BEOD _ ey ..2.40

g g

Yy Yy

respectively. We assume that x, y .~ N(0; 1) with y =0 and K = 3.0 where y and K are

coefficients of skewness and kurtosis respectively.
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CHAPTER THREE

GENERALIZATION OF SELECTION PROBABILITIES IN PPS
SAMPLING DESIGN.

3.1 Introduction

In order to develop alternative estimators in probability proportional to size
(with or without replacement) sampling designs taking cognizance of the moment
characteristics of the target populations as well as correlation coefficient, appropriate
transformations of selection probabilities are developed. The generalized
transformation incorporated moments in correlation coefficient between study and
measure of size variables so as to provide the required probability normed-size
measure. In essence, appropriate specification of the selection probabilities is a prelude

to estimation in PPS sampling.

In this section, we shall show that ratio estimator is a consequence of positive
correlation between the study variables and selection probabilities. Next, we present
the generalization of the resulting probability normed-size measures. Furthermore, we
shall propose a transformation of selection probabilities under law of inverse
proportion. The transformation is proposed for use when negative correlation between
the study and auxiliary variables is encountered. This leads to the modification of the
conventional estimators, namely, Hansen and Hurwitz Estimator (Zyy) or (%.) or
simply HHE in the case of PPSWR sampling design and Horvitz and Thompson
Estimator (Ty7) or simply HTE under PPSWOR or niPS sampling design.

To achieve this objective, a link between correlation coefficient and statistical
properties namely, coefficients of variation, determination, skewness and kurtosis will
be established under linear framework which will, to a larger extent, help in the

specification of the PPS estimators.
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3.2  Transformation for selection probabilities under positive correlation.
In this section, we begin by specifying the homogenous linear estimator of the form:

t = %L1 beilsiyi, .3.11

1, ifi€s
I; =10,if i ¢ s isan indicator variable

and

A

bsi is the weight not depending on y; but on the sampling design. . is the

conventional estimator of population total.

Hansen and Hurwitz(1943) defined this estimator as

. 1 ;
Thn =~ ieca = ..3.1.2

where p;* is the transformed selection probabilities. In the case of Hansen and Hurwitz

Estimator (HHE), pig* = pi; pi=X/X and X = 2x;.

Rao(1966a) provided an alternative estimator of population total, Z which is useful
when the study variable and the selection probabilities are unrelated. The

transformation for this estimator is defined as
=1 .3.1.3

where N is the Population size of both the study and auxiliary variables.
Bansal and Singh(1985) proposed an estimator g, whose transformation is given as,
p;i=0+1/N)P(1+p) —1 ..3.14

where p is the population correlation coefficient.
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Amahia, Chaubey and Rao(1989) proposed alternative estimators 74,z for estimating
population total when there exist positive correlation between the study variables and

selection probabilities. The transformation required by this estimator is given as;

1

p; = %p + pp; ..3.15

which satisfied boundary conditions of probability normed-size measures.

Other scholars in this area include Grewal (1997) whose estimator ;, mimics the

work by Amahia but with the transformation

1-p1/3
pi = ; + p3p; ..3.1.6

and discovered that in some cases, this estimator performed better than the Amahia et
al’s(1989) estimator.

Ekaette(2008) proposed an alternative estimator 7z, whose transformation is of the

form;

a 1-

pi = ;a + p%p; 2317

where p* satisfying all the boundary conditions of probability normed-size measures.

We note here that the use of a by Ekaette(2008) in p” is without justification as
earlier, Grewal(1997) have used a=1/3 with p{ satisfying the boundary conditions.
However, the view of Ekaette(2008) pointing at Bansal and Singh’s(1985) estimator as
not a member of this class holds true as the transformation utilized by the authors is

non-linear in p; under a linear framework.

Secondly, the use of the super population parameter o in the function, p{* is not
very appropriate as minimum variance is always attained at a=[0.1] under the super-
population model and this exaggerates the range of o defined by the Ekaette’s
estimator. We posit that o should be thought of as moments in correlation than a
parameter in the super-population model. Thus, p{ = f(N,p% p;), i=1,2, ..., N,

aeR>0 is a consequence of statistical properties which makes p/* = f(N, p%,p;) a
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function in p; and also a function in p® thereby, giving rise to the o™ ordered moments

in p.

For convenience, let a be defined as ¢ and p; = f(N,p%, p;) then the
behaviour of p° can be ascribed moment in p, which can also be linked to the
behaviour of coefficients of determination, skewness, kurtosis or coefficient of

variation.

Definition 3.1: Consider a finite population Q of N identifiable units uniquely labeled
i=1,2, ..., N on which are defined two real valued variables y and x assuming y;(>0)
and xi(>0). Let a sample of size n be drawn with replacement from Q and we suppose
that y and x are positively correlated, then the conventional estimator is the ratio

estimator especially when the regression line passes through the origin.

To justify this definition, we are establishing that the ratio estimator results
from the law of direct proportion.

Theorem 3.1: Lety ocx or p be such that y and x or p are positively correlated. As a

consequence of this relationship, the estimator of population total is Ty = % ?:1Z—i :
which is the Hansen and Hurwitz’s estimator, Ty .
Proof: Lety; ocx; or p; then
Yi = i
and
=Y/ pi.
Taking summation on both sides over the sample, we have
nt = ?:1;%
so that
t=2yn Yo 3.1.8
n Pi
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Theorem 3.2: If y o« x or p with 7z = Y;—X defining the classical ratio estimator, then

the required transformation for the selection probabilities is

D =§ 319
Proof: Ify o« x =y o p, then
Xi
pi =+

.. . A iX _ . . . .
This is also evidenced in Tz = yx— = y;p;"! when size measure is being considered so
i

X

that pi‘1=§or pi =

3.3 Generalized Linear Transformation under Positive correlation.

Proposition 3.1: The function expressing the relationship when y and x or p are

positively correlated is of the form:
Pig = Pixi + & ...3.1.10

Proof: expression 3.1.10 is a special case of linear regression model which is linear in

x and hence, pi.
It is obvious that 3.1.10 is useful when B; and hence, p is positive.

Proposition 3.2: Let f(N, p¢,p;) = B1p; + € so that y and p are directly proportional.
Let pi i = 1,2,...,N) be a set of selection probabilities with Y,;eq p; = 1 and let there
be a function say, f: N*[0,1]*[0,1] — [0,1], then, f must be a function satisfying the
following regularity conditions:

i  fN,0p)=1V1<i<NNEN

iii. 0< f(N,pp;)) <1,vV1 <i <N, NEN, c>0, p>0;
iv. N fWN,pp) =1, 0<p°<1,NEN, c>0,p>0

We shall justify the propositions above by theorem 3.3 below.
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Theorem 3.3: If fis uniformly continuous in p;, and fulfils the regularity conditions

(i) — (iv) above, then,

fFWN,p&p) = (1 =g())N+ g(©)pi,0 < g(c) 1,0 < p; <1,9(c) = p°.

Proof: Let 1 <i<j<k<N,i#j#k be fixed points and let pxe = Px-c; Pj, = Pj,, Pi.c =
Pi+¢, then from (iv) for py, k=1,2, ..., N and px+¢ , k=1,2,...,N, we have

SN, g(),p) =1 and T, F(N, g(©),pe) = 1 3111
So that
1 (N, g(©), o) =21 (N, g(€),pre) =0 L3112

= Y (N, g©),p) =X f(N, g(0),pive) + Xy f(N, g(),pr) —
M f(N, g(c),pk-e) =0 L3113

Dividing (3.1.13) by € and taking limit as e—0, we have

d d

o f N, 9(C),piy=1 f(N, g(C), iy ..3.1.14
Now, fixing p; as constant and varying p;’s in (3.1.14), we get

d

5N g(0),p) = g(c) = f(p) ..3.1.15

Now, integrating (3.1.15) we get

[ ZfWg@.p)d®) =g(@) [ f@)AP) = ¢ +g()*pi  ..3.116
Taking summation over (3.1.16) we get

1=N=*C +g(c)* XLy p;

For non-negativity, 0 < g(c) <1 and hence, N*C;+ g(c) = 1.

Therefore,

Ci=(1- g(&))N? 3117
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which depends on N and p°.

Since our task is to select the term g(c) as a function of c, then we choose g(c) = p°

so that

* 1-p°¢
fN,p%,p)) = pig ==+ p°D; ..3.1.18
with 0 < p°<1.

Expression 3.1.18 is the generalized transformation required for defining the class of

linear estimators in PPS sampling scheme.
It is clear from the expression above that by

i. condition (i) above , when p=0and ¢ =0 theng(c)=p°=0;
ii. condition (ii) above, when p=1and ¢ >0, then g(c)=p°=1

iii. condition (iii) above, when 0 <p®<1 and c # 0, we have

— % 1-p°©
fN,p%p) = (1= g()NT" + g(p; = piy ==+ p°Dy ~3.1.19
which concludes the proof.
3.4 Transformation for selection probabilities under negative correlation.

In this section, a transformation to further the work on linear estimators in PPS
sampling when the study variables and size-measures are negatively correlated is
proposed. We also show that under homogenous linear estimator in which the study
and auxiliary variables are inversely proportional, the required estimator is obtained by

transforming the measure of size variables x.

Definition 3.2: Consider a finite population Q of N identifiable units uniquely labeled
1,2, ..., N on which are defined two real value variables y and x assuming Y;j(>0) and
Xi(>0). Let a sample of size n be drawn with replacement from Q and we suppose that

y and x are negatively correlated, then the conventional product estimator is defined by

A _ YiXi
t == ...3.1.20
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Direct transformation of selection probabilities in the case of 3.1.20 above will
yield an estimator that is meaningless even though it possesses the properties expected
of an inverse relationship between y and x. Thus, our desire in this study is to modify
the HHE which permits the use of a measure of size instead of the conventional

product estimator. We consider the theorems below:

Theorem 3.4: Lety o 1/x such that y and x or p are negatively correlated, then the

transformation for the selection probabilities required here is
Zj

pi =7

where

Z; = xiand Z = Z?l:lzi.

1/x; —p; = Zj
Z?’=11/xi . Z

Proof: Ify oc1l/X =y ocz, wherez =1/x. Then, p; =

Remark 3.1.1: Under the transformation above, p; is the selection probabilities
realized for a relationship that is inversely proportional. It will be sufficient to utilize
the PPS estimator to obtain the estimate of population characteristics instead of the
conventional product estimator because the transformation has changed the correlation
coefficient from negative to positive.

Remark 3.1.2: We shall call these selection probabilities as probability Proportional
to Z, otherwise, PPZ and the corresponding estimator as the Modified Hansen and
Hurwitz Estimator (MHHE).

Remark 3.1.3: This transformation has the properties of harmonic mean

Remark 3.1.4: This transformation can be utilized in 3.1.19, that is, the generalized

transformation for estimating population characteristics of interest.
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3.5 Relationship between p and other statistical properties.

Now, we show the links between correlation coefficient and other statistical properties
such as coefficients of variation, determination, skewness and kurtosis based on
expectation of the linear regression model as well as the expectation of the c"

standardized moments of the study variable in the linear regression model below.
Proposition 3.3: Consider the linear model
y=fx+e ..3.1.23

Where y is the response variable, x is the explanatory variable,  is the slope
parameter and ¢ is the error term, Then, the expected value of the ¢ standardized

moment of the study variable is given by

c c
E (m) —F [Ig ("‘“X) + (ﬂ)] c=1,2,3,4 ..3.1.24

o AR
Proof:
From 3.1.23, we have
Y=ty =B — ) + (e — ) ..3.1.25
Standardizing 3.1.25 above, we obtain

YoHy _ B—ps) n (e—ue)
Oy Oy Oy

— poy(x—,ux) + oc(e—he)
0x0y 0:0y

_ PG (U_g) (e=He)

Ox ay O¢

The ¢ moment of the standardized variable y is:

(y—ﬂy>C _ [p(x—ux) + (g) (s—ug)]c
oy Oy ay oe

whose expectation is
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where Rs,, = (Z—S) is the ratio of the standard deviation of the error term to the
’ y

standard deviation of y.

Expression 3.1.24 is the generalized expression for expectation of the ¢ standardized

moment.

Specifically, when ¢ = 1, we have

B(2) = efp(22) +h,, (22) |

®,1 =p'®, 1 +R, @ ...3.1.26

Tey " g1

1

where

pl=2xl= 3127

This occurs when the error term is well behaved, moreso as the expected value of

standardized moment at this point is equal to zero.

Under linear model, ¢ = 1 is the specification corresponding to when p — 0. This
supports the claims by Rao(1966a) and other co-researchers who ascribed the
estimator to situation when there exist poor correlation between the study variables

and selection probabilities.
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When ¢ = 2,

2
X — € — 2 X — €—
=Elp< a“") l +E[R05'Y( 0#8)] +2p2R§”E< aﬂx>< aﬂg)
X & X &

Dy, = p’Dyy +RE, D, ..3.1.28
But @, , = 1; ®e,2 = 1; and also (I)y’2 =1.

Therefore,

1=p%+R? ...3.1.29

Ocy

Under linear framework, Rg&y <1 always. At this point, two scenarios can be

identified, namely;

i. when R7,  is negligible. Here, p? — 1.

ii. when R7,  is a quantity in [0,1] and p* » 1.
Empirically, we observe that ;

a) ifR7, =0(say), thenp*=1; p=1;

b) if R7,, = 0.1(say), then p> = 0.9; p = 0.94;
c) ifR7,, = 0.2 (say), then p* = 0.8 ; p = 0.89;
d) if R7, = 0.3 (say), then p* = 0.7; p = 0.83;

e) if R7, = 0.4 (say), then p* = 0.6; p = 0.77;

f) ifRZ, = 0.5 (say), then p*> = 0.5; p = 0.71;

g) ifR7, = 0.6 (say), then p* = 0.4; p = 0.63;

h) if R7,, = 0.7 (say), then p> = 0.3; p = 0.54;

i) if Rﬁg‘y = 0.8 (say), then p? = 0.2; p = 0.45;

j) if Rﬁg‘y = 0.9 (say), then p? = 0.1; p = 0.32;

k) if R7,, = 1(say), then p* =0;p =0
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Condition (a) above was assumed by Hansen and Hurwitz(1943) while condition (k)
above assumed by Rao(1966a). These extreme conditions are found to be very rare in
real life happenings. Suppose we assume conditions (b) to (j) say, we have instances of
what we may call “weak”, “moderately low”, “moderately high” and “very high”
correlation coefficients. We can conclude here that the appropriateness of the

specification parameter, ¢ = 2 is when Rgs_y tends to unity and p is “moderately weak”.

When ¢ = 3,
F() = o (52) +ha, (52) |

3
X — X — U \% (€ —
=Elp< a'ux) l +3p2RU£'yE< 0“") ( 0“*’?)
X X &

X — € — Ug\? € — Ue\3
* 3pR§S'YE ( o. Mx) ( o, Mf) * Rgs’yE < Mg)
X &

3

This implies that

(Dy,3 = p3®x,3 + SPZRJE‘}, (Ds,lq)x,Z + SpRi,y (DS,Z(Dx,l + Rgg‘y (D&‘,3 ..3.1.30
so that
Yy =P°Vx + RS Ve, ..3.1.31

where y, = @, 3; v, = ®,3andy, = @, are the skewness coefficients of y, x and €

respectively.

Again, if R3_and hence R3, v. are negligible, then
p3 = ;—y ¥, % 0. .3.1.32

Now, p3 = };—y <1 =y, <y,satisfying 0 < p* < 1.

Remark 3.1.3: 3.1.32 above expresses the third power of correlation coefficient as

the ratio of the skewness coefficient of y and x.
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Forc =4,

B(52) = E[p(52) +R,, (529 |

2

X — Uy 4 X — Uy 2 €~ Ue € — U *

= 4E(—) + 6p*R2 E( )E( ) + R} E( )
p o, P Rs,, o, o ey

O¢

4

Dy 4 = p*®, 4+ 6p*R;, Dy Dyp + R5, Dy ..3.1.33
Now,
Dy 4 —3=p*[@e4 —3+3] +6pRS_ D 2D, +R; [Des—3+3]—-3.3134
Now,
K, = p*K, +3p* + 6p*(1 — p*) + (1 — p*)?K. + 3(1 — p*)* =3

= p*K, +3p* + 6p% —6p* + (1 + p* —2p?) K. +3(1+p*—-2p%) -3

= p*K, + (1 — p?)?K, ..3.1.35
IfK, =0,
pt ="K, #0 ..3.1.36

Expression 3.1.36 represents the forth power of correlation coefficient as the ratio of
the kurtosis of the response variable and the kurtosis of the explanatory variable. This

can be interpreted as the percentage of kurtosis which is presented by linear model.

. K . . . ..
Certainly, p* = K—y < 1 is expected when linear relationship is true.

Similarly, under 3.1.23,
E(y) = BE(x) + E(e)
=ty = By + pe

(o2
=Pt e He =0,
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so that

Uy o cv,
pl="22x=—x ..3.1.37
Ux Oy vy

Under ratio estimation, Cochran(1977) have shown that the variance of Ratio

estimator is less than SRS when s2 4+ R%s2 — 2Rs,s, = 0 so that p > = < 1 be
Yy y 2¢y

fulfilled.

Having expressed the correlation coefficient in terms of moments, we can observe the

followings:

1OV, _
= WlthCVy;EO,

y

i) p
ii) p? =1—R5_;R7 _doesnottend to zero.

i) p3= :—Y<1; ¥, # 0 and

iv) p*= % <l; K, # 0.

The question then is how do these moments translate into the specification
parameters of the alternative estimators for the target population? Let us define the
correlation coefficient as “weak” when 0<p<0.25, “moderately low” when
0.25<p<0.50, “moderately high” when 0.51<p<0.75 and “very high” when 076<p<l.

We observe certain moments such that when p — 0, the specification parameter is

¢c =1 if and only if p! = % < 1. The second moment with ¢ = 2 is the required
y

specification when p is "moderately low” especially when p? — 0 or 0.25<p<0.50,

Similarly, when p3 = :—y <1and ngis a small quantity, then ¢ = 3 is the appropriate

specification for the proposed estimator and this happens when 0.51<p<0.75 in what is

termed here as “moderately high” correlation. When 076<p<I1, then ¢ =4 would be

specified especially as p* = Ili—y < 1and Rj,, — 0. This occurs when p becomes very

strong.
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3.6  Range of the Specification Parameter c

Considering the generalized transformations defined in 3.1.19 above, we make the
following propositions:

Proposition 3.1.5: From 3.1.19 above, let g(c) be such a function g:[0,1] for which
f2[N][0,1][0,1]—[0,1] in the probability measurable space is defined, then g(c) = p°,

¢ > 0 satisfies the regularity conditions (i) to (iv) associated with f above.

Proof: the result is evidenced in (3.1.27), (3.1.29), (3.1.32) and (3.1.36) above when
the stated conditions hold true.
Proposition 3.1.6 Usually in 3.1.19 above, under positive correlation, 0 < p <1 and
1
hence 0 < p¢ < 1. However, if p¢ > 1, then the transformation of the form pc is a
1
necessary substitute for p¢ satisfying 0 < pc < 1.

Proof: since we desire a transformation of the form g(c): [0,1]—[0,1], then from
(3.1.27), (3.1.29) (3.1.32) and (3.1.36) we can see that:

pc =0= p1/c — Ol/c :

pc =1= p1/c — 1l/c_

l/c

Thus, p°and p- are members of the domain g(c):[0,1]—[0,1] hence the proof.

By the propositions above, we can conveniently define the range of the specification

parameter in the interval defined by the c™ moments as ¢ = [1/4, 4].
3.7 Characterization of estimators in the linear class.

Considering the generalized transformation in 3.1.19 and the range of the

specification parameter given above, we can characterize the estimators as follows:

i) p’=0, = p; = I/N, which is the Rao’s(1966a) estimator;
i) p’=1, = p; = pi, which is the Hansen and Hurwitz’s(1943) estimator;

iii) 0 <p°< 1, c=1,is the Amahia et al’s(1989) estimator;
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iv)  0<p®<1,c=1/3,is the Grewal’s(1997) estimator;

V) Following our definition of c, we can see that ¢ =[1/4, 4] in which
estimators in i to iv above are contained. Thus our proposed estimators in
the linear class include the followings;

a) 0<p®<1,c=2when p?is moderate ;

b) 0<p°<1,c=3when p3=1—y<1;and

c) 0<p®<1,c=4when p4=2—y<1

When conditions in (a), (b) and (c) above do not hold, then c takes the

values %2, 1/3 and ¥4 respectively.

Similarly, under negative correlation, our propositions and hence theorems showed
that under the transformation, the correlation structure is changed thus, by the
symmetric properties of correlation and the derived correlation under the

transformation from 1/x to z, we have the followings:

I. p°=0, = p; = I/N which is the Rao’s(1966a) estimator;
ii. p°=-1, = p; =p;i which is the Hansen and Hurwitz(1943) estimator.
iii. -1<p®< 0 = p; , which is the proposed generalized transformation for

use when the study and auxiliary variables are negatively correlated.
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CHAPTER FOUR

PROPOSED ALTERNATIVE LINEAR ESTIMATORS IN COMPLEX
SURVEYS

4.1 Introduction

In the previous chapter, we developed certain transformations for selection
probabilities under positive and negative correlation coefficients between the study
and measure of size variables. We showed that the structure of correlation coefficient
changes to direct relationship under inverse transformation. We also, provided links
between moments in correlation coefficient and statistical properties namely,
coefficient of variation, determination, skewness and kurtosis will be established under

linear framework.

In this chapter, we shall develop a class of alternative linear estimators which
shall be compared with the conventional estimators and also the existing alternative
estimators that belong to the linear class using the design based optimality criteria;
namely, relative efficiency measured by the relative mean square error (MSE) for
PPS sampling design as well as the expected MSE for super-population model that
will be derived. An expression for determining the approximate value of the
specification parameter ¢ will also be derived so that for a given population, it will
provide a necessary guide for the specification of estimators defined by ¢=1,2,3 and 4
for target populations. The proposed estimators shall be compared with the
conventional estimators for a sample sizes of n=2 under PPS design and n = 5 under

the Rao-Hartley and Cochran procedure.
4.2  Alternative linear estimators in PPSWR sampling scheme
We consider the homogenous linear estimator (HLE) of the form
t, = Yieabsi Iy, i=1,2.3, ..., N LAl

where
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I (o, if igs
512{1, ifi €S
and b are weights not depending on y;’s but on the sample design. Let £, . be the
estimators of the population total defined by the generalized transformation g under
the ¢ moments, then under PPSWR sampling, bs; = 1/(npig*) so that our estimator of

population total becomes

. _1lg i
Tg,.c o lEQp;g! 42
where
* _1—9(C)+ ith _~C =1.2.3.4: 0<p<l. c>0 43
iLg — N g(c)pi’ Wl g(C) p’C_ 169957, P ,C LA

so that 4.2 is the proposed estimators realized by propositions 3.2, 3.3 and theorem
3.1t0 3.4 above.

