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ABSTRACT 

The estimation of multiple characteristics using Probability Proportional to Size (PPS) 

sampling scheme has introduced some complexities in sample surveys. It requires 

transformation of auxiliary information into probability measures and the utilization of 

correlation coefficient between study variables y and measure of size x. Existing 

estimators of finite population characteristics are rigidly specified by a fixed order of 

positive correlation between y and x and are assumed efficient for all populations. 

However, the assumptions break down when the study variables are negatively 

correlated with measure of size. In this study, a linear class of estimators that are 

functions of moments in positive and negative correlation coefficients were proposed.   

Using laws of proportions and probability measure theory, a class of alternative linear 

estimators  𝜏 𝑔,𝑐  were developed for use in PPS sampling schemes. Using linear 

regression model with slope β and well-behaved error term ε, the expectation of c
th 

standardized moment of the study variable given by            

𝐸  
𝑦−𝜇𝑦
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= 𝐸  𝛽  
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, 𝑐 = 1,2,3,4 with 𝛽𝑐 =  𝜌2 𝜍𝑦
2

𝜍𝑥
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𝑐

2
 provided a link 

between  moments in correlation coefficient and distribution of the target population, 

where ρ is the correlation coefficient,  𝜇𝑦 , 𝜇𝑥 , 𝜇𝜀  and 𝜍𝑦,
2 𝜍𝑥

2 , 𝜍𝜀
2 are means and 

variances of 𝑦, 𝑥  𝜀 respectively. The minimum variance was used as optimality 

criterion for comparing the performance of   𝜏 𝑔,𝑐  with the conventional estimator 

namely, Hansen and Hurwitz‟s estimator  𝜏 𝐻𝐻 , and other existing alternative 

estimators namely, Amahia-Chaubey-Rao‟s estimator (𝜏 𝐴𝐶𝑅), Grewal‟s estimator 

(𝜏 𝐺), Rao‟s estimator (𝜏 𝑅) and Ekaette‟s estimator (𝜏 𝐸) under the PPS sampling 

design. Using the general super-population model with parameter g, the expected 

Mean Square Error (MSE) was derived for the estimators and their relative 

efficiencies were then computed. Empirical studies with samples drawn from four 

populations, namely; Population I, II, III and IV having correlation coefficients, 

𝜌 = 0.16, 0.39, −0.32 and − 0.775 respectively were conducted.  

The derived transformation for generalized selection probabilities defining the class of 

linear estimators is 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝓅𝑖 ;  𝑐 = 1,2,3,4 where 

𝓅𝑖 =
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, 𝑋 =  𝑥𝑖

𝑁
𝑖  or 𝓅𝑖 =

𝑧𝑖

𝑍
, 𝑍 =  𝑧𝑖

𝑁
𝑖 , 𝑧𝑖 =

1

𝑥𝑖
 for positive and negative 
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correlations respectively. Provided that 𝐶𝑉𝑥 < 𝐶𝑉𝑦 , 𝛾𝑦 < 𝛾𝑥 , 𝐾𝑦 < 𝐾𝑥  and    𝜌2 < 1 for 

both positive and negative correlations where 𝐶𝑉𝑦 , 𝛾𝑦 , 𝐾𝑦 and 𝐶𝑉𝑥 , 𝛾𝑥 , 𝐾𝑥  are 

coefficients of variation, skewness and kurtosis of x and y respectively and  𝜌2 is the 

coefficient of determination,  𝜏 𝑔,𝑐  with 𝑐 =  2 was the best estimator for population II, 

while 𝜏 𝑔,𝐶 with 𝑐 = 1 was the best estimator for population I in terms of relative mean 

square error for positive correlation. Under the same conditions and for negative 

correlation,  𝜏 𝑔,𝑐  with 𝑐 =  2 and 4  were the best estimators for populations III and IV 

respectively in terms of relative mean square error. At 𝑔 = 0,   𝜉𝑀𝑆𝐸 𝜏 1 =

131.293 < 𝜉𝑀𝑆𝐸 𝜏 𝐻𝐻 = 134.3, 𝜉𝑀𝑆𝐸 𝜏 2 = 826.5 < 𝜉𝑀𝑆𝐸 𝜏 𝐻𝐻 =

1043.0, 𝜉𝑀𝑆𝐸 𝜏 2 = 254.3 < 𝜉𝑀𝑆𝐸 𝜏 𝐻𝐻 =  329.7 and  𝜉𝑀𝑆𝐸 𝜏 4 = 266.3 <

𝜉𝑀𝑆𝐸 𝜏 𝐻𝐻 = 229.2  for Population I, II, III and IV respectively. Similarly, when 

𝑔 = 1, 𝜉𝑀𝑆𝐸 𝜏 𝑔,𝑐 < 𝜉𝑀𝑆𝐸 𝜏 𝐻𝐻  for all populations. However, at 𝑔 = 2,   𝜏 𝐻𝐻  is 

relatively more efficient than the alternative estimators. All estimators converge to 

  𝜏 𝐻𝐻  when 𝜌 = ±1 and to  𝜏 𝑅  when 𝜌 = 0.  

The developed alternative estimators accommodated all dimensions of correlation 

coefficients.  The derived estimators also reflected the structure of population 

distribution and enhanced its power of estimation. 

Keywords: Probability proportional to size, Multiple characteristics, Standardized 

          moment, Population distribution.  

Word Count: 483 
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CHAPTER ONE 

INTRODUCTION 

1.1 Preliminaries 

          In this thesis, we consider the development of alternative estimators of 

population total Y, of a real variable y defined on a survey population of known 

number N of identifiable units, i = 1,2, ...,N. To realize this, we consider sampling 

schemes that are considered complex in the sense of differing from simple random 

sampling (SRS) with replacement (WR) or without replacement (WOR).  

         We shall consider 𝜏 , the estimator of population total using both design and 

model postulations connecting the study variables y and the selection probabilities pi. 

Throughout this study, finite survey population will be assumed.  

For an uninterrupted flow of discussions in later chapters, we present the basic 

concepts and definitions in this section.  

A finite population  is a collection of a known number, N of identifiable 

units labelled 1, 2, ..., i, ..., N; ={1,2,...,i,...,N}, where i stands for the physical unit 

labelled i. Let the unit yi be associated with the variable i, (i=1,2,...,N), then we 

associate vector of real numbers y = (y1, y2, ..., yN) with , where y is the study 

variable which is assumed unknown. Thus, we are interested in estimating a parameter 

function , say, population total,  

𝜏 =  𝑦𝑖
𝑁
𝑖=1           ...1.1 

and 

𝑆2 = (𝑁 − 1)−1   𝑦𝑖 − 𝑌  2𝑁
𝑖=1        ...1.2 

By choosing a part of the population from  and observing the values of y only on the 

units in the sample. A sample is a part of a population. It is drawn either with 

replacement (WR) or without replacement (WOR). In WR sampling, it is a sequence: 
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𝑠 =  𝑖1, 𝑖2, … , 𝑖𝑛 ; 1 ≤ 𝑖𝑡 ≤ 𝑁,   𝑡 = 1,2, … , 𝑛 

it denoting the result of the t
th

 draw. Here, it is not necessary equal to it‟. Usually, a 

 non-zero probability of selection is allocated to every unit that is selected in the 

sample  at any specific draw. 

Under WOR sampling, a sample is a sequence 

 𝑠 =  𝑖1, 𝑖2, … , 𝑖𝑛 ; 1 ≤ 𝑖𝑡 ≤ 𝑁, 𝑖𝑡 ≠ it ′ for 𝑡 ≠ 𝑡′ = 1,2, … , 𝑁 ,  

as repetition of units in s is not permitted. 

Let A be the minimum σ-field over  and p be the probability measure 

defined  over A such that p(s) is the probability of selecting s satisfying 

 𝑝 𝑠 >0

 𝑝 𝑠 =1𝑁
𝑖=1

           ...1.3 

then a random sample is selected using a sampling design p. Obviously, a sampling 

 design  (SD) is a function defined as 

𝑃: 𝑆 →  0,1  ;  𝑝 𝑠 = 1𝑠𝜖𝑆       ...1.4 

where, 

          𝑆 = {𝑠: 𝑠𝜖℘}  

       An ordered design p(s) is called fixed size design (FS design) if n(s) is constant 

for  all sє such that p(s) > 0. For this constant sample size, we have FES(n) design. 

Godambe(1982) stated that this occurs when  

 𝑣 𝑠 ≠ 𝑛 →  𝑝 𝑠 = 0 , 𝑠𝜖𝑆.       ...1.5 

The probability of inclusion of a population unit in the sample is defined as the  total 

 probability assigned to a population unit for being included in the sample in all 

 draws. 

Let 𝑠 ∋ 𝑖 denotes all samples S that include the i unit for a given sampling 

 design and 𝑠 ∋ 𝑖, 𝑗 denote all samples S that include the i
th

 and j
th

, j≠i , 1≤j≤N, then the 
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 first order and second order inclusion probabilities are 𝜋𝑖  and 𝜋𝑖𝑗  respectively, defined 

 by 

𝜋𝑖 =  𝑝(𝑠)𝑠∋𝑖          ...1.6 

and  

𝜋𝑖,𝑗 =  𝑝(𝑠)𝑠∋𝑖,𝑗          ...1.7 

A sampling scheme (SS) gives the conditional probability of drawing a unit at 

 any draw  given the result of the previous draws. It specifies the conditional 

 probabilities  

𝑝𝑟(𝑖𝑟\𝑖1,, … , 𝑖𝑟−1)         ...1.8 

Hanurav(1962) stated that for any given sample design, there exist at least one 

 sampling scheme which realizes this design. 

   Now, when a sample has been selected, data is usually collected from the field. We 

 define  this data set as: 

𝑑 = { 𝑘, 𝑦𝑘 , 𝑘 ∈ 𝑆}        ...1.9 

    It is assumed here that the data so collected is free from response and 

 measurement errors  and is correct. Upon this data set and using the PPS sampling 

 scheme, an estimator  

𝜏 = 𝑒(𝑠, 𝑦)         ...1.10 

which is a function defined on x
N
 (with 

N
 being the N-dimensional Euclidean 

 space)  such that for a given (s,y), its value depends on Y only through those i for iєs. 

 This brings to  bear the desirable properties of a good estimator which include, 

 unbiasedness, admissibility,  efficiency as well as sufficiency. The common 

 expectation of every researcher is that the  desirable estimator be unbiased.  

 Basically, an estimator is unbiased for Y with respect to a  sampling design p if 

        𝐸𝑝(𝑒 𝑠, 𝑦 𝑝 𝑠 = 𝑌  ∀𝑦 ∈ ℜ𝑁  

⇒  (𝑒 𝑠, 𝑦 𝑝 𝑠 = 𝑌𝑠∈𝑆         ...1.11 
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where 𝐸𝑝  denotes expectation with respect to sample design (SD) p is true. When 

 (1.11) is false, then the estimator under consideration is biased.  

A combination of sampling design p and estimator 𝜏  is called a strategy denoted by   

H(p, 𝜏 ). H(p, 𝜏 ) is also unbiased for Y if (1.10) holds true and its variance  

𝑉{𝐻 𝑝, 𝜏  = 𝐸(𝜏 − 𝑌)2        ...1.12 

Following the non-existence result, Godambe and Joshi(1965)  developed 

 admissibility criteria for an estimator 𝜏  in the class  C  which is uniformly better than 

 τ. This along with work by Basu(1971) opened up the modern scope of inference  with

  respect to finite population, Rao(1966a) made a surprising revelation when he 

 proposed alternative estimators in  PPS sampling scheme that appeared to be more 

 efficient than the conventional unbiased estimators even though the estimators were 

 biased.  

For this reason, we consider the Mean square error (MSE).  

The MSE of 𝜏  around Y with respect to sampling design p is  

     𝑀𝑆𝐸 𝜏  = 𝐸(𝜏 − 𝑌)2 =   𝜏  𝑠, 𝑦 − 𝑌 2𝑝(𝑠)𝑠∈𝑆       

       = 𝐸(𝜏 − 𝐸(𝜏 ))2 + (𝐸(𝜏 ) − 𝑌)2        

= 𝑉 𝜏  +  (𝐵(𝜏 ))2        ...1.13 

A sampling design SD(p) for an estimator 𝜏  (say) is said to be better than  another 

 design SD(p‟) in the sense of variance if variance of SD(p) is less than the  variance of 

 SD(p‟) for another estimator 𝜏 , that is, 

        𝑉𝑝 𝜏  ≤ 𝑉𝑝 𝜏 ′  ∀ 𝑦 ∈ ℜ𝑁        ...1.14 

with strict inequality holding for at least one Y. This comparison is only possible when 

 the sampling design is kept fixed. Similarly, a sampling strategy H(p, 𝜏 ) is said to be 

 better than another strategy H‟(p‟, 𝜏 ‟) in the sense of variance if  

𝑉 𝐻 𝑝, 𝜏   ≤ 𝑉{𝐻′ 𝑝′, 𝜏 ′ }∀ 𝑦 ∈ ℜ𝑁      ...1.15  

with strict inequality holding for at least one Y. 
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Next, we extend these strategies under the super-population (SP) model set up. 

 In actual practise, information about the study population is not known. In the absence 

 of this information, it is possible to utilize SP model to formalize the prior knowledge 

 of the  population under study. 

    Super-population model is usually imposed to give an idea about the relative 

 performance of strategies appropriate to the model (Mukhopadhyay, 1996). Under this 

 set up,  a survey population is looked at as a random sample from super-population and 

 inference is drawn about population parameter from a prediction theorist viewpoint. 

Assume that y=(y1,y2, ...,yN) is a particular realization of a random vector                

Y=( Y1,Y2,  ...,YN) having a joint density 𝜉𝜃  indexed by a parameter vector           

𝜃 =  𝜃1 , 𝜃2 , … , 𝜃𝑘 , 𝜃𝜖Θ,  parameter space, then 𝜉𝜃  belongs to a class of 

distribution C={𝜉𝜃}. Therefore, C is called a  super-population model. 

Now, given a sample S and corresponding y-values. Let X=( x1,x2, ...,xN),        

xi > 0 be the corresponding auxiliary information, then  is usually modelled to reflect 

the auxiliary information so that one can estimate the unknown parameters and infer 

on the finite population. 

Let the model based unbiased 𝜉 -unbiased or estimator be defined as 

   𝜉 𝜏𝑠 = 𝜏, ∀𝜃 ∈ Θ  and ∀s : p s > 0      ...1.16 

and 𝜉, 𝜐 and 𝒞 denote the expectation, variance and covariance with respect to super-

 population distribution ,. 

It is design –model based unbiased if  

𝐸𝜉 𝜏 𝑔 = 𝜏, ∀𝜃 ∈ Θ.       ...1.17 

For comparing estimators under super-population model, the expected MSE is 

𝜉𝑀𝑆𝐸  𝑝, 𝜏   = 𝐸𝜉(𝜏 − 𝑌)2∀ 𝑦 ∈ ℜ𝑁      ...1.18 

is best utilized when it is desirable to predict the total of the current population 

 from  which the sample has been drawn from. For comparison of estimator  and ‟, 

 say,   in terms of MSE, we have  
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𝜉𝑀𝑆𝐸  𝑝, 𝜏  ≤ 𝜉𝑀𝑆𝐸  𝑝, 𝜏′  ∀ 𝑦 ∈ ℜ𝑁      ...1.19 

In this work, the criterion for judgement under super-population model is the 

 expected variance of an estimator under a given sampling strategy. Consequently, the 

 role of the super-population model 𝜉 is to choose between different strategies and has 

 nothing to do with our final inference, which depends on the sampling design. 

With respect to a given super-population model 𝜉defined on ℜ𝑁, we shall 

 define the followings: 

 
𝜇𝑖 =  𝑦𝑖𝑑𝜉 ,                                            1 ≤ 𝑖 ≤ 𝑁

𝜍𝑖
2 =  (𝑦𝑖 − 𝜇𝑖)

2𝑑𝜉,                               1 ≤ 𝑖 ≤ 𝑁 

𝜍𝑖,𝑗 =  (𝑦𝑖 − 𝜇𝑖)  (𝑦𝑗 − 𝜇𝑗  𝑑𝜉,   𝑖 ≠ 𝑗 = 1, … , 𝑁

     ...1.20 

So that the expected variance is 

𝜈 = 𝜉𝑉  𝑝, 𝜏  =  𝑉(𝜏)𝑑𝜉       ...1.21 

Let C denote the class of distributions 𝜉 of Y satisfying the followings: 

        
𝑖.
𝑖𝑖.
𝑖𝑖𝑖.

           

 𝜇𝑖 = 𝛽𝑥𝑖 ,                                            1 ≤ 𝑖 ≤ 𝑁

𝜍𝑖
2 = 𝑎𝑥𝑖

𝑔
,    𝑎 > 0, 𝑔 ≥ 0,           1 ≤ 𝑖 ≤ 𝑁 

   𝜍𝑖,𝑗 = 0,                                     𝑖 ≠ 𝑗 = 1, … , 𝑁
  

where   

        𝒞 = 𝜍𝑖.𝑗 , 𝜈 = 𝜍𝑖
2 and 𝜇𝑖  are the covariances, variances is the expected value 

respectively. 

Smith(1938), Jessen(1942), Mahalanobis(1944) and Brewer(1963) have shown 

 that the value of the parameter g lies between 0 and 2 as it relates to a  sampling 

 design. 

The major interest in this study pertains to PPS WR or WOR sampling upon 

 which the robustness of our estimator will be investigated in terms of the expected 

 mean square error (MSE). 
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1.2 Use of Auxiliary Information in Surveys. 

In survey sampling, information on a highly positively correlated auxiliary 

 variable x with the study variable y is used to estimate the population parameter 𝜏. 

 most often, these information may be available in one form or the other and if  used 

 intelligently, it leads to the sampling strategies with higher efficiency compared to 

 those in which no auxiliary information is used. The auxiliary information could take 

 different forms for some population units. This could be  in the form of parameters 

 say, (y). Examples are, 𝜇𝑥 , 𝐶𝑥 , 𝐶𝐷 𝑥  which are the population mean, coefficients of 

 variation and determination of x respectively, and so on and this information could be 

 known exactly or approximately.   

Tripathi (1973, 1976) identified three ways in which auxiliary information could 

be  utilized. These include; 

i. At the pre-selection stage or design stage. Here, auxiliary information 

could be  used for stratification or to form clusters; 

ii. At the selection stage by use of probability proportional to size WR or 

WOR; 

iii. At the post selection stage or estimation stage by using such estimators like 

ratio, regression, difference or product estimators for the population 

parameter of interest. 

Higher precision could be achieved by using the auxiliary information for dual 

 purposes of selection and estimation procedures (Tripathi, 1969, 1973). 

In this study, auxiliary information giving rise to measure of size (or probability 

 normed-size measure) is assumed at both the selection and estimation stage under 

 linear regression, ratio, product and difference estimators as demonstrated in  the 

 works  of Singh, Singh, Tailor and Allen(2002) and Singh and Tailor(2005). 

As a slight deviation from the usual estimators, we considered the statistical 

 distributional  properties of a target population under linear regression model for 

 which the intercept parameter is zero to generate the expectation of the study 

 variable in the linear regression model and the expectation of the c
th 

standardized 

 moment of the study variable given the measure of size variable.  
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These moments provide important information useful in specifying or 

 defining an  estimator. We define the coefficient of variation (CV), coefficient of 

 determination (CD), coefficient of skewness () and coefficient of kurtosis (K) as the 

 parameter realized by these  moments. These are defined as; 

𝐶𝑦 =
𝜍𝑦

𝜇𝑦
, where 𝜍𝑦 =  

1

𝑁
 (𝑦𝑖 − 𝜇𝑦 )2𝑁

𝑖=1  
1/2

 ,    ...1.22 

𝜇𝑦 =
1

𝑁
 𝑦𝑖

𝑁
𝑖=1          ...1.23 

𝐶𝐷 = 𝜌2 = 1 −
𝜍𝜀

2

𝜍𝑦
2 , 0 ≤ 𝜌2 ≤ 1       ...1.24 

𝛾𝑦 =
𝐸(𝑦𝑖−𝜇𝑦 )3

𝜍3  - 3        ...1.25 

and 

𝐾𝑦 =
𝐸(𝑦𝑖−𝜇𝑦 )4

𝜍4          ...1.26 

Generally, the c
th

 central moment is defined by  

𝐸(𝑦𝑖 − 𝜇𝑦 )𝑐 =  (𝑦𝑖 − 𝜇𝑦 )𝑐 𝑝(𝑦)𝑑𝑦  c =1,2,3,4   ...1.27 

The essence of these moments is to provide a link between statistical properties 

 enumerated above with the population correlation coefficient and by doing so, provide 

 criteria for defining an estimator under the linear model. 
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1.3 Complex surveys 

In order to estimate the parameters of a survey population like population total or 

mean, various sampling strategies have been developed premised on the kind of 

information required. Thus, in large-scale surveys, data on several characteristics of 

the study population are collected.   Usually, selection of units from the population 

rarely involves just simple random sampling (SRS). Instead, more complex sampling 

schemes are employed to reflect complex underlying population structure. Most real 

life surveys employ the following features namely; 

i. combination of sampling schemes; 

ii. auxiliary or supplementary information which are known to assist in 

realizing a more efficient estimate of parameters when properly 

utilized; 

iii. transformation of auxiliary variable used in calculating selection 

probabilities and utilizing  the correlation between the study variables 

selection probabilities. 

           Unequal probability sampling (UPS) otherwise called probability proportional 

to size (PPS) sampling scheme is employed in complex surveys as it is suitable to 

designs and estimation of parameters in multiple character surveys. 

          Earlier works in complex surveys include that by Neyman(1934) on stratified 

random sampling, optimal allocation and logic of inference based on confidence 

intervals and Sukhatme (1935) on Pilot samples to implement Neyman allocation. 

          Conventional and the existing alternative estimators of population total have 

always assumed positive correlation between the study variables and the selection 

probabilities. However, it is known that correlation coefficient could also be negative 

in which case, there are a few literatures addressing this area.  

          Importantly, the existing estimators have always been assumed to be the best for 

all populations and conditions. This is not always the case following the non-existence 

of a uniformly most efficient estimator theory by Godambe(1955) and Basu(1971). 

For these reasons, this work is intended to utilize the available information about the 

study populations in order to develop alternative linear estimators in PPS sampling 

with replacement (WR) and without replacement (WOR) designs. 
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1.4 Alternative Estimators 

            The concept of “alternative estimators” denotes unconventional estimators or 

estimators that are different from the usual ones. The idea of alternative estimator is 

similar to that of hypothesis testing in which the usual hypothesis is the “null” 

hypothesis while the alternative hypothesis provides an option different from the usual 

one. Srivastava and Srivastava(2009) identified five standard senses of  alternative 

hypothesis in which one population (or estimator in this case) is said to be located to 

the right of the other. 

             Specifically, suppose that the study variable of interest is yi {i=1,2,3,...,N}. Let 

the measure of size variable be xi {i=1,2,3,...,N} from which selection probabilities 

pi=xi/X are derived. Let pi* be the selection probabilities realized through certain 

transformation of pi. Then, we can define a conventional estimator 𝜏 𝑐  and an 

alternative estimator say, 𝜏 𝑔,𝑐  in terms of  pi and pi,g* respectively. The hypothesis 

would be: 

𝐻𝑜 : 𝑀𝑆𝐸(𝜏 𝑐) =  𝑀𝑆𝐸(𝜏 𝑔,𝑐)   

 against the alternative 

𝐻1: 𝑀𝑆𝐸(𝜏 𝑐) ≠  𝑀𝑆𝐸(𝜏 𝑔,𝑐) . 

 Certainly, if 𝑀𝑆𝐸(𝜏 𝑐) >  𝑀𝑆𝐸(𝜏 𝑔,𝑐), then the alternative estimator would be 

preferred, where 𝑀𝑆𝐸(𝜏 𝑐) and 𝑀𝑆𝐸(𝜏 𝑔,𝑐) are mean squared errors of the conventional 

and alternative estimators respectively. It is worth to note that the estimators under 

comparison could all be biased or unbiased. 

         In this study, we draw inspiration from the works of Godambe(1955,1956), 

Rao(1966a, 1966b), Basu(1971), Amahia, Chaubey and Rao(1989), Grewal(1997) and 

Ekaette(2008) to develop alternative estimators when positive correlation between y 

and pi exists and further insight from the contributions of Bedi(1995) and Bedi and 

Rao(1997) to develop alternative estimators with negative correlation coefficient 

between y and pi. 
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1.5   Aim and Objectives of the study 

         The major aim of this study is to develop a class of alternative linear estimators 

for use in multi-character surveys.  

The specific objectives include: 

i. To propose  generalized selection probabilities under linear framework 

for both negative and positive correlation between the study variables 

and selection probabilities by utilizing the c
th

, (c = 1, 2, 3, 4) 

standardized moment of the study variable; 

ii. Modifying the conventional Hansen and Hurwitz estimators for use 

under conditions of negative correlations; 

iii. Utilize the proposed transformations to develop alternative linear 

estimators in PPSWR and PPSWOR designs; 

iv. Investigate the consistency of some specified estimators under normal, 

theoretical distributions namely, normal, uniform, gamma and chi 

squared distributions. 

1.6  Justification 

The conventional estimator in PPSWR sampling and PPSWOR sampling 

schemes is useful only when it is assumed that the correlation coefficient between 

study variables and measure of size variables is positive. This is not always the case; 

correlation coefficient may be zero in the sample (as in Rao‟s estimator) or a negative 

quantity.  

Previous studies on alternative estimators have defined PPS estimators with 

respect to positive correlation coefficients between the study and measure of size 

variables. However, these estimators are rigidly specified by the claim that a particular 

estimator is best for all study populations. Also, existing alternative estimators only 

consider the distribution of the target population with respect to the correlation 

coefficient ρ. In this work, we add the standardized moments in the study variables 

under linear framework. 

Thus we developed a class of alternative linear alternative estimators that 

utilize moments in correlation coefficient and takes into cognisance the distributional 
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properties of the survey population. The cases of negative and positive correlation 

coefficient between the study variables and selection probabilities are also 

investigated. 

1.7   Significance of the study 

The general class of alternative linear estimators defined by moments in 

correlation coefficient is intended to introduce flexibility in the definition of estimators 

for survey population. As every population possesses unique properties, their 

estimators would definitely have different specifications. This is further justified by 

the non-existence theorem of a uniquely efficient estimator for all populations due to 

Godambe(1955) and Basu(1958, 1971). 

This procedure allows the use of precise estimators under different set-ups. 

1.8 Scope  and Limitation of the study. 

Our study considered only linear transformations of the selection probabilities 

for use with homogenous linear estimators (HLE). It limits itself to uni-cluster and 

uni-stage sampling schemes. However, the findings of this thesis can be easily 

extended to those designs which are mostly applicable in large scale surveys. 

1.9 The arrangements of this thesis 

In addition to this introductory chapter which contains the various definitions 

and explanation of basic concepts used in the sequel, the present work contains five 

more chapters as follows: 

In chapter two, we presented detailed review of existing literature that bothers 

on historical developments in sampling methodologies and hence, PPS sampling 

scheme. In other word, we showed the various developments from inceptions up to the 

point we are making our contributions with the aim of providing estimators that will 

depend largely on information obtained from moments of the target population. 

In chapter three, we made some propositions leading to the development of 

the methodologies needed in this research. Firstly, we utilized the laws of direct and 

inverse proportions to propose transformations of selection probabilities in both cases 

of positive and negative correlation coefficients that will be needed. This is because; 
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they are pivot elements for defining PPS estimators. The transformed selection 

probabilities pi were generalized under linear regression model and by this 

generalization, a link between correlation coefficient and the statistical properties 

defined by the first four standardized moments of the study variables was established 

so that we could estimate the desirable parameters of the study population. 

 By the methodologies above, we postulated that under the linear model, first 

order correlation coefficient 𝜌1 was given by the ratio of the coefficient of variation of 

y and coefficient of variation of x; 𝜌2 was linked with coefficient of determination;  𝜌3 

was linked with skewness while 𝜌4 was linked with  kurtosis.  The range of the 

specification parameter c, was also defined. 

In chapter four, we developed a class of linear estimators 𝜏𝑔,𝑐  defined by the 

 range of the specification parameter c=1,2,3,4 and utilized them in the process of 

 estimation and inference. This scenario was conducted under certain transformation 

for  both cases of positive and negative correlation under PPSWR and PPSWOR designs. 

We utilized the technique of Rao-Hartley and Cochran(1962) to study the 

 relative efficiency of the estimators in this class at varying correlation for n > 2, 

 specifically, n = 5. Similarly, the super-population model is utilized for comparing our 

 estimators with some existing estimators that fall in this class as well as conventional 

 estimators. 

In chapter Five, we presented the various results of analysis for the four study 

 populations with sample of sizes n = 2 and n = 5 for both sampling design and super-

 population model for the proposed and conventional estimators. We further 

 investigated the consistency of the proposed estimators under some theoretical 

 distributions namely, normal, uniform, gamma and chi-squared distributions. Thus, 

 selection probabilities were simulated under normal, uniform, gamma and chi-square 

 distributions and various estimates as well as their relative efficiencies were computed 

 for both sampling design and super-population model for g = 0, 1, 2; ρ = 0, 0.1, 0.5, 

 0.9, 1 and the estimate of the correlation coefficient for the target population, 𝜌 .  

 Comparison of estimates for realized by the class of linear estimators was also made.
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Chapter six presented the summary of  the major results reported in this work. 

 The areas of possible future extension of works contained in this thesis are also 

 included.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.0  Introduction. 

In this chapter, a review of related literature pertaining to unequal probability 

sampling is presented.  We shall introduce various developments in survey sampling 

that led to the realization of multi-character survey and then, discuss various PPS 

sampling schemes with respect to their designs and estimation using direct responses. 

2.1  Trends in Sampling  

In the study of sample surveys and random experiments, Dalenius(1962) 

observes that the development of statistical theory and methods has grown 

tremendously in response to demands for tools to cope with the problem of uncertainty 

which arises when dealing with observations exhibiting variability. These studies are 

guided by the necessity of being able to measure the degree of uncertainty and the 

desire to regulate these uncertainty, which is a central problem in the theory and 

method of statistical inference. 

The credit of placing “sample survey theory and method” within realm of 

random experiment is largely due to Neyman(1934) in whose paper marked the 

beginning of the concept of “probability Sampling”.  Madow(1948) obtained a result 

in probability sampling which was generalized. Turkey(1950) advanced the analytical 

tools for deriving higher moments using polykays as well as the derivation of moment 

coefficient  of the k-statistics in the works of Wishart(1952). 

The need to regulate the degree of uncertainty required the choice of criterion, 

that is, the measure of efficiency and the techniques for using it. Neyman(1934) 

introduced the criterion of minimizing the variance subject to fixed sample size. Yates 

and Zacopany(1935) gave a more general formulation of minimum variance (MV) 

subject to fixed cost and vice versa which has govern the design of large sample today. 

The area of inference have been explored by various scholars including 

Royall(1971a,1971b), Rao and Singh(1973), Royall and Cumberland(1981a,1981b), 
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Das and Tripathi(1978) and Mukhopadhyay(1977,1978,1984,1991), and 

Godambe(1982). 

The development of basic models meant for schemes used in survey also took 

various dimensions. Neyman(1934) formulated and solved the problem of the best 

allocation of sampling units among strata in stratified sampling. Jessen(1942) 

demonstrated the efficiency to be achieved in using a „panel‟ when estimating changes 

in time. Hansen and Hurwitz(1943) extended the theory of sampling from finite 

population to cover complex designs and also introduced a scheme for multi-stage 

sampling using probability proportional to size to efficiently determined  measure of 

size for selecting  primary sampling units. Cochran(1946), Madow(1949), Yates(1948) 

developed the theory of systematic sampling. 

The development of basic models follows some schemes of classification namely: 

i. the simple random sampling group comprising the, Y, R and Y  models as 

can be seen in the works of Basu(1958) among others; 

ii. Stratified sampling which became very prominent owing to the problem of 

how best to stratify a population into a fixed number L, of strata. In this 

regards, progress have been made in determining optimum number of strata 

as well as developing computationally simple methods for approximating 

the exacts solution; 

iii. systematic sampling as a solution to the problem of measuring the degree 

of uncertainty; 

iv. Sampling n > 1 with unequal probabilities as a scheme developed by 

Hansen and Hurwitz(1943) which is characterized by sampling with 

replacement. The need for more efficient estimator gave rise to the use of 

sampling without replacement; 

v. another aspect is the sampling scheme which selects a sample from the 

population to the sum of the measure of size with unequal probabilities 

which is often used in the selection of primary units in multi-state sampling 

scheme.  

Our interest in this study is the estimation of sampling schemes under probability 

proportional to size otherwise, called PPS sampling. 
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2.2 Unequal probability sampling  

Marriot(1990) defined the term Unequal probability sampling (UPS) as a 

method of sampling in which the units are selected with probability proportional to 

size (PPS) measure related to the characteristics under study. 

Unequal probability sampling is either with replacement called Unequal 

Probability Sampling With Replacement (UPSWR) otherwise called Probability 

Proportional to size with Replacement (PPSWR) sampling or Unequal Probability 

sampling Without replacement (UPSWOR) otherwise called Probability Proportional 

to size Without Replacement (PPSWOR) sampling. 

The theory of UPS with replacement was developed by Hansen and 

Hurwitz(1943). Prior to this development, there existed other sampling theory and 

practices as contained in the work of Neyman(1934) among others that assumed that 

the probability of selection within each stratum would be equal.  Since then, 

considerable progress has been made with the contributions of many workers in the 

development of this area of study thereby, realizing tremendous progress over recent 

times. 

 Many works have been done covering the aspects of sample selection from a 

given universe and it has been shown that UPS provides more efficient estimator of 

population parameter than obtained from equal probability sampling. Thus, the 

theoretical framework by Hansen and Hurwitz(1943) otherwise called HH has become 

a cornerstone for the developments that sprang up in this area of study. 

Madow(1949) proposed the use of systematic sampling with unequal 

probability to avoid the possibility of units being selected more than once. 

Midzuno(1950), and Narain(1951) considered the problem of sampling with varying 

probability without replacement. This was followed by Horvitz and Thompson(1952) 

who gave the theoretical background, Yates and Grundy(1953) and Sen(1953) who 

studied a more general method of sampling without replacement (WOR) and with 

varying probabilities, pointing out that the variance of the population parameters under 

Horvitz-Thompson estimator (HTE) is uniquely determined by the first and second 

order inclusion probabilities of units in the sample for a chosen design. Usually, the 
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value of the auxiliary variable is chosen such that it is closely related to the study 

variable. 

Attempts have been made to develop fixed sample size sampling designs with 

inclusion probabilities proportional to size (IPPS) measure called πPS design due to 

Hanurav(1967). Many sampling designs such as those due to Yates and Grundy(1953),   

Hanurav(1962), Fellegi(1963), Rao(1963), Hajek(1964), Caroll-Hartley(1964), 

Durbin(1967), Sampford(1967), Vijayan(1966,1968), Mukhopadhyay(1972), 

Sinha(1973), Sengupta(1981), Gupta, Nigam and Kumar(1982), Saxena, Singh and 

Srivastava(1986), Arnab(2001), Adhikary(2009), Alodat(2009) were developed using 

HTE. 

Apart from sampling strategies consisting of πPS design and corresponding 

HTE, some other procedures of interest were developed. These include the Rao-

Hartley-Cochran(1962) otherwise called RHC procedure, Midzuno(1950,1952) and 

Chikkagoudas(1967) which make use of several estimators other than HTE. 

Procedures developed by Midzuno(1950,1952), Lahiri(1951),  

Sankarnarayana(1969), Despande(1978) gave unbiased estimation for ratio estimators. 

Mukhopadhyay(1972) and Sinha(1973) attempted to obtain sampling designs realizing 

a second order inclusion probabilities. This problem was also considered by 

Harzel(1986).  

Das(1951), Raj(1956) and Murthy(1957) have suggested certain special 

estimator for use with YG(1953)‟s draw-by-draw procedure. Works reviewing various 

sampling designs can be found in Brewer and Hanif(1983), Chaudhuri and Vos(1988) 

and Mukhopadhyay (1982). 

Recent developments in the theory of PPS sampling have covered the areas of 

estimation involving indirect responses otherwise called, Randomized Responses (RR) 

whose estimation technique was developed by Warner(1965). The works of 

Arnab(1990), Chaudhuri and Adhikary(1990), Chaudhuri(2001a,2001b), 

Chaudhuri(2002), Chauhudri and Pal(2002), Sidhu, Bansal and Singh(2007), 

Chauhudri and Dihidar(2009) and Chauhudri(2010) have advanced the studies in this 

area as pertaining estimation of population proportions and totals. 
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2.3 Probability Proportional to Size With Replacement Sampling. 