Our interest in this study is therefore, to develop linear estimators of
population totals in PPS sampling scheme defined by the moments, ¢ = 1, 2, 3 and 4

only.
4.2.1 Design based bias of the proposed estimators

Now, our proposed estimator under PPSWR sampling scheme is bias as

A 1 IsEQ) _ 1 iDi
E,(ty) = ;Ziegw = ;Zies% Y
Theorem 4.1: Lety;, {i=1,2,3, ..., N} be a finite population under study and let x;,
(i=1,2,3, ..., N} be the values of the auxiliary variable associated with the i study
variable yielding the coordinates, (x;,yi). Suppose that these variables are correlated

such that 0<p<1, then the variance of the estimator of population total is defined by

Np;
P ») A4

By (1) = (1= pINRCOV( o
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Proof: The design based bias denoted as B,,is therefore,

B, (fg.C) = E, (fg,C) —Y

_ I EQy)
- ZLEQ * - Y
Pig

Isip;
=ZieQ( : —1)3’i

"
Pig

= diea (—Npi - 1) Yi

1-p+Np°p;

= (1 - p°)N2COV(— & —,p)) >0 .45

1-p€+Np€

Np;

— N2 N v S
Now, let k = N2COV ( ;b

,pi), then from 4.5 above, the bias of the proposed

estimator is a decreasing function as p—>1.

Importantly, B,(%,1) < B,(%,2) < B,(%,3) < B,(%,,4) for all values of c. The term

Np;
—p°+Np°p;

cov(

Np; : ;
Di ,pi) is the covariance between T and p;.
i

1-p¢+Np‘p
4.2.2 Design based variance of the proposed estimators

Theorem 4.2.: Lety;, {i=1,2,3, ..., N} be a finite population under study and let X;,
(1=1,2,3, ..., N} be the values of the auxiliary variable associated with the i study
variable yielding the coordinates, (xiyi). Suppose that these variables are correlated

such that 0<p<1, then the variance of the estimator of population total is defined by

A 1 Isiyipi liyipi 2
Vp(Tg,c) :;lZieQ LPL— (ZieQ 2P —> l ...4.6

*2 *
Pig Pig

Proof:

a 1 i
VP (Tg.c) = Var(; Zies p;g)

_ 1 Vi
- n_z Var(Zies E)
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_1 . _ Y
= nVar(z), z="

Since Var(z) = E(z)-E*(2), it follows that

2
V, (%, [Zleg “y‘pl (Zifglgjm> l hence the proof.
L.g

We noted that £, . is already biased as such, it will be sufficient to consider the mean

square error (MSE) for our inference.
4.2.3 Mean squared error of the proposed estimators

Following the classical definition of MSE in (1.13) above, we define the MSE of the
proposed estimators as

MSE(fg,c) = I/p(fg,c) + Bz(fg,c)

2 2
siYiPi Liyipi Liyipi
lZleQ py P - (21’69 fop) l + [(Zieg z?p - Y) l .47
i,g i i

4.2.4 Expected MSE of the proposed Estimators.

Here, we consider the super-population model defined by
y=pp; +¢ ...4.8
With E(e/p;) = 0, Cov(g;g) = 0and E(ef) = ap/

Theorem 4.3: Under super-population model, the expected MSE of the proposed PPS

estimators involving multiple characteristics is

N

g+1 2 [ 2
1-— .
(s, ) =2 [Zpl (1-p) /% piz_(ZPTl)z N
ieQ plg L ieQ Pig i=1 Pig
Isip; 12
[,3 Yico (M - 1) Di .49
pi_g i
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Proof: The result is obvious when we take the model based expectation over the MSE

of the design based estimator. Thus,

EMSE (2,0) =1 [zm “fp(y”*’l—(zmM)] [ZLEQ(SL“—l)f(yi)]Z

Lg Pig

p; Op; Siyjriv
[Zlegf(y PN E(y*)p _yyn 0w ]] +

Pig PigPjg

2
I;p; ) ]
——1)50)
ngg <pi,g Y

g+1 2 3 2
(1 pi) { siPi
[ZLEQ % [ZieQ% 1 Lys ) ] [ﬂ ZlEQ( :J - 1) pi]
Lg

Pig

Under super-population model, the expected per unit bias in terms of B is very
negligible as such, inference based on the expected variance would be sufficient. We

now show that the anticipated bias is negligible.

Considering (4.9) above, Let the bias be

EB(ty) = Tiea (B2~ 1) §07)

Lg

= ZzeQ( ifi 1) $Bp; + &)

T (22 1),

then we have the following theorem.
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Theorem 4.4: Under super-population model, the expected bias is very negligible as

EB ()= V-0
Proof: Considering the anticipated bias from the model,

Isipi
Pig

B (Ey0) = Tiea (B2~ 1) £00)

= Lica (ISipi - 1) (%

"
Pig

when % = 1 then ,BZieQ (Ipﬂ% - 1) p; =0and B(fg,c) =0

i i,g

when % <1 then Y0 (I;’f’i - 1) p; <1 and hence, B(%,.) » V< 1especially

1,9

when g - 1.

Also, when % > 1 then B Yica (Isif’" — 1) p; >0 and &B(%,.) » V<1 especially
i i,g

when g — 1. Since §B(fgjc) =0 when % = 1 which is a necessary condition for

unbiasness, we can conveniently state that in the case of a biased estimator the

condition becomes 0< B (%,,) < 1.

Alternatively, by Cauchy-Schwarz inequalities,

EB%(t,,.) = [ﬁ 2ieQ (Ismi - 1) pi]z = p* [Zifg (ISipi B 1) pi]z

Pig Pig
_ 2
<3 (2-1) o
n \Pi =)

2
But Yien (% - 1) Yieq piz =V«1

so that 0 <

2
Yica (z% - 1) Yica Plzl < 1 always.

Therefore, éB%(t,.) = V- 0.
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Thus, under super-population model, the expected bias per unit is very negligible
especially when 0 < 8 < 1 as such, inference based on the expected variance would

be sufficient.
4.25 Comparison of the proposed estimators under super-population model.

From the optimality criteria, we know that an estimators, €, . (say) is relatively more
efficient than another estimator £, (say), when Vy(%, ) < Vp(%.) in terms of sampling

design or EVp(Z,,.) <& Vp(%,) in terms of super-population model.

Now,
. 1 Igy?
V(Zun) =;[Zi69p—f Sy ...4.10
Under super-population model,

£V, (i) = £ [Lica 20 — B £())’]
= L[S 0D — (5 662 + 1 S E0i))

= %[Ziéﬂm - Ilvzl[ﬁ + ap; ] ZZ 1.82plpj]

Di

%[Ziprl _21 lpl] + ZlEQpl (Zl 1291) ]

=2 [Sicap! ™ =Ly pf] +0 411

The expected variance of the proposed estimator is

2
Slf z i Iif iJPi
EV ( gc) = IZLEQ (y i _ (Zieﬂ#) l

Pig

$(yipi S )p; EWiyjpip
I:ZLEQ % )p _yN (V*)P Yy, j 1]

Pig PigPig

— ¢ [Zen 4 £ [Lin e - (2 2] 412

Pig
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Now, let n[¢V,, (£, un) — &V, (Fuy) = nV] so that

gﬂ(l —Pi) 2 i g-1 N g
+ﬁ ZlEQ *2 (Zl =1 *) _(Ziéﬁpi - i=1pi)

nV= aZl(:‘Q Lg P2 Pl
g+1
(1 L 1- i i
ZaZIEQ—p_ZlEQpl ( p)+ﬁ2 [ZLEQ _(Zivlp*)
iLg
g+1
(1 pl 1 1A
= 2% G2~ Sieapf (220 + 52V (21) 413
ig iL.g
g+1
;. (A-py) 1-p;
Now, let 6 = Zleﬂpp% ~ Yiea D] (p_?)
1,9 L
(1 i) *
= aZlGQP—(pl Pi,é ...4.14
ig
Satisfying
nvV=as+4°D ..4.15
empirically,
when p=0,
D = Var(pi/pig*) > 0 ...4.16
and
...4.17

as p>0, D = Var(pi/pig*) — 0
Since in most real life scenario, p#0 always, we consider (4.17) above as most ideal

for surveys and hence, inference based on ao will be sufficient

Now, let

") .
= (p? - i’ ..4.18

zg

6= X1 bic —Zleg

where
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g1,
by =R p(fz b 419
Lg
and
¢ =@ —rij ..4.20

Then, we can as well observe that
26 <0, if0<p<1,
or
L1 =0,ifp=1.
We now state the appropriate Lemma useful in this study.
Lemma 4.2.1: Let 0<b;<b, <...<b,and ci<c, <...<cp satisfy YL, ¢f =0,
then ¥, bici =0
Proof : Due to Royall(1970).
Let k denote the greatest integer i for which c¢; <0, then
fibicl = B bic; + Xl bict
2 b X1 &+ bie1 D ©
=b (T e + 316 ) F by Dk &
= b Xi=1 ¢ + (b — bry) Ximk41 €

>0
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Lemma 4.2.2: Let p; be positive with ¥V, p; = 1 and let Pig = 1—Tpc + p°p;, 0<p<lI,

1 1
vi—)<v(=
pi,g,c pi,g,c’

where p*; 4 and p*; g are the selection probabilities determined by ¢ and ¢’ moments

I<i<N, then

when c=c’.

Proof:
Letp; g = 1_Tpc +ppi, 0<p<l,c=landp;, . = 1_Tpd + pp;, p=0, then
If (i) N2 1/p;, then 1/p; < 1/pig* < I/N

(i) N < 1/pj, then 1/p; > 1/pig*> 1/N

L N| vi 421

1
Hence, |— - N| >
pi pl_g

Therefore, V (pl) =N . (pii — N)?

1
>yN, Pi(pT — N)?
Lg

= V(L> ..4.22

*
pi‘g

Lemma 4.3.3: Let p; be positive with YN, p; = 1 and let Pig = 1;\,—"6 + p°p;, 0<p<l,

1<i<N and ¥\, pig =1, then

|4 (i> <V (pl) where pig* and p;, are the selection probabilities, and hence, weights

*
i

of each selected unit due to the proposed estimator and that of Hansen and Hurwitz.
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Proof:

Letp;, = 1;\]—’)6 +ppi, 0<p<l,czlandp; 6 = 1;\]—’)6 + p°p;, p=1, then

v (plg) <v(2) 423

Corollary: Under super-population model specified in 4.8 above, it is clear that 7, .

has smaller variance than Ty.

Lemma 4.2.4: Let p; be positive with YN, p, = 1 and let Pig = 17V—pc + p°p;, 0<p<l,
I<isN YN, pig =1 andalso Dig = %4-;)6,1?1', 0<p<l, ¢>0, c>0 and

N
i=1Pig =1

then

1 1
()=o)
Pig p;,

where pig* and p;, are the selection probabilities, and hence, weights of each selected

unit due to the proposed estimator and that of Hansen and Hurwitz’s(1943) estimator.

Proof:
Ifpr =124 ey 0<p<l,c>1and p =ﬂ+ ¢y, o=l
Pig N p pi,U<p<l,c=2lan Pi,g N P DPi, p=1,

then

V<1)<V(?—) .4.24
Pig Pig

=
pVE)

<
Yy
=
Sk =
&
N——
Il
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So that 4.24 occurs when
(p°=p) <0 ...4.25

which is applicable in the generalized class of alternative estimators in PPSWR
sampling.

Now, If we assume that pcr = 1 and let ¢ >0 when 0 < p < 1, then we can compare the

estimators by using the condition in 4.24 above as follows;

a) when ¢ =1 and 0 < p < 1, then (p! — 1) < 0. Here, the estimator by
Amahia et al(1989) fares better than the conventional estimator;

b) when ¢ >1 and 0 < p < 1, then (p° — 1) < 0. Again, the proposed
estimators with c¢>1 are more efficient than the conventional estimators.
Similarly, when 0<c<1 and 0 <p <1, then (p¢ — 1) < 0.

c) When ¢ =1/3 and 0 < p < 1, then (p! — p!/3) < 0, hence, the estimator by
Amabhia et al(1989) fares better than Grewal’s(1997) estimator;

d) When ¢>1 and 0 < p < 1, then (p° — p/3) < 0. The proposed class of
linear estimators with c¢>1 are relatively more efficient than the

Grewal’s(1997) estimator as p — 1
4.2.6 Determination of Approximate value of c.

Studies have shown that the value of g useful in estimation ranges between 0 and 2

inclusive. Amabhia et al(1989) have shown that the value of g is given by

pri_l_ 1 (+4p)p; ...4.26

> — "
8 p; 1-p; p;t+p;

Theorem 4.5: Under super-population model, the approximate value of the

specification parameter, ¢ that minimizes the EMSE is given by

log )
log )

~

|p#00r1,c>0 427

. p?  -p)
Proof: From 4.19 above, we defined b =-—7F—

i.g
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So that

2. 4 [q_p. g-14d
ﬂ_pi dpi[(l PP~ ] (A-pp; W, ——p;?

dp; pt
= p7%[(g—Dp! ™" = gp? ) - 20%pip! (1 —p) =0
pi[(g—Dpf! ™ —gp{ 7' -20p! " A —p) =0
[[1_7" + pcpi] (g = Dp!™* —gp!” ] 2p°p! (1 —=p) =0

= Ap? ™t — Apcp?* = Bp? " + Bp°p! ™' + ANp¢p! ! — gp°pf —

+2pp? =0

2p°py”

Ap!™* = Bp! ™ = [Ap! ™" — Bp! ™" — ANp! ™ + gp! + 27" — 2pf |p*

j— C
= DP1pg = DPopgP

_ |Pupg]| _

(I’Z.p.g

Therefore,

logii)

1
ogi0) p+0orl,c>0,

where

- - - -1
Dypg = Ap? 2 _ Bp! 1 — ANp/! Ly gp! +2p!™" —2p7 .

2
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Here, there are N values of ¢ thereby giving us a range of values determined by p;. The
choice of c is therefore determined by Min p; and Max p; giving us the interval

containing the true c that defined the developed estimators.
Remark 1: The value of ¢ depends on g, p and N.

Remark 2: just like g, ¢ occurs in a convex region . Empirical evidence shows that as
N becomes large and p < 1, ¢ <5 provide a non-uniform selection probabilities for

estimation.
4.3  Alternative linear estimator under negative correlation.

In this section, we utilized the modified Hansen and Hurwitz estimator in order to
estimate population characteristics namely, population totals, bias and variances under

negative correlation.

We have earlier stated that when y oc 1/x, then under a transformation, y = kz which
translates the correlation from negative to positive. In this case, we can define the

Modified Hansen and Hurwitz’s Estimator (MHHE) as:
A 1 Vi
Tge = ;Zieng :
L9

where

f =24 g(O)pi. with g(e) =p° c =123

0<p<l, ¢>0, pi = zi/Z as defined by theorems 3.4 above.

4.3.1 Bias of the proposed estimator under negative correlation.
The bias is therefore,

B, (fg.C) =E (fg,C) —Y

Np;

— — A€ 2

,Di) ...4.28
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4.3.2 Design Based Variance of the proposed estimator under negative

correlation.

Theorem 4.6: Let y;, {i=1,2,3, ..., N} be a finite population under study and let x;,
(1i=1,2,3, ..., N} be the values of the auxiliary variable associated with the it study
variable yielding the coordinates, (X;,yi). suppose that these variables are correlated

such that 0<p<1, then the variance of the estimator of population total is defined by

A 1 ISi iz i iYiPi z
Vo(tg) =7 | Biea ™ — Zleg(p”’> l 429
L9 1,9
Proof:

a 1 i
V;J(T!]JV) = Var(zz:ies pyT)

i,9

= _Var(ZLes *l )

lg

Vi

1
=-Var(z); z=-=
n Pig

Since Var(z) = E(z)-E*(2),

it follows that

Lg N pi,g,N

2
V(1) = [ZLEQ Liyivi (Z Ilyi) l hence the proof.

We note that the estimator is already biased as such, it will be sufficient to consider
the mean square error (MSE) for our inference.
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4.3.3 Mean Squared error of the proposed Estimator

Theorem 4.7: Following the classical definition of MSE of an estimator, the MSE of

the proposed estimator as

MSE(%,.) =V, (2,.) + B(2,.)

2
Isip;
+ [zieg( siPi _ 1)yi] ...4.30

Pign-

2
_1 3 Isiy!pi _ ZIiJ’iPi
n €eQ " %2 *

PignN i,g.N

Proof: It follows from the definition of MSE and by substituting expression for

variances and bias derived.
4.34  Model Based Variance of PPS estimator under negative correlation.
Again, we consider the super-population model defined by

y=Pp; +e ..4.31
With E(e/p;) = 0, Cov(e;g) = 0 and E(e}) = ap/

Theorem 4.8: Under the super-population model, the expected variance is given by

2
E—V( ) - [ZlEQ SLPYL b - Leg ly*lpl l [Zleg SLpl - > ] 432
Lg

The proof is similar with that in theorem 4.3 above.

4.35 Comparison of the proposed with conventional estimators under negative

correlation

From the optimality criteria, we know that an t* (say) is relatively more efficient than
another estimator t (say), when Vy(t*) < Vp(t) in terms of sampling design or

EVp(t*) < & Vp(1) in terms of super-population model.

Now,

V() = 1| Zica™ y - (2l 97 ..4.33
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Under super-population model,
£V, (i) = £ [Lica 2522 — (51 £0))’]
=2 [Sieap! " = ZLipf] +0 ..4.34

The expected variance of the proposed estimator is

2
515( 1) i Iif( i) i
pr( HH) - [216 #_(Zi69#> l

Pig

[ZleQ (1 pl)] _[Zzeg - Y f) ] ...4.35

Pig

436 Mean squared error of the proposed Modified Hansen and Hurwitz

Estimator.

The expected mean square error of the modified estimator estimators is given as

2
I4E ;i L;i§(yipi
f[/;, IZlé *2 - (ZieQ p > l
Lg
1 §Opi EV{p; §iyjpip
_1 ZLEQ (y? )p . (y*)p _yyy 4]
n plg Pig PigPj.g

i (A-py) L
:% Zlerp—p [ZlEQ 7 (Zl 1 = ) ] ...4.35

ig plg

By this modification, inferential procedures are similar to that used for Hansen and

Hurwitz estimator by utilizing the new correlation coefficient given as

p = py,z instead Of,D = ,Dy,x'
where

cov(y,z)
ay0y

Pyz =
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Under the super-population model, Bansal and Singh(1995) have shown that the value

of B2 that minimizes the expected MSE is given by

2 p? aXieqp!
= —_— ...4.36
’B 1-p2 Nag
where
1 Tica pi)?
02 = L[Senp? — T2 437
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4.4 Alternative linear estimators in zPS sampling design.
4.4.1 Introduction.

In the previous section, a class of alternative linear estimators were proposed for use
under PPSWR sampling design for cases of both positive and negative correlation as
they relate with coefficients of variation, determination, skewness and kurtosis. In this
section, we consider also utilize the estimators proposed in PPSWR sampling, and
modify them for use with PPSWOR sampling design otherwise, called nPS sampling
design.

This scheme was proposed by Horvitz and Thompson(1952) and is popularly called
Horvitz-Thompson Estimator (HTE), otherwise called =nPS sampling by
Hanurav(1967). Under this scheme, we shall first consider the HTE along with some
alternative estimators due to Rao, Amahia, Grewal, Ekaette which belong to the
scheme for which the sample size, n=2 and the random Group, especially the Rao-

Hartley-Cochran Procedure with respect to our proposed estimator.
Definition 4.4.1:

Let Q = {uy, Uy, ...,un} be a finite population of N identifiable units and Y = {yi, y»,
...,yn} be a vector of values of y; = y(u;), the value assumed by u; by a real valued
variate Y. Let X be a positive valued variate, {xi1, X2, ...,xn} presumed to be
correlated with y and x; being the value of X assumed on u;, (i=1,2,3, ..., N). We

define p; = xi/X; X=Xx; where p;is the normed-size measure.

Let us assume a sampling scheme for which the inclusion probability is m; = np;. We
shall assume here that the selection procedure is Draw-by-Draw due to Horvitz and

Thompson for which the generalized first order inclusion probability in which
N

i=1 T, = 2 iS
- pi|(A=ap)(1-2p)) N p;(1—ap;) ] 4
Ti='q [a=poa—2bpy T =1 (1=p;)(1—2bp)) ...4.38

For a=0, b=0 and d=1, the expression in 4.38 becomes
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pl [1 Di pl
1-py) l 1(1 p])

J Pi
RS [1+Zl 1(1 pj) (1_pi)] ...4.39

This selection procedure supposes that the first unit is selected with probability p;
while the second unit, p;, is selected with probability 1/(1-p;) if p; is first selected.
Similarly, if p; is first selected, then, the pi would be selected with probability 1/(1-p;).

The Joint inclusion probability mj; is the conditional probability of selecting unit j

given that unit i has been selected and vice versa. Thus

i = PiPjsi + DjPiysj»

so that
T =%[ (1-ap;) (1—ap;) ]
Y d |(A-p)@A-2bp)) (1 —p;)(1-2bp;)
1 1
= Pibj [(1—Pi) + (1—17]')] 440

Then the HT estimator of population total is
Ty = Xiea bsi L5y

with | as earlier defined. The changing factor here is the weight due to the inclusion

probabilities, m;’s. Thus,

tyr = Ziesi_i L 4M
where
T; = np; , X =3V x, ...4.42

and its variance is given by

V(THT) - Zl 1 (_ - 1) yl + ZL<] Z (TILZ'] 1) yly] ..4.43
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When the study variable y and the measure of size x are poorly correlated, Rao(1966a)

proposed an alternative estimator to 4.2 given as
TRHT = NZies%pi ..4.44
which is obtained by replacing y; by Nyip; in expression 4.2 above.

Following Rao(1966a,b), Amahia et al(1989) Grewal(1997), Rao(1993), Singh,
Grewal and Joarder(2004) and Ekaette(2008), we propose the generalized alternative
estimator for use in PPSWOR as:

A YiDi

T =) ...4.45
g,HT i€s P;g”i

pi,g* being the transformed size measure defined in 3.1.18 above. Again, y; is replaced

by y; p,f' in 4.2 above.

1,9

This estimator reduces to Tyr when p=1, ¢>0 and Tz when p=0. When 0< p <1 and

¢>0 the following estimators are defined namely;

a) 14cr When 0<p<1 and c =1;

b) Tyr when p=1

c) 1; when O<p<landc=1/3

d) %, whenc= 2, 3and 4, which are the proposed estimators in this study.