Sampling with replacement is described by Rao(1966a) thus “ a fixed number 

of „n‟ units is selected with replacement in contrast with simple random sampling 

without replacement where units are selected without replacement so that all the units 

in the sample are distinct. 

Hansen and Hurwitz(1943) proposed the idea of sampling with probability 

proportional to size without replacement. Under this scheme, one unit is selected at 

each of the n-draws. For each i
th

 unit selected from the population, a selection 

probability is given as 

𝑝𝑖 =
𝑥𝑖

𝑋
,           ...2.1 

where xi is the measure for i
th

 population unit and 𝑋 =  𝑥𝑖
𝑁
𝑖 . 

Using the notations defined above, Hansen and Hurwitz(1943) gave the estimators of 

population total Y, as 

1

1 N
i

HH

i i

y

n p




          …2.2 

whose estimator of the variance ( )HHV   is 
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and the possible unbiased estimators of population variance are given as 
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n n p p


  

 
  

   
       …2.5 

Rao and Hartley(1962) proposed a method for estimation of variance that 

always have smaller variance than the standard estimator in sampling with unequal 
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probability and with replacement. This method does not entail heavy computation, 

even for a sample of n>2 and it enjoys the advantages of exact variance formula for 

any population size as compared with the asymptotic variance of Rao and 

Hartley(1962). 

Rao(1978) looked at the robustness in large samples of the Hansen and 

Hurwitz strategy considering the population to be divided into two domains of sizes 

N1 and      N2  in which case, the units in each domain obey the super-population 

model.  Rao(1978) also compared the average biases of the two strategies assuming 

the size variable in the two domains to be independently and identically distributed 

gamma variable. Here, Rao(1978) concludes that the ratio estimator in SRSWR may 

perform better than the usual PPS estimator in PPSWR sampling scheme. 

Royall and Herson(1973) and Godambe and Thompson(1977) considered 

specifically a situation in which the model failure of super-population model consists 

of latent order polynomial term in x or an intercept βo.  

Brewer(1979) pointed out that the Rao- Hartley(1962) use of stratified 

balances sampling scheme was a result that depended on the variance function in the 

primary model. Therefore, he proposed a combined estimation and selection scheme 

for use in large scale enterprise and establishment surveys. Brewer(1979) also 

demonstrated that his estimator is design-unbiased and subject to this constraint, has 

minimum expected variance under super-population model. 

 The advantage of Brewer‟s scheme over the Rao-Hartley‟s(1962) scheme is 

the removal of size stratification and it further allows for more general variance 

function thus, permitting a more efficient relationship between selection probability 

and unit size. 

To enhance the efficiency of the HHE, Rao(1966a) introduced the idea of 

multiple characteristics and utilized the value of zero correlation coefficient in 

defining his estimator of population total.  

Works ascertaining the validity of this estimator was carried out by 

Pathak(1966) and Rao(1993a,1993b). This introduced a new dimension in the study of 

PPS sampling schemes leading to various estimators  by Bansal and Singh(1985), 

Amahia-Chaubey and Rao(1989), Kumar and Agarwal(1997), Grewal(1997),  Ekaette 
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(2008), Singh and Horn(1998), Mangat and Singh(1993), Srivenkataramana (1980), 

Sahoo, Sahoo and Mohanty(1994) among others. These estimators shall be properly 

discussed in latter section under multi-characteristics. 

2.4 Probability Proportional to size Without Replacement Sampling.  

The concept of Unequal probability sampling without replacement was first 

used by Madow(1949) having utilized it with systematic sampling to avoid situation in 

which a unit is selected more than once. 

 Narain(1951) provided theoretical framework and selection procedure for this 

scheme which was fully developed by Horvitz and Thompson(1952) who suggested 

the estimator of population total, 𝜏 𝐻𝑇 , popularly called HTE for use with unequal 

probability sampling without replacement defined by 

𝜏 𝐻𝑇 =  
𝑦𝑖

𝜋𝑖
𝑖𝜖𝑆           ...2.6 

Whose variance was given as  

𝑉 𝜏 𝐻𝑇 =  
(1−𝜋𝑖)

𝜋𝑖
𝑦𝑖

2 +   
(𝜋𝑖𝑗 −𝜋𝑖𝜋𝑗 )

𝜋𝑖𝜋𝑗

𝑁
𝑗 =1,𝑗≠𝑖 𝑦𝑖𝑦𝑗

𝑁
𝑖=1

𝑁
𝑖=1     ...2.7 

which Godambe and Joshi(1965) showed that under super-population model, the 

variance of Horvitz Thompson estimators attains lowed bound for any sampling 

design with the bound given as 

𝐸𝑀𝐸𝐷(𝜏 𝐻𝑇 − 𝑌)2 ≥  𝜍𝑖
2  

1

𝜋𝑖
− 1 𝑁

𝑖=1       ...2.8 

Sen(1953), Yates and Grundy(1953) provided an alternative expression of the variance 

of Hansen and Hurwitz estimator as 

𝑉𝑆𝑌𝐺 𝜏 𝐻𝑇 =
1

2
  

(𝜋𝑖𝜋𝑗−𝜋𝑖𝑗 )

𝜋𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖  

𝑦𝑖

𝜋𝑖
−

𝑦𝑗

𝜋𝑗
 

2
𝑁
𝑖=1      ...2.9 

They  showed  that for n=2, it is a non-negative variance estimator. However, 

Sen(1953) have showed that for n = 2, jiij    for all i ≠ j when selection is made 

without replacement. Specifically, Vijayan(1968) identified the condition for which 

the HT and YSG estimators are unbiased and efficient, specifically, for a finite 

population consisting of N units and a positive valued auxiliary variable, taking the 
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value of xi  and given a positive integer n satisfying  1max

n

i

i
i

i

X
X

X
n n

 


 then we 

seek to find a sampling procedure satisfying the following conditions: 

i. i
i

nx

X
   

ii. each sample contains n distinct units; 

iii.  0ij   

iv. jiij    

v. 





ji

ij
 for β not too close to zero  

Conditions (i) and (ii) above ensure the optimality of the sampling method in 

the Bayesian sense as proved by Godambe(1955) and Hajek(1958). Condition (iii) 

ensures the existence of unbiased variance estimator and (iv) ensures non-negativity of 

the SYG‟s estimator. Condition (v) ensures the stability of SYG‟s estimator. 

Rao(1963) proved that under the Midzuno(1952) and SYG(1953) selection 

procedures for pswor , the YSG estimator is always positive. Rao and Singh(1973) 

used the Brewer(1963) selection procedure to compare the HT and the YSG estimators 

for  n = 2, employing a wide variety of population in which case, findings showed that 

the estimator of YSG is more stable than that of Horvitz and Thompson(1952). Brewer 

and Hanif(1983) and Shahbaz(2004) and Shahbaz and Hanif(2003) showed the same 

result. 

The usual issue of concern in the application of the HT estimator is that the 

variance estimator of HT and that of SYG all require the computation of the joint 

inclusion probability, ij , and they are very difficult to apply especially as the 

computation of  ij  becomes very cumbersome. Several workers in the area of study 

have attempted to find approximations to the variance of HT in such a way that it does 

not involve the computation of ij ‟s. A simple approximation of ij  in terms of i ‟s 
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and j ‟s for selection procedure that ensures that ii
2

1
p  , otherwise, i =2p, is given 

by Brewer(1963), Rao(1965), Durbin(1967) and Sampford(1967) as, 

1
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1 1
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      ...2.10

 

Brewer and Hanif(1983) gave two approximation of ij ‟s: 

2 2( ) ( )ij i j i j i jA B C          
     ...2.11
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Approximation II 

This is given as  
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and it has been found that this approximation performs well even when a few values of 

ij  are close to unity with each term being less than half of the proceeding one. The 

problem with this approximation is that it may not perform well when any i ‟s is 

close to unity. 

Harzel(1986) suggested another approximation of ij  as 
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which may produce negative values of ij .  

Hanif and Ahmad(2001) proposed another approximation to ij  as 

2

i j

ij i j
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  
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where ai and aj are carefully chosen in which case, they showed that  
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so that when substituted in the variance formula of Horvitz and Thompson, we obtain  
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Rao(1961) derived an expression for the variance of systematic sampling using the 

relation as 
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which is accurate to order N
0
. Rao(1961) further showed that the asymptotic variance 

formula to order N
0 

 for a sample (n=2) is 
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where λ =3/32 for Narain(1951) procedure, 1/8 for Caroll-Hartley(1964) repetitive 

procedure and ¼ for random systematic procedure of Goodman and Kish(1950). 
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Rao(1963) further showed that the approximate formula of order n
1
 for a 

sample of size n is    
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 The work by Shahbaz(2004), Sahoo, Mishra and Senapati(2005),  Senapati, Sahoo 

and Mishra(2006), Adhikary(2009) bothered on the improvement of PPS estimators 

and so, developed new estimator of population total following the method of Horvitz 

and Thompson(1952), Murthy (1957) and the Durbin (1967) selection procedure. 

Efficiency of the new estimator was compared with various existing estimators for a 

sample of size 2 and also derived a Design-based and Model-based variance and found 

out that Model based variance achieved the Godambe-Joshi lower bound. There are 

several other developments in this area of variance estimation which could further be 

exploited. 

2.5 Estimators in PPS sampling with replacement for multiple characteristics. 

 Studies involving estimation of population parameters relating to several 

population characteristics gave rise to the use of auxiliary variable which provides a 

measure of size for selecting a sample of units with PPS sampling scheme. Here, it 

might happen that some of the study variables are poorly correlated with the selection 

probabilities used for PPS sampling scheme while some may be highly correlated with 

the study variable. It is also possible that the dimension of the correlation coefficient 

could be positive or negative. 

           The work of Hansen and Hurwitz(1943) and propositions by 

Mahalanobis(1944) and Godambe(1955)  prompted further studies in PPS sampling 

scheme and hence the developments in this area of knowledge. Work on the analysis 

of dispersion in sample survey involving multiple characteristics was done by 

Chakravarti(1954) with less emphasis on estimation of parameters of interest. 

However, there was remarkable development in the area of estimation and inference in 

the following decades. This was again prompted by the need for design and analysis of 

complex surveys  as in Hajek(1958), Hartley and Rao(1962), Chikkagourdas(1967) 

and Hanif and Brewer(1980) among others in order to firstly address the problems of 
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developing economies in the 1960‟s and 1970‟s and secondly, develop the theory of 

survey sampling. 

        Rao(1966a) in his study of the number of chickens in a farm (Y) and the farm 

size (X) being the auxiliary variable saw the variables of study to be poorly correlated. 

Thus, he proposed an alternative estimator when the study variable and the auxiliary 

variable are unrelated defined as 

𝜏 =
1

𝑛
 

𝑦 𝑖

𝑝𝑖
∗

𝑁
𝑖=1  ,        ...2.20 

where 

 𝑝𝑖
∗ =

1

𝑁
.  

For this, he demonstrated that the estimators though biased, are likely to have smaller 

Mean square error (MSE) than the corresponding conventional unbiased estimator 

particularly in small samples. Again it is argued that the bias of such estimators are 

same for all sample sizes unless the study variable and the auxiliary variable are 

uncorrelated, in which case, they are unbiased. 

Bansal and Singh(1985, 1989, 1990) observed that the circumstance 

considered by Rao(1966a) is not a common occurrence in the real life since population 

correlation between the study and auxiliary variable is never exactly zero. Thus Bansal 

and Singh(1985) suggested an alternative estimator to cater for the correlation that 

might have existed between the study and auxiliary variable. Here, it is assumed that 

the variables under consideration are poorly correlated. Again, this estimator 

comprises a transformation that is non-linear in nature and is assumed efficient for all 

populations. To appreciate the beauty of this work, we specify the linear estimator of 

the form:   

𝜏 =  𝑏𝑠𝑖𝐼𝑠𝑖𝑦𝑖
𝑁
𝑖=1           ...2.21 

   where 𝐼𝑠𝑖 =  
1, 𝑖𝑓 𝑖 ∈ 𝑠
0, 𝑖𝑓 𝑖 ∈ 𝑠′    and bsi is weight not dependent on yi but is design specific, 

Thus the estimator proposed by Bansal-Singh(1985) is given as,  
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𝜏 =
1

𝑛
 

𝑦𝑖

𝑝𝑖
∗

𝑁
𝑖=1  ,   𝑝𝑖

∗ =  1 + 1/𝑁 1−𝜌 1 + 𝑝𝑖 
𝜌 − 1   ...2.22 

Amahia et al(1989) observed that the work of Bansal and Singh‟s(1985) made 

mention of bias of the new estimator which was expected to be smaller than 

Rao(1966a) but did not derive any expression for bias or compare them. They further 

argue that it is not quite usual to assume that the expected value of the residual 

variance takes a well known form while using super-population model as used by 

Bansal and Singh(1985). Again, it is observed in Amahia(1989) that the use of 
*

i
p  is 

without motivation except that it reduces to Pi when  =1 and 1/N when =0. 

Importantly, the values of 
*

i
p  are in some cases, negative and in most cases, do not 

sum to unity. 

   On this note, Amahia et al(1989) provided simpler alternative estimators of the 

population total when there is positive correlation between the study and auxiliary 

variable. One of such estimator is: 

𝜏 =
1

𝑛
 

𝑦𝑖

𝑝𝑖
∗

𝑁
𝑖=1  , 𝑝𝑖

∗ =
1−𝜌

𝑁
+ 𝜌𝑝𝑖       ...2.23 

 satisfying all the boundary conditions of a probability normed-size-measure. 

Grewal(1997)‟s estimator mimics that of Amahia but with the transformation  

𝑝𝑖
∗ =

1−𝜌1/3

𝑁
+ 𝜌1/3𝑝𝑖  ...2.24 

 and observed that in some cases, it performed better than the Amahia et al‟s(1989) 

estimator. 

Singh and Horn(1998) also proposed  an alternative estimator for estimating 

population totals in multi-character survey sampling when certain variables have poor 

positive correlation and others have poor negative correlation with selection 

probabilities. They showed that the estimators proposed by Hansen and Hurwitz 

(1943), Rao (1966), Singh, Singh and Shukla(1993) and  Sahoo et al. (1994) are 

special cases of the proposed estimator. 
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Singh and Tailor(2003, 2005) suggested series of estimators of population 

totals under certain transformations of selection probabilities among which include the 

followings: 

𝑝𝑖,1
∗ =  1 +

1

𝑁
 

 1−𝜌  1+𝜌 

(1 + 𝑝𝑖
+) (1 + 𝑝𝑖

−)  
1

𝑁
 

−𝜌(1−𝜌)/2
𝜌(1+𝜌)/2

−1
 1−𝜌 (1+𝜌)

  ...2.25 

𝑝𝑖,2
∗ =

 1−𝜌  1+𝜌 

𝑁
+

1

2
 𝜌 1 + 𝜌 𝑝𝑖

+ − 𝜌 1 − 𝜌 𝑝𝑖
−       ...2.26 

where  

𝑝𝑖
+ =

𝑥𝑖

𝑋
; 𝑋 =  𝑥𝑖

𝑁
𝑖=1          ...2.27 

and  

𝑝𝑖
− =

𝑧𝑖

𝑋
; 𝑋 =  𝑥𝑖

𝑁
𝑖=1           ...2.28 

with 

𝑧𝑖 =
𝑋−𝑛𝑥𝑖

𝑁−𝑛
; 𝑋 =  𝑥𝑖

𝑁
𝑖=1         ...2.29 

 

The transformations combined two forms of selection probabilities as well as 

two dimensions of correlation in a single scheme. They are non-linear in nature and 

hence complex. Another estimator proposed by Singh, Grewal and Joarder(2004) has 

the transformation defined by 

𝑝𝑖
∗ = (𝑝𝑖

+) (𝑝𝑖
−)  

1

𝑁
 

−𝜌(1−𝜌)/2
𝜌(1+𝜌)/2  1−𝜌 (1+𝜌)

     ...2.30 

         They also proposed a  general class of finite population  parameter estimators in 

multi-character survey and  showed that the proposed estimator by Bansal and 

singh(1985) and Amahia et al(1989) are special cases of the general class of estimators 

for PPSWR strategy. The general class based on Taylor‟s approximation, defined the 

estimator as: 

𝜏 𝑔 =
1

𝑛
 𝑦𝑖

𝑁
𝑖=1  𝐻(𝑃𝑖)   ...2.31 

 with variance  

𝑣 𝜏 𝑔 =
1

𝑛
  𝑦𝑖

2𝑝𝑖(𝐻(𝑝𝑖
𝑁
1 ))2 − ( 𝑦𝑖

𝑁
𝑖=1 𝑝𝑖𝐻 𝑝𝑖 )2   ...2.32 

 with H(pi) satisfying the regularity conditions. 
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            Ekaette(2008) observed that the claim by Singh, Grewal and Joarder(2004) of 

having the estimator by Bansal and Singh(1989) in the  generalized linear class of 

estimators is not true as the transformation used by them does not always satisfy all 

the boundary conditions of normed size measure namely, 0<pi<1 and  𝑝𝑖 = 1𝑁
𝑖 . 

Therefore, Ekaette(2008) proposed an alternative estimator defined by 

𝜏 𝑔,𝛼 =
1

𝑛
 

𝑦𝑖𝑝𝑖

𝑝𝑖
𝛼

𝑁
𝑖=1    ...2.33 

 with  

𝑝𝑖
𝛼 =

1−𝜌𝛼

𝑁
+ 𝜌𝛼𝑝𝑖 ,  

where ρ
α
 satisfying all the boundary conditions. 

Recent developments include the works of Gajendra, Singh and Singh(2010) that 

considered multi-auxilliary variables and post-stratification. 

2.6 PPS estimators under negative correlation. 

When the auxiliary variable x is negatively correlated with the study variate y, 

Robson(1957) proposed the product estimator of the population mean or total and was 

further developed by Murthy(1964). 

Since then, a lot of development have been made in this area of product 

estimator including the works of  Srivenkatarmana(1980), Singh(1986), Menedez and 

Ferrales (1989), Agrawal and Jain(1989) and Sahoo(1995). Studies on multivariate 

product estimators that deal with auxiliary information include the work of 

Olkin(1958), Singh(1967), Lui(1990), Agarwal and Panda(1993),  Singh, Singh and 

Shukla(1993) proposed a  general class of product type estimator under super-

population model and also multivariate product estimators. 

Works that utilized the coefficient of variation in estimating the finite 

population total include that of Das and Triparthi(1980), Sisodia and  Dwivedi(1981), 

Singh and Upadhyaya(1986), Pandey and Dubey(1988), Singh and Singh(1998), Singh 

and Taylor(2005), Singh and Kumar(2009) among others. 

           Scholars such as Sahoo, Sahoo and Mohanty(1994), Bedi(1995), Bedi and 

Rao(1997), Singh and Horn(1998), Sahoo(1995), Sahoo, Mishra and Senapati(2005), 
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Sahoo, Das and Singh(2006) and Sahoo, Senapati and Mongaraj(2010)  worked on 

negatively correlated characteristics with complex transformations of the selection 

probabilities with little applications to PPS sampling schemes. Thus, the question on 

the efficiency of the estimators under PPS sampling schemes was not properly 

addressed.  

           To devise an estimator in PPS sampling scheme when it is apparent that the 

regression slope indicates inverse relationship between the study and measure of size 

variables we shall show  that Hansen and Hurwitz‟s(1943) estimator only requires a 

little modification under certain law of variation to realize an estimator for negatively 

correlated variables.   

2.7 Moments in correlation coefficient 

Classical regression estimation makes the assumption of normality of model 

components and based on this assumption, estimation is made. This assumption does 

not always hold as in most cases, researchers involved in empirical researches deal 

with samples drawn from population and apart from being highly variable, are non-

normal. Conventional and alternative estimators in probability proportional to size 

(PPS) sampling utilized the correlation structure based on this assumption without 

regards to assumption failure. It is based on this note that we examine the failure and 

suggest alternative estimators that will be applied under assumption failure. 

Dodge and Rousson, (2000,2001) showed that, in the context of linear models, 

the response variable will always have less skew than the explanatory variable and this  

also applies to the kurtosis of the two variables. These facts can be used to determine 

the direction of dependence specifically, using third and fourth order moments, and 

information concerning the deviation of variables from normality. Thus modelling the 

variables is sensitive to various data distributions, sample size and simple correlation 

structure. Other workers in this area include Muddapur(2003), Shimizu and 

Kano(2006), Sungur(2005), Rovine and von Eye (1997), Rodgers and Nicewander, 

(1988). 

We shall show the theoretical relationship between correlation coefficient and 

other statistical properties such as coefficients of variation, determination, skewness 

and kurtosis from the statistical moment perspective. Here, we draw inspiration from   
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works of Roger and Nicewander(1988),  Dodge and Rouson(2000), Sungur(2005),  

Dodge and Yadegari(2009) to establish the theoretical relationship between correlation 

coefficient and other statistical properties that are related by the model 

𝑦 =  𝛼 +  𝛽𝑥 + 𝜀        ...2.34 

where ε is an error random variable independent of x. The model coefficients are α and 

β which are model intercept and slope respectively. In ratio estimation, it is usually 

assumed that the intercept parameter is zero. The covariance between x and y is given 

by 

𝐶𝑜𝑣 𝑥, 𝑦 = 𝐸  𝑥 − 𝐸[𝑥]  𝑦 − 𝐸[𝑦]  =  𝛽𝜍𝑥
2    ...2.35 

and the correlation coefficient is  

𝜌𝑥,𝑦 =
𝐶𝑜𝑣(𝑥,𝑦)

𝜍 𝑥 𝜍(𝑦)
= 𝛽

𝜍𝑥

𝜍𝑦
        ...2.36 

where 𝜍𝑥  and 𝜍𝑦  are standard deviation of x and y respectively. 

Let y be the response variable and x be the explanatory variable. Then, the 

skewness of x and the skewness of y are defined by the third moment, that is, 

𝛾𝑥 =
𝐸 𝑥−𝐸(𝑥) 3

𝜍𝑥
3 =

𝜇3,𝑥

𝜍𝑥
3          ...2.37 

and 

𝛾𝑦 =
𝐸 𝑦−𝐸(𝑦) 3

𝜍𝑦
3 =

𝜇3,𝑦

𝜍𝑦
3         ...2.38 

respectively. 

The fourth moment, the kurtosis of x and y, is 

𝐾𝑥 =
𝐸 𝑥−𝐸(𝑥) 4

𝜍𝑥
4 =

𝜇4,𝑥

𝜍𝑥
4         ...2.39 

and 

𝐾𝑦 =
𝐸 𝑦−𝐸(𝑦) 4

𝜍𝑦
4 =

𝜇4,𝑦

𝜍𝑦
4         ...2.40 

respectively. We assume that  x, y . N(0; 1) with  = 0 and K = 3.0 where  and K are 

coefficients of skewness and kurtosis respectively.
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CHAPTER THREE 

GENERALIZATION OF SELECTION PROBABILITIES IN PPS 

SAMPLING DESIGN. 

3.1 Introduction 

In order to develop alternative estimators in probability proportional to size 

(with or without replacement) sampling designs taking cognizance of the moment 

characteristics of the target populations as well as correlation coefficient, appropriate 

transformations of selection probabilities are developed.  The generalized 

transformation incorporated moments in correlation coefficient between study and 

measure of size variables so as to provide the required probability normed-size 

measure. In essence, appropriate specification of the selection probabilities is a prelude 

to estimation in PPS sampling.  

In this section, we shall show that ratio estimator is a consequence of positive 

correlation between the study variables and selection probabilities.  Next, we present 

the generalization of the resulting probability normed-size measures. Furthermore, we 

shall propose a transformation of selection probabilities under law of inverse 

proportion. The transformation is proposed for use when negative correlation between 

the study and auxiliary variables is encountered. This leads to the modification of the 

conventional estimators, namely, Hansen and Hurwitz Estimator (𝜏 𝐻𝐻) or (𝜏 𝑐) or 

simply HHE in the case of PPSWR sampling design and Horvitz and Thompson 

Estimator (𝜏 𝐻𝑇) or simply HTE under PPSWOR or πPS sampling design.  

To achieve this objective, a link between correlation coefficient and statistical 

properties namely, coefficients of variation, determination, skewness and kurtosis will 

be established under linear framework which will, to a larger extent, help in the 

specification of the PPS estimators. 
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3.2 Transformation for selection probabilities under positive correlation. 

In this section, we begin by specifying the homogenous linear estimator of the form:   

𝜏 =  𝑏𝑠𝑖𝐼𝑠𝑖𝑦𝑖
𝑁
𝑖=1 ,               ...3.1.1 

 where 

 𝐼𝑠𝑖 =  
1, 𝑖𝑓 𝑖 ∈ 𝑠
0, 𝑖𝑓 𝑖 ∉ 𝑠    is an indicator variable 

and  

bsi is the weight not depending on yi but  on the sampling design.  𝜏 𝑐  is the 

conventional estimator of population total. 

Hansen and Hurwitz(1943) defined this estimator as 

𝜏 𝐻𝐻 =
1

𝑛
 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω          ...3.1.2 

where pi* is the transformed selection probabilities. In the case of Hansen and Hurwitz 

Estimator (HHE), pi,g* = pi ;  pi = xi/X  and X = xi. 

Rao(1966a) provided an alternative estimator of population total,  𝜏 𝑅  which is useful 

when the study variable and the selection probabilities are unrelated. The  

transformation for this estimator is defined as 

𝑝𝑖
∗ =

1

𝑁
          ...3.1.3 

where N is the Population size of both the study and auxiliary variables. 

 Bansal and Singh(1985) proposed an estimator 𝜏 𝐵𝑆 , whose  transformation is given as,  

𝑝𝑖
∗ =  1 + 1/𝑁 1−𝜌 1 + 𝑝𝑖 

𝜌 − 1         ...3.1.4 

where ρ is the population correlation coefficient. 
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Amahia, Chaubey and Rao(1989) proposed alternative estimators 𝜏 𝐴𝐶𝑅  for estimating 

population total when there exist  positive correlation between the study variables and 

selection probabilities. The transformation required by this estimator is given as; 

𝑝𝑖
∗ =

1−𝜌

𝑁
+ 𝜌𝑝𝑖          ...3.1.5 

 which satisfied  boundary conditions of probability normed-size measures. 

Other scholars in this area include Grewal (1997) whose estimator 𝜏 𝐺 , mimics the 

work by Amahia but with the transformation  

𝑝𝑖
∗ =

1−𝜌1/3

𝑁
+ 𝜌1/3𝑝𝑖   ...3.1.6 

and discovered that in some cases, this estimator performed better than the Amahia et 

al’s(1989) estimator. 

Ekaette(2008) proposed an alternative estimator 𝜏 𝐸 , whose transformation is of the 

form; 

𝑝𝑖
𝛼 =

1−𝜌𝛼

𝑁
+ 𝜌𝛼𝑝𝑖   ...3.1.7 

 where ρ
α
 satisfying all the boundary conditions of probability normed-size measures. 

We note here that the use of α by Ekaette(2008) in ρ
α
 is without justification as 

earlier, Grewal(1997) have used α=1/3 with 𝑝𝑖
𝛼   satisfying the boundary conditions. 

However, the view of Ekaette(2008) pointing at Bansal and Singh‟s(1985) estimator as 

not a member of this class holds true as the transformation utilized by the authors is 

non-linear in pi under a linear framework.  

Secondly, the use of the super population parameter α in the function, 𝑝𝑖
𝛼  is not 

very appropriate as minimum variance is always attained at α=[0.1] under the super-

population model and this exaggerates the range of α defined by the Ekaette‟s 

estimator. We posit that α should be thought of as moments in correlation than a 

parameter in the super-population model. Thus,  𝑝𝑖
𝛼 = 𝑓(𝑁, 𝜌𝛼 , 𝑝𝑖), i=1,2, ..., N, 

αєR>0 is a consequence of statistical properties which makes 𝑝𝑖
𝛼 = 𝑓(𝑁, 𝜌𝛼 , 𝑝𝑖) a 
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function in pi  and also a function in ρα
 thereby, giving rise to the α

th
 ordered moments 

in ρ.     

For convenience, let α be defined as c and 𝑝𝑖
∗ = 𝑓(𝑁, 𝜌𝛼 , 𝑝𝑖) then  the 

behaviour of ρ
c
 can be ascribed moment in ρ, which can also be linked to  the 

behaviour of  coefficients of determination, skewness, kurtosis or coefficient of 

variation. 

Definition 3.1: Consider a finite population  of N identifiable units uniquely labeled 

i=1,2, …, N on which are defined two real valued variables y and x assuming yi(>0) 

and xi(>0). Let a sample of size n be drawn with replacement from   and we suppose 

that y and x are positively correlated, then the conventional estimator is the ratio 

estimator especially when the regression line passes through the origin. 

To justify this definition, we are establishing that the ratio estimator results 

from the law of direct proportion. 

Theorem 3.1: Let y   x or p be such that y and x or p are positively correlated. As a 

consequence of this relationship, the estimator of population total is 𝜏 𝐻𝐻 =
1

𝑛
 

𝑦𝑖

𝑝𝑖

𝑛
𝑖=1   , 

which is the Hansen and Hurwitz‟s estimator, 𝜏 𝐻𝐻 . 

Proof:  Let yi  xi  or pi, then 

 yi = pi  

and 

  = yi / pi. 

 Taking summation on both sides over the sample, we have 

           𝑛 =  
𝑦𝑖

𝑝𝑖

𝑛
𝑖=1    

so that  

 =
1

𝑛
 

𝑦𝑖

𝑝𝑖

𝑛
𝑖=1 = 𝜏 𝐻𝐻 .        …3.1.8 



36 
 

 

Theorem 3.2: If y   x or p with  𝜏 𝑅 =
𝑦𝑖𝑋

𝑥𝑖
 defining the classical ratio estimator, then 

the required transformation for the selection probabilities is 

𝑝𝑖 =
𝑥𝑖

𝑋
          …3.1.9 

Proof:  If y    x  y    p, then  

 𝑝𝑖 =
𝑥𝑖

𝑋
. 

 This is also evidenced in 𝜏 𝑅 =
𝑦𝑖𝑋

𝑥𝑖
= 𝑦𝑖𝑝𝑖

−1 when size measure is being considered so 

that  𝑝𝑖
−1 =

𝑋

𝑥𝑖
 or  𝑝𝑖 =

𝑥𝑖

𝑋
. 

3.3 Generalized Linear Transformation under Positive correlation. 

Proposition 3.1: The function expressing the relationship when y and x or p are 

positively correlated is of the form: 

𝑝𝑖,𝑔
∗ = 𝛽1𝑥𝑖 + 𝜀𝑖                …3.1.10 

Proof: expression 3.1.10 is a special case of linear regression model which is linear in 

x and hence, pi. 

It is obvious that 3.1.10 is useful when β1 and hence, ρ is positive. 

Proposition 3.2: Let 𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 = 𝛽1𝑝𝑖 + 𝜀𝑖  so that y and p are directly proportional. 

Let pi (i = 1,2,…,N) be a set of selection probabilities with    𝑝𝑖𝑖∈Ω = 1 and let there 

be a function say,  f : N*[0,1]*[0,1] → [0,1], then,  f must be a function satisfying the 

following regularity conditions: 

i. 𝑓 𝑁, 0, 𝑝𝑖 =
1

𝑁
, ∀ 1 ≤ 𝑖 ≤ 𝑁, 𝑁 ∈  ℕ;  

ii. 𝑓 𝑁, 1, 𝑝𝑖 = 𝑝𝑖 , ∀ 1 ≤ 𝑖 ≤ 𝑁, 𝑁 ∈  ℕ; 

iii.  0 <  𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 < 1, ∀ 1 ≤ 𝑖 ≤ 𝑁, 𝑁 ∈  ℕ, 𝑐 > 0, 𝜌 > 0; 

iv.  𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 = 1,   0 < 𝜌𝑐 < 1, 𝑁 ∈  ℕ, 𝑐 > 0, 𝜌 > 0  𝑁
𝑖=1   

We shall justify the propositions above by theorem 3.3 below. 
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Theorem 3.3: If  f is uniformly continuous in pi, and fulfils the regularity conditions 

(i) – (iv) above, then, 

 𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 =  1 − 𝑔 𝑐  𝑁−1 + 𝑔 𝑐 𝑝𝑖 , 0 ≤ 𝑔 𝑐 ≤ 1, 0 <  𝑝𝑖 < 1, 𝑔 𝑐 =  𝜌𝑐 .  

Proof: Let 1 ≤ i ≤ j ≤ k ≤ N, i ≠ j ≠ k be fixed points and let pk,Є  = pk-Є, pj, = pj,, pi,Є  = 

pi+Є, then from (iv) for pk, k=1,2, …, N and pk+,Є , k=1,2,…,N, we have 

  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘 = 1  𝑁
𝑖=1 and  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘,𝜖 = 1  𝑁

𝑖=1    …3.1.11 

So that 

 𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘  𝑁
𝑖=1 −  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘,𝜖 = 0  𝑁

𝑖=1     …3.1.12 

⟹  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑖  𝑁
𝑖=1 −  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑖+𝜖 +  𝑁

𝑖=1  𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘  𝑁
𝑖=1 −

                                   𝑓 𝑁, 𝑔 𝑐 , 𝑝𝑘−𝜖 = 0  𝑁
𝑖=1     …3.1.13 

Dividing (3.1.13) by є and taking limit as є→0, we have 

𝑑

𝑑𝑝
𝑓(𝑁, 𝑔 𝑐 , 𝑝𝑖)=

𝑑

𝑑𝑝
𝑓(𝑁, 𝑔 𝑐 , 𝑝𝑘)       …3.1.14 

Now, fixing pi as constant and varying pj‟s in (3.1.14), we get 

𝑑

𝑑𝑝
𝑓 𝑁, 𝑔 𝑐 , 𝑝 = 𝑔(𝑐) ∗ 𝑓(𝑝)      …3.1.15 

Now, integrating (3.1.15) we get 

 
𝑑

𝑑𝑝
𝑓 𝑁, 𝑔 𝑐 , 𝑝 𝑑 𝑝 = 𝑔(𝑐) ∗  𝑓 𝑝 𝑑 𝑝  =  𝐶1  + 𝑔(𝑐) ∗ 𝑝𝑖  …3.1.16 

Taking summation over (3.1.16) we get 

1 = 𝑁 ∗ 𝐶1 + 𝑔(𝑐) ∗  𝑝𝑖
𝑁
𝑖=1   

For non-negativity, 0  ≤  𝑔 𝑐   ≤ 1 and hence, N*C1 + 𝑔 𝑐  = 1. 

Therefore, 

C1 = (1- 𝑔 𝑐 )N
-1

         …3.1.17 
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which depends on N and ρ
c
. 

Since our task is to select the term 𝑔 𝑐  as a function of c, then we choose 𝑔 𝑐 = 𝜌𝑐  

so that  

𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 = 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖        …3.1.18 

with 0 ≤  ρ
c 
≤ 1. 

Expression 3.1.18 is the generalized transformation required for defining the class of  

linear estimators in PPS sampling scheme. 

It is clear from the expression above that by 

i. condition (i) above , when ρ = 0 and c = 0 then g(c ) = ρ
c 
= 0;  

ii. condition (ii) above, when ρ = 1 and c ≥ 0, then  g(c ) = ρ
c 
= 1 

iii. condition (iii) above, when  0 < ρ
c
 < 1 and c ≠ 0, we have 

𝑓 𝑁, 𝜌𝑐 , 𝑝𝑖 =  1 − 𝑔 𝑐  𝑁−1 + 𝑔 𝑐 𝑝𝑖 = 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖    ..3.1.19 

which concludes the proof. 

3.4  Transformation for selection probabilities under negative correlation. 

In this section, a transformation to further the work on  linear estimators in PPS 

sampling when the study variables and size-measures are negatively correlated is 

proposed. We also show that under homogenous linear estimator in which the study 

and auxiliary variables are inversely proportional, the required estimator is obtained by 

transforming the measure of size variables x. 

Definition 3.2: Consider a finite population  of N identifiable units uniquely labeled 

1,2, …, N on which are defined two real value variables y and x assuming yi(>0) and 

xi(>0). Let a sample of size n be drawn with replacement from   and we suppose that 

y and x are negatively correlated, then the conventional product estimator is defined by 

𝜏 𝑝 =
𝑦𝑖𝑥𝑖

𝑋
          …3.1.20 
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Direct transformation of selection probabilities in the case of 3.1.20 above will 

yield an estimator that is meaningless even though it possesses the properties expected 

of an inverse relationship between y and x. Thus, our desire in this study is to modify 

the HHE which permits the use of a measure of size instead of the conventional 

product estimator. We consider the theorems below:  

Theorem 3.4: Let y    1/x such that y and x or p are negatively correlated, then the 

transformation for the selection probabilities required here is 

 𝑝𝑖 =
𝑧𝑖

𝑍
 

where 

 𝑧𝑖 =
1

𝑥𝑖
 and 𝑍 =  𝑧𝑖

𝑁
𝑖=1 . 

Proof:  If y   1/x  y   z, where z = 1/x. Then, 𝑝𝑖 =
1 𝑥𝑖 

 1 𝑥𝑖 𝑁
𝑖=1

 𝑝𝑖 =
𝑧𝑖

𝑍
 

Remark 3.1.1: Under the transformation above, pi is the selection probabilities 

realized for a relationship that is inversely proportional. It will be sufficient to utilize 

the PPS estimator to obtain the estimate of population characteristics instead of the 

conventional product estimator because the transformation has changed the correlation 

coefficient from negative to positive.  

Remark 3.1.2: We shall call these selection probabilities as probability Proportional 

to Z, otherwise, PPZ and the corresponding estimator as the Modified Hansen and 

Hurwitz Estimator (MHHE). 

Remark 3.1.3: This transformation has the properties of harmonic mean 

Remark 3.1.4: This transformation can be utilized in 3.1.19, that is, the generalized 

transformation for estimating population characteristics of interest. 
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3.5 Relationship between ρ and other statistical properties. 

Now, we show the links between correlation coefficient and other statistical properties 

such as coefficients of variation, determination, skewness and kurtosis based on 

expectation of the linear regression model as well as the expectation of the  c
th

 

standardized moments of the study variable in the linear regression model below.  

Proposition 3.3: Consider the linear model  

y = βx + ε          ...3.1.23 

Where y is the response variable, x is the explanatory variable, β is the slope 

parameter and ε is the error term, Then, the expected value of the c
th

 standardized 

moment  of the study variable is given by 

𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

𝑐

= 𝐸  𝛽  
𝑥−𝜇𝑥

𝜍𝑦
 +  

𝜀−𝜇𝜀

𝜍𝑦
  

𝑐

, 𝑐 = 1,2,3,4    ...3.1.24 

Proof: 

From 3.1.23, we have 

𝑦 − 𝜇𝑦 = 𝛽 𝑥 − 𝜇𝑥 + (𝜀 − 𝜇𝜀)      ...3.1.25 

Standardizing 3.1.25 above, we obtain 

   
𝑦−𝜇𝑦

𝜍𝑦
=

𝛽 𝑥−𝜇𝑥  

𝜍𝑦
+

(𝜀−𝜇𝜀)

𝜍𝑦
  

           =
𝜌𝜍𝑦  𝑥−𝜇𝑥  

𝜍𝑥𝜍𝑦
+

𝜍𝜀(𝜀−𝜇𝜀)

𝜍𝜀𝜍𝑦
  

           =
𝜌 𝑥−𝜇𝑥  

𝜍𝑥
+  

𝜍𝜀

𝜍𝑦
 

(𝜀−𝜇𝜀)

𝜍𝜀
   

The c
th

 moment of the standardized variable y is: 

       
𝑦−𝜇𝑦

𝜍𝑦
 

𝑐

=  
𝜌 𝑥−𝜇𝑥  

𝜍𝑥
+  

𝜍𝜀

𝜍𝑦
 

(𝜀−𝜇𝜀)

𝜍𝜀
 
𝑐

   

whose expectation is 
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𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

𝑐

= 𝐸  𝜌  
𝑥−𝜇𝑥

𝜍𝑥
 + 𝑅𝜍𝜀,𝑦

 
∈−𝜇𝜀

𝜍𝜀
  

𝑐

  

where 𝑅𝜍𝜀,𝑦
=  

𝜍𝜀

𝜍𝑦
  is the ratio of the standard deviation of the error term to the 

standard deviation of y. 

Expression 3.1.24 is the generalized expression for expectation of  the c
th

 standardized 

moment. 

 

Specifically, when c = 1, we have 

𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

1

= 𝐸  𝜌  
𝑥−𝜇𝑥

𝜍𝑥
 + 𝑅𝜍𝜀,𝑦

 
𝜀−𝜇𝜀

𝜍𝜀
  

1

  

         Φ𝑦,1 = 𝜌1Φ𝑥,1 + 𝑅𝜍𝜀,𝑦
Φ

𝜀,1
       …3.1.26 

where  

Φ𝑦,1 = 𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

1

 , Φ𝑥,1 =  𝐸  
𝑥−𝜇𝑥

𝜍𝑥
 

1

and Φ𝜀,1 = 𝐸  
𝜀−𝜇𝜀

𝜍𝜀
 

1

 respectively. 

By 3.1.26, we have 

𝜌1 =
Φ𝑦 ,1

Φ𝑥,1
 = 0          …3.1.27 

This occurs when the error term is well behaved, moreso as the expected value of 

standardized moment at this point is equal to zero. 

Under linear model, c = 1 is the specification corresponding to when  𝜌 → 0. This 

supports the claims by Rao(1966a) and other co-researchers who ascribed the 

estimator to situation when there exist poor correlation between the study variables 

and selection probabilities. 
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When c = 2,  

𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

2

= 𝐸  𝜌  
𝑥−𝜇𝑥

𝜍𝑥
 + 𝑅𝜍𝜀,𝑦

 
𝜀−𝜇𝜀

𝜍𝜀
  

2

  

= 𝐸  𝜌  
𝑥 − 𝜇𝑥

𝜍𝑥
  

2

+ 𝐸  𝑅𝜍𝜀,𝑦
 
𝜀 − 𝜇𝜀

𝜍𝜀
  

2

+ 2𝜌2𝑅𝜍𝜀,𝑦
2 𝐸  

𝑥 − 𝜇𝑥

𝜍𝑥
  

𝜀 − 𝜇𝜀

𝜍𝜀
  

Φ𝑦,2 = 𝜌2Φ𝑥,2 + 𝑅𝜍𝜀,𝑦
2 Φ𝜀,2         ...3.1.28 

But Φ𝑥,2 = 1;   Φ𝜀,2 = 1;  and also Φ𝑦,2 = 1 .  

Therefore,  

1 = 𝜌2 + 𝑅𝜍𝜀,𝑦
2          …3.1.29 

Under linear framework, 𝑅𝜍𝜀,𝑦
2 < 1  always. At this point,  two scenarios can be 

identified, namely; 

i. when 𝑅𝜍𝜀,𝑦
2  is negligible. Here, 𝜌2 → 1. 

ii. when 𝑅𝜍𝜀,𝑦
2  is a quantity in [0,1] and 𝜌2 ↛ 1.  

Empirically, we observe that ; 

a) if 𝑅𝜍𝜀,𝑦
2 = 0 (say), then 𝜌2 = 1 ;  𝜌 = 1; 

b) if 𝑅𝜍𝜀,𝑦
2 = 0.1 (say), then 𝜌2 = 0.9 ;  𝜌 = 0.94; 

c) if 𝑅𝜍𝜀,𝑦
2 = 0.2 (say), then 𝜌2 = 0.8 ; 𝜌 = 0.89; 

d) if 𝑅𝜍𝜀,𝑦
2 = 0.3 (say), then 𝜌2 = 0.7; 𝜌 = 0.83; 

e) if 𝑅𝜍𝜀,𝑦
2 = 0.4 (say), then 𝜌2 = 0.6; 𝜌 = 0.77; 

f) if 𝑅𝜍𝜀,𝑦
2 = 0.5 (say), then 𝜌2 = 0.5; 𝜌 = 0.71; 

g) if 𝑅𝜍𝜀,𝑦
2 = 0.6 (say), then 𝜌2 = 0.4; 𝜌 = 0.63; 

h) if 𝑅𝜍𝜀,𝑦
2 = 0.7 (say), then 𝜌2 = 0.3; 𝜌 = 0.54; 

i) if 𝑅𝜍𝜀,𝑦
2 = 0.8 (say), then 𝜌2 = 0.2; 𝜌 = 0.45; 

j) if 𝑅𝜍𝜀,𝑦
2 = 0.9 (say), then 𝜌2 = 0.1; 𝜌 = 0.32; 

k) if 𝑅𝜍𝜀,𝑦
2 = 1 (say), then 𝜌2 = 0; 𝜌 = 0 
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Condition (a) above was assumed by Hansen and Hurwitz(1943) while condition (k) 

above assumed by Rao(1966a). These extreme conditions are found to be very rare in 

real life happenings. Suppose we assume conditions (b) to (j) say, we have instances of 

what we may call “weak”, “moderately low”, “moderately high” and “very high” 

correlation coefficients. We can conclude here that the appropriateness of the 

specification parameter, c = 2 is when 𝑅𝜍𝜀,𝑦
2 tends to unity and ρ is “moderately weak”. 

When c = 3,  

𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

3

= 𝐸  𝜌  
𝑥−𝜇𝑥

𝜍𝑥
 + 𝑅𝜍𝜀,𝑦

 
𝜀−𝜇𝜀

𝜍𝜀
  

3

  

= 𝐸  𝜌  
𝑥 − 𝜇𝑥

𝜍𝑥
  

3

+ 3𝜌2𝑅𝜍𝜀,𝑦
𝐸  

𝑥 − 𝜇𝑥

𝜍𝑥
 

2

 
𝜀 − 𝜇𝜀

𝜍𝜀
 

+ 3𝜌𝑅𝜍𝜀,𝑦
2 𝐸  

𝑥 − 𝜇𝑥

𝜍𝑥
  

𝜀 − 𝜇𝜀

𝜍𝜀
 

2

+ 𝑅𝜍𝜀,𝑦
3 𝐸  

𝜀 − 𝜇𝜀

𝜍𝜀
 

3

 

This implies that 

Φ𝑦,3 = 𝜌3Φ𝑥,3 + 3𝜌2𝑅𝜍𝜀,𝑦
Φ𝜀,1Φ𝑥,2 + 3𝜌𝑅𝜍𝜀,𝑦

2 Φ𝜀,2Φ𝑥,1 + 𝑅𝜍𝜀,𝑦
3 Φ𝜀,3   ...3.1.30 

so that 

𝛾𝑦 = 𝜌3𝛾𝑥 + 𝑅𝜍𝜀,𝑦
3 𝛾𝜀 ,         ...3.1.31 

where 𝛾𝑦 = Φ𝑦,3;   𝛾𝑥 = Φ𝑥,3 and 𝛾𝜀 =  Φ𝜀,3 are the skewness coefficients of y, x and ε 

respectively. 

Again, if 𝑅𝜍𝜀,𝑦
3  and hence 𝑅𝜍𝜀,𝑦

3 𝛾𝜀  are negligible, then 

𝜌3 =
𝛾𝑦

𝛾𝑥
 , 𝛾𝑥 ≠ 0.        ...3.1.32 

Now, 𝜌3 =
𝛾𝑦

𝛾𝑥
< 1 ⇒ 𝛾𝑦 < 𝛾𝑥  satisfying 0 < 𝜌3 < 1. 

Remark 3.1.3:  3.1.32 above expresses the third power of correlation coefficient as 

the ratio of the skewness coefficient of y and x. 
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For c = 4,  

𝐸  
𝑦−𝜇𝑦

𝜍𝑦
 

4

= 𝐸  𝜌  
𝑥−𝜇𝑥

𝜍𝑥
 + 𝑅𝜍𝜀,𝑦

 
∈−𝜇∈

𝜍𝜀
  

4

  

= 𝜌4𝐸  
𝑥 − 𝜇𝑥

𝜍𝑥
 

4

+ 6𝜌2𝑅𝜍𝜀,𝑦
2 𝐸  

𝑥 − 𝜇𝑥

𝜍𝑥
 

2

𝐸  
𝜀 − 𝜇𝜀

𝜍𝜀
 

2

+ 𝑅𝜍𝜀,𝑦
4 𝐸  

𝜀 − 𝜇𝜀

𝜍𝜀
 

4

 

Φ𝑦,4 = 𝜌4Φ𝑥,4 + 6𝜌2𝑅𝜍𝜀,𝑦
2 Φ𝜀,2Φ𝑥,2 + 𝑅𝜍𝜀,𝑦

4 Φ𝜀,4     ...3.1.33 

Now, 

Φ𝑦,4 − 3 = 𝜌4 Φ𝑥,4 − 3 + 3 + 6𝜌2𝑅𝜍𝜀,𝑦
2 Φ𝜀,2Φ𝑥,2 + 𝑅𝜍𝜀,𝑦  

4   Φ𝜀,4 − 3 + 3 − 3 ...3.1.34 

Now, 

𝐾𝑦 = 𝜌4𝐾𝑥 + 3𝜌4 + 6𝜌2 1 − 𝜌2 + (1 − 𝜌2)2𝐾𝜀 + 3(1 − 𝜌2)2 − 3  

     = 𝜌4𝐾𝑥 + 3𝜌4 + 6𝜌2 − 6𝜌4 + (1 + 𝜌4 − 2𝜌2) 𝐾𝜀 + 3(1 + 𝜌4 − 2𝜌2) − 3   

= 𝜌4𝐾𝑥 + (1 − 𝜌2)2𝐾𝜀         ...3.1.35 

If 𝐾𝜀 = 0,  

𝜌4 =
𝐾𝑦

𝐾𝑥
; 𝐾𝑥 ≠ 0         ...3.1.36 

Expression 3.1.36 represents the forth power of correlation coefficient as the ratio of 

the kurtosis of the response variable and the kurtosis of the explanatory variable. This 

can be interpreted as the percentage of kurtosis which is presented by linear model. 

Certainly, 𝜌4 =
𝐾𝑦

𝐾𝑥
< 1 is expected when linear relationship is true. 

Similarly, under 3.1.23,  

                                   𝐸 𝑦 = 𝛽𝐸 𝑥 + 𝐸(𝜀)  

                                   ⇒ 𝜇𝑦 = 𝛽𝜇𝑥 + 𝜇𝜀     

                                            = 𝜌
𝜍𝑦

𝜍𝑥
𝜇𝑥 + 𝜇𝜀  ;  𝜇𝜀 = 0,  
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so that  

                      𝜌1 =
𝜇𝑦

𝜇𝑥

𝜍𝑥

𝜍𝑦
=

𝐶𝑉𝑥

𝐶𝑉𝑦
      ...3.1.37 

Under ratio estimation, Cochran(1977) have shown that the variance of Ratio 

estimator is less than SRS when 𝑠𝑦
2 + 𝑅2𝑠𝑥

2 − 2𝑅𝑠𝑦𝑠𝑥  = 0 so that ρ > 
𝑐𝑥

2𝑐𝑦
< 1 be 

fulfilled. 

Having expressed the correlation coefficient in terms of moments, we can observe the 

followings: 

i) 𝜌1 =
𝐶𝑉𝑥

𝐶𝑉𝑦
;  with 𝐶𝑉𝑦 ≠ 0; 

ii) 𝜌2 = 1 − 𝑅𝜍𝜀,𝑦
2 ; 𝑅𝜍𝜀,𝑦

2 does not tend to zero. 

iii) 𝜌3 =
𝛾𝑦

𝛾𝑥
 <1;  𝛾𝑥 ≠ 0 and 

iv) 𝜌4 =
𝐾𝑦

𝐾𝑥
 <1; 𝐾𝑥 ≠ 0. 

The question then is how do these moments translate into the specification 

parameters of the alternative estimators for the target population? Let us define the 

correlation coefficient as “weak” when 0<ρ≤0.25, “moderately low” when 

0.25<ρ≤0.50, “moderately high” when 0.51<ρ≤0.75 and “very high” when 076<ρ<1. 

We observe certain moments such that when 𝜌 → 0, the specification parameter is       

c = 1 if and only if 𝜌1 =
𝐶𝑉𝑥

𝐶𝑉𝑦
< 1. The second moment with c = 2 is the required 

specification when 𝜌  is "moderately low” especially when 𝜌2 → 0 or 0.25<ρ≤0.50, 

Similarly, when 𝜌3 =
𝛾𝑦

𝛾𝑥
 < 1 and 𝑅𝜍𝜀,𝑦

3 is a small quantity, then c = 3 is the appropriate 

specification for the proposed estimator and this happens when 0.51<ρ≤0.75 in what is 

termed here as “moderately high” correlation. When 076<ρ<1, then c =4 would be 

specified especially as  𝜌4 =
𝐾𝑦

𝐾𝑥
< 1 and 𝑅𝜍𝜀,𝑦

4 → 0. This occurs when ρ becomes very 

strong. 
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3.6 Range of the Specification Parameter c 

Considering the generalized transformations defined in 3.1.19 above, we make the 

following propositions: 

Proposition 3.1.5: From 3.1.19 above, let g(c) be such a function g:[0,1] for which 

f:[N][0,1][0,1][0,1] in the probability measurable space is defined, then g(c) = ρ
c
,     

c > 0 satisfies the regularity conditions (i) to (iv) associated with f above. 

Proof: the result is evidenced in (3.1.27), (3.1.29), (3.1.32) and  (3.1.36)  above when 

the stated conditions hold true. 

Proposition 3.1.6  Usually in 3.1.19 above, under positive correlation, 0 ≤ 𝜌 ≤ 1  and 

hence 0 ≤ 𝜌𝑐 ≤ 1. However, if  𝜌𝑐 > 1,  then the transformation of the form 𝜌
1

𝑐  is a 

necessary substitute for 𝜌𝑐  satisfying 0 ≤ 𝜌
1

𝑐 ≤ 1. 

Proof: since we desire a transformation of the form g(c): [0,1]→[0,1], then from 

(3.1.27), (3.1.29) (3.1.32) and  (3.1.36) we can see that: 

 ρ
c
 = 0  ρ

1/c
 = 0

1/c
 ; 

ρ
c
 = 1   ρ

1/c
 = 1

1/c
.   

Thus,  ρ
c
 and ρ

1/c
 are  members of the  domain  g(c):[0,1]→[0,1] hence the proof. 

By the propositions above, we can conveniently define the range of the specification 

parameter in the interval defined by the c
th

 moments as c = [1/4, 4].  

3.7 Characterization of estimators in the linear class. 

Considering the generalized transformation in 3.1.19  and the range of the 

specification parameter given above, we can characterize the estimators as follows: 

i) ρ
c
=0, ⟹ 𝑝𝑖

∗ = 1/N,   which is the Rao‟s(1966a) estimator; 

ii) ρ
c
=1,  ⟹ 𝑝𝑖

∗ = pi , which is the Hansen and Hurwitz‟s(1943) estimator; 

iii) 0 < ρ
c
 < 1, c =1, is the Amahia et al‟s(1989) estimator; 
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iv) 0 < ρ
c
 < 1, c =1/3, is the Grewal‟s(1997) estimator; 

v) Following our definition of c, we can see that c =[1/4, 4] in which 

estimators in i to iv above are contained. Thus our proposed estimators in 

the linear class include the followings; 

a) 0 < ρ
c
 < 1, c =2 when 𝜌2 is moderate ; 

b) 0 < ρ
c
 < 1, c =3 when  𝜌3 =

𝛾𝑦

𝛾𝑥
< 1; and 

c) 0 < ρ
c
 < 1, c =4 when  𝜌4 =

𝐾𝑦

𝐾𝑥
< 1 

When conditions in (a), (b) and (c) above do not hold, then c takes the 

values ½, 1/3 and ¼ respectively. 

Similarly, under negative correlation, our propositions and hence theorems showed 

that under the transformation, the correlation structure is changed thus, by the 

symmetric properties of correlation and the derived correlation under the 

transformation from 1/x to z, we have the followings:  

i. ρ
c 
= 0, ⟹ 𝑝𝑖

∗ = 1/N  which is the Rao‟s(1966a) estimator; 

ii. ρ
c 
= -1,  ⟹ 𝑝𝑖

∗ = pi  which is the Hansen and Hurwitz(1943) estimator. 

iii.  -1<ρ
c 

< 0  ⟹ 𝑝𝑖
∗ , which is the proposed generalized  transformation for 

use when the study and auxiliary variables are negatively correlated. 
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CHAPTER FOUR 

PROPOSED ALTERNATIVE LINEAR ESTIMATORS IN COMPLEX 

SURVEYS 

4.1 Introduction 

In the previous chapter, we developed certain transformations for selection 

probabilities under positive and negative correlation coefficients between the study 

and measure of size variables. We showed that the structure of correlation coefficient 

changes to direct relationship under inverse transformation. We also, provided   links 

between moments in correlation coefficient and statistical properties namely, 

coefficient of variation, determination, skewness and kurtosis will be established under 

linear framework. 

In this chapter, we shall develop a class of alternative linear estimators which 

shall be compared with the conventional estimators and also the existing alternative 

estimators that belong to the linear class using the design based optimality criteria; 

namely,  relative efficiency  measured by the relative mean square error (MSE) for 

PPS sampling design as well as the expected MSE for super-population model that 

will be derived. An expression for determining the approximate value of the 

specification parameter c will also be derived so that for a given population, it will 

provide a necessary guide for the specification of estimators defined by c=1,2,3 and 4 

for target populations. The proposed estimators shall  be compared with the 

conventional estimators for a sample sizes of n=2 under PPS design and n = 5 under 

the Rao-Hartley and Cochran procedure. 

4.2 Alternative linear estimators in PPSWR sampling scheme 

We consider the homogenous linear estimator (HLE) of the form 

𝜏 𝑔 =  𝑏𝑠𝑖𝑖𝜖Ω 𝐼𝑠𝑖𝑦𝑖  , i= 1,2,3, …, N      ...4.1 

where 
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𝐼
𝑠𝑖= 

0,   𝑖𝑓 𝑖∉𝑆
1,   𝑖𝑓 𝑖 ∈𝑆

  
  

and bsi are weights  not depending on yi‟s but on the sample design. Let 𝜏 𝑔,𝑐  be the 

estimators of the population total defined by the generalized transformation g under 

the c
th

 moments, then under PPSWR sampling, bsi = 1/(npi,g*) so that our estimator of 

population total becomes 

𝜏 𝑔,𝑐 =
1

𝑛
 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω ,                                                                                       ...4.2 

where 

𝑝𝑖,𝑔
∗ =

1−𝑔(𝑐)

𝑁
+ 𝑔(𝑐)𝑝𝑖,  with g(c ) =ρ

c
, c = 1,2,3,4; 0<ρ<1, c>0         …4.3 

so that 4.2 is the proposed estimators realized by propositions 3.2, 3.3 and  theorem 

3.1 to 3.4 above.  

Our interest in this study is therefore, to develop linear estimators of 

population totals in PPS sampling scheme defined by the moments, c = 1, 2, 3 and 4 

only.  

4.2.1 Design based bias of the proposed estimators 

Now, our proposed estimator under PPSWR sampling scheme is bias as  

𝐸𝑝(𝜏 𝑔) =
1

𝑛
 

𝐼𝑠𝑖𝐸(𝑦𝑖)

𝑝𝑖,𝑔
∗𝑖𝜖Ω =

1

𝑛
 

𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖s ≠ 𝑌  

Theorem 4.1: Let yi, {i=1,2,3, …, N} be a finite population under study and let xi, 

(i=1,2,3, …, N} be the values of the auxiliary variable associated with the i
th

 study 

variable yielding the coordinates, (xi,yi). Suppose that these variables are correlated 

such that 0<ρ<1, then the variance of the estimator of population total is defined by 

 𝐵𝑝 𝜏 𝑔,𝑐 =  1 − 𝜌𝑐 𝑁2COV( 
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
, 𝑝𝑖)                   ...4.4 
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Proof: The design based bias denoted as 𝐵𝑝 is therefore, 

𝐵𝑝 𝜏 𝑔,𝑐 = 𝐸𝑝 𝜏 𝑔,𝑐 − 𝑌  

               =  
𝐼𝑠𝑖𝐸(𝑦𝑖)

𝑝𝑖,𝑔
∗𝑖𝜖Ω − 𝑌  

               =   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑦𝑖𝑖𝜖Ω   

              =   
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
− 1 𝑦𝑖𝑖𝜖Ω   

            =  1 − 𝜌𝑐 𝑁2COV( 
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
, 𝑝𝑖)  > 0    …4.5 

Now, let 𝑘 = 𝑁2COV   
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝 𝑖
, 𝑝𝑖 , then from 4.5 above, the bias of the proposed 

estimator is a decreasing function as ρ→1. 

 Importantly, 𝐵𝑝 𝜏 𝑔,1 < 𝐵𝑝 𝜏 𝑔,2 < 𝐵𝑝 𝜏 𝑔,3 < 𝐵𝑝 𝜏 𝑔,4  for all values of c. The term 

COV   
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
, 𝑝𝑖  is the covariance between 

𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
 and 𝑝𝑖 . 

4.2.2 Design based variance of the proposed estimators 

Theorem 4.2.: Let yi, {i=1,2,3, …, N} be a finite population under study and let xi, 

(i=1,2,3, …, N} be the values of the auxiliary variable associated with the i
th

 study 

variable yielding the coordinates, (xi,yi). Suppose that these variables are correlated 

such that 0<ρ<1, then the variance of the estimator of population total is defined by 

𝑉𝑝 𝜏 𝑔,𝑐 =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω − 

2

𝑖𝜖Ω                                                          …4.6 

Proof: 

𝑉𝑝 𝜏 𝑔,𝑐 = 𝑉𝑎𝑟(
1

𝑛
 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖s )  

             =
1

𝑛2
𝑉𝑎𝑟( 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖s )  
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            =
1

𝑛
𝑉𝑎𝑟 𝑧 ;     𝑧 =

𝑦𝑖

𝑝𝑖,𝑔
∗   

Since Var(z) = E(z
2
)-E

2
(z), it follows that  

𝑉𝑝 𝜏 𝑔,𝑐 =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω       hence the proof. 

We noted that 𝜏 𝑔,𝑐  is already  biased as such, it will be sufficient to consider the mean 

square error (MSE) for our inference. 

4.2.3 Mean squared error of the proposed estimators 

Following the classical definition of MSE in (1.13) above, we define the MSE of the 

proposed estimators as 

𝑀𝑆𝐸 𝜏 𝑔,𝑐 = 𝑉𝑝 𝜏 𝑔,𝑐 + 𝐵2(𝜏 𝑔,𝑐)  

=
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖
∗𝑖𝜖Ω  

2

𝑖𝜖Ω  +    
𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖
∗𝑖𝜖Ω − 𝑌 

2

      …4.7 

4.2.4  Expected MSE of the proposed Estimators. 

 Here, we consider the super-population model defined by 

𝑦 = 𝛽𝑝𝑖 + 𝜀                                                                           …4.8 

With 𝐸 𝜀/𝑝𝑖 = 0, 𝐶𝑜𝑣 𝜀𝑖𝜀𝑗  = 0 and 𝐸 𝜀𝑖
2 = 𝑎𝑝𝑖

𝑔
 

Theorem 4.3: Under super-population model, the expected MSE of the proposed PPS 

estimators involving multiple characteristics is 

𝑀𝑆𝐸 𝜏 𝑔,𝑐 =
𝑎

𝑛
  

𝑝𝑖
𝑔+1 1 − 𝑝𝑖 

𝑝𝑖,𝑔
∗2

𝑖𝜖Ω

 +
𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2

𝑁

𝑖=1𝑖𝜖Ω

  + 

      𝛽   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  

2

     …4.9 
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Proof: The result is obvious when we take the model based expectation over the MSE 

of the design based estimator. Thus, 

𝑀𝑆𝐸 𝜏 𝑔,𝑐 =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω  +     
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝜉(𝑦𝑖)𝑖𝜖Ω  

2

   

              =
1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −  

𝜉(𝑦𝑖
2)𝑝𝑖

2

𝑝𝑖,𝑔
∗2

𝑁
𝑖=1 −   

𝜉(𝑦𝑖𝑦𝑗 )𝑝 𝑖𝑝𝑗

𝑝𝑖,𝑔
∗ 𝑝𝑗 ,𝑔

∗
𝑁
𝑖=1𝑖𝜖Ω    + 

                                                      
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝜉(𝑦𝑖)

𝑖𝜖Ω

 

2

 

              =
𝑎

𝑛
  

𝑝𝑖
𝑔+1

(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω  +

𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2𝑁

𝑖=1𝑖𝜖Ω   + 𝛽   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  

2

        

Under super-population model, the expected per unit bias in terms of β is very 

negligible as such, inference based on the expected variance would be sufficient. We 

now show that the anticipated bias is negligible. 

Considering  (4.9) above, Let the bias be  

𝐵(𝜏 𝑔,𝑐) =   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝜉(𝑦𝑖)𝑖𝜖Ω   

    =   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝜉 𝛽𝑝𝑖 + 𝜀𝑖 𝑖𝜖Ω   

     =𝛽   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω ,  

then we have the following theorem. 
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Theorem 4.4:  Under super-population model, the expected bias is very negligible as 

 𝐵2 𝜏 𝑔,𝑐 =  → 0 

Proof: Considering the anticipated bias from the model,  

𝐵(𝜏 𝑔,𝑐) =   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝜉(𝑦𝑖)𝑖𝜖Ω   

         =𝛽   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω   

when  
𝑝𝑖

𝑝𝑖
∗ = 1 then 𝛽   

𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  = 0 and 𝐵 𝜏 𝑔,𝑐 = 0 

when  
𝑝𝑖

𝑝𝑖
∗ < 1 then 𝛽   

𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  < 1 and hence, 𝐵 𝜏 𝑔,𝑐 →  < 1 especially 

when 𝛽 → 1. 

Also, when  
𝑝𝑖

𝑝𝑖
∗ > 1 then 𝛽   

𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  > 0 and 𝐵 𝜏 𝑔,𝑐 →  < 1 especially 

when 𝛽 → 1. Since 𝐵 𝜏 𝑔,𝑐 = 0  when  
𝑝𝑖

𝑝𝑖
∗ = 1 which is a necessary condition for 

unbiasness, we can conveniently state that in the case of a biased estimator the 

condition becomes 0< 𝐵(𝜏 𝑔,𝑐) < 1. 

Alternatively, by Cauchy-Schwarz inequalities,  

𝐵2 𝜏 𝑔,𝑐 =  𝛽   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  

2

= 𝛽2    
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑝𝑖𝑖𝜖Ω  

2

  

≤ 𝛽2    
𝑝𝑖

𝑝𝑖
∗ − 1 

2

𝑖∈Ω

 𝑝𝑖
2

𝑖∈Ω

  

But   
𝑝 𝑖

𝑝𝑖
∗ − 1 

2

𝑖∈Ω  𝑝𝑖
2

𝑖∈Ω = ∇≪ 1  

so that 0 <    
𝑝𝑖

𝑝𝑖
∗ − 1 

2

𝑖∈Ω  𝑝𝑖
2

𝑖∈Ω  < 1 always. 

Therefore, 𝐵2 𝜏 𝑔,𝑐 =  → 0.     
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Thus, under super-population model, the expected bias per unit is very negligible 

especially when 0 < 𝛽 ≤ 1 as such, inference based on the expected variance would 

be sufficient. 

4.2.5 Comparison of the proposed estimators under super-population model. 

From the optimality criteria, we know that an estimators,  𝜏 𝑔,𝑐  (say) is relatively more 

efficient than another estimator 𝜏 𝑐  (say), when Vp(𝜏 𝑔,𝑐) ≤ Vp(𝜏 𝑐) in terms of sampling 

design or  Vp(𝜏 𝑔,𝑐)  ≤  Vp(𝜏 𝑐) in terms of super-population model. 

Now, 

𝑉(𝜏 𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2

𝑝𝑖
−   𝑦𝑖

𝑁
𝑖=1  2

𝑖𝜖Ω                            …4.10 

Under super-population model, 

𝜉𝑉𝑝(𝜏 𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)

𝑝𝑖
−   𝜉(𝑦𝑖)

𝑁
𝑖=1  2

𝑖𝜖Ω        

                   =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)

𝑝𝑖
−   𝜉 𝑦𝑖

2 +   𝜉(𝑦𝑖𝑦𝑗 )𝑁
𝑖≠𝑗=1

𝑁
𝑖=1  𝑖𝜖Ω         

                  =
1

𝑛
  

 𝛽2𝑝𝑖
2+𝑎𝑝 𝑖

𝑔
 

𝑝𝑖
−   𝛽2𝑝𝑖

2 + 𝑎𝑝𝑖
𝑔
 −   𝛽2𝑝𝑖𝑝𝑗

𝑁
1=1

𝑁
1=1𝑖𝜖Ω         

                  =
𝑎

𝑛
  𝑝𝑖

𝑔−1
−  𝑝𝑖

𝑔𝑁
𝑖=1𝑖𝜖Ω   +

𝛽2

𝑛
  𝑝𝑖

2 − ( 𝑝𝑖)
2𝑁

𝑖=1𝑖𝜖Ω      

                =
𝑎

𝑛
  𝑝𝑖

𝑔−1
−  𝑝𝑖

𝑔𝑁
𝑖=1𝑖𝜖Ω   + 0        …4.11 

The expected variance of the proposed estimator is 

𝜉𝑉 (𝜏 𝑔,𝑐) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω      

              =
1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −  

𝜉(𝑦𝑖
2)𝑝𝑖

2

𝑝𝑖,𝑔
∗2

𝑁
𝑖=1 −   

𝜉(𝑦𝑖𝑦𝑗 )𝑝 𝑖𝑝𝑗

𝑝𝑖,𝑔
∗ 𝑝𝑗 ,𝑔

∗
𝑁
𝑖=1𝑖𝜖Ω      

              =
𝑎

𝑛
  

𝑝𝑖
𝑔+1

(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω  +

𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2𝑁

𝑖=1𝑖𝜖Ω                              …4.12 
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Now, let 𝑛 𝜉𝑉𝑝 𝜏 𝑔,𝐻𝐻 − 𝜉𝑉𝑝 𝜏 𝐻𝐻 = 𝑛∇  so that 

𝑛∇= a  
𝑝𝑖

𝑔+1
(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω + 𝛽2  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2𝑁

𝑖=1𝑖𝜖Ω − ( 𝑝𝑖
𝑔−1

−  𝑝𝑖
𝑔𝑁

𝑖=1 )𝑖𝜖Ω   

      = a  
𝑝𝑖

𝑔+1
(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω −  𝑝𝑖

𝑔
(

1−𝑝𝑖

𝑝𝑖
)𝑖𝜖Ω + 𝛽2   

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖
∗)2𝑁

𝑖=1𝑖𝜖Ω    

      = a  
𝑝𝑖

𝑔+1
(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω −  𝑝𝑖

𝑔
(

1−𝑝𝑖

𝑝𝑖
)𝑖𝜖Ω + 𝛽2𝑉  

𝑝𝑖

𝑝𝑖,𝑔
∗      …4.13 

Now, let  =  
𝑝𝑖

𝑔+1
(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω −  𝑝𝑖

𝑔
(

1−𝑝𝑖

𝑝𝑖
)𝑖𝜖Ω  

= a  
𝑝𝑖

𝑔−1
 1−𝑝𝑖 

𝑝𝑖,𝑔
∗2𝑖𝜖Ω (𝑝𝑖

2 − 𝑝𝑖,𝑔
∗2 )       …4.14 

Satisfying  

n = a +β
2
D        …4.15 

empirically,  

when ρ=0, 

D = Var(pi/pi,g*) > 0       …4.16 

 and  

as ρ > 0, D = Var(pi/pi,g*) → 0        …4.17 

Since in most real life scenario, ρ≠0 always, we consider (4.17) above as most ideal 

for surveys and hence, inference based on a will be sufficient. 

Now, let  

 =  bi
∗ci

∗n
i=1  =  

𝑝𝑖
𝑔−1

 1−𝑝𝑖 

𝑝𝑖,𝑔
∗2𝑖𝜖Ω (𝑝𝑖

2 − 𝑝𝑖,𝑔
∗2 )     …4.18 

where  
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bi
∗    =

𝑝𝑖
𝑔−1

 1−𝑝𝑖 

𝑝𝑖,𝑔
∗2         ...4.19 

and 

ci
∗  = (𝑝𝑖

2 − 𝑝𝑖,𝑔
∗2 )        ...4.20 

Then, we can as well observe that 

  ci
∗n

I=1 < 0, 𝑖𝑓 0 < 𝜌 < 1, 

 or  

 ci
∗n

i=1 = 0, if 𝜌 = 1.  

We now state the appropriate Lemma useful in this study. 

Lemma 4.2.1:  Let 0≤b1≤ b2 ≤ …≤bn and c1≤ c2 ≤ …≤cn satisfy  ci
∗ ≥n

i=1 0,  

then  bici
∗n

i=1 ≥ 0    

Proof : Due to Royall(1970). 