Again, we shall focus on those estimators defined by the c =1, 2, 3 and 4.
4.4.2 Bias of the proposed alternative estimator in #PS sampling design

The bias of the proposed Horvitz and Thompson estimators is given as,
B, (fg) =Ep (fg,C) e
=E, [Zien 7};_2] -Y

¥;
= Yies e ﬂ_zpi — Yiea Vi
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Vi
= Dies DieQ o Pi T Yica Vi
Pi

_ I EQyip;
- ZlEQ * - Y
p[‘g

- ZleQ( Pl 1) Yi

Lg

= YieQ (L - 1) Vi

1-p+Np°p;

= (1 - pIN2COV(— -, ) ..4.46

C+N C

Note that when c=0, we have the conventional estimator. When ¢>0, we have other

alternative estimators in the linear class. With respect to correlation, the bias is an

increasing function so that |B(%, ) — B(yr)| > 0.
4.4.3 Variance of the proposed alternative estimator in «PS design

Theorem 4.9: the variance of the generalized alternative estimator in PPSWOR

sampling is

V(ige) =25 (5 - 1) p‘z ARDRID) (:—,’T] - )ppgijg yiyj 447
Proof:

V(tge) = E(8.c) — E*(fg.) 448

We know that the HT estimator is unbiased as
p Ag,c = ies L seS ies = ieQ : s3i =
Ep(£90) = E (Zies 2) = Tees (Zies 2) P(8) = (Zient) oo p(s) =
Asm; = Yo p(s) and ;= Yoo p(S)
Substituting the results above in 4.45 above, we get
a _ yiz YiVj 2
V(Tg,c) - ZseS Zies ) p(S) + ZseS Ziijes ZE p(S) -Y ...4.49
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YiYj
= ( ies nz)” + Zl;t]es 2 —rr Tj — Yz
Since Y? = (Bieq¥i)? =Yica i + ng¢j=123’iyj’ 4.48 becomes

1- i
- ZleQ( T[)yl +Zl¢jeQZ(M) yly] 450

4.4.4 Expected Variance of the generalized alternative nPS estimators.

Again, we consider the general super-population model defined in 4.8 above to

develop the expected variance of the generalized estimator.

Theorem 4.10: The expected variance of the proposed class of alternative linear

estimators is given by
&V (t,.) =aXl, (— - 1) + B2Var(Er, 451
Proof: When model based expectation is taken over (4.50) above, we have

¥ (5) = 2 (- 1) 25

D433 (F - 1) LA s 08 0p)

PigPig

2 2,2
= Z (_ - 1) pfiz (apig ) + ﬁ ZL<] Z ( Ty - 1)%
l,g ]

PigPjg

g+2

N Pi 2 p?
= ai- (—— 1) ot BVar(Ris ...452

i,9 ip;

4.4.5 Comparison of expected variances of generalized alternative zPS design.

Considering &Vy(t*) < & Vy(1), let &V(%, 7 ) be the Horvitz and Thompson

estimator, then;
A = &V(fg,c) - Ev(fg'f’)
= ao; + B0y ...4.53

where
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g+2 g+2
a; = 2?121 (_ - 1) [ - piz ] ...4.54

T plg c pi,g,c’

and

) Var(Qh, —) ...4.55

Tip Lgc

a, = p? [Var( 1o

T Lgc

From 4.55, empirical evidence show that apart from the case when p=0 in which the

g+2 +2

two Variances are equal, if ¢ = 1, it is clear that p;2 b
pi,gc plgc

in most cases of the specification parameter ¢’s for 0 <p < 1.

< 0 always. This is similar

Similarly,

Var( ?=1n;ff )—Var( ?1 e ) Var(Qi=1 b)) — Var(Xi; a;)

i,9,c

then,
Var(Xie b)) —Var(Xl-, a;) < 0 always for0 <p <1
and

Var(Qi=, b)) — Var(Xi-; a;) = 0 when p=0.

g+2 g+2
It is worth to note that as ¢ increases, ~o— — ;’;T«O and so
i,g,c i,g.c'

Var(Qi—1 b)) —Var(Xi-, a;) < 0.
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45  The Technique of Rao, Hartley and Cochran for n>2.
4.5.1 Introduction.

The estimator by Horvitz and Thompson(1952) is only applicable to a sample of size
n=2 and requires the computational burden of the inclusion and joint inclusion
probabilities respectively. To overcome this problem, especially when it is desirable to
have a sample of n>2 say, then Rao-Hartley and Cochran(1962) provided a simple

procedure which draws sample of size n > 2 using PPS.

Here, the population, Q, is split into n- random groups of sizes suitably chosen N;
(i=1,2,3, ..., n, ) N; = N) . in these n-groups formed, there are available positive
normed-size-measure pi(0 <pi < 1, Y p; = 1) which are noted and summed. From
each of the n-groups formed independently, one unit is selected with PPS given the
units falling in the respective groups.

5], fori=123.. .k

Writing N; =4 ...4.56
B+t fori=12,.,k
Where k is determined by solving the equation
N N
e+ - w[[4+ 1] =] 48T

So that only k-groups attain the size [g] while the rest attain the size [%] + 1.

When selection is done under PPS, we gather these units as our sample of units
selected by RHC method. Let any group be our ith group, then the value of our
variable(s) chosen from the ith group is yi. Corresponding to y;, is the auxiliary

information, x;, upon which the normed size measure is defined.

Let Q; be the sum of the normed-size measure of the units falling in the ith group so

that Q; = X1 p;j, Y Q; =1). This gives the selection probability of j in the ith
Py

group as "

2
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Define pi; = p;, then the estimator of population total under this strategy in PPSWR is
given by

A YiQi
TRHC = ?:1 #, ...4.58
i

with variance given by

2
Ni—N ij o
V(Tryc) = le—_Nz] D [Z—; - TRHC] Q; ...4.59

4.5.2 Proposed alternative PPS estimator under RHC scheme

Now, when y and x are positively correlated, we propose a general class of estimator

under linear transformation as

A _ \n lel Pi 3’1Qi
Tg,c,RHC = Lij=1 =i ...4.60
pl plg pi_g

Which is realized by replacing y; in (4.58) by yipi/pig* .
4.5.3 Bias of the proposed RHC estimator.

The bias of the proposed estimator is given by

(gCRHC) 21 1}’1*Pz_y

—anyl(* —1) ...461
g

l

Which clearly shows that the proposed generalized estimator is bias in nature

especially when p#1.
4.5.4 Variance of the proposed estimator.

Theorem 4.11: The variance of the proposed estimator under RHC procedure is given

N N yl QL AZ
CRHC) [Nz 1Zn N7 —Tg,RHc] ...4.62
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Proof: By definition,

Vo (Bg,c.riic) = EcVe(Bg.ruc) + VeEc (g ruc)

[ 2
PijPik (yiQ; yiQ;
= EG Zzzl<j<k_]vz Q]Q ( PR ]* j) l

Pig Pjg

= E; 2,#2291291 ( }1—})2]

Pig Pig

NZ-N Yi Yj 2
= Dies NN-1) IZjikme,- (Pf,g ’_*} ) l

Pjg

By Cauchy’s inequality, nZN;? > (EN;)? = N2 Hence =N? > N¥/N and N? is minimal of

N; = [3] forall i

Thus, for N; integer,

1= Nl N LQl Fa
V(TgcRHC) [NZ 1271 Nz]z [y 2 gz_RHC] ...4.63

Alternatively, Rao(1966a) and Bansal and Singh(1985)’s estimator can be modified in

the same manner to obtain the variance.

Now, define

A NZ-N ;
V() = Yies gy 0 Where o7 = %, y— - y)? ...4.64

Under this scheme, Rao’s(1966) estimator is given by

A N-n 1
V(Trruc) = o ?)n [Xyip: — Cy)*] ...4.65

The variance of the generalized estimator is therefore realized by replacing y; by

Yipi/pig* giving us:

a N-n 1 12 i 2
V(tgernc) = (N_l);lZ 5 (Z > ) l ...4.66

pi‘g p[,g
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This is equivalent to
V(fg,c,RHC) (N 1) Var(Tg c) ...4.67

Thus, (4.66) or (4.67) can be used as our variance estimator under RHC strategy.
4.5.5 Expected Variance of RHC estimator.

Under super population model in (4.31), the expected variance is given by

2
_ N 1|E0f )pL_ §op;
§V(Tgg.crHC) = N m[Z o2 pf‘,g ) l

_ N1 Zf(yl i 5(yt)pl)
(N—l)n plg Pig

Therefore,

~ N—-n n
fV(Tg,c,RHc) = meaT(Tg,HH) ...4.68
where

2
. 1 Iy Ipi LEWY )P
sV (Tg,HH) = ;lZieQT_ (ZieQ_ * ) l

Pig p;

*2 - *2 * o0k
Pig =~ D P p; p;

_1[NE0Pn N onpt g > §0)Pp,
B n ieQ

[2169 fl pl] —[Zlesz ?’1”1)] ...4.69

g
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4.6  Simulation of Proposed Alternative Linear Estimators in PPS Sampling

Scheme Under Certain Theoretical Probability Distributions.
4.6.1 Introduction

In the previous section, a class of alternative linear estimators was proposed for use in
PPS sampling schemes under a linear transformation of the selection probabilities
obtained from the survey’s auxiliary information. Earlier, we postulated the need to
observe certain statistical properties of the study populations as they were expected to
be essential requisites for specification of an estimator using the specification
parameter ¢, which is determined by the ¢ standardized moments of the study
variable expressed as a liner function of the auxiliary variables. In this section, we
utilize certain probability density functions namely; normal, chi-square, uniform and
gamma distribution functions. Apart from uniform distribution, whose selection
probability function is constant in the domain, the others are of the exponential family
densities defined by

f(x,0) = a(®)b(x)exp{c(8)d(x)} ..4.70
for —co < x < coand forall 8 € ©.
The main objective here is to determine if :

I the theoretical distribution of the study populations, especially the
auxiliary information have impact on the definition of our estimators;

ii. the nature of the distribution, viz-a-viz, skewed or non-skewed distribution
disturb the specification of the alternative estimators and,;

iii. The specification of linear alternative estimators under theoretical densities

is consistent with the observed study populations.
4.6.2 The characteristics of the study distributions.

We have earlier stated that our four theoretical distributions are namely; Normal, Chi-

square, Uniform and Gamma distributions.
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A finite population of N = 100 is assumes in each case and the selected probabilities
are simulated to realize truncated distributions which are normalized with a common
denominator of N=100. Four study populations are assumed for population I, 11, 111
and IV.

Q) x ~U(a,b) with f(x,a,b) = %, a < x < b; 0 elsewhere.

T ~ 2y wi 2y = 1 L ()
(i) X ~N(u, o) with f(x, u, o )—Jmexp.._{. 2( - ) ,MUu>0,0>0,x>0

(iii)  x~x2 with f(x,v) = —x2 ‘e 7, v > 0, and
2212
2

a—1

X
f2Ta

(iv)  x~G(a,p) with f(x,a,B) = exp{—xB}; x > 0,a>0,8>0.

The distributions represent:

)] rectangular distribution with constant probabilities;
i) symmetric distribution with varying probabilities;

iii) skewed distributions with varying probabilities.
The table below presents the characteristics of the distribution functions being utilized.

Population Normal Uniform Chi square Gamma

Distribution Distribution Distribution Distribution

| N(6.5,3.6) U(0,12) 12 G(1,2)

I N(15, 8.8) U(0,30) X2 G(1.5,5.5)
1 N(9,5.5) U(0,17) e G(1.5,5)
\Y N(10.5,5.92)  U(0,20) x2 G(1,4.5)

For convenience, we shall define these densities as ¢, t = 1, 2, 3 and 4 representing
Normal, chi-square, uniform and gamma distributions respectively. Let ¢¢; represent
the i™ unit in the population, i = 1, 2, ..., N. Then the general linear transformation of
the selected probabilities is defined as

* —

pc
Pig = TP Qe
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Under uniform distribution with p; = @3, we have

* l—PC c
Pig =~ +p @3,

Empirically, it has been found that this is equivalent to the linear estimators when p=0.

Under Normal, chi-square and gamma distributions, we have

pi*,g = I_Tp +p°e; t=1241=12,..,N

Again, if p=0, we have the Rao’s(1966a) estimator and if if p=1, we have the Hansen -
Hurwitz’s(1943) estimator. For 0< p<1 and ¢ >0, we have the class of alternative

linear estimators under investigation.
4.6.3 Simulation of selection probabilities for the study distributions

We simulate the selection probabilities pi= ¢; using the transformation in such a way
that the simulated selection probabilities satisfy the regularity conditions of a
probability normed size measure. These are shown on appendix B, C. D and E below

for Normal, chi-square, uniform and gamma distributions respectively.

4.6.4 Estimation of Relative MSE of proposed alternative linear estimators

under theoretical distributions .

Again, we utilize the estimator of population total, MSE, relative efficiencies using
estimators defined earlier under the selection probabilities ¢; for both sampling design

and super-population model based inferences.

We define MSE(%yy), MSE(%,1), MSE(%,,), MSE(f,3) and MSE(%,,) as the
means square error for HHE, estimator defined by c= 1, 2, 3 and 4 respectively.
Similarly, let RE(%,,1), RE(%,2), RE(%,,3) and RE(%,4) be the relative efficiencies

using RE(Z.) as the benchmark for comparison where MSE((7.) and RE(%.)
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correspond with the MSE and RE of Hansen and Hurwitz Estimators and Horvitz and
Thompson Estimator in PPSWR and PPSWOR sampling respectively. Then, an
estimator £, . is relatively more efficient than another estimator £, . if RE(f,.) <
RE(%,,). Specifically, an estimator with c=1 (say) is more efficient than the

conventional estimator if RE(Z,.—1) < RE(%4 un).

4.7 Relative Efficiency criteria.

The sensitivity of the proposed class of alternative linear estimators shall be discussed
considering changing estimators defined by the specification parameter and changing
correlation coefficient, p in both cases of positive and negative correlations. Emphasis

will be drawn based on the estimate of correlation coefficient p.

The relative percentage MSE under the sampling design will be considered. This is
given by

MSE (24,)

RE = MSE (Tyy)

471
Under Super-population model, the bias is very negligible as such, inference will be
based on the sampling variance without taking account of the bias component. Thus,
the expected relative percentage MSE and hence, expected MSE is

LAT2

ERE = |26 1|

REGTS
If RE < 0 or ERE <0, then the proposed estimator is relatively more efficient than the
conventional estimator. We can also use these values to compare estimators in the
same class to determine the best estimator possessing lowest percentage MSE or
lowest EMSE.
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CHAPTER FIVE
DISCUSSION OF RESULTS

5.1. Introduction

In chapters three and four, we presented the various methodologies related to this
study under PPS sampling design and super-population model-based inference
respectively. The methodologies included the transformation of selection probabilities
derived using laws of direct and inverse proportions for cases of positive and negative
correlation coefficient between the study variables and selection probabilities
respectively. Similarly, the generalized transformation of selection probabilities was
derived. Based on these transformations and also the generalization of the selection
probabilities, a class of alternative linear estimators was developed. We also derived an
expression for determining approximate value of the specification parameter ¢ under

the super-population model.

In this chapter, we present the results of the developed alternative linear
estimators in PPS with replacement (WR) and without replacement (WOR) sampling
schemes taking cognizance of positive and negative correlation coefficient between the

study and measure of size variables.

Secondly, the proposed transformations, their generalizations and also the
proposed estimators are subjected to empirical studies using four populations.
Population I has p = 0.162 while population II has p = 0.395. Populations III and
Population IV have p = -0.32 and p = -0.775 respectively. Under the proposed inverse
transformation, the resulting correlation coefficients for populations III and IV are p =
0.55 and p = 0.91 respectively. Details of the four study populations can be seeing in
section 5.3 of this study.

Next, we utilized the technique of Rao, Hartley and Cochran to compare the
estimators using samples of size five. Finally, we simulated the selection probabilities
under normal, uniform, chi-square and gamma distributions to further investigate the
behaviour of these estimators given the theoretical distributions which are either

symmetrical, rectangular or skewed in nature.
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It is worth to mention here that the order of correlation, otherwise, the
moments coefficients of correlation coefficient is a pivot element in defining
estimators for multiple characteristics as it provides a measure of relationship between
selection probabilities with the study variables under linear transformation.

5.2 Results of Generalized Transformation for selection probabilities.

The result of selection probabilities and the generalized transformations of the

selection probabilities derived are:

fg = +pp with p =X =Yqx when yocp. This is
appropriate when positive correlation between study and measure of size is

encountered in surveys;

*

1_pc . Z: 1 1
Lg = T PP with p;=—,7 =%,z andz == when y o« —,

4

which was proposed for use when it is clear that the study and size

measures are negatively correlated.

We have ¢ =1,2,3and 4 as range of the specification parameters in the sense that
they are used to define appropriate estimators for the study populations. This range

could also contain fractional values as in the case of Grewal(1997) and Ekaette(2008).
Specifically,

i. c =1 and 0 < p < 1defines the Amahia-Chaubey and Rao’s estimator
(ACRE) defined as 7, .—;

ii. c=[0,1] and 0 < p < 1 defines Ekaette’ estimator (EE)

iii. c=1/3and 0 < p < 1 defines Grewals’ estimator (GE) defined as £, .—; 3

(\2 for any value of ¢, p = 1 defines the Hansen-Hurwitz estimator (HHE) or
defined as 7, or Tyy

V. p = 0 again defines the Rao’s estimator (RE) or defined as 75

Vi, The proposed alternative estimators in the linear class are defined by ¢ = 2,

3and 4; they are ©

g,c=2) Tge=3 and T, ., respectively

vii.  The generalized class of linear estimators comprises of the estimators

namely; £z, Tgc=1 and 45—y, Tg,c=3, Tg,c=4 and Z..
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Earlier in the methodology, it was postulated that these transformations satisfied
the regularity conditions of a probability normed-size measure. Results of empirical
studies conducted on four populations namely, populations I, 11, 11l and IV having
correlation coefficients of 0.162, 0.395, -0.32 and -0.77 respectively are shown on
tables 1, 2, 3 and 4 below. It is worth to stress here that populations Il and IV are
negatively correlated and under inverse transformation, the derived correlation

coefficients are 0.55 and 0.91 for populations Il and IV respectively.

Table 1: Result of selection probabilities and Generalized selection Probabilities defining

alternative Estimators in the Linear class for Population |

X Y p D Dic=1 Dic=2 Dic=3 Dic=4

41 36 0.162 | 0.0806 | 0.0829 0.0833 0.0833 0.0833
43 47 0.162 | 0.0845 | 0.0835 0.0834 0.0833 0.0833
54 41 0.162 | 0.1061 | 0.0870 0.0839 0.0834 0.0833
39 47 0.162 | 0.0766 | 0.0822 0.0832 0.0833 0.0833
49 47 0.162 | 0.0963 | 0.0854 0.0837 0.0834 0.0833
45 45 0.162 | 0.0884 | 0.0842 0.0835 0.0834 0.0833
41 32 0.162 | 0.0806 | 0.0829 0.0833 0.0833 0.0833
33 37 0.162 | 0.0648 | 0.0803 0.0828 0.0833 0.0833
37 40 0.162 | 0.0727 | 0.0816 0.0831 0.0833 0.0833
41 41 0.162 | 0.0806 | 0.0829 0.0833 0.0833 0.0833
47 37 0.162 | 0.0923 | 0.0848 0.0836 0.0834 0.0833
39 48 0.162 | 0.0766 | 0.0822 0.0832 0.0833 0.0833
Sum = 1 1 1 1 1

82



Table 2: Result of selection probabilities and Generalized selection Probabilities
defining alternative Estimators in the Linear class for Population |1

X Y P Di pi*,c=1 pi*,c=2 p;c=3 pi*,c=4

3| 11 0.39 0.0133 0.0255 0.0303 0.0321 0.0329
4 7 0.39 0.0178 0.0273 0.0310 0.0324 0.0330
5 9 0.39 0.0222 0.0290 0.0316 0.0327 0.0331
8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
12 8 0.39 0.0533 0.0411 0.0364 0.0345 0.0338
11 9 0.39 0.0489 0.0394 0.0357 0.0343 0.0337
8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
9| 12 0.39 0.0400 0.0359 0.0343 0.0337 0.0335
11| 10 0.39 0.0489 0.0394 0.0357 0.0343 0.0337
10 9 0.39 0.0444 0.0377 0.0350 0.0340 0.0336
8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
9| 14 0.39 0.0400 0.0359 0.0343 0.0337 0.0335
7| 12 0.39 0.0311 0.0325 0.0330 0.0332 0.0333
8| 10 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
8| 10 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
5| 10 0.39 0.0222 0.0290 0.0316 0.0327 0.0331
6 9 0.39 0.0267 0.0307 0.0323 0.0329 0.0332
3 5 0.39 0.0133 0.0255 0.0303 0.0321 0.0329
3 7 0.39 0.0133 0.0255 0.0303 0.0321 0.0329
9 9 0.39 0.0400 0.0359 0.0343 0.0337 0.0335
6 6 0.39 0.0267 0.0307 0.0323 0.0329 0.0332
7| 12 0.39 0.0311 0.0325 0.0330 0.0332 0.0333
8 9 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
8 6 0.39 0.0356 0.0342 0.0337 0.0335 0.0334
9 9 0.39 0.0400 0.0359 0.0343 0.0337 0.0335
11| 11 0.39 0.0489 0.0394 0.0357 0.0343 0.0337
11| 10 0.39 0.0489 0.0394 0.0357 0.0343 0.0337
10| 14 0.39 0.0444 0.0377 0.0350 0.0340 0.0336
5 8 0.39 0.0222 0.0290 0.0316 0.0327 0.0331
3 7 0.39 0.0133 0.0255 0.0303 0.0321 0.0329
Sum = 1 1 1 1 1

We observe here that the population correlation coefficient is 0.395 while the selection

probabilities p; and the generalized selection probabilities; p;'._;, p; .=, p; ;=3 and

p; =4 do satisfy the required conditions of a probability size measure.
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Table 3: Result of selection probabilities and Generalized selection Probabilities
defining alternative Estimators in the Linear class for Population 111

X |y p pi | Diemt | Ple=a | Ple=s | Dic=s
00| 3| 05500279 | 0.0418 | 0.0495 | 0.0537 | 0.0560
88| 8| 05500317 | 0.0439 | 0.0506 | 0.0543 | 0.0563
20| 9| 055]0.1396 | 0.1033 | 0.0833 | 0.0723 | 0.0662
17| 11| 055 0.1643 | 0.1168 | 0.0907 | 0.0764 | 0.0685
60| 5| 055]0.0465 | 0.0521 | 0.0551 | 0.0568 | 0.0577
771 9| 055 0.0363 | 0.0464 | 0.0520 | 0.0551 | 0.0568
51| 5| 055 0.0548 | 0.0566 | 0.0576 | 0.0581 | 0.0585
69| 4| 055]0.0405 | 0.0487 | 0.0533 | 0.0558 | 0.0571
66| 6| 055]0.0423 | 0.0497 | 0.0538 | 0.0561 | 0.0573
771 9| 055 0.0363 | 0.0464 | 0.0520 | 0.0551 | 0.0568
68| 2| 055]0.0411 | 0.0491 | 0.0535 | 0.0559 | 0.0572
36| 4| 05500776 | 0.0691 | 0.0645 | 0.0619 | 0.0605
74| 4| 055 0.0377 | 0.0472 | 0.0524 | 0.0553 | 0.0569
33| 5| 055 0.0846 | 0.0730 | 0.0666 | 0.0631 | 0.0612
54| 6| 05500517 | 0.0549 | 0.0567 | 0.0576 | 0.0582
55| 6| 055 |0.0508 | 0.0544 | 0.0564 | 0.0575 | 0.0581
771 6| 055 0.0363 | 0.0464 | 0.0520 | 0.0551 | 0.0568

Sum = 1 1 1 1 1

For the target population above, the population correlation coefficient is -0.322.
However, under the inverse transformation, the resulting value of correlation
coefficient is 0.55. The selection probabilities and the generalized selection
probabilities; p; ._1, P .=2, D; =3 and p; ._, also do satisfy the required conditions of

a probability size measure.
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Table 4: Result of selection probabilities and Generalized selection Probabilities
defining alternative Estimators in the Linear class for Population IV

X y p Di pzk,c=1 pi*,c=2 p;,c=3 p;,c=4

6.8 20 0.91 | 0.00324 | 0.00745 | 0.01128 | 0.01476 0.01793

6.2| 23 0.91 | 0.00355 | 0.00773 | 0.01154 0.015 0.01815

55| 38 0.91 0.004 | 0.00814 | 0.01191 | 0.01534 0.01846

0.85| 86 0.91 | 0.0259 | 0.02807 | 0.03004 | 0.03184 0.03347

0.71] 92 0.91 | 0.03101 | 0.03272 | 0.03427 | 0.03569 0.03698

9| 16 0.91 | 0.00245 | 0.00673 | 0.01062 | 0.01416 0.01739

14| 81 0.91 | 0.01573 | 0.01881 | 0.02162 | 0.02417 0.0265

45| 53 0.91 | 0.00489 | 0.00895 | 0.01265 | 0.01601 0.01907

3.8| 42 0.91 | 0.00579 | 0.00977 | 0.01339 | 0.01669 0.01969

21| 62 0.91 | 0.01048 | 0.01404 | 0.01728 | 0.02022 0.0229

485 | 39 0.91 | 0.00454 | 0.00863 | 0.01235 | 0.01574 0.01883

3.197| 35 0.91 | 0.00689 | 0.01077 | 0.0143 | 0.01751 0.02043

0.443 | 87 0.91 | 0.04968 | 0.0497 | 0.04973 | 0.04976 0.04978

0468 | 91 0.91 ] 0.04704 | 0.0473 | 0.04755 | 0.04777 0.04797

059 | 84 0.91 | 0.03732 | 0.03846 | 0.0395 | 0.04044 0.0413

0339 ] 75 0.91 | 0.06495 | 0.0636 | 0.06238 | 0.06127 0.06025

0.161| 54 0.91 | 0.13642 | 0.12865 | 0.12157 | 0.11513 0.10927

0.787 | 64 0.91 | 0.02797 | 0.02995 | 0.03175 | 0.0334 0.03489

0.069 | 26 0.91 | 0.31801 | 0.29389 | 0.27194 | 0.25197 0.23379

0.11 | 100 0.91 | 0.20015 | 0.18663 | 0.17434 | 0.16315 0.15296

Sum = 1 1 1 1 1

From tables 1, 2, 3 and 4 above, it is clear that the linear transformations p; and
hence, the generalized transformation p;” all satisfied the regularity conditions of a
probability normed-size measure, namely:

I 0<p <1;

ii. dieali = 1;

.  0<p;, <1land

iv.  XieaPig = 1.