Let k denote the greatest integer i for which ci ≤0, then 

 𝑏𝑖𝑐𝑖
∗𝑛

𝑖=1 =  𝑏𝑖𝑐𝑖
𝑘
𝑖=1 +  𝑏𝑖𝑐𝑖

∗𝑛
𝑖=𝑘+1   

                  ≥ 𝑏𝑘  𝑐𝑖
𝑘
𝑖=1 + 𝑏𝑘+1  𝑐𝑖

𝑛
𝑖=𝑘+1   

                 = 𝑏𝑘  𝑐𝑖
𝑘
𝑖=1 +  𝑐𝑖

𝑛
𝑖=𝑘+1  + 𝑏𝑘+1  𝑐𝑖

𝑛
𝑖=𝑘+1   

                 = 𝑏𝑘  𝑐𝑖 +𝑛
𝑖=1 (𝑏𝑘 − 𝑏𝑘+1)  𝑐𝑖

𝑛
𝑖=𝑘+1   

    0 
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Lemma 4.2.2: Let pi be positive with  𝑝𝑖 = 1𝑁
𝑖=1  and let 𝑝𝑖,𝑔

∗ =
1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖 , 0<ρ<1, 

1≤i≤N, then 

𝑉  
1

𝑝𝑖,𝑔,𝑐
∗  ≤ 𝑉  

1

𝑝𝑖,𝑔,𝑐′
∗   

 where p*i,g and p*i,g‟ are the selection probabilities determined by c and c‟ moments 

when cc‟. 

Proof:   

Let 𝑝𝑖,𝑔,𝑐
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖  , 0<ρ<1, c  1 and 𝑝𝑖,𝑔,𝑐′

∗ =
1−𝜌𝑐′

𝑁
+ 𝜌𝑐′𝑝𝑖 , ρ=0, then 

If  (i) N  1/pi, then 1/pi  ≤ 1/pi,g* ≤ 1/N 

    (ii) N < 1/pi, then 1/pi  > 1/pi,g*> 1/N 

Hence,  
1

𝑝𝑖
− 𝑁 ≥  

1

𝑝𝑖,𝑔
∗ − 𝑁  ∀𝑖      …4.21 

Therefore, 𝑉  
1

𝑝𝑖
 =  𝑝𝑖(

1

𝑝𝑖
− 𝑁)2𝑁

𝑖=1  

                                ≥  𝑝𝑖(
1

𝑝𝑖,𝑔
∗ − 𝑁)2𝑁

𝑖=1   

                  = 𝑉  
1

𝑝𝑖,𝑔
∗         …4.22 

Lemma 4.3.3: Let pi be positive with  pi = 1N
i=1  and let 𝑝𝑖,𝑔

∗ =
1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖, 0<ρ<1,  

1≤i≤N and  pi,g
∗ = 1N

i=1  ,  then 

𝑉  
1

𝑝𝑖
∗ ≤ 𝑉  

1

𝑝𝑖
   where pi,g* and pi, are the selection probabilities, and hence, weights 

of each selected unit due to the proposed estimator and that of Hansen and Hurwitz. 
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Proof:  

Let 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖 , 0<ρ<1, c  1 and 𝑝𝑖,𝑔

, =
1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖 , ρ=1, then 

𝑉  
1

𝑝𝑖,𝑔
∗  < 𝑉  

1

𝑝 𝑖
          …4.23 

Corollary: Under super-population model specified in 4.8 above, it is clear that 𝜏 𝑔,𝑐  

has smaller variance than 𝜏 𝐻𝐻 . 

Lemma 4.2.4: Let pi be positive with  pi = 1N
i=1  and let 𝑝𝑖,𝑔

∗ =
1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖, 0<ρ<1,  

1≤i≤N   pi,g
∗ = 1N

i=1   and also   𝑝𝑖,𝑔
, =

1−𝜌𝑐 ′

𝑁
+ 𝜌𝑐′𝑝𝑖 ,  0<ρ<1,  c‟>0, c>0 and  

 pi,g
′ = 1N

i=1   

 then 

𝑉  
1

𝑝𝑖,𝑔
∗  ≤ 𝑉  

1

𝑝𝑖,

  

where pi,g* and pi, are the selection probabilities, and hence, weights of each selected 

unit due to the proposed estimator and that of Hansen and Hurwitz‟s(1943) estimator. 

Proof:  

If 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖  , 0<ρ<1, c  1 and 𝑝𝑖,𝑔

, =
1−𝜌𝑐 ′

𝑁
+ 𝜌𝑐′𝑝𝑖 , ρ=1,  

then 

𝑉  
1

𝑝𝑖,𝑔
∗  < 𝑉  

1

𝑝𝑖,𝑔
′           …4.24 

𝑉  
1

𝑝𝑖,𝑔
∗  = 𝜌𝑐𝑉(

1

𝑝𝑖
)  

and 

𝑉  
1

𝑝𝑖,𝑔
′  = 𝜌𝑐′𝑉(

1

𝑝𝑖
)  
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So that 4.24 occurs when 

 𝜌𝑐 − 𝜌𝑐 ′
 ≤ 0        …4.25 

which is applicable in the generalized class of alternative estimators in PPSWR 

sampling. 

Now, If we assume that 𝜌𝑐 ′
= 1 and let c >0 when 0 < ρ < 1, then  we can compare the 

estimators by using the condition in 4.24 above as follows; 

a) when  c =1 and 0 < ρ < 1, then  𝜌1 − 1 ≤ 0. Here, the estimator by 

Amahia et al(1989) fares better than the conventional estimator; 

b) when  c >1 and 0 < ρ < 1, then  𝜌𝑐 − 1 ≤ 0. Again, the proposed 

estimators with c>1 are more efficient than the conventional estimators. 

Similarly, when 0<c<1 and 0 < ρ < 1, then  𝜌𝑐 − 1 ≤ 0. 

c) When c =1/3 and 0 < ρ < 1, then  𝜌1 − 𝜌1/3 ≤ 0, hence, the estimator by 

Amahia et al(1989) fares better than Grewal‟s(1997) estimator; 

d) When c>1  and 0 < ρ < 1, then  𝜌𝑐 − 𝜌1/3 ≤ 0. The proposed class of 

linear estimators with c>1 are relatively more efficient than the 

Grewal‟s(1997) estimator as 𝜌 → 1 

4.2.6 Determination of Approximate value of  c. 

Studies have shown that the value of g useful in estimation ranges between 0 and 2 

inclusive. Amahia et al(1989) have shown that the value of g is given by 

g >
2𝜌𝑝𝑖

𝑝𝑖
∗ +

1

1−𝑝𝑖

−
(1+𝜌)𝑝𝑖

𝑝𝑖
∗+𝑝𝑖

        …4.26 

Theorem 4.5: Under super-population model, the approximate value of the 

specification parameter, c that minimizes the MSE is given by  

𝑐 ≅  
log ⁡(𝜂)

log ⁡(𝜌)
  𝜌 ≠ 0 or 1, 𝑐 > 0      ...4.27 

Proof: From 4.19 above, we defined  bi
∗    =

𝑝𝑖
𝑔−1

 1−𝑝𝑖 

𝑝𝑖,𝑔
∗2   
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So that 

𝑑𝑏 𝑖
∗

𝑑𝑝 𝑖
=

𝑝𝑖
∗2 𝑑

𝑑𝑝 𝑖
 (1−𝑝𝑖)𝑝𝑖

𝑔−1
 −(1−𝑝𝑖)𝑝𝑖

𝑔−1 𝑑

𝑑𝑝 𝑖
𝑝𝑖

∗2

𝑝𝑖
∗4 = 0  

⇒ 𝑝𝑖
∗2  𝑔 − 1 𝑝𝑖

𝑔−2
− 𝑔𝑝𝑖

𝑔−1
 − 2𝜌𝑐𝑝𝑖

∗𝑝𝑖
𝑔−1

(1 − 𝑝𝑖) = 0  

𝑝𝑖
∗  𝑔 − 1 𝑝𝑖

𝑔−2
− 𝑔𝑝𝑖

𝑔−1
 − 2𝜌𝑐𝑝𝑖

𝑔−1
(1 − 𝑝𝑖) = 0  

  
1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖  𝑔 − 1 𝑝𝑖

𝑔−2
− 𝑔𝑝𝑖

𝑔−1
 − 2𝜌𝑐𝑝𝑖

𝑔−1
(1 − 𝑝𝑖) = 0  

⇒ 𝐴𝑝𝑖
𝑔−2

− 𝐴𝜌𝑐𝑝𝑖
𝑔−2

− 𝐵𝑝𝑖
𝑔−1

+ 𝐵𝜌𝑐𝑝𝑖
𝑔−1

+ 𝐴𝑁𝜌𝑐𝑝𝑖
𝑔−1

− 𝑔𝜌𝑐𝑝𝑖
𝑔

− 2𝜌𝑐𝑝𝑖
𝑔−1

 

+2𝜌𝑐𝑝𝑖
𝑔

= 0 

𝐴𝑝𝑖
𝑔−2

− 𝐵𝑝𝑖
𝑔−1

=  𝐴𝑝𝑖
𝑔−2

− 𝐵𝑝𝑖
𝑔−1

− 𝐴𝑁𝑝𝑖
𝑔−1

+ 𝑔𝑝𝑖
𝑔

+ 2𝑝𝑖
𝑔−1

− 2𝑝𝑖
𝑔
 𝜌𝑐   

⇒ Φ1,𝑝,𝑔 = Φ2,𝑝,𝑔𝜌𝑐   

𝜌𝑐 =  
Φ1,𝑝 ,𝑔

Φ2,𝑝 ,𝑔
 = 𝜂  

Therefore,  

𝑐 ≅  
log ⁡(𝜂)

log ⁡(𝜌)
   𝜌 ≠ 0 or 1, 𝑐 > 0,       

where 

𝐴 =
𝑔−1

𝑁
,   

𝐵 =
𝑔

𝑁
,  

Φ1,𝑝,𝑔 = 𝐴𝑝𝑖
𝑔−2

− 𝐵𝑝𝑖
𝑔−1

  

and 

Φ2,𝑝,𝑔 = 𝐴𝑝𝑖
𝑔−2

− 𝐵𝑝𝑖
𝑔−1

− 𝐴𝑁𝑝𝑖
𝑔−1

+ 𝑔𝑝𝑖
𝑔

+ 2𝑝𝑖
𝑔−1

− 2𝑝𝑖
𝑔

 . 



61 
 

Here, there are N values of c thereby giving us a range of values determined by pi. The 

choice of c is therefore determined by Min pi and Max pi giving us the interval 

containing the true c that defined the developed estimators.  

Remark 1: The value of c depends on g, ρ and N. 

Remark 2: just like g, c occurs in a convex region . Empirical evidence shows that as 

N becomes large and  ρ < 1, c < 5 provide a non-uniform selection probabilities for 

estimation. 

4.3  Alternative linear estimator under negative correlation. 

In this section, we utilized the modified Hansen and Hurwitz estimator in order to 

estimate population characteristics namely, population totals, bias and variances under 

negative correlation.  

We have earlier stated that when y  1/x, then under a transformation, y = kz which 

translates the correlation from negative to positive. In this case, we can define the 

Modified Hansen and Hurwitz‟s Estimator (MHHE) as: 

𝜏 𝑔,𝑐 =
1

𝑛
 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  ,                                                                                    

where 

𝑝𝑖,𝑔
∗ =

1−𝑔(𝑐)

𝑁
+ 𝑔(𝑐)𝑝𝑖,  with g(c ) =ρ

c
, c = 1,2,3,4    

 0<ρ<1, c>0, pi = zi/Z  as defined by theorems 3.4 above.  

4.3.1 Bias of the proposed estimator under negative correlation. 

The bias is therefore, 

𝐵𝑝 𝜏 𝑔,𝑐 = 𝐸𝑝 𝜏 𝑔,𝑐 − 𝑌  

            =  1 − 𝜌𝑐 𝑁2𝐶𝑂𝑉( 
𝑁𝑝 𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
, 𝑝𝑖)      …4.28 
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4.3.2 Design Based Variance of the proposed estimator under negative 

 correlation. 

Theorem 4.6: Let yi, {i=1,2,3, …, N} be a finite population under study and let xi, 

(i=1,2,3, …, N} be the values of the auxiliary variable associated with the i
th

 study 

variable yielding the coordinates, (xi,yi). suppose that these variables are correlated 

such that 0<ρ<1, then the variance of the estimator of population total is defined by 

𝑉𝑝 𝜏 𝑔 =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗  

2

𝑖𝜖Ω𝑖𝜖Ω                                                              …4.29 

Proof: 

𝑉𝑝 𝜏 𝑔,𝑁 = 𝑉𝑎𝑟(
1

𝑛
 

𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖s )  

             =
1

𝑛2 𝑉𝑎𝑟( 
𝑦𝑖

𝑝𝑖,𝑔
∗𝑖𝜖s )  

            =
1

𝑛
𝑉𝑎𝑟 𝑧 ;     𝑧 =

𝑦𝑖

𝑝𝑖,𝑔
∗   

Since Var(z) = E(z
2
)-E

2
(z),  

it follows that  

𝑉𝑝 𝜏 𝑔 =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔,𝑁
∗2 −   

𝐼𝑖𝑦𝑖𝑝 𝑖

𝑝𝑖,𝑔,𝑁
∗  

2

𝑖𝜖Ω       hence the proof. 

We note that the estimator is already biased as such, it will be sufficient to consider 

the mean square error (MSE) for our inference. 
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4.3.3 Mean Squared error of the proposed Estimator 

Theorem 4.7: Following the classical definition of MSE of an estimator, the MSE of 

the proposed estimator as 

𝑀𝑆𝐸 𝜏 𝑔,𝑐 = 𝑉𝑝 𝜏 𝑔,𝑐 + 𝐵2(𝜏 𝑔,𝑐)  

=
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔,𝑁
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔,𝑁
∗  

2

𝑖𝜖Ω  +     
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔,𝑁
∗ ,

− 1 𝑦𝑖𝑖𝜖Ω  
2

      …4.30 

Proof: It follows from the definition of MSE and by substituting expression for 

variances and bias derived. 

4.34 Model Based Variance of PPS estimator under negative correlation. 

Again,  we consider the super-population model  defined by 

𝑦 = 𝛽𝑝𝑖 + 𝜀                                                                                            ...4.31 

With 𝐸 𝜀/𝑝𝑖 = 0, 𝐶𝑜𝑣 𝜀𝑖𝜀𝑗  = 0 𝑎𝑛𝑑 𝐸 𝜀𝑖
2 = 𝑎𝑝𝑖

𝑔
 

Theorem 4.8: Under the super-population model, the expected variance is given by 

𝜉𝑉𝜖(𝜏 𝑔) =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω  +    
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑦𝑖𝑖𝜖Ω  

2

       …4.32 

The proof  is similar with that in theorem 4.3 above. 

 4.35 Comparison of the proposed with conventional estimators under negative 

correlation  

From the optimality criteria, we know that an τ* (say) is relatively more efficient than 

another estimator τ (say), when Vp(τ*) ≤ Vp(τ) in terms of sampling design or     

Vp(τ*) ≤  Vp(τ) in terms of super-population model. 

Now,  

𝑉(𝜏 𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝑦𝑖
2

𝑝𝑖
−   𝑦𝑖

𝑁
𝑖=1  2

𝑖𝜖Ω                            …4.33 
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Under super-population model, 

𝜉𝑉𝑝(𝜏 𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)

𝑝𝑖
−   𝜉(𝑦𝑖)

𝑁
𝑖=1  2

𝑖𝜖Ω        

                =
𝑎

𝑛
  𝑝𝑖

𝑔−1
−  𝑝𝑖

𝑔𝑁
𝑖=1𝑖𝜖Ω   + 0        …4.34 

The expected variance of the proposed estimator is 

𝜉𝑉𝑝(𝜏 𝑔,𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω      

              =
𝑎

𝑛
  

𝑝𝑖
𝑔+1

(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω  +

𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2𝑁

𝑖=1𝑖𝜖Ω                           ...4.35 

4.36  Mean squared error of the proposed Modified Hansen and Hurwitz 

 Estimator. 

The expected mean square error of the modified estimator estimators is given as 

𝜉𝑉𝑝(𝜏 𝑔,𝑐) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω  

2

𝑖𝜖Ω      

              =
1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −  

𝜉(𝑦𝑖
2)𝑝𝑖

2

𝑝𝑖,𝑔
∗2

𝑁
𝑖=1 −   

𝜉(𝑦𝑖𝑦𝑗 )𝑝 𝑖𝑝𝑗

𝑝𝑖,𝑔
∗ 𝑝𝑗 ,𝑔

∗
𝑁
𝑖=1𝑖𝜖Ω      

              =
𝑎

𝑛
  

𝑝𝑖
𝑔+1

(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω  +

𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖,𝑔
∗ )2𝑁

𝑖=1𝑖𝜖Ω                             …4.35 

By this modification, inferential procedures are similar to that used for Hansen and 

Hurwitz estimator by utilizing the new correlation coefficient given as 

𝜌 = 𝜌𝑦,𝑧  instead of 𝜌 = 𝜌𝑦,𝑥 , 

where 

𝜌𝑦,𝑧 =
𝑐𝑜𝑣(𝑦,𝑧)

𝜍𝑦 𝜍𝑧
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Under the super-population model, Bansal and Singh(1995) have shown that the value 

of β
2
 that minimizes the expected MSE is given by  

𝛽2 =
𝜌2

1−𝜌2

𝑎  𝑝𝑖
𝑔

𝑖𝜖Ω

𝑁𝜍𝑝
2         …4.36 

where 

𝜍𝑝
2 =

1

𝑁
  𝑝𝑖

2
𝑖∈Ω −

  𝑝𝑖𝑖∈Ω  2

𝑁
        …4.37 
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4.4 Alternative linear estimators in πPS sampling design. 

4.4.1  Introduction. 

In the previous section, a class of alternative linear estimators were proposed for use 

under PPSWR sampling design for cases of both positive and negative correlation as 

they relate with coefficients of variation, determination, skewness and kurtosis. In this 

section, we consider also utilize the estimators proposed in PPSWR sampling, and 

modify them for use with PPSWOR sampling design otherwise, called πPS sampling 

design. 

 This scheme was proposed by Horvitz and Thompson(1952) and is popularly called 

Horvitz-Thompson Estimator (HTE), otherwise called πPS sampling by 

Hanurav(1967). Under this scheme, we shall first consider the HTE along with some 

alternative estimators due to Rao, Amahia, Grewal, Ekaette which belong to the 

scheme for which the sample size, n=2  and the random Group, especially the Rao-

Hartley-Cochran Procedure with respect to our proposed estimator. 

Definition 4.4.1: 

Let   {u1, u2, …,uN} be a finite population of N identifiable units and Y  {y1, y2, 

…,yN} be a vector of values of yi = y(ui), the value assumed by ui by a real valued 

variate Y. Let X be a positive valued variate,  {x1, x2, …,xN} presumed to be 

correlated with y and xi being the value of X assumed on ui, (i=1,2,3, …, N). We 

define pi = xi/X; X=xi where pi is the normed-size measure. 

Let us assume a sampling scheme for which the inclusion probability is πi = npi. We 

shall assume here that the selection procedure is Draw-by-Draw due to Horvitz and 

Thompson for which the generalized first order inclusion probability in which 

 𝜋𝑖 = 2𝑁
𝑖=1  is  

𝜋𝑖=
𝑝𝑖

𝑑
 
 1−𝑎𝑝𝑖 (1−2𝑝𝑖)

 1−𝑝𝑖 (1−2𝑏𝑝𝑖)
+  

𝑝𝑗 (1−𝑎𝑝𝑗 )

 1−𝑝𝑗  (1−2𝑏𝑝𝑗 )

𝑁
𝑖=1        …4.38 

For a=0, b=0 and d=1,  the expression in 4.38 becomes  
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    =
𝑝𝑖

1
 

1−𝑝 𝑖−𝑝𝑖

 1−𝑝𝑖 
+  

𝑝𝑗

 1−𝑝𝑗  

𝑁
𝑖=1    

= 𝑝𝑖  1 +  
𝑝𝑗

 1−𝑝𝑗  
−𝑁

𝑖=1
𝑝𝑖

 1−𝑝𝑖 
                                              …4.39 

This selection procedure supposes that the first unit is selected with probability pi 

while the second unit, pj, is selected with probability 1/(1-pi) if pi is first selected. 

Similarly, if pj is first selected, then, the pi would be selected with probability 1/(1-pi). 

The Joint inclusion probability πij is the conditional probability of selecting unit j 

given that unit i has been selected and vice versa.  Thus 

𝜋𝑖𝑗 = 𝑝𝑖𝑝𝑗 /𝑖 + 𝑝𝑗 𝑝𝑖/𝑗 ,  

so that 

𝜋𝑖𝑗 =
𝑝𝑖𝑝𝑗

𝑑
 

 1−𝑎𝑝𝑖 

 1−𝑝𝑖 (1−2𝑏𝑝𝑖)
+

 1−𝑎𝑝𝑗  

 1−𝑝𝑗  (1−2𝑏𝑝𝑗 )
   

= 𝑝𝑖𝑝𝑗  
1

 1−𝑝𝑖 
+

1

 1−𝑝𝑗  
                   …4.40 

Then the HT estimator of population total is 

𝜏 𝑔 =  𝑏𝑠𝑖𝑖𝜖Ω 𝐼𝑠𝑖𝑦𝑖   

with  Isi as earlier defined. The changing factor here is the weight due to the inclusion 

probabilities, πi‟s. Thus, 

𝜏 𝐻𝑇 =  
𝑦𝑖

𝜋𝑖
𝑖𝜖s                                                                                                  … 4.41 

where  

𝜋𝑖 = 𝑛𝑝𝑖 =
𝑛𝑥𝑖

𝑋
, 𝑋 =   𝑥𝑖

𝑁
𝑖=1 ,                                                                   …4.42 

and its variance is given by 

𝑉 𝜏 𝐻𝑇 =   
1

𝜋𝑖
− 1 𝑦𝑖

2 +    
𝜋𝑖𝑗

𝜋𝑖𝜋𝑗
− 1 𝑦𝑖𝑦𝑗

𝑁
𝑖<𝑗

𝑁
𝑖=1                               ...4.43 
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When the study variable y and the measure of size x are poorly correlated, Rao(1966a) 

proposed an alternative estimator to 4.2 given as 

𝜏 𝑅,𝐻𝑇 = 𝑁  
𝑦𝑖

𝜋𝑖𝜖s 𝑝𝑖                                                                                      ...4.44 

which is obtained by replacing yi by Nyipi in expression 4.2 above. 

Following Rao(1966a,b), Amahia et al(1989) Grewal(1997), Rao(1993), Singh, 

Grewal and Joarder(2004) and Ekaette(2008), we propose the generalized alternative 

estimator for use in PPSWOR as: 

𝜏 𝑔,𝐻𝑇 =  
𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ 𝜋𝑖

𝑖𝜖s                                                                                           …4.45 

pi,g
*
 being the transformed size measure defined in 3.1.18 above. Again, yi is replaced 

by 𝑦𝑖
𝑝𝑖

𝑝𝑖,𝑔
∗  in 4.2 above.   

This estimator reduces to 𝜏 𝐻𝑇  when ρ=1, c>0 and 𝜏 𝑅  when ρ=0. When 0< ρ <1 and 

c>0 the following estimators are defined namely; 

a) 𝜏 𝐴𝐶𝑅  when 0<ρ<1 and c =1; 

b) 𝜏 𝐻𝑇  when ρ=1 

c) 𝜏 𝐺  when  0<ρ<1 and c = 1/3 

d) 𝜏 𝑔,𝑐  when c =  2, 3 and 4, which are the proposed estimators in this study. 

Again, we shall focus on those estimators defined by the c = 1, 2, 3 and 4. 

4.4.2 Bias of the proposed alternative estimator in πPS sampling design 

The bias of the proposed Horvitz and Thompson estimators is  given as, 

𝐵𝑝 𝜏 𝑔 = 𝐸𝑝 𝜏 𝑔,𝑐 − 𝑌  

            = 𝐸𝑝   
𝑦𝑖

𝜋𝑖
𝑖𝜖Ω  − 𝑌  

             =   
𝑦𝑖

𝜋𝑖
𝑖𝜖Ω𝑖𝜖s 𝑝𝑖 −  𝑦𝑖𝑖𝜖Ω   
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           =   
𝑦𝑖

𝑛𝑝 𝑖
𝑖𝜖Ω𝑖𝜖s 𝑝𝑖 −  𝑦𝑖𝑖𝜖Ω   

               =  
𝐼𝑠𝑖𝐸(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗𝑖𝜖Ω − 𝑌  

               =   
𝐼𝑠𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑦𝑖𝑖𝜖Ω   

              =   
𝑁𝑝𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
− 1 𝑦𝑖𝑖𝜖Ω   

=  1 − 𝜌𝑐 𝑁2𝐶𝑂𝑉( 
𝑦𝑖

1−𝜌𝑐+𝑁𝜌𝑐𝑝𝑖
, 𝑝𝑖)       …4.46 

Note that when c=0, we have the conventional estimator. When c>0, we have other 

alternative estimators in the linear class. With respect to correlation, the bias is an 

increasing function so that  𝐵 𝜏 𝑔,𝑐 − 𝐵 𝜏 𝐻𝑇  > 0. 

4.4.3 Variance of the proposed alternative estimator in πPS design 

Theorem 4.9:  the variance of the generalized alternative estimator in PPSWOR 

sampling is  

V τ g,c =   
1

πi
− 1 

pi
2

pi ,g
∗2 yi

2 +    
πij

πi πj
− 1 

pi p j

pi ,g
∗ p j ,g

∗ yiyj
N
i<𝑗

N
i=1    …4.47 

Proof: 

𝑉 𝜏 𝑔,𝑐 = 𝐸 𝜏 𝑔,𝑐
2  − 𝐸2 𝜏 𝑔,𝑐        …4.48 

We know that the HT estimator is unbiased as 

𝐸𝑝(𝜏 𝑔,𝑐) = 𝐸   
𝑦𝑖

𝜋𝑖
𝑖𝜖𝑠  =    

𝑦𝑖

𝜋𝑖
𝑖𝜖𝑠  𝑝(𝑠)𝑠𝜖𝑆 =   

𝑦𝑖

𝜋𝑖
𝑖𝜖Ω    𝑝(𝑠)𝑠∋𝑖  = 𝑌  

As 𝜋𝑖 =  𝑝(𝑠)𝑠∋𝑖  and 𝜋𝑖𝑗 =  𝑝(𝑠)𝑠∋𝑖𝑗  

Substituting the results above in 4.45 above, we get 

𝑉(𝜏 𝑔,𝑐) =    
𝑦𝑖

2

𝜋𝑖
2𝑖𝜖𝑠  𝑝(𝑠)𝑠𝜖𝑆 +     

𝑦𝑖𝑦𝑗

𝑝𝑖𝑝𝑗
𝑖≠𝑗𝜖𝑠  𝑝(𝑠)𝑠𝜖𝑆 − 𝑌2   …4.49 
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                =   
𝑦𝑖

2

𝜋𝑖
2𝑖𝜖𝑠  𝜋𝑖 +   

𝑦𝑖𝑦𝑗

𝑝𝑖𝑝𝑗
𝑖≠𝑗𝜖𝑠 𝜋𝑖𝑗 − 𝑌2  

Since 𝑌2 = ( 𝑦𝑖)
2 =𝑖𝜖Ω  𝑦𝑖

2 +   𝑦𝑖𝑦𝑗
𝑁
𝑖≠𝑗=1𝑖𝜖Ω , 4.48 becomes 

=   
1−𝜋𝑖

𝜋𝑖
 𝑦𝑖

2 +    
𝜋𝑖𝑗 −𝜋𝑖𝜋𝑗

𝜋𝑖𝜋𝑗
 𝑖≠𝑗𝜖 Ω𝑖𝜖Ω 𝑦𝑖𝑦𝑗      …4.50 

4.4.4 Expected Variance of the generalized alternative πPS estimators. 

Again, we consider the general super-population model defined in  4.8 above to 

develop the expected variance of the generalized estimator.  

Theorem 4.10: The expected variance of  the proposed class of alternative linear 

estimators is given by 

 ξ𝑉 𝜏 𝑔,𝑐 = 𝑎   
1

𝜋𝑖
− 1 

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔
∗2 + 𝛽2𝑉𝑎𝑟( 

𝑝𝑖
2

𝜋𝑖𝑝𝑖
∗

𝑛
𝑖=1

𝑁
𝑖=1     …4.51 

Proof: When model based expectation is taken over (4.50) above, we have 

ξ𝑉 𝜏 𝑔,𝑐 =   
1

𝜋𝑖
− 1 

𝑝𝑖
2

𝑝𝑖,𝑔
∗2 𝜉(𝑦𝑖

2) +    
𝜋𝑖𝑗

𝜋𝑖𝜋𝑗
− 1 

𝑝𝑖𝑝𝑗

𝑝𝑖,𝑔
∗ 𝑝𝑗 ,𝑔

∗ 𝜉(𝑦𝑖)𝜉(𝑦𝑗 )𝑁
𝑖<𝑗

𝑁
𝑖=1    

                   =   
1

𝜋𝑖
− 1 

𝑝𝑖
2

𝑝𝑖,𝑔
∗2  𝑎𝑝𝑖

𝑔
+ 𝛽2𝑝𝑖

2 + 𝛽2    
𝜋𝑖𝑗

𝜋𝑖𝜋𝑗
− 1 

𝑝𝑖
2𝑝𝑗

2

𝑝𝑖,𝑔
∗ 𝑝𝑗 ,𝑔

∗
𝑁
𝑖<𝑗

𝑁
𝑖=1   

= 𝑎   
1

𝜋𝑖
− 1 

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔
∗2 + 𝛽2𝑉𝑎𝑟( 

𝑝𝑖
2

𝜋𝑖𝑝𝑖
∗

𝑛
𝑖=1

𝑁
𝑖=1      …4.52 

4.4.5 Comparison of expected variances of generalized alternative πPS design. 

Considering Vp(τ*)  ≤  Vp(τ), let ξV τ g,HT ,c ′  be the Horvitz and Thompson 

estimator, then; 

Δ1 =  ξ𝑉 𝜏 𝑔,𝑐 − 𝜉𝑉 𝜏 𝑔,𝑐′   

= aα1 + β
2
α2        …4.53 

where 
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 𝛼1 =   
1

𝜋𝑖
− 1  

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔,𝑐
∗2 −

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔,𝑐 ′
∗2  𝑁

𝑖=1       …4.54 

and  

𝛼2 = 𝛽2  𝑉𝑎𝑟   
𝑝𝑖

2

𝜋𝑖𝑝𝑖,𝑔,𝑐
∗

𝑛
𝑖=1  − 𝑉𝑎𝑟( 

𝑝𝑖
2

𝜋𝑖𝑝𝑖,𝑔,𝑐 ′
∗

𝑛
𝑖=1 )     ...4.55 

From 4.55, empirical evidence show that apart from the case when ρ=0 in which the 

two Variances are equal, if c = 1, it is clear that 
𝑝𝑖

𝑔+2

𝑝𝑖,𝑔,𝑐
∗2 −

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔,𝑐 ′
∗2  < 0 always. This is similar 

in most cases of the specification parameter c‟s for 0 < ρ < 1. 

Similarly, 

𝑉𝑎𝑟   
𝑝𝑖

2

𝜋𝑖𝑝𝑖,𝑔,𝑐
∗

𝑛
𝑖=1  − 𝑉𝑎𝑟   

𝑝𝑖
2

𝜋𝑖𝑝𝑖,𝑔,𝑐 ′
∗

𝑛
𝑖=1  = 𝑉𝑎𝑟  𝑏𝑖

𝑛
𝑖=1  − 𝑉𝑎𝑟  𝑎𝑖

𝑛
𝑖=1    

where 

 𝑏𝑖 =
𝑝𝑖

2

𝜋𝑖𝑝𝑖,𝑔,𝑐
∗  and 𝑎𝑖 =

𝑝𝑖
2

𝜋𝑖𝑝𝑖,𝑔,𝑐 ′
∗ . 

then, 

 𝑉𝑎𝑟  𝑏𝑖
𝑛
𝑖=1  − 𝑉𝑎𝑟  𝑎𝑖

𝑛
𝑖=1  < 0 always for 0 < ρ < 1  

and 

 𝑉𝑎𝑟  𝑏𝑖
𝑛
𝑖=1  − 𝑉𝑎𝑟  𝑎𝑖

𝑛
𝑖=1  = 0 when ρ=0. 

 It is worth to note that as c increases, 
𝑝𝑖

𝑔+2

𝑝𝑖,𝑔,𝑐
∗2 −

𝑝𝑖
𝑔+2

𝑝𝑖,𝑔,𝑐 ′
∗2 <<0 and so 

                 𝑉𝑎𝑟  𝑏𝑖
𝑛
𝑖=1  − 𝑉𝑎𝑟  𝑎𝑖

𝑛
𝑖=1  ≪ 0. 
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4.5 The Technique of Rao, Hartley and Cochran for n>2. 

4.5.1 Introduction. 

The estimator by Horvitz and Thompson(1952) is only applicable to a sample of size 

n=2 and requires the computational burden of the inclusion and joint inclusion 

probabilities respectively. To overcome this problem, especially when it is desirable to 

have a sample of n>2 say, then Rao-Hartley and Cochran(1962) provided a simple 

procedure which draws sample of size n > 2 using PPS. 

Here, the population, , is split into n- random groups of sizes suitably chosen Ni 

(i=1,2,3, …, n,  𝑁𝑖 = 𝑁) . in these n-groups formed, there are available positive 

normed-size-measure        pi(0 <pi < 1,  𝑝𝑖 = 1) which are noted and summed. From 

each of the n-groups formed independently, one unit is selected with PPS given the 

units falling in the respective groups.  

Writing  𝑁𝑖 =  
 
𝑁

𝑛
 ,   𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑘

 
𝑁

𝑛
 + 1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘

       …4.56 

Where k is determined by solving the equation 

𝑘  
𝑁

𝑛
 +  𝑛 − 𝑘    

𝑁

𝑛
 + 1 = 𝑁        …4.57 

So that only k-groups attain the size  
𝑁

𝑛
  while the rest attain the size  

𝑁

𝑛
 + 1. 

When selection is done under PPS, we gather these units as our sample of units 

selected by RHC method. Let any group be our ith group, then the value of our 

variable(s) chosen from the ith group is yi. Corresponding to yi, is the auxiliary 

information, xi, upon which the normed size measure is defined. 

Let Qi be the sum of the normed-size measure of the units falling in the ith group so 

that 𝑄𝑖 =  𝑝𝑖𝑗
𝑁𝑖
𝑖=1 ,    𝑄𝑖 = 1). This gives the selection probability of j in the ith 

group as 
𝑝𝑖𝑗

𝑄𝑖
. 



73 
 

Define pij = pi, then the estimator of population total under this strategy in PPSWR is 

given by 

𝜏 𝑅𝐻𝐶 =  
𝑦𝑖𝑄𝑖

𝑝𝑖

𝑛
𝑖=1 ,         …4.58 

with variance given by 

𝑉 𝜏 𝑅𝐻𝐶 =  
 𝑁𝑖

2−𝑁𝑛
𝑖=1

𝑁2− 𝑁𝑖
2𝑛

𝑖=1

   
𝑦𝑖𝑗

𝑝𝑖𝑗
− 𝜏 𝑅𝐻𝐶 

2

𝑄𝑖       …4.59 

 

4.5.2 Proposed alternative PPS estimator under RHC scheme 

Now, when y and x are positively correlated, we propose a general class of estimator 

under linear transformation as 

𝜏 𝑔,𝑐,𝑅𝐻𝐶 =  
𝑦𝑖𝑄𝑖

𝑝𝑖

𝑝𝑖

𝑝𝑖,𝑔
∗

𝑛
𝑖=1 =  

𝑦𝑖𝑄𝑖

𝑝𝑖,𝑔
∗

𝑛
𝑖=1     …4.60 

Which is realized by replacing yi in (4.58) by yipi/pi,g* . 

4.5.3 Bias of the proposed RHC estimator. 

The bias of the proposed estimator is given by 

𝐵 𝜏 𝑔,𝑐,𝑅𝐻𝐶 =  
𝑦𝑖𝑝𝑖

𝑝𝑖,𝑔
∗ − 𝑌𝑛

𝑖=1   

=  𝑦𝑖  
𝑝𝑖

𝑝𝑖,𝑔
∗ − 1 𝑛

𝑖=1     …4.61 

Which clearly shows that the proposed generalized estimator is bias in nature 

especially when ρ≠1. 