These results are consistent for all the ¢ moment utilized in this study and hence
the specification range ¢ = [1, 4]. The implication of this range is that it can be utilized

in defining a class of linear estimators defined by the moments providing an optimum

estimator for a target population.
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5.3 Statistical Properties of the study Populations

In this section, the statistical properties of the study populations are presented. We
have earlier postulated that these characteristics are determined by the expectation of
the linear function as well as the expectation of the ¢ standardized moment of the
study variate, y under the linear framework. The results in tables 5, 6, 7 and 8 below
show the peculiar characteristics of the target populations and these include, the
coefficients of variation, determination, skewness and kurtosis of the study variate and

the measure of size variate as they relate with moment in correlation coefficient.

Table 5: Statistical Properties of Population |

Parameter X Y £ Ratio | R%,, | R%.,
Mean 42.4167 | 41.5000 0.0000
Median 41.0000 | 41.0000 -0.4821
Maximum 54.0000 | 48.0000 7.0180
Minimum 33.0000 | 32.0000 -9.2852
Std. Dev. 5.6642 5.3001 5.2301 0.0262 | 0.9738 | 0.9609 | 0.9482
coefficient of
skewness 0.4551 | -0.2506 -0.1897 | -0.5507
coefficient of kurtosis 2.8302 1.8306 1.8763 0.6468
correlation coefficient 0.1620
Coefficient of
determination 0.0262
coefficient of variation 0.1335 0.1277 0.5227
Observations 12.0000 | 12.0000 12.0000

5.3.1 Description of statistical Properties of Population I

It is observed from table 5 above that CV, = 0.1335 > CV, = 0.1277. By the

propositions, the required condition for specifying c= 1 is when p! = % < 1. Under
y

linear transformation, p! = 0.162. Furthermore, p3 = ;—y < 1land also p* = i—y <1

X

are expected. By (3.1.27) above, it is clear that since these conditions are fulfilled with
p — 0 and hence, p? — 0. Higher moment may not be required in defining the
estimator for this population. Therefore, ¢ = 1 could be sufficient in defining estimator

for this population.
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Table 6: Statistical Properties of Population 11

Parameter X Y £ Ratio | R%,, | R%,, | R'c.,
Mean 7.500 9.233 0.000
Median 8.000 9.000 -0.411
Maximum 12.000 14.000 4.283
Minimum 3.000 5.000 -3.394
Std. Dev. 2.688 2.192 2014 0.156| 0.844 | 0.775| 0.712
Skewness -0.276 0.356 0.537 | -1.290
Kurtosis 2.069 2.866 2.583 1.385
correlation coefficient 0.395
Coefficient of
determination 0.156
coefficient of variation 0.358 0.237 | 6047756.757 | 0.7553
Observations 30.000 30.000 30.000

5.3.2 Description of statistical Properties of Population Il

Here, in table 6, p = 0.395 < 1, p? = 0.156 < 1.However, |p% >1 thus violating the
postulated conditions required by p°. This suggests that some other estimators could
perform better than that defined by ¢ = 1. By this result, the correlation coefficient is
not too weak but somewhat “moderate”. However, under linear framework,
pl=p<1,p%2<1, p>>1and p* > 1. At this point, ¢ > 1 could be most suitable

for defining the estimator.
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Table 7: Statistical Properties of Population 111

Parameter X Y £ Ratio | R’%,, | R%,, | R'c,,
Mean 60.11765 6 | -0.00000118
Median 66 6 -0.20886
Maximum 100 11 3.57636
Minimum 17 2 -3.7309
Std. Dev. 23.08106 | 2.44949 2.319285 0.103 | 0.897 | 0.849| 0.804
Skewness -0.39924 | 0.420813 0.350907 | -1.054
Kurtosis 2.424363 | 2.346354 1.976402 0.968
correlation coefficient -0.320
Coefficient of
determination 0.103
coefficient of variation 0.384 0.408 | -1965495.73 | 0.47059
Observations 17.000 17.000 17.000

5.3.3 Description of statistical Properties of Population 111

For population 111, the results on table 7 above shows that, p = —0.32, p? = 0.103
|p3| > 1 and |p*| < 1. The correlation coefficient is negative and moderate, and the
required assumption is violated. Therefore, the range 2< c<4 provides the appropriate
specification defining the estimator for this population, even as the transformed

p=0.55, which is not weak or high, but about average or what we may call “moderate”

value of p.
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Table 8: Statistical Properties of Population 1V

Parameter X Y E Ratio | R%,, | R%,, | R’e.,
Mean 58.400 2.594 0.000
Median 58.000 1.125 0.370
Maximum 100.000 9.000 3.160
Minimum 16.000 0.069 -5.005
Std. Dev. 27.358 2.704 1.711 0.600 | 0.400 0.253 0.160
Skewness -0.059 0.886 -1.191 -0.067
Kurtosis 1.600 2.601 5.208 0.615
correlation coefficient -0.775
Coefficient of
determination 0.601
coefficient of variation 0.468 1.043 0.2244
Observations 20.000 20.000 20.000

5.3.4 Description of statistical Properties of Population 1V

For population 1V, it is evidenced on table 8 that, p = —0.775, p> <1, p3 <1and
p* < 1 satisfying all conditions. However, the correlation coefficient is negative and
high. Under linear transformation, p = 0.91 which is a strong positive correlation
coefficient. We have earlier speculated in 3.1.36 that (1 — p?)2K, — 0 when p=1
hence, p*K,<1. Thus, as p—1, ¢ —4 would provide appropriate estimator of the

parameters of interest. In other word, we expect that the appropriate estimator be found

between ¢=3 and c=4.
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5.4 Estimate of bias of the alternative linear Estimators.

It has been shown in (3.2.4) that the alternative estimators are biased. It is therefore,
necessary to discuss the magnitude and sign of the bias which are shown on tables 9,

10, 11 and 12 for populations 1, 2, 3 and 4 respectively for PPSWR sampling design.

Table 9: Estimate of design-based Bias, B(i'g,c) of alternative estimators as compared with

that of HHE for population | under PPSWR sampling design.

Rho | B(tyyr) | B(g1) | B(iy2) | B(iy3) | B(ig4)
0.000 0.000 1.261 1.261 1.261 1.261
0.100 0.000 0.419 1.169 1.252 1.260
0.162 0.000 -0.020 1.024 1.222 1.255
0.500 0.000 -1.328 -0.536 0.234 0.715
0.900 0.000 -0.577 -0.962 -1.201 | -1.330
1.000 0.000 0.000 0.000 0.000 0.000

Table 10: Estimate of design-based Bias, B(%, ) of alternative estimators as compared with

that of HHE for population 11 under PPSWR sampling design.

Rho | B(tyug) | B(Tg1) | B(fy2) | B(i43) | B(Tg4)
0.000 0.000 9.000 9.000 9.000 9.000
0.100 0.000 5.183 8.591 8.959 8.996
0.395 0.000 | -2.696 3.303 6.577 8.015
0.500 0.000 | -4.279 0.554 4.322 6.544
0.900 0.000 | -2.965 -4.513 -5.193 -5.319
1.000 0.000 0.000 0.000 0.000 0.000

Table 11: Estimate of design-based Bias, B(%gyc) of alternative estimators as compared with

that of HHE for population 111 under PPSWR sampling design.

Rho | B(2yug) | B(Tg1) | B(Z42) | B(fg3) | B(Z44)
1.000| 0.000| 0.000]| 0.000| 0.000] 0.000
0.9 00| -124| -203| -248| -269
05 00| -252 -3.2 19.0 33.9
0.3 00| -121 24.1 42.1 48.8
0.1 0.0 24.6 48.9 51.7 52.0
0.0 0.0 52.0 52.0 52.0 52.0

90




Table 12: Estimate of design-based Bias, B(%g_c) of alternative estimators as compared with

that of HHE for population 1V under PPSWR sampling design.

Rho | B(tyup) | B(Tg1) | B(f,2) | B(fg3) | B(%g4)
1.000 0.000 | 0.000 0.000 0.000 0.000
0.9 00| -159.0| -218.4| -2484| -264.4
0.8 00| -2413| -2735| -267.7| -2458
05 00| -2715| -201.4| -1095 -34.2
0.1 0.0 -82.7 56.6 76.0 78.0
0.0 0.0 78.2 78.2 78.2 78.2

5.4.1 Description of the Bias of the estimators in PPSWR sampling schemes.

The alternative estimators described by the ¢ moment, ¢ = 1,2,3 and 4 in
correlation coefficient presented the following bias for the alternative estimators in the

linear class as shown in tables 9, 10, 11 and 12 above.

The bias of the proposed estimators B(%gjc), ¢ =1,2,3,4 is same when p=0 and is
more than the bias of the conventional estimator, B(i.) =0 for all the study
populations as shown in tables 9 to 12 above. It is worth to note here that the said bias
actually occurs when 0 < p < 1. When p=1, the bias of all the estimators including the
Hansen-Hurwitz estimator is zero. That is, B(%,.) = B(f.). Thus all estimators

converge at this point.

It can be seen from table 9 above that in population 1, minimum bias is attained
at p=0.162 by the estimator defined by ¢ = 1. Thus, |B(f,.=1)| < |B(%,.)|. ¢ = 2,3,4.
Again, for population 2, minimum bias is attained at p=0.395 by the estimator defined
by c=1, that is, |B(%;.=1)| <|B(%,.)|.c =234 as contained in table 10. For

populations 3 and 4 which have negative correlation coefficient, transformation is

~

required and so, minimum bias can only be attained at p = p or its neighbourhood as
shown in tables 11 and 12 respectively. Thus, for population 3, bias is minimized by
the estimator defined by ¢ = 2, that is, |B(%,.=;)| < |[B(%,)|.c = 1,34 when p=
0.32| and |B(%,.=2)| < |B(%,)|,c = 1,34 when p= [0.55] while in the case of
population 4 bias is minimized at ¢ = 4, that is |B(f, .=4)| < |B(f;.)|.c = 1,23 at p

=10.50| and c=1/4 when p=[0.91].

91



Table 13: Approximate values of ¢ at g = 0,1,2 for populations I, 11, 11l and 1V

Population  Rho N g=0 g=1 g=2 Estimate

] . ] of c
Min Max  Min Max  Min Max

Pi Pi Pi Pi Pi Pi

| 0162 12 0 2 0 2 0 1 1

I 0395 30 O 2 0 4 0 2 2

i 032 17 0 3 0 3 0 2 2
(0.55)

\Y 0775 20 0 13 0 6 0 8 4
(0.91)

e Values in italics are the transformed correlation coefficient.

Table 13 presents the estimated values of ¢ for the four study populations using the
derived expression in (4.27) above. It can be clearly seen that for population I, the
values of c falls between 0 and 2 at g =0 and 1. However, at g=2, the estimated value
of cis 1, that is, c=1.

For population 11, the values of c falls between 0 and 2 at g =0, 0 and 4 at g=1 and
0 and 2 at g=2 while for population I1l, the values of ¢ falls between 0 and 3 at g =0, 0
and 3 at g=1 and 0 and 2 at g=2 . For population 1V, the values of c falls between 0 and
13 at g =0, 0 and 6 at g=1 and 0 and 8 at g=2. It is therefore worthy to note that the
ceiling of the value of c is expected to be 4 as higher moments are assumed to be

covered in the ceiling value with ¢ = 4.

5.4.2 Design-based Relative MSE of the proposed estimators compared with

Hansen-Hurwitz estimator

We utilized the conventional Hansen and Hurwitz Estimator (HHE) as the denominator
in order to compare the performance of the proposed alternative linear estimators using

the relative efficiency criteria defined by
RE (%, \thyr) = 0 or MSE(%,.) = MSE (£yy)

Any alternative estimator is relatively more efficient than HHE in terms of minimum

variance and hence, MSE if and only if
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RE (%, \thur) < 1 (100%)

or

RE (%5, \tynp) < RE(Eun\tung)

otherwise, HHE is relatively the most efficient estimator for the study population.

The efficiency of the proposed estimator given the conventional HHE for the PPS
sampling design is presented in Tables 14, 15, 16 and 17 above for populations I to IV

respectively.

Table 14: Design-based Relative efficiency of alternative estimators as compared

. MSE (2,
with HHE for population I (measured by RE(%,\Tyy) = MSE((%Z;I)) )

Rho | RE(£\tyy) | RE(3\Ey) | RE(E\Eyy) | REGs\Eys) | RE(E\Eyy)
0.000 100.0 57.0 57.0 57.0 57.0
0.100 100.0 56.1 56.9 57.0 57.0
0.162 100.0 56.1 56.7 57.0 57.0
0.500 100.0 64.2 56.9 56.0 56.3
0.900 100.0 90.4 82.9 76.9 72.2
1.000 100.0 100.0 100.0 100.0 100.0

From table 14 above, it is clear that RE(fy\ty c=1) < RE(Tyu\f, ), € = 2,3,4 and also,
RE(Zyu\tyc=1) < RE(Zyu\tyy) for population I at p = 0.162 in terms of minimum
variance. Thus, the estimator defined by ¢ = 1 has minimum percentage relative MSE
of 56.1% and this further confirm our postulation that the specification, ¢ = 1 is only

possible when p—0. RE (%)
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Table 15: Design-based Relative efficiency of alternative estimators as compared

with HHE for population Il (measured by RE(%,\%yy) = Zgg(:z,j)) 1)
Rho | RE(f,,\tuy) | REG\euy) | REG\Eyy) | REGE\Ey) | RE(E4\uy)
0.000 100.0 35.2 35.2 35.2 35.2
0.100 100.0 31.6 34.7 35.1 35.2
0.395 100.0 30.8 30.4 32.8 34.1
0.500 100.0 33.8 29.5 31.0 32.7
0.900 100.0 73.7 58.4 48.8 42.4
1.000 100.0 100.0 100.0 100.0 100.0

For population I, RE(Zy\t, c—2) < RE(fyu\T4 ), € = 1,3,4 and also, RE(fy5\t4 —2) <
RE(Tyy\Tyy) So that the estimator defined by ¢ = 2 with minimum percentage relative
MSE of 30.4% performed better than all the competing estimators including the
conventional estimator at p = 0.395 as shown on table 15. Again, we have postulated

that this is possible when p<1, p? <1 and Cv, < Cv,. It is also clear that as p shift

upwards, say, p — 0.5 rather than p—0, c=2 is best specified for a target population.
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Table 16: Design-based Relative efficiency of alternative estimators as compared

with HHE for population 111 (measured by RE(%,  \Tyy) = 11::'5((:::,)) )
Rho | RE(fyy\tyn) | RE(£1\tyy) | RE(£,\Eyy) | RE(E3\Egy) | RE(F4\Eyy)
0 100 44.2 44.2 44.2 44.2
0.1 100 39.3 43.4 44.1 44.1
0.3 100 40.4 39.2 42 43.4
0.5 100 48 38.8 38.8 40.5
0.9 100 84.3 73 64.7 58.4
1 100 100 100 100 100

Population 111 is analysed under two conditions of correlation, that is, at the actual
correlation coefficient of p =|—0.32| and the correlation coefficient of p = 0.55
realized after transformation of the measure of size variable. Examining the results on
table 16 above, it is observed that the estimator defined by ¢ = 2 with minimum
percentage relative MSE of 39.24% performed better than all the competing estimators
including the conventional estimator at p = |—0.32|. The result is the same when
p = 0.55 is considered. However, at p = 0.55, minimum percentage relative MSE is
obtained at two points namely, c¢=2 and c=3 as shown on table 16. Thus,
RE(Zyu\tyc=2)= RE(Euu\yc=3) < RE(fyy\iyc-1) and RE(Zyu\tge=3) <

RE(Tyu\tgc=4) < RE(Eyu\tun).
Based on this result, we can infer as follows:

I. When 0.3 < p < 0.5 or neighbourhood, the estimator defined by ¢ =2, that
is, T4,c—2 would be relatively more efficient than all other estimators;

ii. When p is slightly greater than 0.5, the estimator changes from c=2 to c¢=3

as evidenced in our study which ¢ =3 at p = 0.55.

This suggests that p = 0.55 is perhaps a boundary point for which two estimators

defined by c=2 and c=3 performed best for population Ill.
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Table 17: Design-based Relative efficiency of alternative estimators as compared

with HHE for population IV (measured by RE(%,\tyy) = 11:;5((2;)) <1)
Rho | RE(£y,\tun) | RE(E\eyn) | RE(E,\eyy) | RE(Es\Eyy) | RE(G\Eyn)

0 100 12.5 12.5 12.5 12.5
0.1 100 12.2 12.2 12.5 12.5
0.5 100 22.6 15.8 12.6 11.7
0.8 100 32.9 25.5 21.6 18.8
0.9 100 48.5 36.9 31.6 28.5

1 100 100 100 100 100

Again, for population 1V, the percentage relative is analysed at the correlation
coefficient of p = |—0.775] and the correlation coefficient of p = 0.91 realized after
transformation of the measure of size variable. Looking at results on table 17 above, it
is clear that RE(Typy\%g,c=4) < RE(Tun\Ty,c), € = 1,2,3 and also, RE(Tyy\Tg,c=4) <
RE(Tyy\Tyy) for population 1V so that the estimator defined by ¢ = 4 is relatively
more efficient with percentage relative MSE of 18.8% when |p = —0.775]| and 28.5%
when p = 0.91 . It is also clear from results on table 16 that estimators defined by c

=4 is relatively more efficient than all other estimators for population 1V.

By these results, it will be convenient to state that the specification parameter of an

estimator c, changes with p. Thus,

I As p—0, estimator defined by ¢ =1 would be appropriate;
ii. As p—0.5, estimator defined by ¢ = 2 would be preferred;
iii. As 0.5<p<.75, estimator defined by c=3 would be preferred while

(\2 As p—1, estimator defined by ¢ = 4 would be preferred.
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The results described above are further displayed on figures 1 to 4 below, showing the

relative performances of the proposed estimators in the parameter space, %, . ¢=1,2,3

and 4.

Figures 1 to 4 below presents the graphical view of the alternative estimators as

compared with the Hansen and Hurwitz estimator for the four study populations.

Fig. 1: Graph of Relative MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population |
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On figure 1 above, the behaviour of the estimators in the parameters space with respect

to MSE defined by the relative efficiency (RE) is presented. Again, It is clear that the

97



estimator defined by ¢ = 1 (with green coloured line), otherwise, the ACRE is
uniformly most efficient (UME) estimator for population I when 0<p<0.162 and
neighbourhood. However, when 0.16<p<0.50 and its neighbourhood, estimators
defined by ¢ = 2 and ¢ = 3 performed equally better than other estimators. However,

for p > 0.50, the estimator defined by ¢ = 4 performed better than all other estimators.

Fig. 2: Graph of Relative MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population ||
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For population 11, results displayed on figure 2 above that for the values of p =0.395
and its neighbourhood, the estimator defined by c=2 (in grey colour) is most efficient

for the 0.39 <p<0.5.
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It is also noticeable here that the estimator defined by ¢ = 1 performed better than all
other estimators if 0.01 <p<0.39 were assumed for this study population. As p>0.5, the

estimator defined by ¢ = 4 performed better than all other estimators.

Fig. 3: Graph of Relative MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population lll
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For population 111, the result displayed on figure 3 shows that the estimator defined by
¢ =1 is most efficient for 0 <p<0.28 or neighbourhood. However, when 0.30 <p<0.50
or its neighbourhood, estimator defined by ¢ = 2 (with grey lines) performed best than
all other estimators. As p>0.60, the estimator defined by ¢ = 4 performed better than all

other estimators in this class. Similarly, under linear transformation, two estimators

99



namely, c=2 and c=3 performed equally well for population I11 under the derived value

of p=0.55

Fig. 4: Graph of Relative MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population IV
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In the case of population 1V, the results displayed on figure 4 above shows that the
estimator defined by ¢ = 4 (with yellow line) is relatively most efficient than all other

estimators including the conventional estimator throughout the parameter space
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defined by the correlation coefficient p. It is worthy to state here that all the values of

correlation considered for this population is very high.

A closer look at figures 1 to 4 shows that the efficiency of estimators is changing along
moments in the correlation coefficient. Thus, for populations that are weakly
correlated, the estimators defined by ¢ = 1 is sufficient. It is also noticeable that there
are certain points in the moments in p in which two estimators could perform best and
these points are the adjoining points, otherwise, boundary point between two

estimators.

By these results, it is noticeable that there is no single estimator that is uniformly
most efficient in the parameter space especially when correlation coefficient is weak.
Even when correlation coefficient is high, there are points whereby other estimators
perform equally well or even better than other estimators. This suggests the need to
identify the conditions that bring about the change in estimators at varying levels of

correlation coefficient.

5.4.3 Expected Mean squared Error of Alternative Linear Estimators as

compared with Hansen- Hurwitz Estimator.

In this section, the super-population model described in (3.2.7) and hence, the expected
mean squared error is utilized to generate the results for four study populations as
displayed on tables 50, 51, 52 and 53 as shown in appendix A. Similarly, the graph of
EMSE is shown on figures 5, 6, 7, 8, 9 and 10 for populations I, I, Il and IV
respectively. The values of g, the super-population parameter used are usually, g =0, 1
and 2. We consider the values of correlation coefficient p = 0, 0.1, 0.5, 0.9, 1 and the
true population correlation coefficient estimated from the study population and defined
as p. To obtain definite values of EMSE for comparison, it has been shown in
Ekaette(2008) that the super-population parameter, a is minimized in the range [0,1].
To ensure non-negative variance (NNV), the values of a and  must be positive. In this
study, we assume that the super-population parameters namely, o and  are equal to

unity so that the per unit bias and hence, EMSE can be determined under the model.
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The results on tables 50 to 53 in appendix B below pertain to expected MSE
(EMSE) of alternative estimators as compared with HHE. The models describing the
EMSE for each estimator is shown along. However, the efficiency of the proposed
estimators cannot be easily identified except when evaluated. For this reason, we
consider the values of a=1 and p=1 which are the minimum integers that ensured the
attainment non-negative variance . Thus, the results shown on figures 5 and 6 for
populations I and II respectively; figures 7 and 8 for population III with p = -0.32 and
p = 0.55 and also figures 9 and 10 for population IV with p = -0.77 and p = 0.91.

Detailed description are shown below

Fig. 5: Graph of Expected MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population |
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It is clear on figure 5 that the estimator %, ._; (with green line) and as shown on table 18
above, is the most efficient estimator with EMSE of 131.2927 and 10.90 at g = 0 and
g = 1 respectively. At g=2, the conventional estimator namely, Hansen and Hurwitz
estimator has the lowest EMSE of 0.9153. Thus, we conclude that the estimator
defined by ¢ = 1 is the best for population I at g = 0 and g = 1. When g=2, the
conventional estimator becomes the best when compared with other estimators.

Fig. 6: Graph of Expected MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population lI
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For population 11, It can be seen on figure 6 that the estimator %, ._, (with brown line)
and as shown on table 51 above, is the most efficient estimator with EMSE of
826.5816 and 25.594 at g = 0 and g = 1 respectively. At g=2, the conventional
estimator namely, Hansen and Hurwitz estimator has the lowest EMSE of 0.96253.

Again, we conclude that the estimator defined by ¢ = 2 is the best for population Il at

g =0 and g = 1. When g=2, the conventional estimator becomes the best when

compared with other estimators.

Fig. 7: Graph of Expected MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population Il
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Population Il has two sets EMSE’s computed at p=-0.32 and 0.51. Figure 7 shows the
performance of the estimators at p=-0.32 while figure 8 shows the performance of the
estimators at p=0.51 as contained on table 53. It can be seen on table 52 and also figure
7 that the estimator £, ._, (with brown line) is the most efficient estimator when p=-0.32
while the estimator defined by ¢ = 1 as contained on figure 8 is relatively more
efficient than all other estimators when p=0.51 with EMSE of 254.301 and 15.737 at g
= 0 and g = 1 respectively. At g=2, the conventional estimator namely, Hansen and

Hurwitz estimator has the lowest EMSE of 0.9273.

Fig. 8: Graph of Expected MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population Ill at rho=.55
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For population 1V, there are also two sets EMSE’s computed at p=-0.75 and 0.91.
Figure 9 shows the performance of the estimators at p=-0.32 while figure 10 shows the
performance of the estimators at p=0.51 as contained on table 53. It can be seen on
table 53 and also figure 9 that the estimator £, ._, (with brown line) is the most efficient
estimator when p=-0.77 and also at p=0.91 with EMSE of 165.286 and 5.623 at g = 0
and g = 1 respectively. At g=2, the conventional estimator namely, Hansen and
Hurwitz estimator has the lowest EMSE of 0.2808. it is also noticeable that when
negative correlation was encountered here, the estimator defined by ¢ = 4 was
optimum at all values of g with EMSE of 266.310, 6.485 and 0.238 at g = 0, 1 and 2

respectively

Fig. 9: Graph of Expected MSE of alternative linear estimators as

compared with Hansen and Hurwitz (HH) estimator for population lll at rho=0.77
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The results on figures 5 to 9 exhibit the following characteristics:

a) The expected MSE, EMSE is maximum at g = 0;
b) It attained minimum as g —2 in most cases;

c) The results in (a) and (b) above are consistent for all the four populations.

Table 18 below presents the summary of the results of moment estimators specified for
the four study populations under the sampling design and super-population model. The
results clearly shows the changing specification along moments in the correlation
coefficient and also, that no single estimator is sufficient for all populations. Again, we
can conveniently state that the estimators defined by c=1, c=2, c=2 and c=4 are best for
populations I, 11, 11l and 1V respectively under the PPS sampling design. Similarly,
under super-population model, the estimators defined by c=(1, 1,HHE), c=(2,2,HHE),
¢=(2,2,HHE) and also ¢ = (4,4,HHE) for populations I, 11, 1l and IV are best for g=0,1
and 2 respectively.

Table 18: Estimators defined by Moment in correlation coefficient in relation to the
distribution of the study populations.

Population  Correlation Design based Model based Model based
estimator estimators estimators
(actual) (Modified)

Actual Modified Actual Modified g=0 g=1 ¢=2 ¢g=0 g=1 g=2

I 0.162 - c=1 - 1 1 HHE - - -
I 0.395 - c=2 - 2 2 HHE - - -
Il -0.321  0.55 c=2 c¢=2,3 2 2 HHE 1 2 HHE
v -0.775  0.91 c=4 <c=4 4 4 3 4 4 HHE

5.5 Approximate value of c at g = 0,1,2 for the study Populations.

Here, the expression for determining approximate value of ¢ as given in 4.26 of
chapter four is utilized and the study populations applied to obtain approximate values

of the specification parameter, c. The results were earlier shown on table 13. Since the
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distributions consist of N values of p;, N values of ¢ are computed. However, our
interest here is to obtain the lower and upper values of ¢ determined by Min p; and

Max p;.

From table 18 above, it is clear that the true value of c is in [0,2], [0,2], [0,3] and
[0,13] for populations I, Il, 11l and IV respectively when g=0. However, when g =1, ¢
is a value in [0,2], [0,4], [0,3] and [0,6] for populations 1, I, 1l and IV respectively.
When g=2, c is a value in [0,1], [0,2], [0,2] and [0,8] for populations I, II, 11l and IV

respectively.

By these results, we can conveniently state that the best value of c is determined when

g—2, especially by the interval defined by Min p; and Max pi.

Again, for convenience, we assume that for the values of ¢ =4 is adequate for all values
of ¢ >4, since our interest is mainly in the first four moments described by c =1, 2, 3

and 4.

Therefore, we can conclude that the specification parameter are c=1, c=2, c=2 and c=4

for populations I, 11, 111 and IV respectively.
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5.6 Relative Efficiency of alternative linear estimators as compared with Horvitz

and Thompson estimator in aPS sampling design.

In this section, the relative efficiencies of the proposed estimators in PPSWOR
sampling design otherwise, nPS design as compared with the conventional Horvitz and
Thompson (1952) estimator are presented for populations | to IV as shown on tables
19 to 22 for sampling design while the expected MSE under super-population model

are shown on tables 54 to 57 for populations I to IV respectively.

Tables 19 to 22 also show the estimates of population total, bias, variance and MSE for

populations 1 to IV respectively.

Table 19: Estimates of population total, bias, variance and relative efficiency using
conventional and alternative estimators in PPSWOR sampling design for
population |

Tyt Tge=1 Tge=2 Tg,c=3 Tg,c=4
Estimators
Total 3023.07 2985.70 2985.83 2986.02 2986.05
Bias 0.00 -0.02 1.02 1.22 1.25
Variance 706919.29 | 681011.34 | 681079.26 | 681163.50 681143.82
RE 100.00 96.34 96.34 96.36 96.35

Table 20: Estimates of population total, bias, variance and relative efficiency using

conventional and alternative estimators in PPSWOR sampling design for

population I1.
Tyr fg.c=1 fg,c=2 fg,c=3 fgrc=4
Estimators
Total 4700.59 4170.32 4138.16 4141.81 4145.53
Bias 0.00 -2.60 3.43 6.66 8.06
Variance 853381.41 | 588259.60 | 577833.43 | 580399.04 | 582315.44
RE 100.00 68.93 67.71 68.01 68.24
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Table 21: Estimates of population total, bias, variance and relative efficiency using

conventional and alternative estimators in PPSWOR sampling design for

population I11.
fg,c=HT fg,c=1 fg,c=2 fg,c=3 fg,c=4
Estimators
Total 9805.67 8660.18 8602.48 8618.65 8628.06
Bias 0.00 -12.06 24.05 42.10 48.75
Variance 6925145.53 | 4751914.88 | 4626838.10 | 4642936.32 | 4655158.96
RE 100.00 68.62 66.81 67.04 67.22

Table 22: Estimates of population total, bias, variance and relative efficiency using
conventional and alternative estimators in PPSWOR sampling design for
population 1V.

fHT fg.c=1 fg,c=2 fg,c=3 fg,c=4
Estimators
Total 39720.98 | 17955.03 | 14236.65 | 12675.18 11859.44
Bias 0.00 -243.09 -273.84 -266.46 -243.02
Variance 117152937 | 19222566 | 11750358 9241840 8058239
RE 100.00 16.41 10.03 7.89 6.88

5.6.1 Relative Efficiencies of proposed estimators as compared with Horvitz and
Thompson Estimator in PPSWOR design.

Considering table 19 above, it is clear that RE(fy7\f, .—1) < RE(Tyr\T,.), ¢ = 2,3,4
and also, RE(y7\y c=1) < RE(Tyr\Tyr). Thus, the estimator defined by c=1 and c=2

are equally efficient with RE coefficient of 96.34% that minimizes the MSE as far as

population I is concerned.
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For population I, RE(Z;5\t4,c=2) < RE(f4u\t, ), ¢ = 1,2,3 and also RE(fyy\ty c=2) <
RE(Tyy\Tyy), hence the estimator defined by c=2 as shown on table 20 above with
relative efficiency coefficient of 67.71% that minimizes the MSE. Similarly, in
population Il as shown on table 21 above, RE(fyy\t, =2) < RE(fyu\t, ), € = 1,34
and also RE(Tyu\tyc—2) < RE(fyy\Tyy), so that the estimator defined by c=2

performed better than all other estimators in the class.

For population 1V, RE(fy\ty c—4) < RE(fyy\y ), ¢ = 1,2,3 and also RE(fyy\ty c—4)
< RE(Tyy\tyy), and so, it is clear that the estimator defined by c=4 is the best

estimator in terms of minimizing MSE as shown on table 22 above.
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5.6.2 Relative Efficiencies of proposed estimators as compared with Horvitz and

Thompson Estimator under super-population model.

Under super-population model, the EMSE for populations 1, Il, 11l and IV are shown
on tables 54, 55, 56 and 57 in appendix B below. Their estimators are defined for

populations 1, Il, 11 and 1V respectively as follows:
Population I: forg=0, 1,2;c=4,1and HTE;
Population II: forg=0,1,2;c=4,1, 1;
Population II: forg=0,1,2;c=4,1, 1;
Population II: forg=0,1,2;c=4,4,1.

We again observe the changing specification for the study populations, especially
under the sampling design. These changing specification are of importance in this
study as they relate with moment in correlation coefficient determined by the
expectation of the ¢c™ moment in the standardized variable and hence, the linear

regression model.

5.7 Relative Efficiencies of proposed alternative linear estimators in pps

sampling schemes under certain theoretical probability distributions.

In this section, the estimators are studied by utilizing theoretical distributions of the
auxiliary information namely normal, uniform, chi-square and gamma distributions
representing symmetric, rectangular and asymmetric distributions with the aim of
determining whether the distributions of the variables have impact on the specification
and hence, definition of an estimator for a target population.

Here, the auxiliary information is assumed to be known and the survey statistician
obtains only the study variables for estimation. For this reason, we shall only simulate

values of auxiliary variables and hence, the corresponding selection probabilities.
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5.7.1 Relative efficiency of proposed estimators as compared with

conventional estimator under the theoretical distributions for population

The results of the relative efficiencies of the alternative estimators in PPSWR
sampling scheme as compared with the conventional estimator for both sampling

design and super-population model are shown on tables 23 to 26 below.

Under normal distribution, the estimator defined by ¢ = 4 is the best estimator with
Relative efficiency coefficient of 7.6%. It is also clear from the result that the Rao’s
estimator corresponding with p=0 is as good as the estimator defined by c=4 as shown
on table 23 below. Under chi-square distribution, the estimators defined by ¢ = 1,2,3
and 4 are equally efficient with MSE far below that of the conventional estimator.
Again, the Rao’s estimator proves to be equally efficient as the defined estimators at

p=0.162 as shown in table 24 below.

Table23: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under the theoretical Normal Distribution for
population |

Rho | RE(£4\tyy) | RE(G\Eup) | RE(E,\Eyy) | RE(23\2yn) | RE(£,\Enn)
0.000 100.0 7.6 7.6 7.6 7.6
0.100 100.0 8.5 7.6 7.6 7.6
0.162 100.0 9.7 7.7 7.6 7.6
0.500 100.0 24.1 12.1 9.0 8.0
0.900 100.0 73.7 56.8 45.2 37.0
1.000 100.0 100.0 100.0 100.0 100.0
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Table24: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under the Ch-squared distribution for
population |

RAO | RE(,1\tns) | RE(2\tns) | RE(E\Ens) | RE(E5\Ens) | RE(GE\NE4H)
0.000 100.0 0.0 0.0 0.0 0.0
0.100 100.0 0.0 0.0 0.0 0.0
0.162 100.0 0.0 0.0 0.0 0.0
0.500 100.0 0.1 0.0 0.0 0.0
0.900 100.0 0.2 0.1 0.1 0.1
1.000 100.0 100.0 100.0 100.0 100.0

Table25: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under the uniform distribution for population I

RAO | RE(#,1\tns) | RE(2\Ens) | REG\Es) | RE(E\E4s) | RE(GEN4n)
0.000 100.0 100.0 100.0 100.0 100.0
0.100 100.0 100.0 100.0 100.0 100.0
0.162 100.0 100.0 100.0 100.0 100.0
0.500 100.0 100.0 100.0 100.0 100.0
0.900 100.0 100.0 100.0 100.0 100.0
1.000 100.0 100.0 100.0 100.0 100.0

For uniform distribution, all the estimators, that is, the conventional and all the
alternative estimators performed the same in terms of MSE as shown on table 25
above. Under gamma distribution, ¢ = 4 is the best estimator as shown on table 26
below. In the same manner, Rao’s estimator is another competing estimator with equal

RE with the estimator defined by ¢ = 4.
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Table26: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under the gamma distribution for population I

RAO | RE(2,1\tns) | RE(2\tns) | RE(E\E4s) | RE(E5\Ens) | REGENE4H)
0.000 100.0 0.1 0.1 0.1 0.1
0.100 100.0 0.8 0.2 0.1 0.1
0.162 100.0 13 0.2 0.2 0.1
0.500 100.0 3.8 2.0 1.0 0.5
0.900 100.0 11.0 6.9 5.6 48
1.000 100.0 100.0 100.0 100.0 100.0

5.7.2 Relative efficiency of proposed estimators and the conventional estimator

under certain theoretical distributions for population I1.

We note from the analysis that under uniform distribution, the estimators are all the
same. For this reason, we concentrate on the other distributions, namely, normal, chi-
square and gamma distributions respectively. The results are presented in tables 27 to
29 below.

Under normal distribution, the estimator defined by ¢ = 3 is the best having RE
coefficient of 22% which is far less that all other estimators at p=0.395 as shown on
table 27 below.
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Estimators with ¢ = 3 and 4 are best under chi-square distribution with RE coefficient
of 0.1% which is again far less than all other estimators in terms of MSE. As shown on
table 28 below. Under gamma distribution, the estimator defined by ¢ = 4 is preferred
to all others with relative mean square error of 1.5% as shown on table 29.

Table27: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under the theoretical Normal Distribution for
population 11

Rho | RE(uy\tnn) | RE(E:\Eun) | REGNEy) | REGNEy) | REGNE4n)
0.000 100.0 22.4 22.4 22.4 22.4
0.100 100.0 21.9 223 22.4 22.4
0.395 100.0 27.6 22.2 22.0 22.2
0.500 100.0 32.3 23.5 22.0 22.0
0.900 100.0 75.4 60.2 50.1 43.0
1.000 100.0 100.0 100.0 100.0 100.0

Table28: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under Chi-square Distribution for population 11

Rho | RE(£y4\tun) | RE(\tny) | REGE\Ens) | RE(3\Eyy) | RE(Z\Eyn)
0.000 100.0 0.1 0.1 0.1 0.1
0.100 100.0 0.2 0.1 0.1 0.1
0.395 100.0 0.6 0.2 0.1 0.1
0.500 100.0 0.8 0.4 0.2 0.1
0.900 100.0 2.4 15 1.2 1.0
1.000 100.0 100.0 100.0 100.0 100.0
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Table29: Relative Efficiencies of proposed alternative estimators as compared with
the Hansen and Hurwitz estimator under Gamma Distribution for population 11

Rho | RE(£45\t45) | RE(\e4y) | RE(G\Ewy) | RE(£5\Eny) | RE(£4\nn)
0.000 100.0 14 14 14 14
0.100 100.0 2.1 14 14 14
0.395 100.0 6.3 2.7 17 15
0.500 100.0 8.1 4.0 2.4 17
0.900 100.0 325 19.6 146 11.8
1.000 100.0 100.0 100.0 100.0 100.0

5.7.3 Relative efficiency of proposed estimators and the conventional estimator
under certain theoretical distributions for population I11.
The results of the relative efficiency as measured by the relative mean square error for
population Il are shown on tables 30, 31 and 32 for normal, chi-square and gamma
distributions respectively. Again, it is clear that under normal distribution, the
estimator defined by c= 4 is the best while those defined by ¢ = 3and ¢ =4 are the best
estimators under chi-square distributions. Here, the Rao’s estimator perfomed the
same as the estimators earlier defined for the population. In the case of gamma
distribution as shown on table 31, the estimator defined by ¢ = 2 with RMSE = 28.45%
for p=0.5 and c=1 with RMSE = 28.904% at p=-32 are the best for this population.

Table30: Relative Efficiencies of linear alternative estimators as compared with
HHE for the theoretical Normal Distribution for population 111

RAO | RE(#,1\tns) | RE(E\Enn) | REG\Es) | RE(E\Es) | REGEN4H)
0.000 100.0 28.5 28.5 28.5 28.5
0.1 100.0 29.0 28.5 28.5 28.5
0.5 100.0 40.7 315 29.3 28.7
0.5 100.0 41.2 317 29.4 28.7
0.9 100.0 80.0 66.6 57.2 50.4
1.0 100.0 100.0 100.0 100.0 100.0
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Table 31: Relative Efficiencies of linear alternative estimators as compared with
HHE for the theoretical Chi square Distribution for population 111

RAO | RE(£4\try) | RE(2\ery) | RE(E\Ers) | RE(F3\Eny) | RE(E4\Ens)
0.000 100.0 0.002 0.002 0.002 0.002
0.1 100.0 0.002 0.002 0.002 0.002
0.3 100.0 0.003 0.002 0.002 0.002
05 100.0 0.004 0.003 0.002 0.002
0.9 100.0 0.008 0.005 0.004 0.003
1.0 100.0 100.0 100.0 100.0 100.0

Table 32:Relative Efficiencies of linear alternative estimators as compared with
HHE for the theoretical the theoretical Gamma Distribution for population 111

RAO | RE(#,1\tns) | RE(2\Enn) | RE(GE\Es) | RE(E\E4s) | REGEN4H)
0.000 100.0 30.986 30.986 30.986 30.986
0.1 100.0 29.030 30.723 30.959 30.984
0.3 100.0 28.904 29.000 30.184 30.711
05 100.0 32.787 28.450 28.681 29.508
0.9 100.0 67.776 51.944 42.982 37.473
1.0 100.0 100.0 100.0 100.0 100.0

5.7.4 Relative efficiency of proposed estimators and the conventional estimator
under certain theoretical distributions for population 1V.

We considered the results on tables 33, 34 and 35 below for normal, chi-squared and
gamma distributions respectively. It can be observed here that under normal
distribution, c=4 defined the best estimator with RMSE of 48.6% and 59.7%
respectively at both |p|=0.775 and p=0.91.
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These specifications are same for chi-square and gamma distributions as evidenced on
tables 34 and 35 with RMSE of 1.9% and 2.9% for chi-square distribution and 7.1%
and 9.7% for gamma distribution.

Table 33: Relative Efficiencies of linear alternative estimators as compared with
HHE for the theoretical Normal Distribution for population IV

RAO | RE(,1\tns) | RE(2\tns) | RE(E\Ens) | RE(E3\Ens) | RE(E\E4H)
0.000 100.0 45.9 45.9 45.9 45.9
0.100 100.0 45.7 45.9 45.9 45.9
0.775 100.0 68.2 56.7 51.4 48.6
0.900 100.0 82.3 715 64.5 59.7
1.000 100.0 100.0 100.0 100.0 100.0

Table34: Relative Efficiencies of linear alternative estimators as compared with
HHE for the theoretical Chi square Distribution for population IV

RAO | RE(#,1\tns) | RE(2\tns) | RE(GE\Es) | RE(E5\Ens) | REGN4n)
0.000 100.0 13 1.3 13 1.3
0.100 100.0 13 1.2 13 13
0.775 100.0 3.8 2.6 2.1 1.9
0.900 100.0 7.4 4.4 3.4 2.9
1.000 100.0 100.0 100.0 100.0 100.0
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Table35: Relative Efficiencies of linear alternative estimators as compared with

HHE for the theoretical Gamma Distribution for population 1V

RAO | RE(£44\tns) | RE(F\eny) | RE(E\Ens) | RE(F3\Eny) | RE(E4\Ens)
0.000 100.0 4.4 4.4 4.4 4.4
0.100 100.0 5.3 45 4.4 4.4
0.775 100.0 12.6 9.0 7.8 71
0.900 100.0 228 14.2 11.2 9.7
1.000 100.0 100.0 100.0 100.0 100.0

Table 36 below presents the summary of the specification of estimators by utilizing

theoretical distributions with the study variable which shows the varying estimators

for varying populations and especially, as it relates with moment in p.