4.5.4 Variance of the proposed estimator. 

Theorem 4.11: The variance of the proposed estimator under RHC procedure is given 

by 𝑉𝑝 𝜏 𝑔,𝑐,𝑅𝐻𝐶 =  
 𝑁𝑖

2−𝑁𝑛
𝑖=1

𝑁2− 𝑁𝑖
2𝑛

𝑖=1

   
𝑦𝑖

2𝑄𝑖

𝑝𝑖,𝑔
∗2 − 𝜏 𝑔,𝑅𝐻𝐶

2  𝑛
𝑖=1     …4.62 
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Proof: By  definition, 

𝑉𝑝 𝜏 𝑔,𝑐,𝑅𝐻𝐶 = 𝐸𝐺𝑉𝑐(𝜏 𝑔,𝑅𝐻𝐶) + 𝑉𝐺𝐸𝑐 𝜏 𝑔,𝑅𝐻𝐶   

                  = 𝐸𝐺     
𝑝𝑖𝑗 𝑝𝑖𝑘

𝑄𝑖𝑄𝑗
 

𝑦𝑖𝑄𝑖

𝑝𝑖,𝑔
∗ −

𝑦𝑗𝑄𝑗

𝑝𝑗 ,𝑔
∗  

2
𝑛
𝑖≤𝑗<𝑘≤𝑁𝑖    

                    = 𝐸𝐺    𝑝𝑖𝑝𝑗  
𝑦𝑖

𝑝𝑖,𝑔
∗ −

𝑦𝑗

𝑝𝑗 ,𝑔
∗  

2

𝑗≠𝑘    

                    =  
𝑁𝑖

2−𝑁

𝑁(𝑁−1)𝑖𝜖𝑠    𝑝𝑖𝑝𝑗  
𝑦𝑖

𝑝𝑖,𝑔
∗ −

𝑦𝑗

𝑝𝑗 ,𝑔
∗  

2

𝑗≠𝑘    

By Cauchy‟s inequality, nNi
2
  (Ni)

2
 = N

2
. Hence N

2
  N

2
/N and N

2
 is minimal of 

𝑁𝑖 =  
𝑁

𝑛
  for all i.  

Thus, for 𝑁𝑖  integer,  

𝑉 𝜏 𝑔,𝑐,𝑅𝐻𝐶 =  
 𝑁𝑖

2−𝑁𝑛
𝑖=1

𝑁2− 𝑁𝑖
2𝑛

𝑖=1

   
𝑦𝑖

2𝑄𝑖

𝑝𝑖,𝑔
∗2 − 𝜏 𝑔,𝑅𝐻𝐶

2  𝑛
𝑖=1     …4.63 

Alternatively, Rao(1966a) and Bansal and Singh(1985)‟s estimator can be modified  in 

the same manner to obtain the variance. 

Now, define 

𝑉(𝜏 𝑢) =  
𝑁𝑖

2−𝑁

𝑁(𝑁−1)𝑖𝜖𝑠 𝜍𝑧
2  where          𝜍𝑧

2 =  
𝑦𝑖

2

𝑝𝑖
− ( 𝑦)2𝑁

𝑖=1
𝑁
𝑖=1          …4.64 

Under this scheme, Rao‟s(1966) estimator is given by 

𝑉(𝜏 𝑅,𝑅𝐻𝐶) =
𝑁−𝑛

(𝑁−1)

1

𝑛
  𝑦𝑖

2𝑝𝑖 −   𝑦𝑖 
2                                               …4.65 

The variance of the generalized estimator is therefore realized by replacing yi by 

yipi/pi,g*  giving us: 

𝑉(𝜏 𝑔,𝑐,𝑅𝐻𝐶) =
𝑁−𝑛

(𝑁−1)

1

𝑛
  

𝑦𝑖
2

𝑝𝑖,𝑔
∗2 −   

𝑦𝑖

𝑝𝑖,𝑔
∗  

2

      …4.66 
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This is equivalent to 

𝑉(𝜏 𝑔,𝑐,𝑅𝐻𝐶) =
𝑁−𝑛

 𝑁−1 
𝑉𝑎𝑟(𝜏 𝑔,𝑐)     …4.67 

Thus, (4.66) or (4.67) can be used as our variance estimator under RHC strategy. 

4.5.5 Expected Variance of RHC estimator. 

Under super population model in (4.31), the expected variance is given by 

    𝜉𝑉(𝜏 𝑔𝑔,𝑐,𝑅𝐻𝐶) =
𝑁−𝑛

(𝑁−1)

1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗  

2

   

                          =
𝑁−𝑛

(𝑁−1)

1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖,𝑔
∗  

2

   

Therefore, 

𝜉𝑉(𝜏 𝑔,𝑐,𝑅𝐻𝐶) =
𝑁−𝑛

 𝑁−1 
𝜉𝑉𝑎𝑟(𝜏 𝑔,𝐻𝐻)    …4.68 

where  

𝜉𝑉 (𝜏 𝑔,𝐻𝐻) =
1

𝑛
  

𝐼𝑠𝑖𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −   

𝐼𝑖𝜉(𝑦𝑖)𝑝𝑖

𝑝𝑖
∗𝑖𝜖Ω  

2

𝑖𝜖Ω      

 =
1

𝑛
  

𝜉(𝑦𝑖
2)𝑝𝑖

𝑝𝑖,𝑔
∗2 −  

𝜉(𝑦𝑖
2)𝑝𝑖

2

𝑝𝑖
∗2

𝑁

𝑖=1

−   
𝜉(𝑦𝑖𝑦𝑗 )𝑝𝑖𝑝𝑗

𝑝𝑖
∗𝑝𝑗

∗

𝑁

𝑖=1𝑖𝜖Ω

    

                           =
𝑎

𝑛
  

𝑝𝑖
𝑔+1

(1−𝑝𝑖)

𝑝𝑖,𝑔
∗2𝑖𝜖Ω  +

𝛽2

𝑛
  

𝑝𝑖
3

𝑝𝑖,𝑔
∗2 − ( 

𝑝𝑖
2

𝑝𝑖
∗)2𝑁

𝑖=1𝑖𝜖Ω     …4.69 
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4.6 Simulation of Proposed Alternative Linear Estimators in PPS Sampling 

Scheme Under Certain Theoretical Probability Distributions. 

4.6.1 Introduction 

In the previous section, a class of alternative linear estimators was proposed for use in 

PPS sampling schemes under a linear transformation of the selection probabilities 

obtained from the survey‟s auxiliary information. Earlier, we postulated the need to 

observe certain statistical properties of the study populations as they were expected to 

be essential requisites for specification of an estimator using the specification 

parameter c, which is determined by the c
th

 standardized moments of the study 

variable expressed as a liner function of the auxiliary variables. In this section,  we 

utilize certain probability density functions namely; normal, chi-square, uniform and 

gamma distribution functions. Apart from uniform distribution, whose selection 

probability function is constant in the domain, the others are of the exponential family 

densities defined by  

𝑓 𝑥, 𝜃 = a θ b(x)exp 𝑐 𝜃 𝑑 𝑥         ...4.70 

for −∞ < 𝑥 < ∞ and for all 𝜃 ∈ Θ. 

The main objective here is to determine if : 

i. the theoretical  distribution of the study populations, especially the 

auxiliary information have impact on the definition of our estimators; 

ii. the nature of the distribution, viz-a-viz, skewed or non-skewed distribution 

disturb the specification of the alternative estimators and; 

iii. The specification of linear alternative estimators under theoretical densities 

is consistent with the observed study populations. 

4.6.2 The characteristics of the study distributions. 

We have earlier stated that our four theoretical distributions are namely; Normal, Chi-

square, Uniform and Gamma distributions. 
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A finite population of N = 100 is assumes in each case and the selected probabilities 

are simulated to realize truncated distributions which are normalized with a common 

denominator of N=100. Four study populations are assumed for population I, II, III 

and IV. 

(i)  x ~U(a,b) with 𝑓 𝑥, 𝑎, 𝑏 =
1

𝑁
, 𝑎 < 𝑥 < 𝑏; 0 elsewhere. 

(ii)  x ~N(, σ
2
) with 𝑓 𝑥, 𝜇, 𝜍2 =

1

𝜍 2𝜋
exp⁡{−

1

2
 

𝑥−𝜇

𝜍
 

2

, 𝜇 > 0, 𝜍 > 0, 𝑥 > 0 

(iii) x~𝜒𝑣
2 with 𝑓 𝑥, 𝑣 =

1

2
𝑣
2Γ

𝑣

2

𝑥
𝑣

2
−1𝑒−

𝑣

2, 𝑣 > 0, and 

(iv) x~G(𝛼, 𝛽) with 𝑓 𝑥, 𝛼, 𝛽 =
𝑥𝛼−1

𝛽2Γ𝛼
exp −𝑥𝛽 ;  𝑥 > 0, 𝛼 > 0, 𝛽 > 0 . 

The distributions represent: 

i) rectangular distribution with constant probabilities; 

ii) symmetric distribution with varying probabilities; 

iii) skewed distributions with varying probabilities. 

The table below presents the characteristics of the distribution functions being utilized. 

Population Normal 

Distribution 

Uniform 

Distribution 

Chi square 

Distribution 

Gamma 

Distribution 

I N(6.5,3.6) U(0,12) 𝜒14
2  G(1,2) 

II N(15, 8.8) U(0,30) 𝜒8
2 G(1.5,5.5) 

III N(9,5.5) U(0,17) 𝜒15
2  G(1.5,5) 

IV N(10.5,5.92) U(0,20) 𝜒5
2 G(1,4.5) 

 

For convenience, we  shall define these densities as υt, t = 1, 2, 3 and 4 representing 

Normal, chi-square, uniform and gamma distributions respectively. Let υt,i  represent 

the i
th

  unit in the population, i = 1, 2, ..., N. Then the general linear transformation of 

the selected probabilities is defined as 

𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝜑𝑡,𝑖  . 
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Under uniform distribution with pi = υ3,i, we have 

𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝜑3,𝑖   

       =
1−𝜌𝑐

𝑁
+ 𝜌𝑐 1

𝑁
   

       =
1

𝑁
  

Empirically, it has been found that this is equivalent to the linear estimators when ρ=0. 

Under Normal, chi-square and gamma distributions, we have 

𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝜑𝑡,𝑖  , 𝑡 = 1,2,4; 𝑖 = 1,2, … , 𝑁  

Again, if ρ=0, we have the Rao‟s(1966a) estimator and if if ρ=1, we have the Hansen -

Hurwitz‟s(1943) estimator. For 0< ρ<1 and c >0, we have the class of alternative 

linear estimators under investigation. 

4.6.3 Simulation of selection probabilities for the study distributions 

We simulate the selection probabilities pi= υt,i using the transformation in such a way 

that the simulated selection probabilities satisfy the regularity conditions of a 

probability normed size measure. These are shown on appendix B, C. D and E below 

for Normal, chi-square, uniform and gamma distributions respectively. 

4.6.4 Estimation of Relative MSE of proposed alternative linear estimators 

under theoretical distributions . 

Again, we utilize the estimator of population total, MSE, relative efficiencies  using 

estimators defined earlier under the selection probabilities υt,i for both sampling design 

and super-population model based inferences.  

We define MSE(𝜏 𝐻𝐻), MSE(𝜏 𝑔,1), MSE(𝜏 𝑔,2), MSE(𝜏 𝑔,3) and MSE(𝜏 𝑔,4) as the 

means square error for HHE, estimator defined by c= 1, 2, 3 and 4 respectively. 

Similarly, let RE(𝜏 𝑔,1), RE(𝜏 𝑔,2), RE(𝜏 𝑔,3) and RE(𝜏 𝑔,4) be the relative efficiencies 

using RE(𝜏 𝑐) as the benchmark for comparison where MSE((𝜏 𝑐) and RE(𝜏 𝑐) 
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correspond with the MSE and RE of Hansen and Hurwitz Estimators and Horvitz and 

Thompson Estimator in PPSWR and PPSWOR sampling respectively. Then, an 

estimator 𝜏 𝑔,𝑐  is relatively more efficient than another estimator 𝜏 𝑔,𝑐′  if RE(𝜏 𝑔,𝑐) < 

RE(𝜏 𝑔,𝑐′). Specifically, an estimator with c=1 (say) is more efficient than the 

conventional estimator if RE(𝜏 𝑔,𝑐=1) < RE(𝜏 𝑔,𝐻𝐻). 

4.7 Relative Efficiency criteria. 

The sensitivity of the proposed class of alternative linear estimators shall be discussed 

considering changing estimators defined by the specification parameter and changing 

correlation coefficient, ρ in both cases of positive and negative correlations. Emphasis 

will be drawn based on the estimate of correlation coefficient  𝜌 .   

The relative percentage MSE under the sampling design will be considered. This is 

given by 

𝑅𝐸 =  
𝑀𝑆𝐸(𝜏 𝑔,𝑐)

𝑀𝑆𝐸(𝜏 𝐻𝐻 )
− 1         ...4.71 

Under Super-population model, the bias is very negligible as such, inference will be 

based on the sampling variance without taking account of the bias component. Thus, 

the expected relative percentage MSE and hence, expected MSE is 

𝑅𝐸 =  
𝑉(𝜏 𝑔,𝑐)

𝑉(𝜏 𝐻𝐻 )
− 1         ...4.72 

If RE < 0 or RE <0, then the proposed estimator is relatively more efficient than the 

conventional estimator. We can also use these values to compare estimators in the 

same class to determine the best estimator possessing lowest percentage MSE or 

lowest MSE. 
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CHAPTER FIVE 

DISCUSSION OF RESULTS 

 

5.1. Introduction 

        In chapters three and four, we presented the various methodologies related to this 

study under PPS sampling design and super-population model-based inference 

respectively. The methodologies included the transformation of selection probabilities 

derived using laws of direct and inverse proportions for cases of positive and negative 

correlation coefficient between the study variables and selection probabilities 

respectively. Similarly, the generalized transformation of selection probabilities was 

derived. Based on these transformations and also the generalization of the selection 

probabilities, a class of alternative linear estimators was developed. We also derived an 

expression for determining approximate value of the specification parameter c under 

the super-population model. 

        In this chapter, we present the results of the developed alternative linear 

estimators in PPS with replacement (WR) and without replacement (WOR) sampling  

schemes taking cognizance of positive and negative correlation coefficient between the 

study and measure of size variables.  

       Secondly, the proposed transformations, their generalizations and also the 

proposed estimators are subjected to empirical studies using four populations. 

Population I has ρ = 0.162 while population II has ρ = 0.395. Populations III and 

Population IV have ρ = -0.32 and ρ = -0.775 respectively. Under the proposed inverse 

transformation, the resulting correlation coefficients for populations III and IV are ρ = 

0.55 and ρ = 0.91 respectively. Details of the four study populations can be seeing in 

section 5.3 of this study. 

         Next, we utilized the technique of Rao, Hartley and Cochran to compare the 

estimators using samples of size five. Finally, we simulated the selection probabilities 

under normal, uniform, chi-square and gamma distributions to further investigate the 

behaviour of these estimators given the theoretical distributions which are either 

symmetrical, rectangular or skewed in nature. 



81 
 

             It is worth to mention here that the order of correlation, otherwise, the 

moments coefficients of correlation coefficient is a pivot element in defining 

estimators for multiple characteristics as it provides a measure of relationship between 

selection probabilities with the study variables under linear transformation. 

5.2 Results of Generalized Transformation for selection probabilities. 

       The result of selection probabilities and the generalized transformations of the 

selection probabilities derived are:  

i.  𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖  with 𝑝𝑖 =

𝑥𝑖

𝑋
, 𝑋 =  𝑥𝑖𝑖𝜖Ω  when 𝑦 ∝ 𝑝𝑖. This is 

appropriate when positive correlation between study and measure of size is 

encountered in surveys; 

ii. 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖  with  𝑝𝑖 =

𝑧𝑖

𝑍
, 𝑍 =  𝑧𝑖  and 𝑧𝑖 =

1

𝑥𝑖
𝑖𝜖Ω  when  𝑦 ∝

1

𝑥𝑖
 , 

which was proposed for use when it is clear that the study and size 

measures are negatively correlated.  

       We have  c = 1,2,3 and 4  as range of the specification parameters in the sense that 

they are used to define appropriate estimators for the study populations. This range 

could also contain fractional values as in the case of Grewal(1997) and Ekaette(2008). 

      Specifically,   

i. c = 1 and 0 < 𝜌 < 1 defines the Amahia-Chaubey and Rao‟s estimator 

(ACRE) defined as 𝜏 𝑔,𝑐=1 

ii. c=[0,1] and 0 < 𝜌 < 1 defines Ekaette‟ estimator (EE) 

iii. c =1/3 and 0 < 𝜌 < 1 defines Grewals‟ estimator (GE) defined as 𝜏 𝑔,𝑐=1/3 

iv. for any value of c,  𝜌 = 1 defines the Hansen-Hurwitz estimator (HHE) or 

defined as 𝜏 𝑐  or 𝜏 𝐻𝐻  

v. 𝜌 = 0 again defines the Rao‟s estimator (RE) or defined as 𝜏 𝑅  

vi. The proposed alternative estimators in the linear class are defined by c =  2, 

3 and 4; they are  𝜏 𝑔,𝑐=2, 𝜏 𝑔,𝑐=3 and 𝜏 𝑔,𝑐=4  respectively 

vii. The generalized class of linear estimators comprises of the estimators 

namely; 𝜏 𝑅 , 𝜏 𝑔,𝑐=1 and 𝜏 𝑔,𝑐=2, 𝜏 𝑔,𝑐=3, 𝜏 𝑔,𝑐=4 and 𝜏 𝑐 . 
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       Earlier in the methodology, it was postulated that these transformations satisfied 

the regularity conditions of a probability normed-size measure. Results of empirical 

studies conducted on four populations namely, populations I, II, III and IV having 

correlation coefficients of 0.162, 0.395, -0.32 and -0.77 respectively are shown on 

tables  1, 2, 3 and 4 below. It is worth to stress here that populations III and IV are 

negatively correlated and under inverse transformation, the derived correlation 

coefficients are 0.55 and 0.91 for populations II and IV respectively. 

 

Table 1: Result of selection probabilities and Generalized selection Probabilities defining 

alternative Estimators in the Linear class for Population I  

X Y ρ 𝑝𝑖  𝑝𝑖,𝑐=1
∗  𝑝𝑖,𝑐=2

∗  𝑝𝑖,𝑐=3
∗  𝑝𝑖,𝑐=4

∗  

41 36 0.162 0.0806 0.0829 0.0833 0.0833 0.0833 

43 47 0.162 0.0845 0.0835 0.0834 0.0833 0.0833 

54 41 0.162 0.1061 0.0870 0.0839 0.0834 0.0833 

39 47 0.162 0.0766 0.0822 0.0832 0.0833 0.0833 

49 47 0.162 0.0963 0.0854 0.0837 0.0834 0.0833 

45 45 0.162 0.0884 0.0842 0.0835 0.0834 0.0833 

41 32 0.162 0.0806 0.0829 0.0833 0.0833 0.0833 

33 37 0.162 0.0648 0.0803 0.0828 0.0833 0.0833 

37 40 0.162 0.0727 0.0816 0.0831 0.0833 0.0833 

41 41 0.162 0.0806 0.0829 0.0833 0.0833 0.0833 

47 37 0.162 0.0923 0.0848 0.0836 0.0834 0.0833 

39 48 0.162 0.0766 0.0822 0.0832 0.0833 0.0833 

  

Sum  = 1 1 1 1 1 
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Table 2: Result of selection probabilities and Generalized selection Probabilities 

defining alternative Estimators in the Linear class for Population II  

X Y      ρ  𝑝𝑖  𝑝𝑖,𝑐=1
∗  𝑝𝑖,𝑐=2

∗  𝑝𝑖,𝑐=3
∗  𝑝𝑖,𝑐=4

∗  

3 11 0.39 0.0133 0.0255 0.0303 0.0321 0.0329 

4 7 0.39 0.0178 0.0273 0.0310 0.0324 0.0330 

5 9 0.39 0.0222 0.0290 0.0316 0.0327 0.0331 

8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

12 8 0.39 0.0533 0.0411 0.0364 0.0345 0.0338 

11 9 0.39 0.0489 0.0394 0.0357 0.0343 0.0337 

8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

9 12 0.39 0.0400 0.0359 0.0343 0.0337 0.0335 

11 10 0.39 0.0489 0.0394 0.0357 0.0343 0.0337 

10 9 0.39 0.0444 0.0377 0.0350 0.0340 0.0336 

8 8 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

9 14 0.39 0.0400 0.0359 0.0343 0.0337 0.0335 

7 12 0.39 0.0311 0.0325 0.0330 0.0332 0.0333 

8 10 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

8 10 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

5 10 0.39 0.0222 0.0290 0.0316 0.0327 0.0331 

6 9 0.39 0.0267 0.0307 0.0323 0.0329 0.0332 

3 5 0.39 0.0133 0.0255 0.0303 0.0321 0.0329 

3 7 0.39 0.0133 0.0255 0.0303 0.0321 0.0329 

9 9 0.39 0.0400 0.0359 0.0343 0.0337 0.0335 

6 6 0.39 0.0267 0.0307 0.0323 0.0329 0.0332 

7 12 0.39 0.0311 0.0325 0.0330 0.0332 0.0333 

8 9 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

8 6 0.39 0.0356 0.0342 0.0337 0.0335 0.0334 

9 9 0.39 0.0400 0.0359 0.0343 0.0337 0.0335 

11 11 0.39 0.0489 0.0394 0.0357 0.0343 0.0337 

11 10 0.39 0.0489 0.0394 0.0357 0.0343 0.0337 

10 14 0.39 0.0444 0.0377 0.0350 0.0340 0.0336 

5 8 0.39 0.0222 0.0290 0.0316 0.0327 0.0331 

3 7 0.39 0.0133 0.0255 0.0303 0.0321 0.0329 

  
Sum = 1 1 1 1 1 

 

We observe here that the population correlation coefficient is 0.395 while the selection 

probabilities pi and the generalized selection probabilities; 𝑝𝑖,𝑐=1
∗ , 𝑝𝑖,𝑐=2

∗ , 𝑝𝑖,𝑐=3
∗  and 

𝑝𝑖,𝑐=4
∗  do satisfy the required conditions of a probability size measure. 
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Table 3: Result of selection probabilities and Generalized selection Probabilities 

defining alternative Estimators in the Linear class for Population III  

X y      ρ 𝑝𝑖  𝑝𝑖,𝑐=1
∗  𝑝𝑖,𝑐=2

∗  𝑝𝑖,𝑐=3
∗  𝑝𝑖,𝑐=4

∗  

100 3 0.55 0.0279 0.0418 0.0495 0.0537 0.0560 

88 8 0.55 0.0317 0.0439 0.0506 0.0543 0.0563 

20 9 0.55 0.1396 0.1033 0.0833 0.0723 0.0662 

17 11 0.55 0.1643 0.1168 0.0907 0.0764 0.0685 

60 5 0.55 0.0465 0.0521 0.0551 0.0568 0.0577 

77 9 0.55 0.0363 0.0464 0.0520 0.0551 0.0568 

51 5 0.55 0.0548 0.0566 0.0576 0.0581 0.0585 

69 4 0.55 0.0405 0.0487 0.0533 0.0558 0.0571 

66 6 0.55 0.0423 0.0497 0.0538 0.0561 0.0573 

77 9 0.55 0.0363 0.0464 0.0520 0.0551 0.0568 

68 2 0.55 0.0411 0.0491 0.0535 0.0559 0.0572 

36 4 0.55 0.0776 0.0691 0.0645 0.0619 0.0605 

74 4 0.55 0.0377 0.0472 0.0524 0.0553 0.0569 

33 5 0.55 0.0846 0.0730 0.0666 0.0631 0.0612 

54 6 0.55 0.0517 0.0549 0.0567 0.0576 0.0582 

55 6 0.55 0.0508 0.0544 0.0564 0.0575 0.0581 

77 6 0.55 0.0363 0.0464 0.0520 0.0551 0.0568 

  

Sum =  1 1 1 1 1 

 

For the target population above, the population correlation coefficient is -0.322. 

However, under the inverse transformation, the resulting value of correlation 

coefficient is 0.55. The selection probabilities and the generalized selection 

probabilities; 𝑝𝑖,𝑐=1
∗ , 𝑝𝑖,𝑐=2

∗ , 𝑝𝑖,𝑐=3
∗  and 𝑝𝑖,𝑐=4

∗   also do satisfy the required conditions of 

a probability size measure. 
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Table 4: Result of selection probabilities and Generalized selection Probabilities 

defining alternative Estimators in the Linear class for Population IV 

X y ρ 𝑝𝑖  𝑝𝑖,𝑐=1
∗  𝑝𝑖,𝑐=2

∗  𝑝𝑖,𝑐=3
∗  𝑝𝑖,𝑐=4

∗  

6.8 20 0.91 0.00324 0.00745 0.01128 0.01476 0.01793 

6.2 23 0.91 0.00355 0.00773 0.01154 0.015 0.01815 

5.5 38 0.91 0.004 0.00814 0.01191 0.01534 0.01846 

0.85 86 0.91 0.0259 0.02807 0.03004 0.03184 0.03347 

0.71 92 0.91 0.03101 0.03272 0.03427 0.03569 0.03698 

9 16 0.91 0.00245 0.00673 0.01062 0.01416 0.01739 

1.4 81 0.91 0.01573 0.01881 0.02162 0.02417 0.0265 

4.5 53 0.91 0.00489 0.00895 0.01265 0.01601 0.01907 

3.8 42 0.91 0.00579 0.00977 0.01339 0.01669 0.01969 

2.1 62 0.91 0.01048 0.01404 0.01728 0.02022 0.0229 

4.85 39 0.91 0.00454 0.00863 0.01235 0.01574 0.01883 

3.197 35 0.91 0.00689 0.01077 0.0143 0.01751 0.02043 

0.443 87 0.91 0.04968 0.0497 0.04973 0.04976 0.04978 

0.468 91 0.91 0.04704 0.0473 0.04755 0.04777 0.04797 

0.59 84 0.91 0.03732 0.03846 0.0395 0.04044 0.0413 

0.339 75 0.91 0.06495 0.0636 0.06238 0.06127 0.06025 

0.161 54 0.91 0.13642 0.12865 0.12157 0.11513 0.10927 

0.787 64 0.91 0.02797 0.02995 0.03175 0.0334 0.03489 

0.069 26 0.91 0.31801 0.29389 0.27194 0.25197 0.23379 

0.11 100 0.91 0.20015 0.18663 0.17434 0.16315 0.15296 

    Sum = 1 1 1 1 1 

 

      From tables 1, 2, 3 and 4 above, it is clear that the linear transformations 𝑝𝑖  and 

hence, the generalized transformation 𝑝𝑖
∗ all satisfied the regularity conditions of a 

probability normed-size measure, namely: 

i. 0 < 𝑝𝑖 < 1; 

ii.  𝑝𝑖 = 1;𝑖𝜖Ω   

iii. 0 < 𝑝𝑖,𝑔
∗ < 1 and 

iv.  𝑝𝑖,𝑔
∗ = 1.𝑖𝜖Ω  

      These results are consistent for all the c
th

 moment utilized in this study and hence 

the specification range c = [1, 4]. The implication of this range is that it can be utilized 

in defining a class of linear estimators defined by the moments providing an optimum 

estimator for a target population. 
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 5.3 Statistical Properties of the study Populations 

       In this section, the statistical properties of the study populations are presented. We 

have earlier postulated that these characteristics are determined by the expectation of 

the linear function as well as the expectation of the c
th

 standardized moment of the 

study variate, y under the linear framework. The results in tables 5, 6, 7 and 8 below 

show the peculiar characteristics of the target populations and these include, the 

coefficients of variation, determination, skewness and kurtosis of the study variate and 

the measure of size variate as they relate with moment in correlation coefficient. 

Table 5:  Statistical Properties of Population I 

Parameter X Y ε Ratio R
2
σε,y R

3
σε,y R

4
σε,y 

 Mean 42.4167 41.5000 0.0000         

 Median 41.0000 41.0000 -0.4821         

 Maximum 54.0000 48.0000 7.0180         

 Minimum 33.0000 32.0000 -9.2852         

 Std. Dev. 5.6642 5.3001 5.2301 0.0262 0.9738 0.9609 0.9482 
coefficient of 

skewness 0.4551 -0.2506 -0.1897 -0.5507       

coefficient of kurtosis 2.8302 1.8306 1.8763 0.6468       

correlation coefficient 0.1620             

Coefficient of 

determination 0.0262             

coefficient of variation 0.1335 0.1277 

 
0.5227       

 Observations 12.0000 12.0000 12.0000         

 

5.3.1 Description of statistical Properties of Population I 

It is observed from table 5 above that  𝐶𝑉𝑥 = 0.1335 > 𝐶𝑉𝑦 = 0.1277. By the 

propositions, the required condition for specifying c= 1 is when 𝜌1 =
𝐶𝑉𝑥

𝐶𝑉𝑦
< 1. Under 

linear transformation, 𝜌1 = 0.162. Furthermore, 𝜌3 =
𝛾𝑦

𝛾𝑥
< 1 and also 𝜌4 =

𝐾𝑦

𝐾𝑥
< 1 

are expected. By (3.1.27) above, it is clear that since these conditions are fulfilled with 

𝜌 → 0 and hence, 𝜌2 → 0. Higher moment may not be required in defining the 

estimator for this population.  Therefore, c = 1 could be sufficient in defining estimator 

for this population. 
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Table 6:  Statistical Properties of Population II 

Parameter X Y ε Ratio R
2
σε,y R

3
σε,y R

4
σε,y 

 Mean 7.500 9.233 0.000         

 Median 8.000 9.000 -0.411         

 Maximum 12.000 14.000 4.283         

 Minimum 3.000 5.000 -3.394         

 Std. Dev. 2.688 2.192 2.014 0.156 0.844 0.775 0.712 

 Skewness -0.276 0.356 0.537 -1.290       

 Kurtosis 2.069 2.866 2.583 1.385       

correlation coefficient 0.395             

Coefficient of 

determination 0.156             

coefficient of variation 0.358 0.237 6047756.757 0.7553       

 Observations 30.000 30.000 30.000         

 

 

5.3.2 Description of statistical Properties of Population II 

Here, in table 6,  𝜌 = 0.395 < 1, 𝜌2 = 0.156 < 1.However, ρ
3
 >1 thus violating the 

postulated conditions required by  ρ
c
. This suggests that some other estimators could 

perform better than that defined by c = 1. By this result, the correlation coefficient is 

not too weak but somewhat “moderate”. However, under linear framework,           

𝜌1 = 𝜌 < 1, 𝜌 2 < 1, 𝜌3 > 1 and 𝜌4 > 1. At this point, c > 1 could be most suitable 

for defining the estimator. 
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Table 7:  Statistical Properties of Population III 

Parameter X Y ε Ratio R
2
σε,y R

3
σε,y R

4
σε,y 

 Mean 60.11765 6 -0.00000118         

 Median 66 6 -0.20886         

 Maximum 100 11 3.57636         

 Minimum 17 2 -3.7309         

 Std. Dev. 23.08106 2.44949 2.319285 0.103 0.897 0.849 0.804 

 Skewness -0.39924 0.420813 0.350907 -1.054       

 Kurtosis 2.424363 2.346354 1.976402 0.968       

correlation coefficient -0.320             

Coefficient of 

determination 0.103             

coefficient of variation 0.384 0.408 -1965495.73 0.47059       

 Observations 17.000 17.000 17.000         

 

 

5.3.3 Description of statistical Properties of Population III 

For population III, the results on table 7 above shows that,  𝜌 = −0.32, 𝜌2 = 0.103 

 𝜌3 > 1 and  𝜌4 < 1. The correlation coefficient is negative and moderate, and the 

required assumption is violated.  Therefore, the range 2≤ c≤4 provides the appropriate 

specification defining the estimator for this population, even as the transformed 

𝜌 =0.55, which is not weak or high, but about  average or what we may call “moderate” 

value of ρ.   
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Table 8:  Statistical Properties of Population IV 

Parameter X Y Ε Ratio R
2
σε,y R

3
σε,y R

4
σε,y 

 Mean 58.400 2.594 0.000         

 Median 58.000 1.125 0.370         

 Maximum 100.000 9.000 3.160         

 Minimum 16.000 0.069 -5.005         

 Std. Dev. 27.358 2.704 1.711 0.600 0.400 0.253 0.160 

 Skewness -0.059 0.886 -1.191 -0.067       

 Kurtosis 1.600 2.601 5.208 0.615       

correlation coefficient -0.775             

Coefficient of 

determination 0.601             

coefficient of variation 0.468 1.043 

 
0.2244       

 Observations 20.000 20.000 20.000         

 

5.3.4 Description of statistical Properties of Population IV 

For  population IV, it is evidenced on table 8 that,  𝜌 = −0.775, 𝜌2 < 1,   𝜌3 < 1 and 

𝜌4 < 1 satisfying all conditions. However, the correlation coefficient is negative and 

high. Under linear transformation, 𝜌 = 0.91 which is a  strong positive correlation 

coefficient. We have earlier speculated in 3.1.36 that (1 − 𝜌2)2𝐾𝜀 ⟶ 0 when ρ=1 

hence, 𝜌4𝐾𝑥<1. Thus, as ρ→1,  c →4 would provide appropriate estimator of the 

parameters of interest. In other word, we expect that the appropriate estimator be found 

between c=3 and c=4.  
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5.4 Estimate of bias of the alternative linear Estimators. 

It has been shown in (3.2.4) that the alternative estimators are biased. It is therefore, 

necessary to discuss the magnitude and sign of the bias which are shown on tables 9, 

10, 11 and 12 for populations 1, 2, 3 and 4 respectively for PPSWR sampling design.  

Table 9: Estimate of design-based Bias, 𝑩 𝝉 𝒈,𝒄  of alternative estimators as compared with 

that of HHE for population I under PPSWR sampling design. 

Rho 𝐵(𝜏 𝐻𝐻𝐸) 𝐵(𝜏 𝑔,1) 𝐵(𝜏 𝑔,2) 𝐵(𝜏 𝑔,3) 𝐵(𝜏 𝑔,4) 

0.000 0.000 1.261 1.261 1.261 1.261 

0.100 0.000 0.419 1.169 1.252 1.260 

0.162 0.000 -0.020 1.024 1.222 1.255 

0.500 0.000 -1.328 -0.536 0.234 0.715 

0.900 0.000 -0.577 -0.962 -1.201 -1.330 

1.000 0.000 0.000 0.000 0.000 0.000 
 

 

Table 10: Estimate of design-based Bias, 𝑩 𝝉 𝒈,𝒄  of alternative estimators as compared with 

that of HHE for population II under PPSWR sampling design. 

Rho 𝐵(𝜏 𝐻𝐻𝐸) 𝐵(𝜏 𝑔,1) 𝐵(𝜏 𝑔,2) 𝐵(𝜏 𝑔,3) 𝐵(𝜏 𝑔,4) 

0.000 0.000 9.000 9.000 9.000 9.000 

0.100 0.000 5.183 8.591 8.959 8.996 

0.395 0.000 -2.696 3.303 6.577 8.015 

0.500 0.000 -4.279 0.554 4.322 6.544 

0.900 0.000 -2.965 -4.513 -5.193 -5.319 

1.000 0.000 0.000 0.000 0.000 0.000 
 

 

Table 11: Estimate of design-based Bias, 𝑩 𝝉 𝒈,𝒄  of alternative estimators as compared with 

that of HHE for population III under PPSWR sampling design. 

Rho 𝐵(𝜏 𝐻𝐻𝐸) 𝐵(𝜏 𝑔,1) 𝐵(𝜏 𝑔,2) 𝐵(𝜏 𝑔,3) 𝐵(𝜏 𝑔,4) 

1.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.0 -12.4 -20.3 -24.8 -26.9 

0.5 0.0 -25.2 -3.2 19.0 33.9 

0.3 0.0 -12.1 24.1 42.1 48.8 

0.1 0.0 24.6 48.9 51.7 52.0 

0.0 0.0 52.0 52.0 52.0 52.0 
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Table 12: Estimate of design-based Bias, 𝑩 𝝉 𝒈,𝒄  of alternative estimators as compared with 

that of HHE for population IV under PPSWR sampling design. 

Rho 𝐵(𝜏 𝐻𝐻𝐸) 𝐵(𝜏 𝑔,1) 𝐵(𝜏 𝑔,2) 𝐵(𝜏 𝑔,3) 𝐵(𝜏 𝑔,4) 

1.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.0 -159.0 -218.4 -248.4 -264.4 

0.8 0.0 -241.3 -273.5 -267.7 -245.8 

0.5 0.0 -271.5 -201.4 -109.5 -34.2 

0.1 0.0 -82.7 56.6 76.0 78.0 

0.0 0.0 78.2 78.2 78.2 78.2 
 

 

5.4.1 Description of the Bias of the estimators in PPSWR sampling schemes. 

       The alternative estimators described by the c
th

 moment, c = 1,2,3 and 4 in 

correlation coefficient presented the following bias for the alternative estimators in the 

linear class as shown in tables 9, 10, 11 and 12 above. 

       The bias of the proposed estimators 𝐵 𝜏 𝑔,𝑐 , c = 1,2,3,4 is same when ρ=0 and is 

more than the bias of the conventional estimator, 𝐵 𝜏 𝑐 = 0 for all the study 

populations as shown in tables 9 to 12 above.  It is worth to note here that the said bias 

actually occurs when  0 ≤ ρ < 1. When ρ=1, the bias of all the estimators including the 

Hansen-Hurwitz estimator is zero. That is, 𝐵 𝜏 𝑔,𝑐 = 𝐵 𝜏 𝑐 . Thus  all estimators 

converge at this point. 