Table 36: Summary of estimators defined by ¢ under the theoretical distributions for

four study populations under PPS sampling design

Population
Population |
Population 11
Population I11

Population 1V

Normal

Uniform

all estimators

all estimators

all estimators

all estimators

Chi-square

c=1,2,3,4

c=4

c=3,4

c=4

Gamma

c=1,2,3,4

c=4

c=2

c=4

It is clear from table 36 that estimators defined by higher moments ¢=3 or ¢ = 4 are

best for populations that are normally distributed. In the case of uniform distribution,

all estimators performed equally. For chi-square and gamma distributions, there is a

mixture of higher and lower moment and in cases where the study and measure of size

variables are weakly correlated, all estimators performed equally the same.
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5.8  Expected MSE of proposed and conventional estimators under certain
theoretical distributions.

Detailed results are presented in appendix B below for the theoretical distributions and
the study populations. For convenience, we present the summary of the estimators as
shown on table 37 below for the study populations and distributions as adjudged by

the performance of the EMSE.

Table 37: specification of estimators by super-population model under theoretical

distributions

Population/ g Population I Population Il Population 111 Population 1V
Distribution
Normal 0 c=4 c=1 c=2 c=2(4)

1 c=4 c=1 c=1 c=1

2 HHE HHE HHE HHE
Uniform 0 c=1234 c=1234 c=1234 c=1234

1 c=1,2,34 c=1,2,3,4 c=1,2,3,4 c=1,234

2 HHE HHE HHE HHE
Chi-square 0 c=4 c=1 c=1(1) c=3(4)
1 c=4 c=1 c=HHE(1) c=1(2)
2 HHE HHE HHE HHE
Gamma 0 c=3 c=1 c=1(2) c=4(4)
1 c=3 c=1 c=1(1) c=1(3)
2 HHE HHE HHE HHE

Note: values in parenthesis represent the estimate at transformed p
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From table 37 above, it is clear that no single estimator can be said to be consistently
efficient for all the study populations even under the super-population model.
However, we cannot certainly conclude that the distribution of the population
determines the specification of an estimator.

5.9  Comparison of estimators under Rao-Hartley Cochran scheme

In 4.62, the variance and hence MSE of the proposed estimator under RHC strategy
was defined. In this section, the results of MSE is presented on tables 38 to 41 while
those of relative efficiencies are shown on tables 42 to 45 for populations | to IV

below respectively.

Table 38: Mean Squared Error of Alternative Linear Estimators under RHC scheme
for Population |

Rho | RE(uu\tun) | RE(G\Eun) | REG,\Eun) | REG3\Ensn) | REGNEus)
0.000 202519 | 115592 | 115592 | 115592 | 1155.92
0.100 202519 | 113519| 115261| 115558 |  1155.89
0.162 202519 | 113562 | 1147.83| 115448 | 1155.69
0.500 202519 | 130003 | 115269 | 113418| 1139.79
0.900 202519 | 1831.36| 1678.93 | 155858 |  1463.38
1.000 202519 | 202519 | 202519 | 2025.19| 2025.19

Table 39: Mean Squared Error of Alternative Linear Estimators under RHC scheme

for Population 11

Rho RE(244\tny) | RE(2\eys) | RE(2,\eny) | RE(£5\eny) | REG\Eny)
0.000 496455 | 1756.86 | 1756.86| 1756.86 | 1756.86
0.370 496455| 1508.65| 1530.12 | 1651.84 | 1714.91
0.395 496455 | 1531.30 | 1512.08| 163250 | 1703.08
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0.500 4964.55 1682.64 1466.86 1542.92 1631.02
0.900 4964.55 3661.47 2902.39 2425.63 2110.76
1.000 4964.55 4964.55 4964.55 4964.55 4964.55

Table 40: Mean Squared Error of Alternative Linear Estimators under RHC scheme

for Population 111

Rho | RE(u\tns) | RE(E:\Eun) | REGNEn) | REG\Eun) | REGNE4n)
01| 1113711 1113711 1113711 1113711 1113711
04| 111371.1| 938757| 81430.8| 722380| 65257.2
05| 111371.1| 53597.2| 43270.3| 432515| 454310
09| 111371.1| 45033.0 | 43827.8| 472025| 489157
10| 1113711 43002.1| 48957.1| 497585 |  49842.2
00| 111371.1| 49851.5| 498515 49851.5| 498515

Table 41: Mean Squared Error of Alternative Linear Estimators under RHC scheme

for Population 1V

Rho | RE(£,1\tns) | RE(2\tns) | REG\Ens) | REG\Eny) | REG\Eus)
10| 1157246.0 | 1157246.0 | 1157246.0| 1157246.0| 1157246.0
09| 1157246.0| 566969.8| 4368958 | 3792263 | 3444953
0.8| 1157246.0| 3929354 | 3109359 |  265308.9 | 2301373
05| 1157246.0| 276694.4| 190937.4|  148588.1| 1361515
0.1| 1157246.0| 142190.8| 141803.8 | 1456350 | 146083.4
00| 1157246.0| 1461340 | 1461340| 1461340|  146134.0
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The MSE of the alternative estimators as shown on tables 38 to 41above suggested

that the estimators defined by c=1, c=2, c=3 and c=4 are best for populations I, I, 1
and IV with p =0.162, p = 0.395, p =-0.32 or 0.55and p = -0.7750r 0.91 respectively.

Table 42: Relative Efficiencies of Alternative Linear Estimators under RHC scheme

for Population |

Rho | RE(Gus\tus) | RE(2\tny) | RE(E\Eny) | RE(G\Eun) | REG\Enn)
0.000 100.0 57.1 57.1 57.1 57.1
0.100 100.0 56.1 56.9 57.1 57.1
0.162 100.0 56.1 56.7 57.0 57.1
0.500 100.0 64.2 56.9 56.0 56.3
0.900 100.0 90.4 82.9 77.0 72.3
1.000 100.0 100.0 100.0 100.0 100.0

Table 43: Relative Efficiencies of Alternative Linear Estimators under RHC scheme

for Population 11

Rho | RE(fyy\tny) | RE(3\tny) | RE(E\ny) | REG3\ny) | RE(G\Eny)
0.000 100.0 35.4 35.4 35.4 35.4
0.370 100.0 30.4 30.8 33.3 34.5
0.395 100.0 30.8 305 32.9 34.3
0.500 100.0 33.9 295 31.1 32.9
0.900 100.0 73.8 58.5 48.9 425
1.000 100.0 100.0 100.0 100.0 100.0

124




In terms of the RMSE, we investigate the specification of the estimator for each

population which is our main focus in this study, it is observed that for population I,

the estimator with ¢ = 1is the best estimator with relative efficiency of 56.1%. As p

increases to 0.5, the estimator defined by ¢ = 3 would be preferred and the estimator

defined by ¢ =4 would be the best when p—1.

Table 44: Relative Efficiencies of Alternative Linear Estimators under RHC scheme

for Population 111

Rho | RE(fyu\tny) | REG\tnn) | REGo\tyn) | RE(a\ny) | RE(24\Ews)
1.000 100.0 100.0 100.0 100.0 100.0
0.9 100.0 84.3 73.1 64.9 58.6

0.5 100.0 48.1 38.9 38.8 40.8

0.3 100.0 40.4 30.4 42.4 43.9

0.1 100.0 39.4 44.0 44.7 44.8

0.0 100.0 44.8 44.8 44.8 44.8

Table 45: Relative Efficiencies of Alternative Linear Estimators under RHC scheme

for Population IV

Rho | RE(Eyu\tny) | REG\tnn) | RE(G,\tny) | RE(Es\tns) | RE(24\Ews)
1.000 100.0 100.0 100.0 100.0 100.0
0.9 100.0 49.0 37.8 328 29.8

0.8 100.0 34.0 26.9 22.9 19.9

0.5 100.0 23.9 16.5 12.8 11.8

0.1 100.0 12.3 12.3 12.6 12.6

0.0 100.0 12.6 12.6 12.6 12.6
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In population II, the estimator defined by ¢ = 2 is preferred at p=0.395 which is the
true population correlation coefficient. The same specification would be appropriate

for p=0.5 and as p—1, c=4 would be preferred.

For population 1Il, the true population correlation is -0.32. However under
transformation, p=0.55. Considering p=.32, it is clear that the estimator with ¢ = 2 is
the best with relative efficiency of 39.5%. However, at p=.55 the estimator defined by
¢ = 3 would be preferred as it has the lowest MSE expressed in terms of relative
efficiency of 38.8%.

Finally, for population IV, the estimator defined by ¢ = 4 is the best at p=0.775 with
relative efficiency of 19.9%and p=0.91 and as p—0, the estimator with ¢ = 1 would be

preferred to all other estimators in the class.

All the estimators converge to HHE at p=1 and to Rao’s estimator as p=0.
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CHAPTER SIX

CONCLUSIONS

6.0 Introduction.

In this chapter, we summarize the main results of this thesis and suggest some
areas of future research related to this study. Earlier, this thesis presented some
literature including the popular works of Godambe(1955) and Basu(1971) that
postulated the non existence of a uniformly most efficient homogenous estimator-
theory which gave rise to finding alternative estimators. It was further observed that
large-scale surveys have become complex in design and estimation for which the PPS
sampling scheme is one of such designs that utilizes auxiliary information to enhance
efficiency. However, most literature had emphasized the estimation of population
parameter, say, total under the condition of positive correlation while the aspect of
negative correlation is rarely addressed. The other issue of concern has been the
assumption that each of the existing estimators in PPS sampling, both conventional
and alternative estimators are efficient for all study populations irrespective of their

distributional properties and the non-existence theory.
6.1 Main Results

In chapter three, we utilized the law of direct proportion to establish that the

selection probabilities, p;, is a realization of positive correlation between the study
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variables y and the measure of size x, which is an advancement on the classical ratio-

estimator to obtain the Hansen-Hurwitz’s estimator.

The selection probabilities, pi’s provided the normed-size measure for
estimating population total under the PPSWR sampling scheme while the generalized
selection probabilities p;, . provided a linear transformation that utilized the ch
(c=1,2,3,4) moment in correlation coefficient to develop a class of alternative linear
estimators. We have shown that for efficiency, the relationship between the statistical

properties namely coefficient of variation, skewness and kurtosis of the study variables

cv,
and measure of size variables and correlation coefficient is expressed by p?! CV" <
y

1Lp?<1,p* =B <1y v, # 0and p* =2 <1 K, # 0.

When ¢ = 1, we showed that p! > < 1 along with the conditions namely

pr<1,p3=2 - < 1land p* y - < 1 must hold true for the estimator defined by ¢ =

to be utilized. This agrees with Cochran(1977) who showed that the ratio estimator is

most efficient among other competing estimators when p! > —* ZCV < 1. However, this

estimator can only be specified when p—0. This again agreed with the positions of
Rao(1966), Bansal and singh(1985), Amahia et al(1989), Grewal(1999) among other
scholars. We note here that this condition is only true for a linear estimator.

The study have also shown that when there is moment in p such that p takes a
value 0.25<p<0.50 or some neighbourhood and p2—>0, then the estimator defined by c

= 2 is best suitable for the target population. If there is further moment in p such that

p3 = :—y < 1 satisfying 0 < p3 < 1, then an estimator defined by ¢ = 3 would be the

best in term of MSE and relative efficiency. Empirical results have shown that this
happens when 0.5<p<0.7 and its neighbourhood. Similarly, when p* = I;—y<1 and

0.7<p<0.99, then the estimator defined by c = 4 is the best for the target population.

In situation where negatively correlated variables are encountered, direct
transformation of measure of size variables could not provide the desired estimator.
Thus, taking cognizance of the law of inverse proportion and further transformation

1/xi

from inverse to direct proportion by p; = z———
Zizll/xi

=p; =, the correlation structure
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changed from negative to positive correlation. By this transformation, a Modified
Hansen-Hurwitz Estimator (MHHE) or Modified Horvitz-Thompson Estimator

(MHTE) has been proposed for any observed case of negative correlation.

It is worth to note here that the MHHE or MHTE determined by p; = Z—Nl/f;x
i=1 i

possess the properties of harmonic mean which is mostly used when it is desirable to
assign lower weights to higher values and higher weights to lower values. The
selection probabilities and the derived generalized selection probabilities p;, . can be
utilized in the class of alternative linear estimator by observing the conditions similar

with those estimators involving positively correlated variables.

The interesting features of the developed estimators are that their bias, MSE’s
and EMSE’s coincide with the Rao’s Estimator (RE) when p=0 and the conventional
HHE or HTE in cases of PPSWR or nPS respectively when p=1. This provided
boundaries for the linear estimators in PPS sampling scheme different from those
defined by Sahoo(1995) estimator which had extended the boundaries but reduced the
magnitude of negative correlation by restricting the estimators to instances of strong

negative correlation.

The derived expression for determining approximate value of c is another
useful means of defining an efficient estimator for a target population. Empirical

evidence have shown that the optimum value of c lies between Min p; and Max p;.

The main aim of developing a general class of linear estimator is as a result of
the fact of the non-existence of a uniformly most efficient estimator (UMEE) in the
parameter space on one hand and the fact that no single estimator can be efficient for

all populations and at all conditions. Thus, the class of alternative linear estimators

1—p€
N

defined by the generalized selection probabilities p;, = + p°p;, ¢ = 1,2,3,4 for

0<p<I provided the best estimators of population total for any target population.
The implication of the results above is that one estimator, say HHE, ACRE,
RE among others cannot be said to be the best for all populations at all times. Thus

different populations may have different estimators depending on their correlation

coefficient and how it relates with the characteristics of the study populations.
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The results of our empirical studies using sample of size two, that is, n =2 for
the four study populations provided practical evidence of the behaviour of the
developed class of linear estimators in PPS sampling schemes. Under the sampling
design, we can conveniently infer that when p=0, the Rao’s estimator would always
be the best among other competing estimators. As p moves slightly from zero, Rao’s
estimator increased in bias and hence MSE and the anticipated MSE or EMSE thereby
suggesting the estimator defined by ¢ = 1. As p moves closer to the 0.5, another
estimator defined by c= 2 becomes the best among other competing estimators.
Similarly, as p moves slightly away from 0.5 but not so strong, the estimator defined
by ¢ = 3 becomes the best. Furthermore, the estimator defined by ¢ = 4 would be the
best when it is clear that there is very strong correlation between the variables of

study, especially when p—1..

Certainly, the proposed estimators form a class of linear estimators bounded by
Rao’s estimator by the left and HHE by the right so that all other estimators defined
by ¢c =1, 2, 3 and 4 are found within this class. Therefore, for a given population, the
proposed linear estimators provide the best estimators for use in PPS sampling than
utilizing the conventional estimator or a specified alternative estimator that are rigidly

specified by fixed order of p.

The behaviour of the proposed estimators under the Rao-Hartley and Cochran
scheme when n=5 is consistent with our earlier findings for n=2 in both PPS and nPS
sampling schemes thereby suggests that increasing sample size would not change the
estimators for the target populations. However, apart from uniform distribution for
which all estimators are equal in performance, empirical evidence have shown that for
theoretical populations that are normally distributed, estimators with ¢=3 or ¢ = 4
performed better than other estimators in terms of MSE or EMSE. However, for
skewed distributions such as chi-squared and gamma distributions, estimators defined
by ¢ =1 or 2 are best specified when p—0 or somewhat moderate. However, as p—1,
estimators defined by c=3 or c=4 are best specified. Furthermore, the Grewals
estimator is only best under super-population model than sampling design and
utilizing this estimator would require transformation of c¢ into ¢* =1/c as shown in

chapter three.
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Generally, the discussions above have shown that no single estimator is
efficient for all populations and conditions and a rough idea of the magnitude of the
correlation between the study and auxiliary variables and hence the size measures
would provide insight into which estimator would be best for the target population.
Secondly, the idea of the ratio of coefficients of variations, skewness and kurtosis as
related with the correlation coefficient would help in the specification of estimators.
Whereas the information of the target populations is not available to the survey
statistician, this study have shown that among the estimators in the class defined by
c=1,2,3 and 4 there is the one estimator that is best for estimating population total.
Thus, in this era of information technology, it would be easier to identify such

estimator when the suggested estimators are run simultaneously.

6.2 SUGGESTED AREA OF FUTURE RESEARCH

The identification of survey problems by the practicing survey statisticians have
shown that survey data could also be subject to sampling and non-sampling errors.
Secondly, the question of utilization of non-linear transformation for the selection
probabilities as well as utilization of semi-parametric of non-parametric populations

may arise. Thus this research could be extended to cover the areas of

e Non-sampling Error and possibly randomized response techniques (RRT);
e Non-linear transformation of selection probabilities;

e Utilization of Bayesian method to determining selection probabilities;

e Use of rank-correlation under the linear or non-linear transformations;

e Multi-stage PPS sampling as the case may be;

e Small domain estimation.
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APPENDIX A

STUDY POPULATIONS UTILIZED IN THIS STUDY

Table 46: Study Population |

S/No X y P S/No X Y p
1 3 11 0.395 16 5 10 0.395
2 4 7 0.395 17 6 9 0.395
3 5 9 0.395 18 3 5 0.395
4 8 8 0.395 19 3 7 0.395
5 12 8 0.395 20 9 9 0.395
6 11 9 0.395 21 6 6 0.395
7 8 8 0.395 22 7 12 0.395
8 9 12 0.395 23 8 9 0.395
9 11 10 0.395 24 8 6 0.395

10 10 9 0.395 25 9 9 0.395
11 8 8 0.395 26 11 11 0.395
12 9 14 0.395 27 11 10 0.395
13 7 12 0.395 28 10 14 0.395
14 8 10 0.395 29 5 8 0.395
15 8 10 0.395 30 3 7 0.395
Table 47: Study Population 11

S/No X y P

1] 41 36 0.162

2| 43 47 0.162

3| 54 41 0.162

4| 39 47 0.162

5| 49 47 0.162

6| 45 45 0.162

7| 41 32 0.162

8| 33 37 0.162

9| 37 40 0.162

10 41 41 0.162

11| 47 37 0.162

12| 39 48 0.162
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Table 48:Study Population 111

S/No X y P
1] 100 3 -0.32
2| 88 8 -0.32
3| 20 9 -0.32
4| 17 11 -0.32
5 60 5 -0.32
6| 77 9 -0.32
7| 51 5 -0.32
8| 69 4 -0.32
9| 66 6 -0.32

10| 77 9 -0.32
11| 68 2 -0.32
12| 36 4 -0.32
13| 74 4 -0.32
14| 33 5 -0.32
15 54 6 -0.32
16| 55 6 -0.32
17| 77 6 -0.32
Table 49: Population IV

S/No X y P
1 6.8 20 -0.77
2 6.2 23 -0.77
3 5.5 38 -0.77
4| 0.85 86 -0.77
5| 071 92 -0.77
6 9 16 -0.77
7 1.4 81 -0.77
8 4.5 53 -0.77
9 3.8 42 -0.77

10 2.1 62 -0.77
11| 4.85 39 -0.77
12 | 3.197 35 -0.77
13| 0.443 87 -0.77
14 | 0.468 91 -0.77
15| 0.59 84 -0.77
16 | 0.339 75 -0.77
17 | 0.161 54 -0.77
18 | 0.787 64 -0.77
19 | 0.069 26 -0.77
20| 0.11 100 -0.77
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Table50: Relative Efficiency based on Expected MSE (&MSE) of alternative estimators as compared with HHE for population |

APPENDIX B

EMSE OF THE PROPOSED ALTERNATIVE ESTIMATORS FOR THE FOUR STUDY POPULATIONS

0 0.162 | 7, 134.319 a+ 0 p° 1 11 a+ 0 p° 2| 09153 a+ 0 p’
Tye=1 131.281 a+ 0.01167 P’ 10.890 a+ 0.01167 P’ 0.94453 a+ 0.01167 B’
Tye=2 131.706 a+ 0.01608 P> 11.1282 a+  0.01608 B* 0.9557 a+ 0.01608 P’
Tycm3 131.787 a+ 0.01687 P> 11.1432 a+ 0.01687 B° 0.95771 a+ 0.01687 P>
Tyt 131.801 a+ 0.017 B* 11.1457 a+ 0.017 B* 0.95804 a+ 0.017 pB°

Table51: Relative Efficiency based on Expected MSE (&MSE) of alternative estimators as compared with HHE for population 11

0]0.395 | %, 1042.98 a+ 0 p° 1 29 a+ 0 B’ 2096253 a+ 0 p’
Ty =1 827.65 a+ 0.03733 P’ 28.5959 a+  0.03733 B’ 1.09179 a+ 0.03733 PB?
g2 826.513 a+ 0.06859 P’ 25.5262 a+ 0.06859 P’ 1.20495 a+  0.06859 P?
Tyc=3 854.467 a+ 0.08467 P’ 31.5779 a+ 0.08467 P’ 1.26148 a+ 0.08467 P>
Ty 861.352 a+ 0.09176 P’ 32.0436 a+ 0.09176 P’ 1.286 a+ 0.09176 P>

147



Table 52: Relative Efficiency based on Expected MSE (EMSE) of alternative estimators as compared with HHE for population 111

N

N

N

0 05 |1, 329.723 |a+ |0 B 16 a+ |0 B 0.92725 [a+ |0 B
= 260.038 a+ 0.04894 P> 14.9824 a+ 0.04894 p? 1.04657 a+  0.04894 P2

T2 2542 a+ 0.13684 P’ 14.8622 a+ 0.13684 P? 1.24678 a+ 0.13684 P?

Ty0=3 257.917 a+ 0.22283 p? 17.2335 a+  0.22283 B’ 1.42167 a+  0.22283 p?

Ty 261.977 a+ 0.28608 P> 18.0611 a+  0.28608 P* 1.54175 a+  0.28608 P?

0| 0324, 329.723 a+ 0 p 16 a+ 0 p’ 0.92725 a+ 0 p’
Tye=1 254.197 a+ 0.10403 P> 15.6325 a+  0.10403 P? 1.17519 a+  0.10403 P?

Tye=2 259.189 a+ 0.24371 p° 14.5097 a+  0.24371 B’ 1.46198 a+  0.24371 P2

Ty0=3 264557 a+ 0.32309 P’ 18.5333 a+  0.32309 P’ 1.60951 a+  0.32309 Pp?