        It can be seen from table 9 above that in population 1,  minimum  bias is attained 

at ρ=0.162 by the estimator defined by c = 1. Thus,  𝐵(𝜏 𝑔,𝑐=1) <  𝐵(𝜏 𝑔,𝑐) , 𝑐 = 2,3,4. 

Again, for population 2, minimum bias is attained at ρ=0.395 by the estimator defined 

by c=1, that is,  𝐵(𝜏 𝑔,𝑐=1) <  𝐵(𝜏 𝑔,𝑐) , 𝑐 = 2,3,4 as contained in table 10. For 

populations 3 and 4 which have negative correlation coefficient, transformation is 

required and so, minimum bias can only be attained at   𝜌 = 𝜌   or its neighbourhood as 

shown in tables 11 and 12 respectively. Thus, for population 3, bias is minimized by 

the estimator defined by  c = 2, that is,  𝐵(𝜏 𝑔,𝑐=2) <  𝐵(𝜏 𝑔,𝑐) , 𝑐 = 1,3,4  when ρ= 

0.32 and  𝐵(𝜏 𝑔,𝑐=2) <  𝐵(𝜏 𝑔,𝑐) , 𝑐 = 1,3,4  when ρ= 0.55 while in the case of 

population 4  bias is minimized at c = 4, that is  𝐵(𝜏 𝑔,𝑐=4) <  𝐵(𝜏 𝑔,𝑐) , 𝑐 = 1,2,3 at  ρ 

= 0.50 and c=1/4 when ρ= 0.91.  
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Table 13: Approximate values of c at g = 0,1,2 for populations I, II, III and IV 

Population Rho N g=0 g=1 g=2 Estimate 

of c 
Min 

pi 

Max 

pi 

Min 

pi 

Max 

pi 

Min 

pi 

Max 

pi 

I 0.162 12 0 2 0 2 0 1 1 

II 0.395 30 0 2 0 4 0 2 2 

III -0.32   

(0.55) 

17 0 3 0 3 0 2 2 

IV -0.775 

(0.91) 

20 0 13 0 6 0 8 4 

 Values in italics are the transformed correlation coefficient. 

 

       Table 13 presents the estimated values of c for the four study populations using the 

derived expression in (4.27) above. It can be clearly seen that for population I, the 

values of c falls between 0 and 2 at g =0 and 1. However, at g=2, the estimated value 

of c is 1, that is, c=1.  

        For population II, the values of c falls between 0 and 2 at g =0, 0 and 4 at g=1 and 

0 and 2 at g=2 while for population III, the values of c falls between 0 and 3 at g =0, 0 

and 3 at g=1 and 0 and 2 at g=2 . For population IV, the values of c falls between 0 and 

13 at g =0, 0 and 6 at g=1 and 0 and 8 at g=2. It is therefore worthy to note that the 

ceiling of the value of c is expected to be 4 as higher moments are assumed to be 

covered in the ceiling value with c = 4. 

5.4.2 Design-based Relative MSE of the proposed estimators compared with 

Hansen-Hurwitz  estimator 

We utilized the conventional Hansen and Hurwitz Estimator (HHE) as the denominator 

in order to compare the performance of the proposed alternative linear estimators using 

the relative efficiency criteria defined by 

𝑅𝐸 𝜏 𝑔,𝑐\𝜏 𝐻𝐻𝐸 = 0  or 𝑀𝑆𝐸(𝜏 𝑔,𝑐) = 𝑀𝑆𝐸(𝜏 𝐻𝐻) 

Any alternative estimator is relatively more efficient than HHE in terms of minimum 

variance and hence, MSE if and only if 
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𝑅𝐸 𝜏 𝑔,𝑐\𝜏 𝐻𝐻𝐸 < 1 (100%)  

or 

𝑅𝐸 𝜏 𝑔,𝑐\𝜏 𝐻𝐻𝐸 < 𝑅𝐸 𝜏 𝐻𝐻\𝜏 𝐻𝐻𝐸   

otherwise, HHE is relatively the most efficient estimator for the study population. 

The efficiency of the proposed estimator given the conventional HHE for the PPS 

sampling design is presented in Tables 14, 15, 16 and 17 above for populations I to IV 

respectively. 

Table 14: Design-based Relative efficiency of alternative estimators as compared 

with HHE for population I (measured by  RE(𝜏 𝑔,𝑐\𝜏 𝐻𝐻) =
𝑴𝑺𝑬(𝝉 𝒈,𝒄)

𝑴𝑺𝑬(𝝉 𝑯𝑯)
< 𝟏  ) 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 57.0 57.0 57.0 57.0 

0.100 100.0 56.1 56.9 57.0 57.0 

0.162 100.0 56.1 56.7 57.0 57.0 

0.500 100.0 64.2 56.9 56.0 56.3 

0.900 100.0 90.4 82.9 76.9 72.2 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

From table 14 above, it is clear that RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=1) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 2,3,4 and also, 

RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=1) < RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻)  for population I at 𝜌 = 0.162 in terms of minimum 

variance.  Thus, the estimator defined by c = 1 has minimum percentage relative MSE 

of 56.1% and this further confirm our postulation that the specification, c = 1 is only 

possible when ρ0. 𝑅𝐸(𝜏 𝑐) 
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Table 15: Design-based Relative efficiency of alternative estimators as compared 

with HHE for population II (measured by  RE(𝜏 𝑔,𝑐\𝜏 𝐻𝐻) =
𝑴𝑺𝑬(𝝉 𝒈,𝒄)

𝑴𝑺𝑬(𝝉 𝑯𝑯)
< 𝟏 ) 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 35.2 35.2 35.2 35.2 

0.100 100.0 31.6 34.7 35.1 35.2 

0.395 100.0 30.8 30.4 32.8 34.1 

0.500 100.0 33.8 29.5 31.0 32.7 

0.900 100.0 73.7 58.4 48.8 42.4 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

For population II, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 1,3,4 and also, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < 

RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) so that the estimator defined by c = 2 with  minimum percentage relative 

MSE of 30.4% performed better than all the competing estimators including the 

conventional estimator at 𝜌 = 0.395 as shown on table 15. Again, we have postulated 

that this is possible when ρ<1,  𝜌2 < 1 and 𝐶𝑣𝑥 < 𝐶𝑣𝑦 . It is also clear that as ρ shift 

upwards, say, ρ → 0.5 rather than ρ0, c=2 is best specified for a target population. 

 

 

 

 

 

 

 

 

 



95 
 

 

 

 

Table 16: Design-based Relative efficiency of alternative estimators as compared 

with HHE for population III (measured by RE(𝜏 𝑔,𝑐\𝜏 𝐻𝐻) =
𝑴𝑺𝑬(𝝉 𝒈,𝒄)

𝑴𝑺𝑬(𝝉 𝑯𝑯)
< 𝟏 ) 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0 100 44.2 44.2 44.2 44.2 

0.1 100 39.3 43.4 44.1 44.1 

0.3 100 40.4 39.2 42 43.4 

0.5 100 48 38.8 38.8 40.5 

0.9 100 84.3 73 64.7 58.4 

1 100 100 100 100 100 

 

Population III is analysed under two conditions of correlation, that is, at the actual 

correlation coefficient of 𝜌 =  −0.32  and the correlation coefficient of 𝜌 = 0.55 

realized after transformation of the measure of size variable. Examining the results on 

table 16 above, it is observed that the estimator defined by c = 2 with minimum 

percentage relative MSE of 39.24% performed better than all the competing estimators 

including the conventional estimator at 𝜌 =  −0.32 . The result is the same when 

𝜌 = 0.55 is considered. However, at 𝜌 = 0.55, minimum percentage relative MSE is 

obtained at two points namely, c=2 and c=3 as shown on table 16. Thus, 

RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2)= RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=3) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=1) and  RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=3) < 

RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=4) < RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻).  

Based on this result, we can infer as follows: 

i. When 0.3 < ρ < 0.5 or neighbourhood, the estimator defined by  c =2, that 

is, 𝜏 𝑔,𝑐=2 would be relatively more efficient than all other estimators; 

ii. When ρ is slightly greater than 0.5, the estimator changes from c=2 to c=3 

as evidenced in our study which c = 3 at ρ = 0.55. 

This suggests that ρ = 0.55 is perhaps a boundary point for which two estimators 

defined by c=2 and c=3 performed best for population III. 
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Table 17: Design-based Relative efficiency of alternative estimators as compared 

with HHE for population IV (measured by  RE(𝜏 𝑔,𝑐\𝜏 𝐻𝐻) =
𝑴𝑺𝑬(𝝉 𝒈,𝒄)

𝑴𝑺𝑬(𝝉 𝑯𝑯)
< 𝟏 ) 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0 100 12.5 12.5 12.5 12.5 

0.1 100 12.2 12.2 12.5 12.5 

0.5 100 22.6 15.8 12.6 11.7 

0.8 100 32.9 25.5 21.6 18.8 

0.9 100 48.5 36.9 31.6 28.5 

1 100 100 100 100 100 
 

 

Again, for population IV, the percentage relative is analysed at the correlation 

coefficient of 𝜌 =  −0.775  and the correlation coefficient of 𝜌 = 0.91 realized after 

transformation of the measure of size variable. Looking at results on table 17 above, it 

is clear that RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=4) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 1,2,3 and also, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=4) < 

RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) for population IV so that the estimator defined by c = 4 is relatively 

more efficient with percentage relative MSE of 18.8% when  𝜌 = −0.775  and 28.5% 

when  𝜌 = 0.91 . It is also clear from results on table 16 that estimators defined by c 

=4 is relatively more efficient than all other estimators for population IV.  

By these results, it will be convenient to state that the specification parameter of an 

estimator c, changes with  ρ. Thus,  

i. As ρ0, estimator defined by c =1 would be appropriate; 

ii. As ρ0.5, estimator defined by c = 2 would be preferred; 

iii. As 0.5<ρ<.75, estimator defined by c=3 would be preferred  while 

iv. As ρ1, estimator defined by c = 4 would be preferred. 
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The results described above are further displayed on figures 1 to 4 below, showing the 

relative performances of the proposed estimators in the parameter space, 𝜏 𝑔,𝑐  c=1,2,3 

and 4.  

 

 

 

Figures 1 to 4 below presents the graphical view of the alternative estimators as 

compared with the Hansen and Hurwitz estimator for the four study populations.  

 

On figure 1 above, the behaviour of the estimators in the parameters space with respect 

to MSE defined by the relative efficiency (RE) is presented. Again,  It is clear that the 
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estimator defined by c = 1 (with green coloured line), otherwise, the ACRE is 

uniformly most efficient (UME) estimator for population I when 0<ρ≤0.162 and 

neighbourhood. However, when 0.16<ρ≤0.50 and its neighbourhood, estimators 

defined by c = 2 and c = 3 performed equally better than other estimators. However, 

for ρ > 0.50, the estimator defined by c = 4 performed better than all other estimators. 

 

 

 

For population II, results displayed on figure 2 above that for the values of ρ =0.395 

and its neighbourhood, the estimator defined by c=2 (in grey colour) is most efficient 

for the 0.39 <ρ<0.5.   
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It is also noticeable here that the estimator defined by c = 1 performed better than all 

other estimators if 0.01 <ρ<0.39 were assumed for this study population. As ρ>0.5, the 

estimator defined by c = 4 performed better than all other estimators. 

 

 

 

For population III, the result displayed on figure 3 shows that the estimator defined by   

c = 1 is most efficient for 0 <ρ<0.28 or neighbourhood. However, when 0.30 <ρ<0.50 

or its neighbourhood, estimator defined by c = 2 (with grey lines) performed best than 

all other estimators. As ρ>0.60, the estimator defined by c = 4 performed better than all 

other estimators in this class. Similarly, under linear transformation, two estimators 
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namely, c=2 and c=3 performed equally well for population III under the derived value 

of ρ=0.55 

 

 

 

 

 

  In the case of population IV, the results displayed on figure 4 above shows that the 

estimator defined by c = 4 (with yellow line) is relatively most efficient than all other 

estimators including the conventional estimator throughout the parameter space 
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defined by the correlation coefficient ρ. It is worthy to state here that all the values of 

correlation considered for this population is very high. 

A closer look at figures 1 to 4 shows that the efficiency of estimators is changing along 

moments in the correlation coefficient. Thus, for populations that are weakly 

correlated, the estimators defined by c = 1 is sufficient. It is also noticeable that there 

are certain points in the moments in ρ in which two estimators could perform best and 

these points are the adjoining points, otherwise, boundary point between two 

estimators.  

         By these results, it is noticeable that there is no single estimator that is uniformly 

most efficient in the parameter space especially when correlation coefficient is weak. 

Even when correlation coefficient is high, there are points whereby other estimators 

perform equally well or even better than other estimators. This suggests the need to 

identify the conditions that bring about the change in estimators at varying levels of 

correlation coefficient. 

5.4.3 Expected Mean squared Error of Alternative Linear Estimators as 

compared with Hansen- Hurwitz Estimator. 

In this section, the super-population model described in (3.2.7) and hence, the expected 

mean squared error is utilized to generate the results for four study populations as 

displayed on tables 50, 51, 52 and 53 as shown in appendix A. Similarly, the graph of 

MSE is shown on figures 5, 6, 7, 8, 9 and 10 for populations I, II, III and IV 

respectively. The values of g, the super-population parameter used are usually, g = 0, 1 

and 2. We consider the values of correlation coefficient ρ = 0, 0.1, 0.5, 0.9, 1 and the 

true population correlation coefficient estimated from the study population and defined 

as 𝜌 . To obtain definite values of MSE for comparison, it has been shown in 

Ekaette(2008) that the super-population parameter, α is minimized in the range [0,1]. 

To ensure non-negative variance (NNV), the values of α and β must be positive. In this 

study, we assume that the super-population parameters namely, α and β are equal to 

unity so that the per unit bias and hence, MSE can be determined under the model. 
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           The results on tables 50 to 53 in appendix B below pertain to expected MSE 

(MSE) of alternative estimators as compared with HHE. The models describing the 

MSE for each estimator is shown along. However, the efficiency of the proposed 

estimators cannot be easily identified except when evaluated. For this reason, we 

consider the values of a=1 and  β=1 which are the minimum integers that ensured the 

attainment  non-negative variance . Thus, the results shown on figures 5 and 6 for 

populations I and II respectively; figures 7 and 8 for population III with ρ = -0.32 and 

ρ = 0.55 and also figures 9 and 10 for population IV with ρ = -0.77 and ρ = 0.91. 

Detailed description are shown below 
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It is clear on figure 5 that the estimator 𝜏 𝑔,𝑐=1 (with green line) and as shown on table 18 

above,  is  the most efficient estimator with MSE of 131.2927 and 10.90 at g = 0 and  

g = 1 respectively. At g=2, the conventional estimator namely, Hansen and Hurwitz 

estimator has the lowest MSE of 0.9153. Thus, we conclude that the estimator 

defined by c = 1 is the best for population I at g = 0  and g = 1. When g=2, the 

conventional estimator becomes the best when compared with other estimators. 
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For population II, It can be seen on figure 6 that the estimator 𝜏 𝑔,𝑐=2 (with brown line) 

and as shown on table 51 above, is the most efficient estimator with MSE of 

826.5816 and 25.594 at g = 0 and g = 1 respectively. At g=2, the conventional 

estimator namely, Hansen and Hurwitz estimator has the lowest MSE of 0.96253. 

Again, we conclude that the estimator defined by c = 2 is the best for population II at    

g = 0 and g = 1. When g=2, the conventional estimator becomes the best when 

compared with other estimators. 
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Population III has two sets MSE‟s computed at ρ=-0.32 and 0.51. Figure 7 shows the 

performance of the estimators at ρ=-0.32 while figure 8 shows the performance of the 

estimators at ρ=0.51 as contained on table 53. It can be seen on table 52 and also figure 

7 that the estimator 𝜏 𝑔,𝑐=2 (with brown line)  is the most efficient estimator when ρ=-0.32 

while the estimator defined by c = 1 as contained on figure 8 is relatively more 

efficient than all other estimators when ρ=0.51 with MSE of 254.301 and 15.737 at g 

= 0 and g = 1 respectively. At g=2, the conventional estimator namely, Hansen and 

Hurwitz estimator has the lowest MSE of 0.9273.  
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For population IV, there are also two sets MSE‟s computed at ρ=-0.75 and 0.91. 

Figure 9 shows the performance of the estimators at ρ=-0.32 while figure 10 shows the 

performance of the estimators at ρ=0.51 as contained on table 53. It can be seen on 

table 53 and also figure 9 that the estimator 𝜏 𝑔,𝑐=4 (with brown line)  is the most efficient 

estimator when ρ=-0.77 and also at ρ=0.91 with MSE of 165.286 and 5.623 at g = 0 

and g = 1 respectively. At g=2, the conventional estimator namely, Hansen and 

Hurwitz estimator has the lowest MSE of 0.2808.  it is also noticeable that when 

negative correlation was encountered here, the estimator defined by c = 4 was 

optimum at all values of g with  MSE of 266.310, 6.485 and 0.238 at g = 0, 1 and 2 

respectively 
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The results on figures 5 to 9 exhibit the following characteristics: 

a) The expected MSE, MSE is maximum at g = 0; 

b) It attained minimum as g 2 in most cases; 

c) The results in (a) and (b) above are consistent for all the four populations. 

Table 18 below presents the summary of the results of moment estimators specified for 

the four study populations under the sampling design and super-population model. The 

results clearly shows the changing specification along moments in the correlation 

coefficient and also, that no single estimator is sufficient for all populations. Again, we 

can conveniently state that the estimators defined by c=1, c=2, c=2 and c=4 are best for 

populations I, II, III and  IV respectively under the PPS sampling design. Similarly, 

under super-population model, the estimators defined by c=(1, 1,HHE), c=(2,2,HHE), 

c=(2,2,HHE) and also c = (4,4,HHE) for populations I, II, III and IV are best for g=0,1 

and 2 respectively. 

 

Table 18: Estimators defined by Moment in correlation coefficient in relation to the 

distribution of the study populations. 

Population Correlation Design based 

estimator 

Model based 

estimators 

(actual) 

Model based 

estimators 

(Modified) 

 Actual Modified Actual Modified g=0 g=1 g=2 g=0 g=1 g=2 

I 0.162   - c =1    - 1 1 HHE - - - 

II 0.395   - c =2    - 2 2 HHE - - - 

III -0.321 0.55 c = 2  c = 2, 3 2  2 HHE 1 2 HHE 

IV -0.775 0.91 c = 4  c = 4 4 4 3 4 4 HHE 

 

5.5    Approximate value of c at g = 0,1,2 for  the study Populations. 

Here, the expression for determining approximate value of c as given in 4.26 of 

chapter four is utilized and the study populations applied to obtain approximate values 

of the specification parameter, c. The results were earlier shown on table 13. Since the 
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distributions consist of N values of pi, N values of c are computed. However, our 

interest here is to obtain the lower and upper values of c determined by Min pi and 

Max pi.  

From  table 18 above, it is clear that the true value of c is in [0,2], [0,2], [0,3] and 

[0,13] for populations I, II, III and IV respectively when g=0. However, when g =1, c 

is a value in [0,2], [0,4], [0,3] and [0,6] for populations I, II, III and IV respectively. 

When g=2, c is a value in [0,1], [0,2], [0,2] and [0,8] for populations I, II, III and IV 

respectively. 

By these results, we can conveniently state that the best value of c is determined when 

g→2, especially by the interval defined by Min pi and Max pi.  

Again, for convenience, we assume that for the values of c =4 is adequate for all values 

of  c  4, since our interest is mainly in the first four moments described by c = 1, 2, 3 

and 4. 

Therefore, we can conclude that the specification parameter are c=1, c=2, c=2 and c=4 

for populations I, II, III and IV respectively. 
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5.6 Relative Efficiency of alternative linear estimators as compared with Horvitz 

and Thompson estimator in πPS sampling design. 

In this section, the relative efficiencies of the proposed estimators in PPSWOR 

sampling design otherwise, πPS design as compared with the conventional Horvitz and 

Thompson (1952) estimator are presented for populations I to IV as shown on tables 

19 to 22 for sampling design while the expected MSE under super-population model 

are shown on tables 54 to 57 for populations I to IV respectively. 

Tables 19 to 22 also show the estimates of population total, bias, variance and MSE for 

populations I to IV respectively.  

 

Table 19: Estimates of population total, bias, variance and relative efficiency using 

conventional and alternative estimators in PPSWOR  sampling design for 

population I 

 Estimators 

𝜏 𝐻𝑇  𝜏 𝑔,𝑐=1 𝜏 𝑔,𝑐=2 𝜏 𝑔,𝑐=3 𝜏 𝑔,𝑐=4 

Total 3023.07 2985.70 2985.83 2986.02 2986.05 

Bias 0.00 -0.02 1.02 1.22 1.25 

Variance 706919.29 681011.34 681079.26 681163.50 681143.82 

RE 100.00 96.34 96.34 96.36 96.35 

 

 

Table 20: Estimates of population total, bias, variance and relative efficiency using 

conventional and alternative estimators in PPSWOR  sampling design for 

population II. 

 Estimators 

𝜏 𝐻𝑇  𝜏 𝑔,𝑐=1 𝜏 𝑔,𝑐=2 𝜏 𝑔,𝑐=3 𝜏 𝑔,𝑐=4 

Total 4700.59 4170.32 4138.16 4141.81 4145.53 

Bias 0.00 -2.60 3.43 6.66 8.06 

Variance 853381.41 588259.60 577833.43 580399.04 582315.44 

RE 100.00 68.93 67.71 68.01 68.24 
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Table 21: Estimates of population total, bias, variance and relative efficiency using 

conventional and alternative estimators in PPSWOR  sampling design for 

population III. 

Estimators 

𝜏 𝑔,𝑐=𝐻𝑇   𝜏 𝑔,𝑐=1 𝜏 𝑔,𝑐=2 𝜏 𝑔,𝑐=3 𝜏 𝑔,𝑐=4 

Total 9805.67 8660.18 8602.48 8618.65 8628.06 

Bias 0.00 -12.06 24.05 42.10 48.75 

Variance 6925145.53 4751914.88 4626838.10 4642936.32 4655158.96 

RE 100.00 68.62 66.81 67.04 67.22 

 

 

 

Table 22: Estimates of population total, bias, variance and relative efficiency using 

conventional and alternative estimators in PPSWOR  sampling design for 

population IV. 

 Estimators 

𝜏 𝐻𝑇  𝜏 𝑔,𝑐=1 𝜏 𝑔,𝑐=2 𝜏 𝑔,𝑐=3 𝜏 𝑔,𝑐=4 

Total 39720.98 17955.03 14236.65 12675.18 11859.44 

Bias 0.00 -243.09 -273.84 -266.46 -243.02 

Variance 117152937 19222566 11750358 9241840 8058239 

RE 100.00 16.41 10.03 7.89 6.88 

 

 

5.6.1 Relative Efficiencies of proposed estimators as compared with Horvitz and 

Thompson Estimator in PPSWOR design. 

Considering table 19 above, it is clear that RE(𝜏 𝐻𝑇\𝜏 𝑔,𝑐=1) < RE(𝜏 𝐻𝑇\𝜏 𝑔,𝑐), c = 2,3,4 

and also, RE(𝜏 𝐻𝑇\𝜏 𝑔,𝑐=1) < RE(𝜏 𝐻𝑇 \𝜏 𝐻𝑇). Thus, the estimator defined by c=1 and c=2 

are equally efficient with RE coefficient of 96.34% that minimizes the MSE as far as 

population I is concerned.  
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For population II, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 1,2,3 and also RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < 

RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻), hence the estimator defined by c=2 as shown on table 20 above with 

relative efficiency coefficient of 67.71% that minimizes the MSE. Similarly, in 

population III as shown on table 21 above, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 1,3,4 

and also RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=2) < RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻), so that the estimator defined by c=2 

performed  better than all other estimators in the class. 

 For population IV, RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=4) < RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐), c = 1,2,3 and also RE(𝜏 𝐻𝐻\𝜏 𝑔,𝑐=4) 

< RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻), and so, it is clear that the estimator defined by c=4 is the best 

estimator in terms of minimizing MSE as shown on table 22 above.  
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5.6.2 Relative Efficiencies of proposed estimators as compared with Horvitz and 

Thompson Estimator under super-population model. 

Under super-population model, the MSE for populations I, II, III and IV are shown 

on tables 54, 55, 56 and 57 in appendix B below. Their estimators are defined for 

populations I, II, II and IV respectively as follows: 

 Population I: for g = 0, 1, 2; c = 4, 1 and HTE; 

Population II:  for g = 0, 1, 2; c = 4, 1, 1; 

Population II: for g = 0, 1, 2; c = 4, 1, 1; 

Population II: for g = 0, 1, 2; c = 4, 4, 1. 

We again observe the changing specification for the study populations, especially 

under the sampling design. These changing specification are of importance in this 

study as they relate with moment in correlation coefficient determined by the 

expectation of the c
th

 moment in the standardized variable and hence, the linear 

regression model. 

 

5.7 Relative Efficiencies of proposed alternative linear estimators in pps 

sampling schemes under certain theoretical probability distributions. 

In this section, the estimators are studied by utilizing theoretical distributions of the 

auxiliary information namely normal, uniform, chi-square and gamma distributions 

representing symmetric, rectangular and asymmetric distributions with the aim of 

determining whether the distributions of the variables have impact on the specification 

and hence, definition of an estimator for a target population. 

Here, the auxiliary information is assumed to be known and the survey statistician 

obtains only the study variables for estimation. For this reason, we shall only simulate 

values of auxiliary variables and hence, the corresponding selection probabilities. 
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5.7.1 Relative efficiency of proposed estimators as compared with 

 conventional estimator under the theoretical distributions for population 

I. 

The results of the relative efficiencies of the alternative estimators in PPSWR 

sampling scheme as compared with the conventional estimator for both sampling 

design and super-population model are shown on tables 23 to 26 below.  

Under normal distribution, the estimator defined by c = 4 is the best estimator with 

Relative efficiency coefficient of 7.6%. It is also clear from the result that the Rao‟s 

estimator corresponding with ρ=0 is as good as the estimator defined by c=4 as shown 

on table 23 below. Under chi-square distribution, the estimators defined by c = 1,2,3 

and 4 are equally efficient with MSE far below that of the conventional estimator. 

Again, the Rao‟s estimator proves to be equally efficient as the defined estimators at 

ρ=0.162 as shown in table 24 below. 

 

Table23: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under the theoretical Normal  Distribution  for 

population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 7.6 7.6 7.6 7.6 

0.100 100.0 8.5 7.6 7.6 7.6 

0.162 100.0 9.7 7.7 7.6 7.6 

0.500 100.0 24.1 12.1 9.0 8.0 

0.900 100.0 73.7 56.8 45.2 37.0 

1.000 100.0 100.0 100.0 100.0 100.0 
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Table24: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under the Ch-squared distribution  for 

population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 0.0 0.0 0.0 0.0 

0.100 100.0 0.0 0.0 0.0 0.0 

0.162 100.0 0.0 0.0 0.0 0.0 

0.500 100.0 0.1 0.0 0.0 0.0 

0.900 100.0 0.2 0.1 0.1 0.1 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

 

Table25: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under the uniform distribution  for population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 100.0 100.0 100.0 100.0 

0.100 100.0 100.0 100.0 100.0 100.0 

0.162 100.0 100.0 100.0 100.0 100.0 

0.500 100.0 100.0 100.0 100.0 100.0 

0.900 100.0 100.0 100.0 100.0 100.0 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

For uniform distribution, all the estimators, that is, the conventional and all the 

alternative estimators performed the same in terms of MSE as shown on table 25 

above. Under gamma distribution, c = 4 is the best estimator as shown on table 26 

below. In the same manner, Rao‟s estimator is another competing estimator with equal 

RE with the estimator defined by c = 4. 
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Table26: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under the gamma distribution  for population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 0.1 0.1 0.1 0.1 

0.100 100.0 0.8 0.2 0.1 0.1 

0.162 100.0 1.3 0.2 0.2 0.1 

0.500 100.0 3.8 2.0 1.0 0.5 

0.900 100.0 11.0 6.9 5.6 4.8 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

5.7.2 Relative efficiency of proposed estimators and the conventional estimator 

 under certain theoretical distributions for population II. 

We note from the analysis that under uniform distribution, the estimators are all the 

same. For this reason, we concentrate on the other distributions, namely, normal, chi-

square and gamma distributions respectively. The results are presented in tables 27 to 

29 below.  

Under normal distribution, the estimator defined by c = 3 is the best having RE 

coefficient of 22% which is far less that all other estimators at ρ=0.395 as shown on 

table 27 below.  
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Estimators with c = 3 and 4 are best under chi-square distribution with RE coefficient 

of 0.1% which is again far less than all other estimators in terms of MSE. As shown on 

table 28 below. Under gamma distribution, the estimator defined by c = 4 is preferred 

to all others with relative mean square error of 1.5% as shown on table 29. 

 

Table27: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under the theoretical Normal  Distribution  for 

population II 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 22.4 22.4 22.4 22.4 

0.100 100.0 21.9 22.3 22.4 22.4 

0.395 100.0 27.6 22.2 22.0 22.2 

0.500 100.0 32.3 23.5 22.0 22.0 

0.900 100.0 75.4 60.2 50.1 43.0 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

 

 

Table28: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under Chi-square  Distribution  for population II 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 0.1 0.1 0.1 0.1 

0.100 100.0 0.2 0.1 0.1 0.1 

0.395 100.0 0.6 0.2 0.1 0.1 

0.500 100.0 0.8 0.4 0.2 0.1 

0.900 100.0 2.4 1.5 1.2 1.0 

1.000 100.0 100.0 100.0 100.0 100.0 
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Table29: Relative Efficiencies of proposed alternative estimators as compared with 

the Hansen and Hurwitz estimator under Gamma  Distribution  for population II 

 

 

 

 

 

 

5.7.3 Relative efficiency of proposed estimators and the conventional estimator 

 under certain theoretical distributions for population III. 

The results of the relative efficiency as measured by the relative mean square error for 

population III are shown on tables 30, 31 and 32  for normal, chi-square and gamma 

distributions respectively.  Again, it is clear that under normal distribution, the 

estimator defined by c= 4 is the best while those defined by c = 3and c =4 are the best 

estimators under chi-square distributions. Here, the Rao‟s estimator perfomed  the 

same as the estimators earlier defined for the population. In the case of gamma 

distribution as shown on table 31, the estimator defined by c = 2 with RMSE = 28.45% 

for ρ=0.5 and  c=1 with RMSE = 28.904% at ρ=-32 are the best for this population. 

 

Table30: Relative Efficiencies of  linear alternative estimators as compared with  

HHE for the theoretical Normal  Distribution  for population III 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 28.5 28.5 28.5 28.5 

0.1 100.0 29.0 28.5 28.5 28.5 

0.5 100.0 40.7 31.5 29.3 28.7 

0.5 100.0 41.2 31.7 29.4 28.7 

0.9 100.0 80.0 66.6 57.2 50.4 

1.0 100.0 100.0 100.0 100.0 100.0 

 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 1.4 1.4 1.4 1.4 

0.100 100.0 2.1 1.4 1.4 1.4 

0.395 100.0 6.3 2.7 1.7 1.5 

0.500 100.0 8.1 4.0 2.4 1.7 

0.900 100.0 32.5 19.6 14.6 11.8 

1.000 100.0 100.0 100.0 100.0 100.0 
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Table 31: Relative Efficiencies of  linear alternative estimators as compared with 

HHE for the theoretical Chi square  Distribution  for population III 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 0.002 0.002 0.002 0.002 

0.1 100.0 0.002 0.002 0.002 0.002 

0.3 100.0 0.003 0.002 0.002 0.002 

0.5 100.0 0.004 0.003 0.002 0.002 

0.9 100.0 0.008 0.005 0.004 0.003 

1.0 100.0 100.0 100.0 100.0 100.0 

 

 

 

 

 

Table 32:Relative Efficiencies of  linear alternative estimators as compared with 

HHE for the theoretical the theoretical Gamma  Distribution  for population III 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 30.986 30.986 30.986 30.986 

0.1 100.0 29.030 30.723 30.959 30.984 

0.3 100.0 28.904 29.000 30.184 30.711 

0.5 100.0 32.787 28.450 28.681 29.508 

0.9 100.0 67.776 51.944 42.982 37.473 

1.0 100.0 100.0 100.0 100.0 100.0 

 

 

5.7.4 Relative efficiency of proposed estimators and the conventional estimator 

 under certain theoretical distributions for population IV. 

We considered the results on tables 33, 34  and 35 below for normal, chi-squared and 

gamma distributions respectively. It can be observed here that under normal 

distribution, c=4 defined the best estimator with RMSE of 48.6% and 59.7% 

respectively at  both ρ=0.775 and ρ=0.91.   
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These specifications are same for chi-square and gamma distributions as evidenced on 

tables 34 and 35 with RMSE of 1.9% and 2.9% for chi-square distribution and 7.1% 

and 9.7% for gamma distribution. 

 

Table 33: Relative Efficiencies of  linear alternative estimators as compared with 

HHE for the theoretical Normal  Distribution  for population IV 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 45.9 45.9 45.9 45.9 

0.100 100.0 45.7 45.9 45.9 45.9 

0.775 100.0 68.2 56.7 51.4 48.6 

0.900 100.0 82.3 71.5 64.5 59.7 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

 

 

Table34: Relative Efficiencies of  linear alternative estimators as compared with 

HHE for the theoretical Chi square  Distribution  for population IV 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 1.3 1.3 1.3 1.3 

0.100 100.0 1.3 1.2 1.3 1.3 

0.775 100.0 3.8 2.6 2.1 1.9 

0.900 100.0 7.4 4.4 3.4 2.9 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

 

 

 

 

 

 

 



120 
 

 

Table35: Relative Efficiencies of  linear alternative estimators as compared with 

HHE for the theoretical Gamma  Distribution  for population IV 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 4.4 4.4 4.4 4.4 

0.100 100.0 5.3 4.5 4.4 4.4 

0.775 100.0 12.6 9.0 7.8 7.1 

0.900 100.0 22.8 14.2 11.2 9.7 

1.000 100.0 100.0 100.0 100.0 100.0 

 

Table 36 below presents the summary of the specification of estimators by utilizing 

theoretical distributions with the study variable which shows the varying estimators 

for varying populations and especially, as it relates with moment in ρ. 

 

Table 36: Summary of estimators defined by c under the theoretical distributions for 

four study populations under PPS sampling design 

Population Normal Uniform Chi-square Gamma 

Population I c=3,4  all estimators c=1,2,3,4 c=1,2,3,4 

Population II c=3  all estimators c=4 c=4 

Population III c=4  all estimators c=3,4 c=2 

Population IV c=4  all estimators c=4 c=4 

 

It is clear from table 36 that estimators defined by higher moments c=3 or c = 4 are 

best for populations that are normally distributed. In the case of uniform distribution, 

all estimators performed equally. For chi-square and gamma distributions, there is a 

mixture of higher and lower moment and in cases where the study and measure of size 

variables are weakly correlated, all estimators performed equally the same.  
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5.8 Expected MSE of proposed and conventional estimators under certain 

theoretical distributions. 

Detailed results are presented in appendix B below for the theoretical distributions and 

the study populations. For convenience, we present the summary of the estimators as 

shown on table 37 below for the study populations and distributions as adjudged by 

the performance of the MSE. 

Table 37: specification of estimators by super-population model under theoretical 

distributions 

Population/ 

Distribution 

g Population I Population II Population III Population IV 

Normal 0 c=4 c=1 c=2 c=2(4) 

1 c=4 c=1 c=1 c=1 

2 HHE HHE HHE HHE 

Uniform 0 c =1,2,3,4 c =1,2,3,4 c =1,2,3,4 c =1,2,3,4 

1 c =1,2,3,4 c =1,2,3,4 c =1,2,3,4 c =1,2,3,4 

2 HHE HHE HHE HHE 

Chi-square 0 c=4 c=1 c=1(1) c=3(4) 

1 c=4 c=1 c=HHE(1) c=1(2) 

2 HHE HHE HHE HHE 

Gamma 0 c=3 c=1 c=1(2) c=4(4) 

1 c=3 c=1 c=1(1) c=1(3) 

2 HHE HHE HHE HHE 

Note: values in parenthesis represent the estimate at transformed ρ 
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From table 37 above, it is clear that no single estimator can be said to be consistently 

efficient for all the study populations even under the super-population model.   

However, we cannot certainly conclude that the distribution of the population 

determines the specification of an estimator.   

 

 

 

 

5.9 Comparison of estimators under Rao-Hartley Cochran scheme 

In 4.62, the variance and hence MSE of the proposed estimator under RHC strategy 

was defined. In this section, the results of MSE is presented on tables 38 to 41 while 

those of relative efficiencies are shown on tables 42 to 45 for populations I to IV 

below respectively. 

 

Table 38: Mean Squared Error of Alternative Linear Estimators under RHC scheme 

for Population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 2025.19 1155.92 1155.92 1155.92 1155.92 

0.100 2025.19 1135.19 1152.61 1155.58 1155.89 

0.162 2025.19 1135.62 1147.83 1154.48 1155.69 

0.500 2025.19 1300.03 1152.69 1134.18 1139.79 

0.900 2025.19 1831.36 1678.93 1558.58 1463.38 

1.000 2025.19 2025.19 2025.19 2025.19 2025.19 

 

 

Table 39: Mean Squared Error of Alternative Linear Estimators under RHC scheme 

for Population II 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 4964.55 1756.86 1756.86 1756.86 1756.86 

0.370 4964.55 1508.65 1530.12 1651.84 1714.91 

0.395 4964.55 1531.30 1512.08 1632.50 1703.08 
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0.500 4964.55 1682.64 1466.86 1542.92 1631.02 

0.900 4964.55 3661.47 2902.39 2425.63 2110.76 

1.000 4964.55 4964.55 4964.55 4964.55 4964.55 

 

 

 

 

Table 40: Mean Squared Error of Alternative Linear Estimators under RHC scheme 

for Population III 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.1 111371.1 111371.1 111371.1 111371.1 111371.1 

0.4 111371.1 93875.7 81430.8 72238.0 65257.2 

0.5 111371.1 53597.2 43270.3 43251.5 45431.0 

0.9 111371.1 45033.0 43827.8 47202.5 48915.7 

1.0 111371.1 43902.1 48957.1 49758.5 49842.2 

0.0 111371.1 49851.5 49851.5 49851.5 49851.5 

 

 

 

Table 41: Mean Squared Error of Alternative Linear Estimators under RHC scheme 

for Population IV 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

1.0 1157246.0 1157246.0 1157246.0 1157246.0 1157246.0 

0.9 1157246.0 566969.8 436895.8 379226.3 344495.3 

0.8 1157246.0 392935.4 310935.9 265308.9 230137.3 

0.5 1157246.0 276694.4 190937.4 148588.1 136151.5 

0.1 1157246.0 142190.8 141803.8 145635.0 146083.4 

0.0 1157246.0 146134.0 146134.0 146134.0 146134.0 
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The MSE of the alternative estimators as shown on tables 38 to 41above suggested 

that the estimators defined by c=1, c=2, c=3 and c=4 are best for populations I, II, III 

and IV with ρ = 0.162, ρ = 0.395, ρ = -0.32 or 0.55and ρ = -0.775or 0.91 respectively.  

 

 

 

 

 

 

 

 

 

Table 42: Relative Efficiencies of Alternative Linear Estimators under RHC scheme 

for Population I 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 57.1 57.1 57.1 57.1 

0.100 100.0 56.1 56.9 57.1 57.1 

0.162 100.0 56.1 56.7 57.0 57.1 

0.500 100.0 64.2 56.9 56.0 56.3 

0.900 100.0 90.4 82.9 77.0 72.3 

1.000 100.0 100.0 100.0 100.0 100.0 

 

 

 

 

Table 43: Relative Efficiencies of Alternative Linear Estimators under RHC scheme 

for Population II 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

0.000 100.0 35.4 35.4 35.4 35.4 

0.370 100.0 30.4 30.8 33.3 34.5 

0.395 100.0 30.8 30.5 32.9 34.3 

0.500 100.0 33.9 29.5 31.1 32.9 

0.900 100.0 73.8 58.5 48.9 42.5 

1.000 100.0 100.0 100.0 100.0 100.0 

 



125 
 

In terms of the RMSE, we investigate the specification of the estimator for each 

population which is our main focus in this study, it is observed that for population I, 

the estimator with c = 1is the best estimator with relative efficiency of 56.1%. As ρ 

increases to 0.5, the estimator defined by c = 3 would be preferred and the estimator 

defined by c = 4 would be the best  when ρ→1. 

 

 

 

 

Table 44: Relative Efficiencies of Alternative Linear Estimators under RHC scheme 

for Population III 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

1.000 100.0 100.0 100.0 100.0 100.0 

0.9 100.0 84.3 73.1 64.9 58.6 

0.5 100.0 48.1 38.9 38.8 40.8 

0.3 100.0 40.4 39.4 42.4 43.9 

0.1 100.0 39.4 44.0 44.7 44.8 

0.0 100.0 44.8 44.8 44.8 44.8 

 

 

Table 45: Relative Efficiencies of Alternative Linear Estimators under RHC scheme 

for Population IV 

Rho RE(𝜏 𝐻𝐻\𝜏 𝐻𝐻) RE(𝜏 1\𝜏 𝐻𝐻) RE(𝜏 2\𝜏 𝐻𝐻) RE(𝜏 3\𝜏 𝐻𝐻) RE(𝜏 4\𝜏 𝐻𝐻) 

1.000 100.0 100.0 100.0 100.0 100.0 

0.9 100.0 49.0 37.8 32.8 29.8 

0.8 100.0 34.0 26.9 22.9 19.9 

0.5 100.0 23.9 16.5 12.8 11.8 

0.1 100.0 12.3 12.3 12.6 12.6 

0.0 100.0 12.6 12.6 12.6 12.6 
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In population II, the estimator defined by c = 2 is preferred at ρ=0.395 which is the 

true population correlation coefficient. The same specification would be appropriate 

for ρ=0.5 and as ρ→1, c= 4 would be preferred. 

For population III, the true population correlation is -0.32. However under 

transformation, ρ=0.55. Considering ρ=.32, it is clear that the estimator with c = 2 is 

the best with relative efficiency of 39.5%. However, at ρ=.55 the estimator defined by 

c = 3 would be preferred as it has the lowest MSE expressed in terms of relative 

efficiency of 38.8%. 

Finally, for population IV, the estimator defined by c = 4 is the best at ρ=0.775 with 

relative efficiency of 19.9%and ρ=0.91 and as ρ→0, the estimator with c = 1 would be 

preferred to all other estimators in the class. 

All the estimators converge to HHE at ρ=1 and to Rao‟s estimator as ρ=0. 
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CHAPTER SIX 

CONCLUSIONS 

6.0  Introduction. 

In this chapter, we summarize the main results of this thesis and suggest some 

areas of future research related to this study. Earlier, this thesis presented some 

literature including the popular works of Godambe(1955) and Basu(1971) that 

postulated the non existence of a uniformly most efficient homogenous estimator- 

theory which gave rise to finding alternative estimators. It was further observed that 

large-scale surveys have become complex in design and estimation for which the PPS 

sampling scheme is one of such designs that utilizes auxiliary information to enhance 

efficiency. However, most literature had emphasized the estimation of population 

parameter, say, total under the condition of positive correlation while the aspect of  

negative correlation is rarely addressed. The other issue of concern has been the 

assumption that each of the existing estimators in PPS sampling, both conventional 

and alternative estimators are efficient for all study populations irrespective of their 

distributional properties and the non-existence theory.  

6.1  Main Results 

In chapter three, we utilized the law of direct proportion to establish that the 

selection probabilities, pi, is a realization of positive correlation between the study 
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variables y and the measure of size x, which is an advancement on the classical ratio-

estimator to obtain the Hansen-Hurwitz‟s estimator. 

The selection probabilities, pi‟s provided the normed-size measure for 

estimating population total under the PPSWR sampling scheme while the generalized 

selection probabilities 𝑝𝑖,𝑔,𝑐
∗   provided a linear transformation that utilized the c

th
 

(c=1,2,3,4) moment in correlation coefficient to develop a class of alternative linear 

estimators. We have shown that for efficiency, the relationship between the statistical 

properties namely coefficient of variation, skewness and kurtosis of the study variables 

and measure of size variables and correlation coefficient is expressed by  𝜌1 =
𝐶𝑉𝑥

𝐶𝑉𝑦
<

1, 𝜌2 < 1, 𝜌3 =
𝛾𝑦

𝛾𝑥
< 1 ;  𝛾𝑥 ≠ 0 and 𝜌4 =

𝐾𝑦

𝐾𝑥
 < 1; 𝐾𝑥 ≠ 0. 

 When c = 1, we showed that 𝜌1 >
𝐶𝑉𝑥

𝐶𝑉𝑦
< 1 along with the conditions namely 

𝜌2 < 1, 𝜌3 =
𝛾𝑦

𝛾𝑥
< 1and 𝜌4 =

𝐾𝑦

𝐾𝑥
< 1 must hold true for the estimator defined by c = 1 

to be utilized. This agrees with Cochran(1977) who showed that the ratio estimator is 

most efficient among other competing estimators when  𝜌1 >
𝐶𝑉𝑥

2𝐶𝑉𝑦
< 1. However, this 

estimator can only be specified when ρ→0. This again agreed with the positions of 

Rao(1966), Bansal and singh(1985), Amahia et al(1989), Grewal(1999) among other 

scholars. We note here that this condition is only true for a linear estimator. 

The study have also shown that when there is moment in  ρ  such that ρ takes a 

value 0.25<ρ<0.50 or  some neighbourhood and ρ
2
→0, then the estimator defined by c 

= 2 is best suitable for the target population. If there is further moment in ρ such that 

𝜌3 =
𝛾𝑦

𝛾𝑥
< 1  satisfying 0 < 𝜌3 < 1, then an estimator defined by c = 3 would be the 

best in term of MSE and relative efficiency. Empirical results have shown that this 

happens when  0.5<ρ<0.7 and its neighbourhood. Similarly, when 𝜌4 =
𝐾𝑦

𝐾𝑥
<1 and 

0.7<ρ<0.99, then the estimator defined by c = 4 is the best for the target population. 

In situation where negatively correlated variables are encountered, direct 

transformation of measure of size variables could not provide the desired estimator. 

Thus, taking cognizance of the law of inverse proportion and further transformation 

from inverse to direct proportion by 𝑝𝑖 =
1 𝑥𝑖 

 1 𝑥𝑖 𝑁
𝑖=1

 𝑝𝑖 =
𝑧𝑖

𝑍
, the  correlation structure  
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changed from negative to positive correlation. By this transformation, a Modified 

Hansen-Hurwitz Estimator (MHHE) or Modified Horvitz-Thompson Estimator 

(MHTE) has been proposed for any observed case of negative correlation. 

 It is worth to note here that the MHHE or MHTE determined by 𝑝𝑖 =
1 𝑥𝑖 

 1 𝑥𝑖 𝑁
𝑖=1

 

possess the properties of harmonic mean which is mostly used when it is desirable to  

assign lower weights to higher values and higher weights to lower values. The 

selection probabilities and the derived generalized selection probabilities 𝑝𝑖,𝑔,𝑐
∗  can be 

utilized in the class of alternative linear estimator by observing the conditions similar 

with those estimators involving positively correlated variables. 

The interesting features of the developed estimators are that their bias, MSE‟s 

and MSE‟s coincide with the Rao‟s Estimator (RE) when ρ=0 and the conventional 

HHE or HTE in cases of PPSWR or πPS respectively when ρ=1. This provided  

boundaries for the linear estimators in PPS sampling scheme different from those 

defined by Sahoo(1995) estimator which had extended the boundaries but reduced the 

magnitude of negative correlation by restricting the estimators to instances of strong 

negative correlation. 

The derived expression for determining approximate value of c is another 

useful means of defining an efficient estimator for a target  population. Empirical 

evidence have shown that the optimum value of c lies between Min pi and Max pi. 

 The main aim of developing a general class of linear estimator is as a result of 

the fact of the non-existence of a uniformly most efficient estimator (UMEE) in the 

parameter space on one hand and the fact that no single estimator can be efficient for 

all populations and at all conditions. Thus, the class of alternative linear estimators 

defined by the generalized selection probabilities 𝑝𝑖,𝑔
∗ =

1−𝜌𝑐

𝑁
+ 𝜌𝑐𝑝𝑖 , c = 1,2,3,4 for 

0<ρ<1 provided the best estimators of population total for any target population. 

 The implication of the results above is that one estimator, say HHE, ACRE, 

RE among others cannot be said to be the best for all populations at all times. Thus 

different populations may have different estimators depending on their correlation 

coefficient and how it relates with the characteristics of the study populations. 
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The results of our empirical studies using sample of size two, that is, n =2 for 

the four study populations provided practical evidence of the behaviour of the 

developed class of linear estimators in PPS sampling schemes. Under the sampling 

design, we can conveniently infer that  when ρ=0, the Rao‟s estimator would always 

be the best among other competing estimators. As ρ moves slightly from zero, Rao‟s 

estimator increased in bias and hence MSE and the anticipated MSE or MSE thereby 

suggesting the estimator defined by c = 1. As ρ moves closer to the 0.5, another 

estimator defined by c= 2 becomes the best among other competing estimators. 

Similarly,   as ρ moves slightly away from 0.5 but not so strong, the estimator defined 

by c = 3 becomes the best. Furthermore, the estimator defined by c = 4 would be the 

best when it is clear that there is very strong correlation between the variables of 

study, especially when ρ→1..  

Certainly, the proposed estimators form a class of linear estimators bounded by 

Rao‟s estimator by the left and HHE by the right so that  all other estimators defined 

by c = 1, 2, 3 and 4 are found within this class. Therefore, for a given population, the 

proposed linear estimators provide the best estimators for use in PPS sampling than 

utilizing the conventional estimator or a specified alternative estimator that are rigidly 

specified by fixed order of ρ. 

 The behaviour of the proposed estimators under the Rao-Hartley and Cochran 

scheme when n=5 is consistent with our earlier findings for n=2 in both PPS and πPS 

sampling schemes thereby suggests that increasing sample size would not change the 

estimators for the target populations. However, apart from uniform distribution for 

which all estimators are equal in performance, empirical evidence have shown that for 

theoretical populations that are normally distributed, estimators with c=3 or c = 4 

performed better than other estimators in terms of MSE or MSE. However, for 

skewed distributions such as chi-squared and gamma distributions, estimators defined 

by c = 1 or 2 are best specified when ρ→0 or somewhat moderate. However, as ρ→1, 

estimators defined  by c=3 or c=4 are best specified. Furthermore, the Grewals 

estimator is only best under super-population model than sampling design and 

utilizing this estimator would require transformation of c into c* =1/c as shown in 

chapter three. 
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Generally, the discussions above have shown that no single estimator is 

efficient for all populations and conditions and a rough idea of the magnitude of the 

correlation between the study and auxiliary variables and hence the size measures 

would provide insight into which estimator would be best for the target population. 

Secondly, the idea of the ratio of coefficients of variations, skewness and kurtosis as 

related with the correlation coefficient would help in the specification of estimators. 

Whereas the information of the target populations is not available to the survey 

statistician, this study have shown that among the estimators in the class defined by 

c=1,2,3 and 4  there is the one estimator that is best for estimating population total. 

Thus, in this era of information technology, it would be easier to identify such 

estimator when the suggested estimators are run simultaneously. 

 

6.2 SUGGESTED AREA OF FUTURE RESEARCH 

The identification of survey problems by the practicing survey statisticians have 

shown that survey data could also be subject to sampling and non-sampling errors. 

Secondly, the question of utilization of  non-linear transformation for the selection 

probabilities as well as utilization of semi-parametric of non-parametric populations 

may arise. Thus this research could be extended to cover the areas of  

 Non-sampling Error and possibly randomized response techniques (RRT); 

 Non-linear transformation of selection probabilities; 

 Utilization of Bayesian method to determining selection probabilities; 

 Use of rank-correlation under the linear or non-linear transformations; 

 Multi-stage PPS sampling as the case may be; 

 Small domain estimation. 
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APPENDIX A 

STUDY POPULATIONS UTILIZED IN THIS STUDY 

 

Table 46: Study Population I 

S/No x y Ρ 

 

S/No x Y ρ 

1 3 11 0.395 

 

16 5 10 0.395 

2 4 7 0.395 

 

17 6 9 0.395 

3 5 9 0.395 

 

18 3 5 0.395 

4 8 8 0.395 

 

19 3 7 0.395 

5 12 8 0.395 

 

20 9 9 0.395 

6 11 9 0.395 

 

21 6 6 0.395 

7 8 8 0.395 

 

22 7 12 0.395 

8 9 12 0.395 

 

23 8 9 0.395 

9 11 10 0.395 

 

24 8 6 0.395 

10 10 9 0.395 

 

25 9 9 0.395 

11 8 8 0.395 

 

26 11 11 0.395 

12 9 14 0.395 

 

27 11 10 0.395 

13 7 12 0.395 

 

28 10 14 0.395 

14 8 10 0.395 

 

29 5 8 0.395 

15 8 10 0.395 

 

30 3 7 0.395 

 

      

 

Table 47: Study Population II 

   
S/No X y Ρ 

   
1 41 36 0.162 

   
2 43 47 0.162 

   
3 54 41 0.162 

   
4 39 47 0.162 

   
5 49 47 0.162 

   
6 45 45 0.162 

   
7 41 32 0.162 

   
8 33 37 0.162 

   
9 37 40 0.162 

   
10 41 41 0.162 

   
11 47 37 0.162 

   
12 39 48 0.162 
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    Table 48:Study Population III 

   
S/No X y Ρ 

   
1 100 3 -0.32 

   
2 88 8 -0.32 

   
3 20 9 -0.32 

   
4 17 11 -0.32 

   
5 60 5 -0.32 

   
6 77 9 -0.32 

   
7 51 5 -0.32 

   
8 69 4 -0.32 

   
9 66 6 -0.32 

   
10 77 9 -0.32 

   
11 68 2 -0.32 

   
12 36 4 -0.32 

   
13 74 4 -0.32 

   
14 33 5 -0.32 

   
15 54 6 -0.32 

   
16 55 6 -0.32 

   
17 77 6 -0.32 

       

Table 49: Population IV 

   
S/No x y Ρ 

   
1 6.8 20 -0.77 

   
2 6.2 23 -0.77 

   
3 5.5 38 -0.77 

   
4 0.85 86 -0.77 

   
5 0.71 92 -0.77 

   
6 9 16 -0.77 

   
7 1.4 81 -0.77 

   
8 4.5 53 -0.77 

   
9 3.8 42 -0.77 

   
10 2.1 62 -0.77 

   
11 4.85 39 -0.77 

   
12 3.197 35 -0.77 

   
13 0.443 87 -0.77 

   
14 0.468 91 -0.77 

   
15 0.59 84 -0.77 

   
16 0.339 75 -0.77 

   
17 0.161 54 -0.77 

   
18 0.787 64 -0.77 

   
19 0.069 26 -0.77 

   
20 0.11 100 -0.77 
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APPENDIX B 

MSE OF THE PROPOSED ALTERNATIVE ESTIMATORS FOR THE FOUR STUDY POPULATIONS 

Table50: Relative Efficiency based on Expected MSE (MSE) of alternative estimators as compared with HHE for population I 

g Rho Estimator   a   β2 G   a   β2 G   a   β2 

0 0.162 𝜏 𝑐  134.319 a + 0 β2 1 11 a + 0 β2 2 0.9153 a + 0 β2 

    𝜏 𝑔,𝑐=1 131.281 a + 0.01167 β2   10.890 a + 0.01167 β2   0.94453 a + 0.01167 β2 

    𝜏 𝑔,𝑐=2 131.706 a + 0.01608 β2   11.1282 a + 0.01608 β2   0.9557 a + 0.01608 β2 

    𝜏 𝑔,𝑐=3 131.787 a + 0.01687 β2   11.1432 a + 0.01687 β2   0.95771 a + 0.01687 β2 

    𝜏 𝑔,𝑐=4 131.801 a + 0.017 β2   11.1457 a + 0.017 β2   0.95804 a + 0.017 β2 
 

 

 

 

Table51: Relative Efficiency based on Expected MSE (MSE) of alternative estimators as compared with HHE for population II 

g Rho Estimator    a   β2 G   a   β2 G   A   β2 

0 0.395 𝜏 𝑐  1042.98 a + 0 β2 1 29 a + 0 β2 2 0.96253 a + 0 β2 

    𝜏 𝑔,𝑐=1 827.65 a + 0.03733 β2   28.5959 a + 0.03733 β2   1.09179 a + 0.03733 β2 

    𝜏 𝑔,𝑐=2 826.513 a + 0.06859 β2   25.5262 a + 0.06859 β2   1.20495 a + 0.06859 β2 

    𝜏 𝑔,𝑐=3 854.467 a + 0.08467 β2   31.5779 a + 0.08467 β2   1.26148 a + 0.08467 β2 

    𝜏 𝑔,𝑐=4 861.352 a + 0.09176 β2   32.0436 a + 0.09176 β2   1.286 a + 0.09176 β2 
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Table 52: Relative Efficiency based on Expected MSE (MSE) of alternative estimators as compared with HHE for population III 

g Rho Estimator   A   β2 G   a   β2 G   a   β2 

0 0.5 𝜏 𝑐  329.723 a + 0 β2 1 16 a + 0 β2 2 0.92725 a + 0 β2 

    𝜏 𝑔,𝑐=1 260.038 a + 0.04894 β2   14.9824 a + 0.04894 β2   1.04657 a + 0.04894 β2 

    𝜏 𝑔,𝑐=2 254.2 a + 0.13684 β2   14.8622 a + 0.13684 β2   1.24678 a + 0.13684 β2 

    𝜏 𝑔,𝑐=3 257.917 a + 0.22283 β2   17.2335 a + 0.22283 β2   1.42167 a + 0.22283 β2 

    𝜏 𝑔,𝑐=4 261.977 a + 0.28608 β2   18.0611 a + 0.28608 β2   1.54175 a + 0.28608 β2 

0 0.32 𝜏 𝑐  329.723 a + 0 β2 1 16 a + 0 β2 2 0.92725 a + 0 β2 

    𝜏 𝑔,𝑐=1 254.197 a + 0.10403 β2   15.6325 a + 0.10403 β2   1.17519 a + 0.10403 β2 

    𝜏 𝑔,𝑐=2 259.189 a + 0.24371 β2   14.5097 a + 0.24371 β2   1.46198 a + 0.24371 β2 

    𝜏 𝑔,𝑐=3 264.557 a + 0.32309 β2   18.5333 a + 0.32309 β2   1.60951 a + 0.32309 β2 

    𝜏 𝑔,𝑐=4 266.811 a + 0.35449 β2   18.927 a + 0.35449 β2   1.66577 a + 0.35449 β2 
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Table 53: Relative Efficiency based on Expected MSE (MSE) of alternative estimators as compared with HHE for population IV 

g Rho Estimator   a   β2 G   a   β2 G   a.   β2 

0 0.91 𝜏 𝑐  2292.36 a + 0 β2 1 16 a + 0 β2 2 0.28083 a + 0 β2 

    𝜏 𝑔,𝑐=1 711.025 a + 0.01273 β2   9.15609 a + 0.01273 β2   0.23119 a + 0.01273 β2 

    𝜏 𝑔,𝑐=2 430.8 a + 0.03008 β2   7.5652 a + 0.03008 β2   0.20608 a + 0.03008 β2 

    𝜏 𝑔,𝑐=3 322.159 a + 0.05026 β2   6.83628 a + 0.05026 β2   0.18485 a + 0.05026 β2 

    𝜏 𝑔,𝑐=4 266.236 a + 0.07415 β2   6.41053 a + 0.07415 β2   0.16365 a + 0.07415 β2 

0 0.775 𝜏 𝑐  2292.36 a + 0 β2 1 16 a + 0 β2 2 0.28083 a + 0 β2 

    𝜏 𝑔,𝑐=1 346.544 a + 0.04391 β2   7.00906 a + 0.04391 β2   0.19106 a + 0.04391 β2 

    𝜏 𝑔,𝑐=2 222.85 a + 0.11534 β2   6.0349 a + 0.11534 β2   0.13087 a + 0.11534 β2 

    𝜏 𝑔,𝑐=3 183.251 a + 0.22511 β2   5.59361 a + 0.22511 β2   0.0497 a + 0.22511 β2 

    𝜏 𝑔,𝑐=4 164.902 a + 0.38348 β2   5.23992 a + 0.38348 β2   0.06507 a + 0.38348 β2 
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Table 54: Estimates of  MSE using conventional and alternative estimators in PPSWOR  sampling scheme for population I. 

g Rho Estimator   A   β
2
 g   A   β

2
 G   a.   β

2
 

0 0.162 𝜏 𝑐  757.7251 a+ 0.000 β
2
 1 61.04531 a+ 0.000 β

2
 2 4.995357 a+ 0.000 β

2
 

    𝜏 𝑔,𝑐=1 720.7753 a+ 0.038 β
2
   59.61553 a+ 0.038 β

2
   5.010464 a+ 0.038 β

2
 

    𝜏 𝑔,𝑐=2 719.4419 a+ 0.051 β
2
   59.7652 a+ 0.051 β

2
   5.045536 a+ 0.051 β

2
 

    𝜏 𝑔,𝑐=3 719.346 a+ 0.054 β
2
   59.79987 a+ 0.054 β

2
   5.052158 a+ 0.054 β

2
 

    𝜏 𝑔,𝑐=4 719.3336 a+ 0.054 β
2
   59.80576 a+ 0.054 β

2
   5.053256 a+ 0.054 β

2
 

 

 

 

Table 55: Estimates of  MSE using conventional and alternative estimators in PPSWOR  sampling scheme for population II. 

g Rho Estimator   A   β
2
 g   A   β

2
 G   a.   β

2
 

0 0.39 𝜏 𝑐  22609.09 a+ 0.000 β
2
 1 504.0447 a+ 0.000 β

2
 2 13.96817 a+ 0.000 β

2
 

    𝜏 𝑔,𝑐=1 13450.04 a+ 0.429 β
2
   398.2594 a+ 0.429 β

2
   13.74707 a+ 0.429 β

2
 

    𝜏 𝑔,𝑐=2 12709.7 a+ 0.721 β
2
   404.3067 a+ 0.721 β

2
   14.66844 a+ 0.721 β

2
 

    𝜏 𝑔,𝑐=3 12598.15 a+ 0.859 β
2
   410.831 a+ 0.859 β

2
   15.16344 a+ 0.859 β

2
 

    𝜏 𝑔,𝑐=4 12577.8 a+ 0.917 β
2
   414.0036 a+ 0.917 β

2
   15.37947 a+ 0.917 β

2
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Table 56: Estimates of  MSE using conventional and alternative estimators in PPSWOR  sampling scheme for population III. 

g Rho Estimator   A   β
2
 g   A   β

2
 G   a.   β

2
 

0 0.32 𝜏 𝑐  3672.619 a+ 0.00 β
2
 1 153.996 a+ 0.00 β

2
 2 7.43251 a+ 0.00 β

2
 

    𝜏 𝑔,𝑐=1 2299.603 a+ 0.39 β
2
   117.8413 a+ 0.39 β

2
   7.1915 a+ 0.39 β

2
 

    𝜏 𝑔,𝑐=2 2171.411 a+ 0.79 β
2
   119.7481 a+ 0.79 β

2
   8.017956 a+ 0.79 β

2
 

    𝜏 𝑔,𝑐=3 2152.597 a+ 1.00 β
2
   122.0586 a+ 1.00 β

2
   8.471023 a+ 1.00 β

2
 

    𝜏 𝑔,𝑐=4 2149.15 a+ 1.09 β
2
   123.0378 a+ 1.09 β

2
   8.645418 a+ 1.09 β

2
 

 

 

Table 57: Estimates of  MSE using conventional and alternative estimators in PPSWOR  sampling scheme for population IV. 

G Rho Estimator   A   β
2
 g   A   β

2
 G   a.   β

2
 

0 0.77 𝜏 𝑐  250723 a+ 0.0 β
2
 1 1039.224 a+ 0.0 β

2
 2 8.235249 a+ 0.0 β

2
 

    𝜏 𝑔,𝑐=1 20067.68 a+ 0.7 β
2
   165.6597 a+ 0.7 β

2
   4.465283 a+ 0.7 β

2
 

    𝜏 𝑔,𝑐=2 9544.162 a+ 1.1 β
2
   111.7766 a+ 1.1 β

2
   4.502901 a+ 1.1 β

2
 

    𝜏 𝑔,𝑐=3 6518.028 a+ 1.6 β
2
   96.10361 a+ 1.6 β

2
   4.980096 a+ 1.6 β

2
 

    𝜏 𝑔,𝑐=4 5191.764 a+ 2.2 β
2
   90.86967 a+ 2.2 β

2
   5.711622 a+ 2.2 β

2
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APPENDIX C 

 MSE OF THE PROPOSED ALTERNATIVE ESTIMATORS FOR THE THEORETICAL DISTRIBUTIONS OF THE MEASURE 

OF SIZE VARIABLES. 

 

Table 58:Expected MSE of  linear alternative estimators as compared with HHE for the theoretical Normal  Distribution  for population I 

 g Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 132.3884 a + 0.018428 β
2
   11.19912 a + 0.018428 β

2
   0.962711 a + 0.018428 β

2
 

    𝜏 𝑔,𝑐=2 131.8173 a + 0.017061 β
2
   11.14775 a + 0.017061 β

2
   0.958255 a + 0.017061 β

2
 

    𝜏 𝑔,𝑐=3 131.8047 a + 0.017032 β
2
   11.14629 a + 0.017032 β

2
   0.958115 a + 0.017032 β

2
 

    𝜏 𝑔,𝑐=4 131.8039 a + 0.01703 β
2
   11.14618 a + 0.01703 β

2
   0.958104 a + 0.01703 β

2
 

0 0.162 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 133.267 a + 0.020548 β
2
   11.27445 a + 0.020548 β

2
   0.969096 a + 0.020548 β

2
 

    𝜏 𝑔,𝑐=2 131.8603 a + 0.017162 β
2
   11.15207 a + 0.017162 β

2
   0.958647 a + 0.017162 β

2
 

    𝜏 𝑔,𝑐=3 131.8084 a + 0.01704 β
2
   11.14674 a + 0.01704 β

2
   0.95816 a + 0.01704 β

2
 

    𝜏 𝑔,𝑐=4 131.8045 a + 0.017031 β
2
   11.14625 a + 0.017031 β

2
   0.958112 a + 0.017031 β

2
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0 0.5 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 146.3695 a + 0.053071 β
2
   12.36458 a + 0.053071 β

2
   1.05984 a + 0.053071 β

2
 

    𝜏 𝑔,𝑐=2 135.2385 a + 0.025334 β
2
   11.44082 a + 0.025334 β

2
   0.983076 a + 0.025334 β

2
 

    𝜏 𝑔,𝑐=3 132.6938 a + 0.019164 β
2
   11.22548 a + 0.019164 β

2
   0.964953 a + 0.019164 β

2
 

    𝜏 𝑔,𝑐=4 132.0511 a + 0.017617 β
2
   11.16953 a + 0.017617 β

2
   0.960173 a + 0.017617 β

2
 

0 0.9 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 193.7988 a + 0.184093 β
2
   16.23106 a + 0.184093 β

2
   1.37615 a + 0.184093 β

2
 

    𝜏 𝑔,𝑐=2 178.0379 a + 0.138435 β
2
   14.95324 a + 0.138435 β

2
   1.272178 a + 0.138435 β

2
 

    𝜏 𝑔,𝑐=3 166.9784 a + 0.107597 β
2
   14.05313 a + 0.107597 β

2
   1.198654 a + 0.107597 β

2
 

    𝜏 𝑔,𝑐=4 158.9573 a + 0.085902 β
2
   13.39801 a + 0.085902 β

2
   1.144957 a + 0.085902 β

2
 

0 1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 217.3183 a + 0.255567 β
2
   18.12977 a + 0.255567 β

2
   1.529953 a + 0.255567 β

2
 

    𝜏 𝑔,𝑐=2 217.3183 a + 0.255567 β
2
   18.12977 a + 0.255567 β

2
   1.529953 a + 0.255567 β

2
 

    𝜏 𝑔,𝑐=3 217.3183 a + 0.255567 β
2
   18.12977 a + 0.255567 β

2
   1.529953 a + 0.255567 β

2
 

    𝜏 𝑔,𝑐=4 217.3183 a + 0.255567 β
2
   18.12977 a + 0.255567 β

2
   1.529953 a + 0.255567 β

2
 

 

 

 

 

 

 

 



154 
 

Table59:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical chi square  Distribution  for 

population I 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 135.6999 a + 0.034894 β
2
   11.57401 a + 0.034894 β

2
   1.003628 a + 0.034894 β

2
 

    𝜏 𝑔,𝑐=2 131.9305 a + 0.01807 β
2
   11.16635 a + 0.01807 β

2
   0.960684 a + 0.01807 β

2
 

    𝜏 𝑔,𝑐=3 131.8139 a + 0.017127 β
2
   11.14796 a + 0.017127 β

2
   0.958342 a + 0.017127 β

2
 

    𝜏 𝑔,𝑐=4 131.8048 a + 0.01704 β
2
   11.14634 a + 0.01704 β

2
   0.958127 a + 0.01704 β

2
 

0 0.162 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 141.1793 a + 0.054889 β
2
   12.10459 a + 0.054889 β

2
   1.055195 a + 0.054889 β

2
 

    𝜏 𝑔,𝑐=2 132.2603 a + 0.020108 β
2
   11.20976 a + 0.020108 β

2
   0.965799 a + 0.020108 β

2
 

    𝜏 𝑔,𝑐=3 131.8506 a + 0.017452 β
2
   11.15414 a + 0.017452 β

2
   0.959148 a + 0.017452 β

2
 

    𝜏 𝑔,𝑐=4 131.8107 a + 0.017096 β
2
   11.1474 a + 0.017096 β

2
   0.958267 a + 0.017096 β

2
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0 0.5 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 242.7276 a + 0.410393 β
2
   21.32146 a + 0.410393 β

2
   1.903468 a + 0.410393 β

2
 

    𝜏 𝑔,𝑐=2 153.6932 a + 0.097924 β
2
   13.27229 a + 0.097924 β

2
   1.165272 a + 0.097924 β

2
 

    𝜏 𝑔,𝑐=3 137.6106 a + 0.042065 β
2
   11.76194 a + 0.042065 β

2
   1.022119 a + 0.042065 β

2
 

    𝜏 𝑔,𝑐=4 133.5498 a + 0.026226 β
2
   11.35419 a + 0.026226 β

2
   0.98136 a + 0.026226 β

2
 

0 0.9 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 2980.232 a + 13.59931 β
2
   261.2076 a + 13.59931 β

2
   23.21023 a + 13.59931 β

2
 

    𝜏 𝑔,𝑐=2 1038.571 a + 3.896042 β
2
   91.90541 a + 3.896042 β

2
   8.257873 a + 3.896042 β

2
 

    𝜏 𝑔,𝑐=3 591.4351 a + 1.841051 β
2
   52.38213 a + 1.841051 β

2
   4.712762 a + 1.841051 β

2
 

    𝜏 𝑔,𝑐=4 411.4918 a + 1.072098 β
2
   36.39137 a + 1.072098 β

2
   3.269943 a + 1.072098 β

2
 

2 1 𝜏 𝑐  0.915304 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 2078113 a + 2064369 β
2
   25797900 a + 2064369 β

2
   2078113 a + 2064369 β

2
 

    𝜏 𝑔,𝑐=2 2078113 a + 2064369 β
2
   25797900 a + 2064369 β

2
   2078113 a + 2064369 β

2
 

    𝜏 𝑔,𝑐=3 2078113 a + 2064369 β
2
   25797900 a + 2064369 β

2
   2078113 a + 2064369 β

2
 

    𝜏 𝑔,𝑐=4 2078113 a + 2064369 β
2
   25797900 a + 2064369 β

2
   2078113 a + 2064369 β

2
 

 

 

 

 

 

 



156 
 

Table60:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Uniform  Distribution  for 

population I 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.162 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.5 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
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0 0.9 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
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Table61:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Gamma  Distribution  for 

population I 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=2 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=3 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

    𝜏 𝑔,𝑐=4 131.8038 a + 0.01703 β
2
   11.14617 a + 0.01703 β

2
   0.958103 a + 0.01703 β

2
 

0 0.1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 137.1507 a + 0.024525 β
2
   11.52525 a + 0.024525 β

2
   0.98454 a + 0.024525 β

2
 

    𝜏 𝑔,𝑐=2 131.808 a + 0.016693 β
2
   11.14059 a + 0.016693 β

2
   0.957157 a + 0.016693 β

2
 

    𝜏 𝑔,𝑐=3 131.7977 a + 0.016981 β
2
   11.14507 a + 0.016981 β

2
   0.957964 a + 0.016981 β

2
 

    𝜏 𝑔,𝑐=4 131.8032 a + 0.017025 β
2
   11.14605 a + 0.017025 β

2
   0.958089 a + 0.017025 β

2
 

0 0.162 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 145.307 a + 0.038028 β
2
   12.15674 a + 0.038028 β

2
   1.033699 a + 0.038028 β

2
 

    𝜏 𝑔,𝑐=2 132.1061 a + 0.016787 β
2
   11.15541 a + 0.016787 β

2
   0.957588 a + 0.016787 β

2
 

    𝜏 𝑔,𝑐=3 131.7878 a + 0.016847 β
2
   11.14234 a + 0.016847 β

2
   0.957581 a + 0.016847 β

2
 

    𝜏 𝑔,𝑐=4 131.7994 a + 0.016996 β
2
   11.1454 a + 0.016996 β

2
   0.958006 a + 0.016996 β

2
 

0 0.5 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 274.4888 a + 0.279584 β
2
   22.45316 a + 0.279584 β