Ty 266.811 a+ 0.35449 P2 18.927 a+  0.35449 P’ 1.66577 a+  0.35449 P?
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Table 53: Relative Efficiency based on Expected MSE (éMSE) of alternative estimators as compared with HHE for population 1V

N

N

N

0| 0914, 229236 a+ 0B 16 a+ 0 B 0.28083 a+ 0B
Tye=1 711.025 a+ 0.01273 P’ 9.15609 a+ 0.01273 p° 0.23119 a+ 0.01273 P’
Tye=2 430.8 a+ 0.03008 P’ 7.5652 a+ 0.03008 p° 0.20608 a+  0.03008 P>
Ty 0=3 322159 a+ 0.05026 B° 6.83628 a+  0.05026 P’ 0.18485 a+ 0.05026 @’
Tyt 266.236 a+ 0.07415 P> 6.41053 a+  0.07415 P2 0.16365 a+ 0.07415 P2
00.775 | £, 229236 a+ 0 p° 16 a+ 0 p° 0.28083 a+ 0 p’
Tye=1 346.544 a+ 0.04391 P’ 7.00906 a+ 0.04391 P’ 0.19106 a+  0.04391 p?
g2 222.85 a+ 0.11534 P’ 6.0349 a+ 0.11534 p? 0.13087 a+ 0.11534 p?
Tyc=3 183.251 a+ 0.22511 p? 5.59361 a+ 0.22511 P° 0.0497 a+ 0.22511 B’
Ty 164.902 a+ 0.38348 P? 5.23992 a+  0.38348 P2 0.06507 a+ 0.38348 P2

149




Table 54: Estimates of &MSE using conventional and alternative estimators in PPSWOR sampling scheme for population 1.

2

g |Rho | Estimator A B> |g A B> |G a B
01]0.162 | £, 757.7251 | a+ | 0.000 | p? 1|61.04531 | a+ | 0.000 | p? 2 | 4995357 | a+ | 0.000 | p?
Tge=1 720.7753 | a+ | 0.038 | p° 59.61553 | a+ | 0.038 | p° 5.010464 | a+ | 0.038 | p
Tg,c=2 719.4419 | a+ | 0.051 | B? 59.7652 | a+ | 0.051 | B? 5.045536 | a+ | 0.051 | p?
Tgc=3 719.346 | a+ | 0.054 | B 59.79987 | a+ | 0.054 | p° 5.052158 | a+ | 0.054 | p
Tgc=4 719.3336 | a+ | 0.054 | p? 59.80576 | a+ | 0.054 | p? 5.053256 | a+ | 0.054 | p?

Table 55: Estimates of EMSE using conventional and alternative estimators in PPSWOR sampling scheme for population 11.

N
N
N

g | Rho | Estimator A B g A B G a. B
0| 0397, 22609.09 [ a+ | 0.000 | p? 1| 504.0447 | a+ | 0.000 | p° 2 | 13.96817 | a+ | 0.000 | p*
Tge=1 13450.04 | a+ | 0.429 | p? 398.2594 | a+ | 0.429 | B2 13.74707 | a+ | 0.429 | p?
Tgc=2 12709.7 | a+ | 0.721 | p? 404.3067 | a+ | 0.721 | p? 14.66844 | a+ | 0.721 | p?
Tgc=3 12598.15 | a+ | 0.859 | p° 410.831 | a+ | 0.859 | B2 15.16344 | a+ | 0.859 | B
Tgc=4 12577.8 | a+ | 0.917 | p? 414.0036 | a+ | 0.917 | p? 15.37947 | a+ | 0.917 | p?
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Table 56: Estimates of &MSE using conventional and alternative estimators in PPSWOR

sampling scheme for population I11.

g | Rho | Estimator A B2 |g A B2 |G a B2
0| 0321, 3672.619 | a+ 0.00 | 2 1| 153.996 | a+ 0.00 | B 2| 7.43251|a+ | 0.00|p?
Ty =1 2299.603 | a+ 0.39 | 117.8413 | a+ 0.39 | p° 7.1915 | a+ 0.39 | p
Tgc=2 2171.411 | a+ 0.79 | B 119.7481 | a+ 0.79 | p 8.017956 | a+ 0.79 | p°
Tgc=3 2152.597 | a+ 1.00 | B 122.0586 | a+ 1.00 | B2 8.471023 | a+ 1.00 | B
Tgc=4 2149.15 | a+ 1.09 | p? 123.0378 | a+ 1.09 | p? 8.645418 | a+ 1.09 | 2

Table 57: Estimates of &MSE using conventional and alternative estimators in PPSWOR sampling scheme for population 1V.

N

N

N

G | Rho | Estimator A B g A B G a. B
0| 0.77 | %, 250723 | a+ 0.0 | p° 1| 1039.224 | a+ 0.0 | p 2 | 8.235249 | a+ 0.0 | p°
Tge=1 20067.68 | a+ 0.7 | p 165.6597 | a+ 0.7 | p? 4.465283 | a+ 0.7 | p?
Tgc=2 9544.162 | a+ 1.1 | p? 111.7766 | a+ 1.1 | p° 4502901 | a+ 1.1 | p?
Tgc=3 6518.028 | a+ 1.6 | p 96.10361 | a+ 16 | p° 4.980096 | a+ 1.6 | p?
Tgc=4 5191.764 | a+ 2.2 | p? 90.86967 | a+ 2.2 | B2 5.711622 | a+ 22| p°
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EMSE OF THE PROPOSED ALTERNATIVE ESTIMATORS FOR THE THEORETICAL DISTRIBUTIONS OF THE MEASURE

APPENDIX C

OF SIZE VARIABLES.

Table 58:Expected MSE of linear alternative estimators as compared with HHE for the theoretical Normal Distribution for population |

N

N

N

g | Rho | Estimator A B G A B° | g A B
0 0|1, 134.3193 a+ 0 p? 1 11 a+ 0 B | 200915304 a+ 0 p?
Tyc=1 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 @2 0.958103 a+ 0.01703 2
Tgc=2 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 @2 0.958103 a+ 0.01703 @2
Tg,.c=3 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 p? 0.958103 a+ 0.01703 p?
Tg,.c=4 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 p? 0.958103 a+ 0.01703 p?
0| 01]4%, 134.3193 a+ 0 p? 1 11 a+ 0 B | 200915304 a+ 0 p?
Tg,.c=1 132.3884 a+  0.018428 P2 11.19912 a+  0.018428 P2 0.962711 a+  0.018428 B2
Tg,c=2 131.8173 a+  0.017061 P2 11.14775 a+  0.017061 P> 0.958255 a+  0.017061 P2
2,03 131.8047 a+  0.017032 p2 11.14629 a+  0.017032 p? 0.958115 a+  0.017032 p?
Tgc=4 131.8039 a+ 0.01703 p° 11.14618 a+ 0.01703 0.958104 a+ 0.01703 @
00.162 | £, 134.3193 a+ 0 p? 1 11 a+ 0 B> | 2/0.0915304 a+ 0 p°
Tgc=1 133.267 a+  0.020548 p? 11.27445 a+  0.020548 B2 0.969096 a+  0.020548 2
g2 131.8603 a+  0.017162 p? 1115207 a+  0.017162 P2 0.958647 a+  0.017162 P2
Tg,c=3 131.8084 a+ 0.01704 p° 11.14674 a+ 0.01704 @2 0.95816 a+ 0.01704 #°
Tg,c=4 131.8045 a+  0.017031 11.14625 a+  0.017031 f2 0.958112 a+  0.017031 2
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N

N

N

05| 1, 1343193 a+ 0 B 11 a+ 0 B 0.915304 a+ 0 B
T,0-1 | 1463695 a+  0.053071 p° 12.36458 a+  0.053071 1.05984 a+  0.053071 p?
f,0-2 |135.2385 a+  0.025334 p° 11.44082 a+  0.025334 2 0.983076 a+  0.025334 P2
Tyc=3 | 1326938 a+  0.019164 p° 11.22548 a+  0.019164 B2 0.964953 a+  0.019164 p°
Tyc=s |132.0511 a+ 0017617 p° 11.16953 a+  0.017617 0.960173 a+  0.017617 P>

0.9 %, 134.3193 a+ 0 p? 11 a+ 0 p° 0.915304 a+ 0 p?
Tyc=1 | 1937988 a+  0.184093 p° 16.23106 a+  0.184093 B’ 1.37615 a+  0.184093 p?
Tyc=2 | 1780379 a+  0.138435 p° 14.95324 a+  0.138435 p? 1.272178 a+  0.138435 B2
T,0-3 | 1669784 a+  0.107597 p° 14.05313 a+ 0107597 B 1.198654 a+  0.107597 P>
Tyc-a | 1589573 a+  0.085902 P’ 13.39801 a+  0.085902 2 1.144957 a+  0.085902 P>

1%, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
T,0-1 | 217.3183 a+  0.255567 P° 18.12977 a+  0.255567 P2 1529953 a+  0.255567
T,c-2 | 217.3183 a+  0.255567 P° 18.12977 a+  0.255567 P2 1529953 a+  0.255567
fyc=3 | 217.3183 a+  0.255567 p? 18.12977 a+  0.255567 P2 1529953 a+  0.255567 P2
Tye=4 |217.3183 a+  0.255567 B 18.12977 a+  0.255567 P2 1529953 a+  0.255567 P2
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Table59:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical chi square Distribution for

population |
G | Rho | Estimator A p? A p’ A p?
0 0|1, 134.3193 a+ 0 p? 11 a+ 0 p’ 0.915304 a+ 0 p?
Tg.c=1 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 p? 0.958103 a+ 0.01703 p?
Tyc2 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 f° 0.958103 a+ 0.01703 p°
Tg.c=3 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 f° 0.958103 a+ 0.01703 p°
g c=a 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 p? 0.958103 a+ 0.01703 p?
0| 01]4%, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
Cg,c=1 135.6999 a+  0.034894 p? 1157401 a+  0.034894 2 1.003628 a+  0.034894 2
) 131.9305 a+ 0.01807 P2 11.16635 a+ 0.01807 p? 0.960684 a+ 0.01807 p?
Tg.c=3 131.8139 a+  0.017127 P2 11.14796 a+  0.017127 P2 0.958342 a+ 0017127 P>
Tyt 131.8048 a+ 0.01704 p° 11.14634 a+ 0.01704 B2 0.958127 a+ 0.01704 f°
0]0.162 | %, 134.3193 a+ 0 p° 11 a+ 0 p° 0.915304 a+ 0 p?
Tg,.c=1 1411793 a+  0.054889 P2 12.10459 a+  0.054889 P2 1.055195 a+  0.054889
) 132.2603 a+  0.020108 p? 1120976 a+  0.020108 P2 0.965799 a+  0.020108 P2
403 131.8506 a+  0.017452 p? 1115414 a+  0.017452 p? 0.959148 a+  0.017452 p?
Tg,c=4 131.8107 a+  0.017096 P2 11.1474 a+  0.017096 p° 0.958267 a+  0.017096 P>
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N

N

0.5 134.3193 a+ 0 B 11 a+ 0 B 0.915304 a+ 0 p
2427276 a+  0.410393 P2 2132146 a+ 0410393 p? 1.903468 a+  0.410393 P2

o 153.6932 a+  0.097924 ° 13.27229 a+  0.097924 p? 1.165272 a+  0.097924 p?

Ty, 137.6106 a+  0.042065 p° 1176194 a+  0.042065 p° 1.022119 a+  0.042065 B2
1335498 a+  0.026226 P2 11.35419 a+  0.026226 P2 0.98136 a+  0.026226 P2

0.9 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
2980.232 a+ 1359931 p? 261.2076 a+ 1350931 f° 2321023 a+ 1359931 @2

1038571 a+  3.896042 P2 91.90541 a+  3.896042 p? 8.257873 a+  3.806042 P>

501.4351 a+  1.841051 PB? 5238213 a+  1.841051 P2 4712762 a+  1.841051 ?

4114918 a+  1.072098 B2 36.39137 a+  1.072098 p? 3.269943 a+  1.072098 @2

1 0.915304 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p’
2078113 a+ 2064369 B 25797900 a+ 2064369 P2 2078113 a+ 2064369 PB?

2078113 a+ 2064369 [ 25797900 a+ 2064369 P2 2078113 a+ 2064369 B

2078113 a+ 2064369 [ 25797900 a+ 2064369 P2 2078113 a+ 2064369 B

2078113 a+ 2064369 B 25797900 a+ 2064369 P2 2078113 a+ 2064369 P2
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Table60:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Uniform Distribution for

population |

G | Rho | Estimator A p? A p’ A p?
0 0|1, 134.3193 a+ 0 p? 11 a+ 0 p° 0.915304 a+ 0 p?
Tg.c=1 131.8038 a+  0.01703 PB? 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?

Tyc2 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 p°

Tg.c=3 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f°

g c=a 131.8038 a+  0.01703 PB? 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?

0| 01]4%, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
Cg,c=1 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 p°

) 131.8038 a+  0.01703 PB? 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?

Tg.c=3 131.8038 a+  0.01703 [ 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 B

Tgc=4 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f°
00.162 | £, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
Tg,.c=1 131.8038 a+  0.01703 [ 11.14617 a+  0.01703 f2 0.958103 a+  0.01703 B

Tg,c=2 131.8038 a+  0.01703 [ 11.14617 a+  0.01703 f2 0.958103 a+  0.01703 B

2,03 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f°

Tgc=4 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f°

0| 05|41, 134.3193 a+ 0 p? 11 a+ 0 p’ 0.915304 a+ 0 p°
Lgc=1 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f2

Tgc=2 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f2

Tg.c=3 131.8038 a+  0.01703 P2 11.14617 a+  0.01703 @2 0.958103 a+  0.01703

Tg,c=4 131.8038 a+  0.01703 B2 11.14617 a+  0.01703 @2 0.958103 a+  0.01703

156




N

N

N

09 |1, 134.3193 a+ 0 B 11 a+ 0 B 0.915304 a+ 0 B
f,0-1 |131.8038 a+  0.01703 p° 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?
Tgc=2 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 p°
Tg.c=3 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 p°
f,0-4 |131.8038 a+  0.01703 P’ 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?

1|4, 134.3193 a+ 0 p? 11 a+ 0 p’ 0.915304 a+ 0 p?
Tyc=1 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 p°
Tgc=2 131.8038 a+  0.01703 p? 11.14617 a+  0.01703 p? 0.958103 a+  0.01703 f°
f,0-3 |131.8038 a+  0.01703 P’ 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?
fyc=a |131.8038 a+  0.01703 P’ 11.14617 a+  0.01703 B2 0.958103 a+  0.01703 p?
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Table61:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Gamma Distribution for

population |

G | Rho | Estimator A p? A p’ A p?
0 0|1, 134.3193 a+ 0 p? 11 a+ 0 p° 0.915304 a+ 0 p?
Tg.c=1 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 B2 0.958103 a+ 0.01703 p?

Tyc2 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 @2 0.958103 a+ 0.01703 @2

Tg.c=3 131.8038 a+ 0.01703 p° 11.14617 a+ 0.01703 @2 0.958103 a+ 0.01703 2

g c=a 131.8038 a+ 0.01703 p? 11.14617 a+ 0.01703 B2 0.958103 a+ 0.01703 p?

0| 01]4%, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
Cg,c=1 137.1507 a+  0.024525 f? 1152525 a+  0.024525 P2 0.98454 a+  0.024525 2

) 131.808 a+  0.016693 11.14059 a+  0.016693 f° 0.957157 a+  0.016693

Tg.c=3 131.7977 a+  0.016981 P2 11.14507 a+  0.016981 P2 0.957964 a+  0.016981 P2

Tyc=a 131.8032 a+  0.017025 p? 11.14605 a+  0.017025 p° 0.958089 a+  0.017025 P2
0]0.162 | %, 134.3193 a+ 0 p° 11 a+ 0 p° 0.915304 a+ 0 p?
Tg,.c=1 145307 a+  0.038028 2 12.15674 a+  0.038028 P2 1.033699 a+  0.038028

) 132.1061 a+  0.016787 p? 11.15541 a+  0.016787 P2 0.957588 a+  0.016787 p?

2,03 131.7878 a+  0.016847 P° 11.14234 a+  0.016847 P2 0.957581 a+  0.016847 p?

Tg,c=4 131.7994 a+  0.016996 P2 111454 a+  0.016996 p? 0.958006 a+  0.016996 p2

0| 05|17, 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p°
Tyem1 2744888 a+  0.279584 f° 2245316 a+  0.279584 P2 18628 a+  0.279584 2

Tgc=2 162.8866 a+  0.067723 p? 1354195 a+  0.067723 p° 1.143754 a+  0.067723 p?

Tg.c=3 140.0335 a+  0.029269 11.7467 a+  0.029269 p? 1.001621 a+  0.029269 B

Tgc=4 133.8967 a+  0.019296 11.28071 a+  0.019296 P2 0.966165 a+  0.019296 p2
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N

]

0.9 134.3193 a+ 0 B 11 a+ 0 B 0.915304 a+ 0 P
2642.948 a+  8.162984 p? 2145193 a+ 8162984 p° 1759732 a+  8.162984 P2
1094.886 a+  2.556025 p° 88.56306 a+  2.556025 P° 7.247816 a+ 2556025 [°
658.2176 a+  1.233234 P2 53.28872 a+ 1233234 2 4368034 a+  1.233234 P2
466.8206 a+  0.723698 37.88626 a+  0.723698 2 3.114942 a+  0.723698 f°
1 134.3193 a+ 0 p? 11 a+ 0 p? 0.915304 a+ 0 p?
45003.38 a+  216.4849 B 3642.2 a+  216.4849 p? 297.0335 a+  216.4849 P>
45003.38 a+  216.4849 P2 36422 a+  216.4849 P2 297.0335 a+  216.4849
45003.38 a+  216.4849 f° 36422 a+  216.4849 P2 297.0335 a+  216.4849 f°
45003.38 a+  216.4849 f° 36422 a+  216.4849 P2 297.0335 a+  216.4849 f°
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Table62:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Normal Distribution for

population 11

G | Rho | Estimator A p? A p’ A p?
0 0|1, 1051.816 a+ 0 p? 29 a+ 0 p’ 0.96206 a+ 0 p?
Tyc=1 865.8536 a+  0.108431 p° 32.74248 a+  0.108431 p? 1.343367 a+  0.108431 f°

Tgc=2 865.8536 a+  0.108431 p° 32.74248 a+  0.108431 p? 1.343367 a+  0.108431 f°

2,03 865.8536 a+  0.108431 32.74248 a+  0.108431 f° 1.343367 a+  0.108431 p?

Tg,c=4 865.8536 a+  0.108431 32.74248 a+  0.108431 f° 1.343367 a+  0.108431 P2

0| 01]4%, 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
;=1 845.8217 a+  0.087788 31.35343 a+  0.087788 f° 1.269936 a+  0.087788 p?

Tg.c=2 863.5582 a+  0.106219 P2 3259258 a+  0.106219 P2 1.33555 a+  0.106219 B2

2,03 865.621 a+  0.108208 2 3272737 a+  0.108208 f° 1.342581 a+  0.108208 p?

Tg,c=1 865.8303 a+  0.108408 32.74097 a+  0.108408 B° 1.343289 a+  0.108408 p?
00.395 | £, 1051.816 a+ 0 p° 29 a+ 0 p° 0.96206 a + 0 p’
Tg.c=1 824.0128 a+  0.042208 P2 2852622 a+  0.042208 P> 1.105386 a+  0.042208

ge=2 837.3864 a+ 0.07753 p° 30.67661 a+ 0.07753 @2 1.233096 a+ 0.07753 @2

Tg,c=3 852.7463 a+  0.095335 31.85808 a+  0.095335 p? 1.296896 a+  0.095335 P2

Tg.c=4 860.3805 a+  0.103107 32.38195 a+  0.103107 P2 1.324527 a+ 0103107

0| 05]4%, 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
Tgc=1 830.7452 a+  0.030244 p° 27.94087 a+  0.030244 P2 1.062463 a+  0.030244 p?

Tg.c=2 827.6869 a+ 0.06214 p? 29.69287 a+ 0.06214 p? 1.17751 a+ 0.06214 p?

Tg,.c=3 841.8129 a+  0.083104 31.04279 a+  0.083104 P2 1.253137 a+  0.083104

) 8525789 a+  0.095158 31.84625 a+  0.095158 p? 1.296269 a+  0.095158 p?
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]

N

0.9 %, 1051.816 a+ 0 B 29 a+ 0 B 0.96206 a+ 0 p
Tyeo1 | 967.1424 a+  0.001732 p° 28.07782 a+  0.001732 p° 0.966477 a+  0.001732 P>
Tyc=2 | 9146792 a+  0.005591 p° 27.63903 a+  0.005591 p° 0.978196 a+  0.005591 M2
T,c=3 |880.8265 a+  0.010472 p° 2748049 a+  0.010472 p° 0.993993 a+  0.010472 P2
f,c-4 | 8585772 a+  0.015843 27.49419 a+  0.015843 p° 1.01207 a+  0.015843 p?

1|4, 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
fyc=1 | 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
Tyc=2 | 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
f,0c=3 | 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a+ 0 p?
fyc=4 | 1051.816 a+ 0 p? 29 a+ 0 p? 0.96206 a + 0 p°

161




Table63:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical chi square Distribution for

population 11

G | Rho | Estimator A p? A p’ A p?
0 0|14, 36308.52 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
g1 829.6751 a+  0.908103 p° 63.92168 a+  0.908103 p? 5783388 a+  0.908103 p?

Tyc=2 829.6751 a+  0.908103 p° 63.92168 a+  0.908103 p? 5783388 a+  0.908103 p?

2,023 829.6751 a+  0.908103 63.92168 a+  0.908103 f° 5783388 a+  0.908103 B’

Ty c=a 829.6751 a+  0.908103 63.92168 a+  0.908103 f° 5783388 a+  0.908103 p°

0| 01]4%, 36308.52 a+ 0 p? 29 a+ 0 p° 0.921861 a+ 0 p?
Bg,c=1 664.2674 a+  0.526584 471417 a+  0.526584 P2 4117038 a+  0.526584 p?

Cg,c=2 808.5584 a+  0.856564 [ 61.79399 a+  0.856564 P2 5570925 a+  0.856564

Bg,c=3 8275057 a+  0.902771 P? 63.70318 a+  0.902771 P> 5761554 a+ 0902771 PB?

Bg,c=4 829.4576 a+  0.907568 P2 63.89977 a+  0.907568 P> 5781199 a+  0.907568 PB?

00.395 | £, 36308.52 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
Bg.c=1 4812405 a+ 0141577 P> 25.77527 a+  0.141577 P> 2022115 a+ 0141577 B?

Bg,c=2 603.9834 a+  0.400059 P2 40.85706 a+  0.400059 B 3498724 a+  0.400059 PB?

fgc=3 717119 a+  0.642909 P2 5254465 a+  0.642909 P2 4651189 a+  0.642909 P2

i) 780.3777 a+  0.789056 ° 58.95113 a+  0.789056 P> 5287552 a+  0.789056 P2

0| 05|41, 36308.52 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p°
Tg,.c=1 4731934 a+  0.092116 P> 2229896 a+  0.092116 P> 1.675077 a+  0.092116

Tyem2 534.9548 a+  0.260827 p° 33237 a+  0.260827 B2 2752832 a+  0.260827

Tg,c=3 635.1936 a+  0.464789 p° 4413358 a+  0.464789 B° 3.820684 a+  0.464789 p?