2
   1.8628 a + 0.279584 β

2
 

    𝜏 𝑔,𝑐=2 162.8866 a + 0.067723 β
2
   13.54195 a + 0.067723 β

2
   1.143754 a + 0.067723 β

2
 

    𝜏 𝑔,𝑐=3 140.0335 a + 0.029269 β
2
   11.7467 a + 0.029269 β

2
   1.001621 a + 0.029269 β

2
 

    𝜏 𝑔,𝑐=4 133.8967 a + 0.019296 β
2
   11.28071 a + 0.019296 β

2
   0.966165 a + 0.019296 β

2
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0 0.9 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 2642.948 a + 8.162984 β
2
   214.5193 a + 8.162984 β

2
   17.59732 a + 8.162984 β

2
 

    𝜏 𝑔,𝑐=2 1094.886 a + 2.556025 β
2
   88.56306 a + 2.556025 β

2
   7.247816 a + 2.556025 β

2
 

    𝜏 𝑔,𝑐=3 658.2176 a + 1.233234 β
2
   53.28872 a + 1.233234 β

2
   4.368034 a + 1.233234 β

2
 

    𝜏 𝑔,𝑐=4 466.8206 a + 0.723698 β
2
   37.88626 a + 0.723698 β

2
   3.114942 a + 0.723698 β

2
 

0 1 𝜏 𝑐  134.3193 a + 0 β
2
 1 11 a + 0 β

2
 2 0.915304 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 45003.38 a + 216.4849 β
2
   3642.2 a + 216.4849 β

2
   297.0335 a + 216.4849 β

2
 

    𝜏 𝑔,𝑐=2 45003.38 a + 216.4849 β
2
   3642.2 a + 216.4849 β

2
   297.0335 a + 216.4849 β

2
 

    𝜏 𝑔,𝑐=3 45003.38 a + 216.4849 β
2
   3642.2 a + 216.4849 β

2
   297.0335 a + 216.4849 β

2
 

    𝜏 𝑔,𝑐=4 45003.38 a + 216.4849 β
2
   3642.2 a + 216.4849 β

2
   297.0335 a + 216.4849 β

2
 

 

 

 

 

 

 

 

 



160 
 

 

Table62:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Normal  Distribution  for 

population II 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 865.8536 a + 0.108431 β
2
   32.74248 a + 0.108431 β

2
   1.343367 a + 0.108431 β

2
 

    𝜏 𝑔,𝑐=2 865.8536 a + 0.108431 β
2
   32.74248 a + 0.108431 β

2
   1.343367 a + 0.108431 β

2
 

    𝜏 𝑔,𝑐=3 865.8536 a + 0.108431 β
2
   32.74248 a + 0.108431 β

2
   1.343367 a + 0.108431 β

2
 

    𝜏 𝑔,𝑐=4 865.8536 a + 0.108431 β
2
   32.74248 a + 0.108431 β

2
   1.343367 a + 0.108431 β

2
 

0 0.1 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 845.8217 a + 0.087788 β
2
   31.35343 a + 0.087788 β

2
   1.269936 a + 0.087788 β

2
 

    𝜏 𝑔,𝑐=2 863.5582 a + 0.106219 β
2
   32.59258 a + 0.106219 β

2
   1.33555 a + 0.106219 β

2
 

    𝜏 𝑔,𝑐=3 865.621 a + 0.108208 β
2
   32.72737 a + 0.108208 β

2
   1.342581 a + 0.108208 β

2
 

    𝜏 𝑔,𝑐=4 865.8303 a + 0.108408 β
2
   32.74097 a + 0.108408 β

2
   1.343289 a + 0.108408 β

2
 

0 0.395 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 824.0128 a + 0.042208 β
2
   28.52622 a + 0.042208 β

2
   1.105386 a + 0.042208 β

2
 

    𝜏 𝑔,𝑐=2 837.3864 a + 0.07753 β
2
   30.67661 a + 0.07753 β

2
   1.233096 a + 0.07753 β

2
 

    𝜏 𝑔,𝑐=3 852.7463 a + 0.095335 β
2
   31.85808 a + 0.095335 β

2
   1.296896 a + 0.095335 β

2
 

    𝜏 𝑔,𝑐=4 860.3805 a + 0.103107 β
2
   32.38195 a + 0.103107 β

2
   1.324527 a + 0.103107 β

2
 

0 0.5 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 830.7452 a + 0.030244 β
2
   27.94087 a + 0.030244 β

2
   1.062463 a + 0.030244 β

2
 

    𝜏 𝑔,𝑐=2 827.6869 a + 0.06214 β
2
   29.69287 a + 0.06214 β

2
   1.17751 a + 0.06214 β

2
 

    𝜏 𝑔,𝑐=3 841.8129 a + 0.083104 β
2
   31.04279 a + 0.083104 β

2
   1.253137 a + 0.083104 β

2
 

    𝜏 𝑔,𝑐=4 852.5789 a + 0.095158 β
2
   31.84625 a + 0.095158 β

2
   1.296269 a + 0.095158 β

2
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0 0.9 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 967.1424 a + 0.001732 β
2
   28.07782 a + 0.001732 β

2
   0.966477 a + 0.001732 β

2
 

    𝜏 𝑔,𝑐=2 914.6792 a + 0.005591 β
2
   27.63903 a + 0.005591 β

2
   0.978196 a + 0.005591 β

2
 

    𝜏 𝑔,𝑐=3 880.8265 a + 0.010472 β
2
   27.48049 a + 0.010472 β

2
   0.993993 a + 0.010472 β

2
 

    𝜏 𝑔,𝑐=4 858.5772 a + 0.015843 β
2
   27.49419 a + 0.015843 β

2
   1.01207 a + 0.015843 β

2
 

0 1 𝜏 𝑐  1051.816 a + 0 β
2
 1 29 a + 0 β

2
 2 0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 1051.816 a + 0 β
2
   29 a + 0 β

2
   0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 1051.816 a + 0 β
2
   29 a + 0 β

2
   0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 1051.816 a + 0 β
2
   29 a + 0 β

2
   0.96206 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 1051.816 a + 0 β
2
   29 a + 0 β

2
   0.96206 a + 0 β

2
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Table63:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical chi square  Distribution  for 

population II 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 829.6751 a + 0.908103 β
2
   63.92168 a + 0.908103 β

2
   5.783388 a + 0.908103 β

2
 

    𝜏 𝑔,𝑐=2 829.6751 a + 0.908103 β
2
   63.92168 a + 0.908103 β

2
   5.783388 a + 0.908103 β

2
 

    𝜏 𝑔,𝑐=3 829.6751 a + 0.908103 β
2
   63.92168 a + 0.908103 β

2
   5.783388 a + 0.908103 β

2
 

    𝜏 𝑔,𝑐=4 829.6751 a + 0.908103 β
2
   63.92168 a + 0.908103 β

2
   5.783388 a + 0.908103 β

2
 

0 0.1 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 664.2674 a + 0.526584 β
2
   47.1417 a + 0.526584 β

2
   4.117038 a + 0.526584 β

2
 

    𝜏 𝑔,𝑐=2 808.5584 a + 0.856564 β
2
   61.79399 a + 0.856564 β

2
   5.570925 a + 0.856564 β

2
 

    𝜏 𝑔,𝑐=3 827.5057 a + 0.902771 β
2
   63.70318 a + 0.902771 β

2
   5.761554 a + 0.902771 β

2
 

    𝜏 𝑔,𝑐=4 829.4576 a + 0.907568 β
2
   63.89977 a + 0.907568 β

2
   5.781199 a + 0.907568 β

2
 

0 0.395 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 481.2405 a + 0.141577 β
2
   25.77527 a + 0.141577 β

2
   2.022115 a + 0.141577 β

2
 

    𝜏 𝑔,𝑐=2 603.9834 a + 0.400059 β
2
   40.85706 a + 0.400059 β

2
   3.498724 a + 0.400059 β

2
 

    𝜏 𝑔,𝑐=3 717.119 a + 0.642909 β
2
   52.54465 a + 0.642909 β

2
   4.651189 a + 0.642909 β

2
 

    𝜏 𝑔,𝑐=4 780.3777 a + 0.789056 β
2
   58.95113 a + 0.789056 β

2
   5.287552 a + 0.789056 β

2
 

0 0.5 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 473.1934 a + 0.092116 β
2
   22.29896 a + 0.092116 β

2
   1.675077 a + 0.092116 β

2
 

    𝜏 𝑔,𝑐=2 534.9548 a + 0.260827 β
2
   33.237 a + 0.260827 β

2
   2.752832 a + 0.260827 β

2
 

    𝜏 𝑔,𝑐=3 635.1936 a + 0.464789 β
2
   44.13358 a + 0.464789 β

2
   3.820684 a + 0.464789 β

2
 

    𝜏 𝑔,𝑐=4 715.7946 a + 0.63993 β
2
   52.40998 a + 0.63993 β

2
   4.637846 a + 0.63993 β

2
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0 0.9 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 1100.386 a + 0.009496 β
2
   17.73342 a + 0.009496 β

2
   0.991647 a + 0.009496 β

2
 

    𝜏 𝑔,𝑐=2 704.5309 a + 0.020492 β
2
   17.47576 a + 0.020492 β

2
   1.088707 a + 0.020492 β

2
 

    𝜏 𝑔,𝑐=3 574.6131 a + 0.032946 β
2
   18.0484 a + 0.032946 β

2
   1.199124 a + 0.032946 β

2
 

    𝜏 𝑔,𝑐=4 516.352 a + 0.047071 β
2
   18.98861 a + 0.047071 β

2
   1.320375 a + 0.047071 β

2
 

0 1 𝜏 𝑐  36308.52 a + 0 β
2
 1 29 a + 0 β

2
 2 0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 36308.52 a + 0 β
2
   29 a + 0 β

2
   0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 36308.52 a + 0 β
2
   29 a + 0 β

2
   0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 36308.52 a + 0 β
2
   29 a + 0 β

2
   0.921861 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 36308.52 a + 0 β
2
   29 a + 0 β

2
   0.921861 a + 0 β

2
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Table64:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Gamma  Distribution  for 

population II 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 845.3701 a + 0.646209 β
2
   50.66768 a + 0.646209 β

2
   3.654303 a + 0.646209 β

2
 

    𝜏 𝑔,𝑐=2 845.3701 a + 0.646209 β
2
   50.66768 a + 0.646209 β

2
   3.654303 a + 0.646209 β

2
 

    𝜏 𝑔,𝑐=3 845.3701 a + 0.646209 β
2
   50.66768 a + 0.646209 β

2
   3.654303 a + 0.646209 β

2
 

    𝜏 𝑔,𝑐=4 845.3701 a + 0.646209 β
2
   50.66768 a + 0.646209 β

2
   3.654303 a + 0.646209 β

2
 

0 0.1 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 738.2882 a + 0.430939 β
2
   41.03276 a + 0.430939 β

2
   2.864421 a + 0.430939 β

2
 

    𝜏 𝑔,𝑐=2 832.1993 a + 0.619401 β
2
   49.51382 a + 0.619401 β

2
   3.559611 a + 0.619401 β

2
 

    𝜏 𝑔,𝑐=3 844.024 a + 0.643463 β
2
   50.55002 a + 0.643463 β

2
   3.644645 a + 0.643463 β

2
 

    𝜏 𝑔,𝑐=4 845.2352 a + 0.645933 β
2
   50.65589 a + 0.645933 β

2
   3.653336 a + 0.645933 β

2
 

0 0.395 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 624.5125 a + 0.148824 β
2
   26.6606 a + 0.148824 β

2
   1.670031 a + 0.148824 β

2
 

    𝜏 𝑔,𝑐=2 697.506 a + 0.34845 β
2
   37.07197 a + 0.34845 β

2
   2.539546 a + 0.34845 β

2
 

    𝜏 𝑔,𝑐=3 773.4345 a + 0.501154 β
2
   44.27541 a + 0.501154 β

2
   3.130129 a + 0.501154 β

2
 

    𝜏 𝑔,𝑐=4 814.3856 a + 0.583344 β
2
   47.94323 a + 0.583344 β

2
   3.43078 a + 0.583344 β

2
 

0 0.5 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 636.0752 a + 0.102242 β
2
   24.1271 a + 0.102242 β

2
   1.441977 a + 0.102242 β

2
 

    𝜏 𝑔,𝑐=2 651.5555 a + 0.247725 β
2
   31.9719 a + 0.247725 β

2
   2.118866 a + 0.247725 β

2
 

    𝜏 𝑔,𝑐=3 718.6735 a + 0.391549 β
2
   39.16339 a + 0.391549 β

2
   2.711176 a + 0.391549 β

2
 

    𝜏 𝑔,𝑐=4 772.5635 a + 0.499413 β
2
   44.19631 a + 0.499413 β

2
   3.123647 a + 0.499413 β

2
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0 0.9 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 1356.109 a + 0.009721 β
2
   22.63467 a + 0.009721 β

2
   0.973363 a + 0.009721 β

2
 

    𝜏 𝑔,𝑐=2 964.2044 a + 0.023587 β
2
   21.43753 a + 0.023587 β

2
   1.037457 a + 0.023587 β

2
 

    𝜏 𝑔,𝑐=3 801.4107 a + 0.038699 β
2
   21.40077 a + 0.038699 β

2
   1.114033 a + 0.038699 β

2
 

    𝜏 𝑔,𝑐=4 718.0063 a + 0.054962 β
2
   21.86685 a + 0.054962 β

2
   1.198751 a + 0.054962 β

2
 

0 1 𝜏 𝑐  3166.908 a + 0 β
2
 1 29 a + 0 β

2
 2 0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 3166.908 a + 0 β
2
   29 a + 0 β

2
   0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 3166.908 a + 0 β
2
   29 a + 0 β

2
   0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 3166.908 a + 0 β
2
   29 a + 0 β

2
   0.9393 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 3166.908 a + 0 β
2
   29 a + 0 β

2
   0.9393 a + 0 β

2
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Table65:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Normal  Distribution  for 

population III 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 270.3297 a + 0.080318 β
2
   17.38381 a + 0.080318 β

2
   1.193971 a + 0.080318 β

2
 

    𝜏 𝑔,𝑐=2 270.3297 a + 0.080318 β
2
   17.38381 a + 0.080318 β

2
   1.193971 a + 0.080318 β

2
 

    𝜏 𝑔,𝑐=3 270.3297 a + 0.080318 β
2
   17.38381 a + 0.080318 β

2
   1.193971 a + 0.080318 β

2
 

    𝜏 𝑔,𝑐=4 270.3297 a + 0.080318 β
2
   17.38381 a + 0.080318 β

2
   1.193971 a + 0.080318 β

2
 

0 0.1 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 266.0149 a + 0.065452 β
2
   16.84624 a + 0.065452 β

2
   1.144693 a + 0.065452 β

2
 

    𝜏 𝑔,𝑐=2 269.8331 a + 0.078741 β
2
   17.326 a + 0.078741 β

2
   1.188758 a + 0.078741 β

2
 

    𝜏 𝑔,𝑐=3 270.2794 a + 0.080159 β
2
   17.37799 a + 0.080159 β

2
   1.193447 a + 0.080159 β

2
 

    𝜏 𝑔,𝑐=4 270.3247 a + 0.080302 β
2
   17.38323 a + 0.080302 β

2
   1.193918 a + 0.080302 β

2
 

0 0.5 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 263.614 a + 0.022441 β
2
   15.52963 a + 0.022441 β

2
   1.002413 a + 0.022441 β

2
 

    𝜏 𝑔,𝑐=2 262.2456 a + 0.046533 β
2
   16.20042 a + 0.046533 β

2
   1.081737 a + 0.046533 β

2
 

    𝜏 𝑔,𝑐=3 265.1611 a + 0.062033 β
2
   16.72554 a + 0.062033 β

2
   1.133323 a + 0.062033 β

2
 

    𝜏 𝑔,𝑐=4 267.4639 a + 0.070797 β
2
   17.03741 a + 0.070797 β

2
   1.162444 a + 0.070797 β

2
 

0 0.51 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 263.8905 a + 0.021649 β
2
   15.51342 a + 0.021649 β

2
   0.999858 a + 0.021649 β

2
 

    𝜏 𝑔,𝑐=2 262.1098 a + 0.04539 β
2
   16.16357 a + 0.04539 β

2
   1.077935 a + 0.04539 β

2
 

    𝜏 𝑔,𝑐=3 264.9177 a + 0.061009 β
2
   16.68967 a + 0.061009 β

2
   1.129916 a + 0.061009 β

2
 

    𝜏 𝑔,𝑐=4 267.2529 a + 0.070047 β
2
   17.01041 a + 0.070047 β

2
   1.159955 a + 0.070047 β

2
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0 0.9 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 293.5411 a + 0.00118 β
2
   15.64636 a + 0.00118 β

2
   0.937744 a + 0.00118 β

2
 

    𝜏 𝑔,𝑐=2 282.6542 a + 0.00393 β
2
   15.46246 a + 0.00393 β

2
   0.945173 a + 0.00393 β

2
 

    𝜏 𝑔,𝑐=3 275.2801 a + 0.007513 β
2
   15.38519 a + 0.007513 β

2
   0.955621 a + 0.007513 β

2
 

    𝜏 𝑔,𝑐=4 270.2481 a + 0.011528 β
2
   15.37709 a + 0.011528 β

2
   0.967828 a + 0.011528 β

2
 

0 1 𝜏 𝑐  309.9455 a + 0 β
2
 1 16 a + 0 β

2
 2 0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 309.9455 a + 0 β
2
   16 a + 0 β

2
   0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 309.9455 a + 0 β
2
   16 a + 0 β

2
   0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 309.9455 a + 0 β
2
   16 a + 0 β

2
   0.935397 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 309.9455 a + 0 β
2
   16 a + 0 β

2
   0.935397 a + 0 β

2
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Table66:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical chi square  Distribution  for 

population III 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 263.1843 a + 0.152949 β
2
   23.35668 a + 0.152949 β

2
   2.21809 a + 0.152949 β

2
 

    𝜏 𝑔,𝑐=2 263.1843 a + 0.152949 β
2
   23.35668 a + 0.152949 β

2
   2.21809 a + 0.152949 β

2
 

    𝜏 𝑔,𝑐=3 263.1843 a + 0.152949 β
2
   23.35668 a + 0.152949 β

2
   2.21809 a + 0.152949 β

2
 

    𝜏 𝑔,𝑐=4 263.1843 a + 0.152949 β
2
   23.35668 a + 0.152949 β

2
   2.21809 a + 0.152949 β

2
 

0 0.1 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 239.4568 a + 0.116728 β
2
   20.7772 a + 0.116728 β

2
   1.953667 a + 0.116728 β

2
 

    𝜏 𝑔,𝑐=2 260.5395 a + 0.148842 β
2
   23.07283 a + 0.148842 β

2
   2.189023 a + 0.148842 β

2
 

    𝜏 𝑔,𝑐=3 262.9169 a + 0.152533 β
2
   23.32801 a + 0.152533 β

2
   2.215155 a + 0.152533 β

2
 

    𝜏 𝑔,𝑐=4 263.1575 a + 0.152907 β
2
   23.35381 a + 0.152907 β

2
   2.217796 a + 0.152907 β

2
 

0 0.32 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 204.6528 a + 0.064235 β
2
   16.66747 a + 0.064235 β

2
   1.528718 a + 0.064235 β

2
 

    𝜏 𝑔,𝑐=2 238.9565 a + 0.115977 β
2
   20.72179 a + 0.115977 β

2
   1.947977 a + 0.115977 β

2
 

    𝜏 𝑔,𝑐=3 254.7554 a + 0.139925 β
2
   22.44937 a + 0.139925 β

2
   2.12516 a + 0.139925 β

2
 

    𝜏 𝑔,𝑐=4 260.4126 a + 0.148645 β
2
   23.0592 a + 0.148645 β

2
   2.187627 a + 0.148645 β

2
 

0 0.51 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 190.5905 a + 0.0366 β
2
   14.30043 a + 0.0366 β

2
   1.27604 a + 0.0366 β

2
 

    𝜏 𝑔,𝑐=2 212.0788 a + 0.075779 β
2
   17.6153 a + 0.075779 β

2
   1.627522 a + 0.075779 β

2
 

    𝜏 𝑔,𝑐=3 232.9032 a + 0.106926 β
2
   20.04655 a + 0.106926 β

2
   1.878588 a + 0.106926 β

2
 

    𝜏 𝑔,𝑐=4 246.5 a + 0.127344 β
2
   21.55191 a + 0.127344 β

2
   2.033165 a + 0.127344 β

2
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0 0.9 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 279.6471 a + 0.004675 β
2
   12.08126 a + 0.004675 β

2
   0.954416 a + 0.004675 β

2
 

    𝜏 𝑔,𝑐=2 218.6081 a + 0.010113 β
2
   12.19525 a + 0.010113 β

2
   1.009845 a + 0.010113 β

2
 

    𝜏 𝑔,𝑐=3 199.2812 a + 0.015843 β
2
   12.5611 a + 0.015843 β

2
   1.068948 a + 0.015843 β

2
 

    𝜏 𝑔,𝑐=4 191.8762 a + 0.02179 β
2
   13.02836 a + 0.02179 β

2
   1.129732 a + 0.02179 β

2
 

0 1 𝜏 𝑐  403234.6 a + 0 β
2
 1 16 a + 0 β

2
 2 0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 403234.6 a + 0 β
2
   16 a + 0 β

2
   0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 403234.6 a + 0 β
2
   16 a + 0 β

2
   0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 403234.6 a + 0 β
2
   16 a + 0 β

2
   0.910672 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 403234.6 a + 0 β
2
   16 a + 0 β

2
   0.910672 a + 0 β

2
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Table67:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Gamma  Distribution  for 

population III 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 267.1293 a + 0.225082 β
2
   19.99049 a + 0.225082 β

2
   1.707981 a + 0.225082 β

2
 

    𝜏 𝑔,𝑐=2 267.1293 a + 0.225082 β
2
   19.99049 a + 0.225082 β

2
   1.707981 a + 0.225082 β

2
 

    𝜏 𝑔,𝑐=3 267.1293 a + 0.225082 β
2
   19.99049 a + 0.225082 β

2
   1.707981 a + 0.225082 β

2
 

    𝜏 𝑔,𝑐=4 267.1293 a + 0.225082 β
2
   19.99049 a + 0.225082 β

2
   1.707981 a + 0.225082 β

2
 

0 0.1 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 254.8876 a + 0.174802 β
2
   18.37435 a + 0.174802 β

2
   1.538015 a + 0.174802 β

2
 

    𝜏 𝑔,𝑐=2 265.6993 a + 0.21948 β
2
   19.81166 a + 0.21948 β

2
   1.689342 a + 0.21948 β

2
 

    𝜏 𝑔,𝑐=3 266.9841 a + 0.224515 β
2
   19.97242 a + 0.224515 β

2
   1.7061 a + 0.224515 β

2
 

    𝜏 𝑔,𝑐=4 267.1148 a + 0.225025 β
2
   19.98869 a + 0.225025 β

2
   1.707793 a + 0.225025 β

2
 

0 0.32 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 242.293 a + 0.097498 β
2
   15.90531 a + 0.097498 β

2
   1.264434 a + 0.097498 β

2
 

    𝜏 𝑔,𝑐=2 254.6474 a + 0.173738 β
2
   18.33994 a + 0.173738 β

2
   1.53435 a + 0.173738 β

2
 

    𝜏 𝑔,𝑐=3 262.6203 a + 0.207236 β
2
   19.41955 a + 0.207236 β

2
   1.648347 a + 0.207236 β

2
 

    𝜏 𝑔,𝑐=4 265.6311 a + 0.219212 β
2
   19.80308 a + 0.219212 β

2
   1.688447 a + 0.219212 β

2
 

0 0.51 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 246.8547 a + 0.053877 β
2
   14.68803 a + 0.053877 β

2
   1.104994 a + 0.053877 β

2
 

    𝜏 𝑔,𝑐=2 243.883 a + 0.115055 β
2
   16.45269 a + 0.115055 β

2
   1.327845 a + 0.115055 β

2
 

    𝜏 𝑔,𝑐=3 251.8237 a + 0.160816 β
2
   17.92204 a + 0.160816 β

2
   1.48963 a + 0.160816 β

2
 

    𝜏 𝑔,𝑐=4 258.362 a + 0.189755 β
2
   18.85717 a + 0.189755 β

2
   1.589201 a + 0.189755 β

2
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0 0.9 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 336.9437 a + 0.003625 β
2
   14.87091 a + 0.003625 β

2
   0.932355 a + 0.003625 β

2
 

    𝜏 𝑔,𝑐=2 299.0812 a + 0.011033 β
2
   14.39677 a + 0.011033 β

2
   0.954576 a + 0.011033 β

2
 

    𝜏 𝑔,𝑐=3 276.7375 a + 0.019979 β
2
   14.24224 a + 0.019979 β

2
   0.984073 a + 0.019979 β

2
 

    𝜏 𝑔,𝑐=4 262.8367 a + 0.029656 β
2
   14.26646 a + 0.029656 β

2
   1.017636 a + 0.029656 β

2
 

0 1 𝜏 𝑐  408.1397 a + 0 β
2
 1 16 a + 0 β

2
 2 0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 408.1397 a + 0 β
2
   16 a + 0 β

2
   0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 408.1397 a + 0 β
2
   16 a + 0 β

2
   0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 408.1397 a + 0 β
2
   16 a + 0 β

2
   0.924323 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 408.1397 a + 0 β
2
   16 a + 0 β

2
   0.924323 a + 0 β

2
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Table68:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Normal  Distribution  for 

population IV 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  340.2711 a + 0 β
2
 1 16 a + 0 β

2
 2 0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 345.281 a + 0.105493 β
2
   20.39472 a + 0.105493 β

2
   1.275766 a + 0.105493 β

2
 

    𝜏 𝑔,𝑐=2 345.281 a + 0.105493 β
2
   20.39472 a + 0.105493 β

2
   1.275766 a + 0.105493 β

2
 

    𝜏 𝑔,𝑐=3 345.281 a + 0.105493 β
2
   20.39472 a + 0.105493 β

2
   1.275766 a + 0.105493 β

2
 

    𝜏 𝑔,𝑐=4 345.281 a + 0.105493 β
2
   20.39472 a + 0.105493 β

2
   1.275766 a + 0.105493 β

2
 

0 0.1 𝜏 𝑐  340.2711 a + 0 β
2
 1 16 a + 0 β

2
 2 0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 333.9158 a + 0.085473 β
2
   19.44206 a + 0.085473 β

2
   1.204443 a + 0.085473 β

2
 

    𝜏 𝑔,𝑐=2 344.0406 a + 0.103351 β
2
   20.29305 a + 0.103351 β

2
   1.268205 a + 0.103351 β

2
 

    𝜏 𝑔,𝑐=3 345.1559 a + 0.105278 β
2
   20.38448 a + 0.105278 β

2
   1.275005 a + 0.105278 β

2
 

    𝜏 𝑔,𝑐=4 345.2684 a + 0.105472 β
2
   20.39369 a + 0.105472 β

2
   1.27569 a + 0.105472 β

2
 

0 0.775 𝜏 𝑐  340.2711 a + 0 β
2
 1 16 a + 0 β

2
 2 0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 314.4131 a + 0.007303 β
2
   15.98776 a + 0.007303 β

2
   0.90676 a + 0.007303 β

2
 

    𝜏 𝑔,𝑐=2 309.0091 a + 0.019926 β
2
   16.42917 a + 0.019926 β

2
   0.958809 a + 0.019926 β

2
 

    𝜏 𝑔,𝑐=3 310.4453 a + 0.033057 β
2
   16.98626 a + 0.033057 β

2
   1.009936 a + 0.033057 β

2
 

    𝜏 𝑔,𝑐=4 314.3506 a + 0.045325 β
2
   17.54289 a + 0.045325 β

2
   1.056594 a + 0.045325 β

2
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0 0.9 𝜏 𝑐  340.2711 a + 0 β
2
 1 16 a + 0 β

2
 2 0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 325.2462 a + 0.001664 β
2
   15.8957 a + 0.001664 β

2
   0.879025 a + 0.001664 β

2
 

    𝜏 𝑔,𝑐=2 316.7422 a + 0.005399 β
2
   15.94085 a + 0.005399 β

2
   0.898166 a + 0.005399 β

2
 

    𝜏 𝑔,𝑐=3 312.0518 a + 0.010142 β
2
   16.0718 a + 0.010142 β

2
   0.919003 a + 0.010142 β

2
 

    𝜏 𝑔,𝑐=4 309.738 a + 0.015374 β
2
   16.25346 a + 0.015374 β

2
   0.940586 a + 0.015374 β

2
 

0 1 𝜏 𝑐  340.2711 a + 0 β
2
 1 16 a + 0 β

2
 2 0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 340.2711 a + 0 β
2
   16 a + 0 β

2
   0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 340.2711 a + 0 β
2
   16 a + 0 β

2
   0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 340.2711 a + 0 β
2
   16 a + 0 β

2
   0.863202 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 340.2711 a + 0 β
2
   16 a + 0 β

2
   0.863202 a + 0 β

2
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Table69:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical chi square  Distribution  for 

population IV 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  1614.477 a + 0 β
2
 1 16 a + 0 β

2
 2 0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 356.0437 a + 0.771814 β
2
   37.5296 a + 0.771814 β

2
   4.656567 a + 0.771814 β

2
 

    𝜏 𝑔,𝑐=2 356.0437 a + 0.771814 β
2
   37.5296 a + 0.771814 β

2
   4.656567 a + 0.771814 β

2
 

    𝜏 𝑔,𝑐=3 356.0437 a + 0.771814 β
2
   37.5296 a + 0.771814 β

2
   4.656567 a + 0.771814 β

2
 

    𝜏 𝑔,𝑐=4 356.0437 a + 0.771814 β
2
   37.5296 a + 0.771814 β

2
   4.656567 a + 0.771814 β

2
 

0 0.1 𝜏 𝑐  1614.477 a + 0 β
2
 1 16 a + 0 β

2
 2 0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 294.6133 a + 0.470549 β
2
   28.77923 a + 0.470549 β

2
   3.450415 a + 0.470549 β

2
 

    𝜏 𝑔,𝑐=2 348.3631 a + 0.732278 β
2
   36.44641 a + 0.732278 β

2
   4.506554 a + 0.732278 β

2
 

    𝜏 𝑔,𝑐=3 355.2567 a + 0.767739 β
2
   37.41869 a + 0.767739 β

2
   4.641199 a + 0.767739 β

2
 

    𝜏 𝑔,𝑐=4 355.9648 a + 0.771405 β
2
   37.51848 a + 0.771405 β

2
   4.655027 a + 0.771405 β

2
 

0 0.775 𝜏 𝑐  1614.477 a + 0 β
2
 1 16 a + 0 β

2
 2 0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 292.1775 a + 0.027213 β
2
   12.0722 a + 0.027213 β

2
   1.069921 a + 0.027213 β

2
 

    𝜏 𝑔,𝑐=2 229.7782 a + 0.06192 β
2
   13.39109 a + 0.06192 β

2
   1.322983 a + 0.06192 β

2
 

    𝜏 𝑔,𝑐=3 220.6601 a + 0.105742 β
2
   15.37721 a + 0.105742 β

2
   1.614858 a + 0.105742 β

2
 

    𝜏 𝑔,𝑐=4 226.5605 a + 0.158389 β
2
   17.659 a + 0.158389 β

2
   1.931919 a + 0.158389 β

2
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0 0.9 𝜏 𝑐  1614.477 a + 0 β
2
 1 16 a + 0 β

2
 2 0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 468.2087 a + 0.01041 β
2
   12.27262 a + 0.01041 β

2
   0.948087 a + 0.01041 β

2
 

    𝜏 𝑔,𝑐=2 320.3719 a + 0.022027 β
2
   11.99157 a + 0.022027 β

2
   1.031314 a + 0.022027 β

2
 

    𝜏 𝑔,𝑐=3 266.2546 a + 0.034768 β
2
   12.28356 a + 0.034768 β

2
   1.12628 a + 0.034768 β

2
 

    𝜏 𝑔,𝑐=4 240.9233 a + 0.048899 β
2
   12.82387 a + 0.048899 β

2
   1.230122 a + 0.048899 β

2
 

0 1 𝜏 𝑐  1614.477 a + 0 β
2
 1 16 a + 0 β

2
 2 0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 1614.477 a + 0 β
2
   16 a + 0 β

2
   0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 1614.477 a + 0 β
2
   16 a + 0 β

2
   0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 1614.477 a + 0 β
2
   16 a + 0 β

2
   0.890109 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 1614.477 a + 0 β
2
   16 a + 0 β

2
   0.890109 a + 0 β

2
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Table70:Expected MSE of  linear alternative estimators as compared with that of HHE for the theoretical Gamma  Distribution  for 

population IV 

G Rho Estimator   A   β
2
 G   A   β

2
 g   A   β

2
 

0 0 𝜏 𝑐  1072.545 a + 0 β
2
 1 16 a + 0 β

2
 2 0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 346.5532 a + 2.018657 β
2
   42.03505 a + 2.018657 β

2
   6.816637 a + 2.018657 β

2
 

    𝜏 𝑔,𝑐=2 346.5532 a + 2.018657 β
2
   42.03505 a + 2.018657 β

2
   6.816637 a + 2.018657 β

2
 

    𝜏 𝑔,𝑐=3 346.5532 a + 2.018657 β
2
   42.03505 a + 2.018657 β

2
   6.816637 a + 2.018657 β

2
 

    𝜏 𝑔,𝑐=4 346.5532 a + 2.018657 β
2
   42.03505 a + 2.018657 β

2
   6.816637 a + 2.018657 β

2
 

0 0.1 𝜏 𝑐  1072.545 a + 0 β
2
 1 16 a + 0 β

2
 2 0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 278.0059 a + 1.004935 β
2
   28.90207 a + 1.004935 β

2
   4.330252 a + 1.004935 β

2
 

    𝜏 𝑔,𝑐=2 337.0724 a + 1.866924 β
2
   40.22667 a + 1.866924 β

2
   6.468924 a + 1.866924 β

2
 

    𝜏 𝑔,𝑐=3 345.5691 a + 2.002736 β
2
   41.84726 a + 2.002736 β

2
   6.780459 a + 2.002736 β

2
 

    𝜏 𝑔,𝑐=4 346.4544 a + 2.017057 β
2
   42.0162 a + 2.017057 β

2
   6.813005 a + 2.017057 β

2
 

0 0.775 𝜏 𝑐  1072.545 a + 0 β
2
 1 16 a + 0 β

2
 2 0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 329.7833 a + 0.037274 β
2
   11.73501 a + 0.037274 β

2
   1.032284 a + 0.037274 β

2
 

    𝜏 𝑔,𝑐=2 248.202 a + 0.091583 β
2
   12.45643 a + 0.091583 β

2
   1.298998 a + 0.091583 β

2
 

    𝜏 𝑔,𝑐=3 227.0306 a + 0.165763 β
2
   14.09383 a + 0.165763 β

2
   1.631728 a + 0.165763 β

2
 

    𝜏 𝑔,𝑐=4 224.6873 a + 0.262635 β
2
   16.20914 a + 0.262635 β

2
   2.021227 a + 0.262635 β

2
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0 0.9 𝜏 𝑐  1072.545 a + 0 β
2
 1 16 a + 0 β

2
 2 0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 506.4554 a + 0.012648 β
2
   12.5379 a + 0.012648 β

2
   0.914667 a + 0.012648 β

2
 

    𝜏 𝑔,𝑐=2 361.7329 a + 0.029527 β
2
   11.80297 a + 0.029527 β

2
   0.993887 a + 0.029527 β

2
 

    𝜏 𝑔,𝑐=3 298.4913 a + 0.048743 β
2
   11.76907 a + 0.048743 β

2
   1.089624 a + 0.048743 β

2
 

    𝜏 𝑔,𝑐=4 264.9976 a + 0.070729 β
2
   12.05963 a + 0.070729 β

2
   1.198528 a + 0.070729 β

2
 

0 1 𝜏 𝑐  1072.545 a + 0 β
2
 1 16 a + 0 β

2
 2 0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=1 1072.545 a + 0 β
2
   16 a + 0 β

2
   0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=2 1072.545 a + 0 β
2
   16 a + 0 β

2
   0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=3 1072.545 a + 0 β
2
   16 a + 0 β

2
   0.866383 a + 0 β

2
 

    𝜏 𝑔,𝑐=4 1072.545 a + 0 β
2
   16 a + 0 β

2
   0.866383 a + 0 β

2
 

 

 

 

 

 