Tg.c=4 715.7946 a+ 0.63993 P2 52.40998 a + 0.63993 B2 4.637846 a+ 0.63993 p?
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0.9 %, 36308.52 a+ 0 B 29 a+ 0 B 0.921861 a+ 0 P
Tyc=1 | 1100.386 a+  0.009496 p° 17.73342 a+  0.009496 p? 0.991647 a+  0.009496 f°
Tyc=2 | 7045309 a+  0.020492 p° 17.47576 a+  0.020492 @2 1.088707 a+  0.020492 B2
f,c-3 | 574.6131 a+  0.032946 18.0484 a+  0.032946 p? 1.199124 a+  0.032946 P>
Lg,c=4 516.352 a+  0.047071 p? 18.98861 a+  0.047071 2 1.320375 a+  0.047071 P>

1|4, 36308.52 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
f,0=1 | 3630852 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
Tyc=2 | 3630852 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p°
fyc=3 | 3630852 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
fyc=4 | 3630852 a+ 0 p? 29 a+ 0 p? 0.921861 a+ 0 p?
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Table64:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Gamma Distribution for

population 11

G | Rho | Estimator A p? A p’ A p?
0 0|1, 3166.908 a+ 0 p? 29 a+ 0 p’ 0.9393 a+ 0 p?
Tye=1 8453701 a+  0.646209 p° 50.66768 a+  0.646209 P2 3.654303 a+  0.646209 p?

Tgc=2 8453701 a+  0.646209 p° 50.66768 a+  0.646209 P2 3.654303 a+  0.646209 p?

2,03 8453701 a+  0.646209 50.66768 a+  0.646209 [° 3.654303 a+  0.646209

Tg,c=4 8453701 a+  0.646200 50.66768 a+  0.646209 [° 3.654303 a+  0.646209

0| 01]4%, 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
Ty o=t 738.2882 a+  0.430939 41.03276 a+  0.430939 P2 2.864421 a+  0.430939 B

Bg,c=2 832.1993 a+  0.619401 P2 4951382 a+  0.619401 2 3559611 a+  0.619401 P2

Tg.c=3 844.024 a+  0.643463 50.55002 a+  0.643463 P2 3.644645 a+  0.643463 P2

Tyc=a 8452352 a+  0.645933 50.65589 a+  0.645933 p? 3.653336 a+  0.645933 p?
00.395 | 7, 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
Tg.c=1 6245125 a+  0.148824 P2 26.6606 a+  0.148824 p? 1670031 a+  0.148824 2

Tg.c=2 697.506 a + 0.34845 P2 37.07197 a+ 0.34845 P2 2.539546 a+ 0.34845 p?

403 773.4345 a+  0.501154 2 4427541 a+ 0501154 B° 3.130129 a+  0.501154 p?

Tg,c=4 8143856 a+  0.583344 p° 4794323 a+ 0583344 p? 343078 a+ 0583344 P2

0| 05]|¢%, 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p°
Tye=1 636.0752 a+  0.102242 p° 241271 a+  0.102242 p? 1441977 a+  0.102242 B°

Tgc=2 6515555 a+  0.247725 p° 319719 a+  0.247725 §° 2.118866 a+  0.247725 P2

Tg.c=3 7186735 a+  0.391549 2 39.16339 a+  0.391549 M2 2711176 a+  0.391549 p2

Tg,c=4 7725635 a+ 0499413 P2 4419631 a+ 0499413 p? 3.123647 a+ 0499413 P2
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0.9 %, 3166.908 a+ 0 B 29 a+ 0 B 0.9393 a+ 0 P
Tyc=1 | 1356.109 a+  0.009721 p° 2263467 a+  0.009721 P2 0.973363 a+  0.009721 B2
Toc=2 | 964.2044 a+  0.023587 p° 2143753 a+  0.023587 P° 1.037457 a+  0.023587 B2
f,c-3 | 8014107 a+  0.038699 21.40077 a+  0.038699 p° 1.114033 a+  0.038699 P>
f,c=4 | 718.0063 a+  0.054962 B 21.86685 a+  0.054962 f° 1.198751 a+  0.054962 P>

1|4, 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
f,0c=1 | 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
Tyc=2 | 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p°
fyc=3 | 3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
fyc=4 |3166.908 a+ 0 p? 29 a+ 0 p? 0.9393 a+ 0 p?
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Table65:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Normal Distribution for

population 111

G | Rho | Estimator A p? A B’ A p?
0| 0|, 309.9455 a+ 0 p° 16 a+ 0 p° 0.935397 a+ 0 p?
Tye=1 270.3297 a+  0.080318 17.38381 a+  0.080318 P2 1.193971 a+  0.080318 P2

Tgc=2 270.3297 a+  0.080318 17.38381 a+  0.080318 P2 1.193971 a+  0.080318 P2

2,023 270.3297 a+  0.080318 17.38381 a+  0.080318 P> 1.193971 a+  0.080318

Tg,c=4 270.3297 a+  0.080318 17.38381 a+  0.080318 p? 1.193971 a+  0.080318

0| 01|%, 309.9455 a+ 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
o 266.0149 a+  0.065452 16.84624 a+  0.065452 P2 1.144693 a+  0.065452 B2

Tg.c=2 260.8331 a+  0.078741 P2 17.326 a+  0.078741 P2 1.188758 a+  0.078741 p°

2,03 270.2794 a+  0.080159 P2 17.37799 a+  0.080159 p° 1.193447 a+  0.080159 p?

Tyc=a 270.3247 a+  0.080302 p° 17.38323 a+  0.080302 p° 1.193918 a+  0.080302 P2

0| 05]|1%, 309.9455 a+ 0 p° 16 a+ 0 p° 0.935397 a+ 0 p?
Tg,e=1 263.614 a+  0.022441 2 1552963 a+  0.022441 2 1.002413 a+  0.022441 P2

) 262.2456 a+  0.046533 f° 16.20042 a+  0.046533 P2 1.081737 a+  0.046533 p?

Tg.c=3 265.1611 a+  0.062033 [ 16.72554 a+  0.062033 P2 1.133323 a+  0.062033

Tgc=a | 2674639 a+  0.070797 B’ 17.03741 a+  0.070797 1162444 a+  0.070797 p°
0|051]|% 309.9455 a+ 0 B 16 a+ 0 p° 0.935397 a+ 0 p°
Cgemy 263.8905 a+  0.021649 p° 1551342 a+  0.021649 B2 0.999858 a+  0.021649 p?

fg,e=2 262.1098 a+ 0.04539 p° 16.16357 a+ 0.04539 {2 1.077935 a+ 0.04539 p?

g.c=3 264.9177 a+  0.061009 [ 16.68967 a+  0.061009 P2 1.129916 a+  0.061009 B

Tgc=4 267.2529 a+  0.070047 [ 17.01041 a+  0.070047 P2 1.159955 a+  0.070047 B
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0.9 309.9455 a+ B 16 a+ B 0.935397 a+ B
2935411 a+ p? 15.64636 a+ p? 0.937744 a+ p?
282.6542 a+ p? 15.46246 a+ p? 0.945173 a+ p?
275.2801 a+ p? 15.38519 a+ p? 0.955621 a+ p?
270.2481 a+ p? 15.37709 a+ p? 0.967828 a+ p’
1 309.9455 a+ 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
309.9455 a+ 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
309.9455 a + 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
309.9455 a + 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
309.9455 a+ 0 p? 16 a+ 0 p? 0.935397 a+ 0 p?
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Table66:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical chi square Distribution for

population 111

G | Rho | Estimator A B° |G A B’ A p?
0 0|1, 4032346 a+ 0 p? 1 16 a+ 0 p° 0.910672 a+ 0 p?
Tg.c=1 263.1843 a+  0.152949 7 23.35668 a+  0.152949 P2 221809 a+ 0152949 2

Tyc=2 263.1843 a+  0.152949 p° 23.35668 a+  0.152949 p? 221809 a+ 0152949 B2

Tg,c=3 263.1843 a+  0.152949 p° 23.35668 a+  0.152949 p? 221809 a+ 0152949 p°

Ty c=a 263.1843 a+  0.152949 7 23.35668 a+  0.152949 P2 221809 a+ 0152949 B2

0| 01]|%, 403234.6 a+ 0 p? 1 16 a+ 0 p° 0.910672 a+ 0 p?
g1 2394568 a+  0.116728 p° 207772 a+  0.116728 p? 1.953667 a+  0.116728 p?

Tyc=2 2605395 a+  0.148842 p° 23.07283 a+  0.148842 p? 2.189023 a+  0.148842 p?

Tg.c=3 262.9169 a+  0.152533 P2 23.32801 a+  0.152533 2215155 a+  0.152533 P2

Cg,c=4 263.1575 a+  0.152907 P2 23.35381 a+  0.152907 2217796 a+  0.152907 PB?
0]032|%. 4032346 a+ 0 p? 1 16 a+ 0 p? 0.910672 a+ 0 p?
Cg,c=1 2046528 a+  0.064235 f° 16.66747 a+  0.064235 P2 1528718 a+  0.064235 P2

Tg.c=2 238.9565 a+  0.115977 P2 20.72179 a+  0.115977 B 1.947977 a+ 0115977 P2

Tg,c=3 2547554 a+  0.139925 P2 2244937 a+  0.139925 2 212516 a+  0.139925 P2

Tyc=a 260.4126 a+  0.148645 p° 23.0592 a+  0.148645 p? 2.187627 a+  0.148645 P2

0| 051]%, 4032346 a+ 0 p° 1 16 a+ 0 p’ 0.910672 a+ 0 p°
Tg,.c=1 190.5905 a+ 0.0366 p° 14.30043 a+ 0.0366 P> 1.27604 a+ 0.0366 P>

) 212.0788 a+  0.075779 p? 176153 a+  0.075779 B° 1.627522 a+  0.075779 P2

Tg,c=3 2329032 a+  0.106926 p° 20.04655 a+  0.106926 P> 1.878588 a+  0.106926 P2

Tg,c=4 2465 a+ 0127344 2 2155191 a+  0.127344 P2 2033165 a+ 0127344 P2

168




N

]

N

0.9 | %, 4032346 a+ 0 B 16 a+ 0 B 0.910672 a+ 0 p
Tyco1 | 279.6471 a+  0.004675 p? 12.08126 a+  0.004675 P2 0.954416 a+  0.004675 B
T,c=2 | 2186081 a+  0.010113 p? 12.19525 a+  0.010113 2 1.009845 a+  0.010113 B2
Tyc=3 |199.2812 a+  0.015843 P’ 125611 a+  0.015843 B2 1.068948 a+  0.015843 B2
fyc=a | 191.8762 a+ 0.02179 B2 13.02836 a + 0.02179 B2 1.129732 a+ 0.02179 p?

1|4, 4032346 a+ 0 p? 16 a+ 0 p? 0.910672 a+ 0 p?
fyc=1 | 4032346 a+ 0 p? 16 a+ 0 p? 0.910672 a+ 0 p?
Tyc=2 | 4032346 a+ 0 p? 16 a+ 0 p? 0.910672 a+ 0 p?
Tyc=3 | 4032346 a+ 0 p? 16 a+ 0 p? 0.910672 a+ 0 p?
Tyc=a | 4032346 a+ 0 p? 16 a+ 0 p? 0.910672 a+ 0 p?
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Table67:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Gamma Distribution for

population 111

G | Rho | Estimator A p? A B’ A p?
0| 0%, 408.1397 a+ 0 p? 16 a+ 0 p° 0.924323 a+ 0 p°
Tye=1 267.1293 a+  0.225082 ° 19.99049 a+  0.225082 P2 1.707981 a+  0.225082 p?

Tgc=2 267.1293 a+  0.225082 p° 19.99049 a+  0.225082 P2 1.707981 a+  0.225082 P2

2,023 267.1293 a+  0.225082 19.99049 a+  0.225082 P2 1.707981 a+  0.225082

Tg,c=4 267.1293 a+  0.225082 19.99049 a+  0.225082 P2 1.707981 a+  0.225082

0| 01|%, 408.1397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
Ty o=t 254.8876 a+  0.174802 18.37435 a+  0.174802 P2 1538015 a+  0.174802 2

Tg.c=2 265.6993 a+ 0.21948 P2 19.81166 a+ 0.21948 P2 1.689342 a+ 0.21948 p?

2,023 266.9841 a+  0.224515 P2 19.97242 a+  0.224515 @2 17061 a+  0.224515 2

Tyc=a 267.1148 a+  0.225025 P° 19.98869 a+  0.225025 P2 1.707793 a+  0.225025 P2
0]032|1%, 408.1397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
Tg,.c=1 242293 a+  0.097498 1590531 a+  0.097498 B 1.264434 a+  0.097498 p?

g.c=2 254.6474 a+ 0173738 P2 18.33994 a+  0.173738 153435 a+  0.173738 B2

2,03 262.6203 a+  0.207236 P° 19.41955 a+  0.207236 P2 1.648347 a+  0.207236 P2

Tgc=4 265.6311 a+  0.219212 p° 19.80308 a+  0.219212 p? 1.688447 a+  0.219212 B°

0| 051]%, 408.1397 a+ 0 p° 16 a+ 0 p° 0.924323 a+ 0 p°
Bg,c=1 246.8547 a+  0.053877 P° 1468803 a+  0.053877 P° 1.104994 a+  0.053877 P2

Tgc=2 243883 a+  0.115055 P2 16.45269 a+  0.115055 P2 1.327845 a+  0.115055 P2

Tg.c=3 251.8237 a+  0.160816 17.92204 a+  0.160816 P> 148963 a+  0.160816 P2

Tgc=4 258.362 a+  0.189755 2 18.85717 a+  0.189755 P2 1589201 a+  0.189755
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0.9 %, 408.1397 a+ 0 B 16 a+ 0 B 0.924323 a+ 0 P
Tyc=1 | 336.9437 a+  0.003625 P’ 14.87091 a+  0.003625 P2 0.932355 a+  0.003625 P2
Tye=2 | 299.0812 a+  0.011033 p? 1439677 a+  0.011033 p? 0.954576 a+  0.011033 f°
f,c3 | 2767375 a+  0.019979 B’ 1424224 a+  0.019979 p? 0.984073 a+  0.019979 @2
f,ca | 262.8367 a+  0.029656 P’ 14.26646 a+  0.029656 [° 1.017636 a+  0.029656 P>

1|4, 408.1397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
Tyc=1 | 4081397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
Tyc=2 | 4081397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p°
Tyc=3 | 408.1397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
Tyc=4 | 408.1397 a+ 0 p? 16 a+ 0 p? 0.924323 a+ 0 p?
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Table68:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Normal Distribution for
population 1V

G | Rho | Estimator A B> |G A B° | g A p?
0 0|14, 3402711 a+ 0 p° 1 16 a+ 0 p* | 2/0.863202 a+ 0 p?
Tye=1 345281 a+  0.105493 p? 20.39472 a+  0.105493 f° 1.275766 a+  0.105493 p?

Tgc=2 345281 a+  0.105493 p? 20.39472 a+  0.105493 B° 1.275766 a+  0.105493 p?

2,023 345281 a+  0.105493 P2 20.39472 a+  0.105493 P2 1.275766 a+  0.105493

Tge=a 345281 a+  0.105493 p° 20.39472 a+  0.105493 p? 1275766 a+  0.105493

0| 01]4%, 340.2711 a+ 0 p? 1 16 a+ 0 B | 2|0.863202 a+ 0 p?
o 333.9158 a+  0.085473 P’ 19.44206 a+  0.085473 P> 1.204443 a+  0.085473

Tg.c=2 344.0406 a+  0.103351 B2 20.29305 a+  0.103351 1.268205 a+  0.103351 P2

2,03 3451559 a+  0.105278 p? 20.38448 a+  0.105278 P2 1.275005 a+  0.105278 p?

Tyt 3452684 a+ 0105472 p? 20.39369 a+  0.105472 P2 1.27569 a+  0.105472 P2
0|0.775 | £, 3402711 a+ 0 p° 1 16 a+ 0 B> | 2/0.863202 a+ 0 p?
Tg,e=1 3144131 a+  0.007303 B2 1598776 a+  0.007303 0.90676 a+  0.007303 P2

ge=2 309.0091 a+  0.019926 p? 16.42917 a+  0.019926 P2 0.958809 a+  0.019926 P2

Tg,c=3 310.4453 a+  0.033057 p? 16.98626 a+  0.033057 p° 1.009936 a+  0.033057 P2

Tgc=4 3143506 a+  0.045325 P2 1754289 a+  0.045325 P2 1.056594 a+  0.045325
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0.9 340.2711 a+ 0 B 16 a+ 0 B 0.863202 a+ 0P
3252462 a+  0.001664 P> 15.8957 a+  0.001664 P> 0.879025 a+  0.001664 [°
316.7422 a+  0.005399 P> 15.94085 a+  0.005399 P2 0.898166 a+  0.005399 [
312.0518 a+  0.010142 p? 16.0718 a+  0.010142 p? 0.919003 a+  0.010142 p?
309.738 a+  0.015374 16.25346 a+  0.015374 @° 0.940586 a+  0.015374 f°
1 3402711 a+ 0 p? 16 a+ 0 p? 0.863202 a+ 0 p?
340.2711 a+ 0 p? 16 a+ 0 p? 0.863202 a+ 0 p?
340.2711 a+ 0 p? 16 a+ 0 p? 0.863202 a+ 0 p?
3402711 a+ 0 p? 16 a+ 0 p? 0.863202 a+ 0 p?
340.2711 a+ 0 p? 16 a+ 0 p? 0.863202 a+ 0 p°
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Table69:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical chi square Distribution for

population IV
G | Rho | Estimator A p? A p’ A p?
0 0|1, 1614.477 a+ 0 p? 16 a+ 0 p° 0.890109 a+ 0 p?
Tg.c=1 356.0437 a+ 0771814 375296 a+  0.771814 p? 4656567 a+ 0771814 B?
Tyc=2 356.0437 a+  0.771814 p? 375296 a+  0.771814 2 4656567 a+  0.771814 p?
Tg,c=3 356.0437 a+ 0771814 p? 375296 a+  0.771814 2 4656567 a+  0.771814 p?
Ty c=a 356.0437 a+ 0771814 p? 375296 a+  0.771814 p? 4656567 a+ 0771814 p?
0| 01]4%, 1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p?
Cg,c=1 2946133 a+  0.470549 p° 28.77923 a+ 0470549 P2 3450415 a+  0.470549 p?
) 348.3631 a+ 0732278 P’ 36.44641 a+  0.732278 f° 4506554 a+ 0732278
Tg,c=3 355.2567 a+  0.767739 P> 37.41869 a+  0.767739 P2 4641199 a+ 0767739 P2
Tyc=a 355.9648 a+  0.771405 p? 3751848 a+  0.771405 P2 4655027 a+  0.771405 B2
0|0.775 | £, 1614.477 a+ 0 p° 16 a+ 0 p° 0.890109 a + 0 p?
Tg,.c=1 2921775 a+  0.027213 B 12.0722 a+  0.027213 p? 1.069921 a+  0.027213 B
) 2297782 a+ 0.06192 p° 13.39109 a+ 0.06192 @2 1.322983 a+ 0.06192 @2
403 220.6601 a+  0.105742 P° 1537721 a+  0.105742 P2 1.614858 a+  0.105742 f°
Tg,c=4 2265605 a+  0.158389 [ 17.659 a+  0.158389 P2 1.931919 a+  0.158389
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1614.477 a+ B 16 a+ B 0.890109 a+ B
468.2087 a+ p? 12.27262 a+ p? 0.948087 a+ p?
320.3719 a+ p? 11.99157 a+ p? 1.031314 a+ p?
266.2546 a+ p? 12.28356 a+ p? 1.12628 a+ p?
240.9233 a+ p? 12.82387 a+ p? 1.230122 a+ p?
1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p?
1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p°
1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p°
1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p°
1614.477 a+ 0 p? 16 a+ 0 p? 0.890109 a+ 0 p°
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Table70:Expected MSE of linear alternative estimators as compared with that of HHE for the theoretical Gamma Distribution for
population 1V

G | Rho | Estimator A B> |G A B° | g A p?
0 0|14, 1072545 a+ 0 p° 1 16 a+ 0 p*> | 2/0.866383 a+ 0 p?
Tye=1 3465532 a+  2.018657 p? 4203505 a+  2.018657 B° 6.816637 a+  2.018657

Tgc=2 3465532 a+  2.018657 p? 4203505 a+  2.018657 B° 6.816637 a+  2.018657

2,023 3465532 a+  2.018657 P’ 42.03505 a+  2.018657 6.816637 a+  2.018657 p°

Tg,c=4 3465532 a+  2.018657 P’ 42.03505 a+  2.018657 6.816637 a+  2.018657 p°

0| 01]4%, 1072.545 a+ 0 p? 1 16 a+ 0 B | 2|0.866383 a+ 0 p?
o 278.0059 a+  1.004935 28.90207 a+  1.004935 P2 4330252 a+  1.004935 p°

g.c=2 337.0724 a+ 1866924 B2 40.22667 a+  1.866924 P2 6.468924 a+  1.866924 P’

2,03 3455691 a+  2.002736 P2 4184726 a+  2.002736 B° 6.780459 a+  2.002736 p?

Tgc=4 346.4544 a+  2.017057 P2 42,0162 a+  2.017057 P2 6.813005 a+  2.017057 2
0|0.775 | £, 1072545 a+ 0 p° 1 16 a+ 0 B> | 2/0.866383 a+ 0 p?
Tg,e=1 3207833 a+  0.037274 B? 11.73501 a+  0.037274 B 1.032284 a+  0.037274 pB?

) 248202 a+  0.091583 p? 12.45643 a+  0.091583 p° 1.298998 a+  0.091583 p?

Tyc=3 227.0306 a+  0.165763 p° 14.09383 a+  0.165763 p° 1.631728 a+  0.165763 p?

Tgc=4 2246873 a+  0.262635 16.20914 a+  0.262635 P2 2021227 a+  0.262635 P2
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0.9 1072.545 a+ 0 B 16 a+ 0 B 0.866383 a+ 0 P
506.4554 a+  0.012648 P2 125379 a+  0.012648 p? 0.014667 a+  0.012648 P>

361.7329 a+  0.029527 p? 11.80297 a+  0.029527 p? 0.993887 a+  0.029527 f°

298.4913 a+  0.048743 p° 11.76907 a+  0.048743 p? 1.089624 a+  0.048743 B2

264.9976 a+  0.070729 P> 12.05963 a+  0.070729 1.198528 a+  0.070729 P>

1 1072.545 a+ 0 p? 16 a+ 0 p? 0.866383 a+ 0 p°
, 1072.545 a+ 0 p? 16 a+ 0 p? 0.866383 a+ 0 p°

£, 1072.545 a+ 0 p? 16 a+ 0 p? 0.866383 a+ 0 p?
1072.545 a+ 0 p? 16 a+ 0 p? 0.866383 a+ 0 p?

1072.545 a+ 0 p? 16 a+ 0 p? 0.866383 a+ 0 p*
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