
UNIV
ERSITY

 O
F I

BADAN LI
BRARY

DEVELOPMENT OF ADVANCED DATA SAMPLING SCHEMES TO

ALLEVIATE CLASS IMBALANCE PROBLEM IN DATA MINING

CLASSIFICATION ALGORITHMS

BY

SAKINAT OLUWABUKONLA FOLORUNSO

MATRICULATION NUMBER: 112644

B. Tech. Computer Science (Akure), M. Sc. Computer Science (Ibadan)

A Thesis in the Department of Computer Science,

Submitted to the Faculty of Science,

In partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN, IBADAN

NIGERIA

SEPTEMBER, 2015

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

ii

Certification

This is to certify that this research was carried out by Sakinat Oluwabukonla

FOLORUNSO with matriculation number 112644 in the Department of Computer

Science, University of Ibadan, Ibadan, Nigeria.

...

Supervisor

Dr. A. B. Adeyemo

B. Sc. (Ife), PGD, M. Tech., Ph. D (Akure)

Department of Computer Science

University of Ibadan, Ibadan, Nigeria.

...

Head of Department

Dr. A. B. Adeyemo

Department of Computer Science

University of Ibadan, Ibadan, Nigeria.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

iii

Dedication

This work is dedicated to the glory of Almighty Allah.

Also to my Mother, Alhaja R. A. Tijani and to the loving memory of my late father, Alhaji

(Chief) R. O. Tijani.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

iv

Acknowledgements

My immense gratitude goes to Almighty Allah, the most Beneficent, the Merciful, the

Firm. It is by His mercy that I have gone this far.

I wish to express my profound gratitude to my supervisor, Dr. A. B. Adeyemo for his

guidance, supervisory act and being meticulous when going through this thesis. Your

concern and tutelage is an addition to my life. I thank you for impacting knowledge in me.

May God bless you (Amen).

My appreciation also goes to Dr S. O. Akinola, for the words of encouragement. To my

mentor, Prof. A. O. Osofisan and my Sisters/Mentors, Dr Y. O. Folajimi, Dr B. O. Oladejo

and Dr I. T. Ayorinde, I am very grateful. Dr O. B. Akinkunmi, Dr O.W.F. Onifade, Dr

A. B. C. Roberts and Dr Osunade and all the entire academic staff and non- academic staff

of the department, thank you for your support.

I also wish to express my profound gratitude to Professor Gustavo E.A.P.A. Batista of

Departamento de Ciências de Computação, Universidade de São Paulo, Campus de São

Carlos, Brazil for his priceless and selfless contribution to the success and completion of

this thesis. Also, Diego Furtado Silva is highly appreciated for his selfless and immense

support.

The effort of all the academic and non-academic staff of the Department of Mathematical

sciences, Olabisi Onabanjo University, Ago Iwoye, Ogun State cannot be measured with

ordinary thanks. I appreciate the undying support, assistance and mentoring of Dr. D. A.

Agunbiade, Dr. T. O. Olatayo, Dr. O. S. Odetunde, Dr B. O. Oguntunde, Mrs K-K. A.

Abdullah and Mr Taiwo Abbas. I also wish to express my appreciation to Dr. O. M.

Ajibade and Mrs S. O. Ogunsanya of Geology Department, Olabisi Onabanjo University,

Ago Iwoye, Ogun State for their endless support.

I also appreciate the support and contribution of Prof. O. Longe of Adeleke University,

Ede and Dr Gabriel Iwasokun of Department of Computer Science, The Federal University

of Akure, Ondo State (FUTA). My gratitude also goes to Mr Hameed Olaide of IT

department of IITA, Nigeria.

The effort and assistance from my mother, Alhaja R. A. Tijani and My Uncle, Dr. M. A.

Tijani are priceless and cannot be measured in cash or kind. Special thanks and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

v

unquantifiable indebtedness to all my siblings for their moral and financial support: Mr

Oludare Samsudeen Tijani, Mr Ayodele Kabir Tijani, Alhaja Fatimah Oluwaseyi Salami

and Mr Oyeniyi Quadri Tijani. I want to thank you all for being there for me at all times.

My appreciation also goes to you all my in-laws: Folorunsos, Nurenis, Aderintos

especially Mrs Biodun Rafiat Olagunju and Mrs Lola Salewa Akindele, who always play

the dual role of Sister and Mother-in-law.

I must not forget to thank the entire members of Badrul-din As-salat women circle of

Nigeria especially Murshid Taofeek Salaudeen and Alhaja R. A. Adabanija for their

support and all the members of Association for Computer Machinery (ACM), Ibadan-

Nigeria Chapter. My undying gratitude goes to my close friends especially Dr. Oluwafemi

Oriola, Alhaji Fagbenro, Alhaji Dr. and Alhaja Muyibi, Alhaji Sulaiman Salami, Mrs

Aderemi, Khalifa Musa and to those who because of space cannot be mentioned here.

Thank you all.

My appreciation goes to all my students who have graduated and those still in school

especially Adediji Michael (Angel) and Awoyemi Emmanuel of Olabisi Onabanjo

University, Ago Iwoye, Ogun State.

My profound gratitude also goes to my children: Temitope Sariy Abeke, Mubarak

Temidayo Adisa, Temilade Hamdalat Ajoke and Abdul Mateen Temidara Alao, who were

always with me day and night praying persistently for the success of this work. Thank You

for your understanding, perseverance and love. I am indeed grateful to you all.

Finally, many thanks to my husband, the man of my youth, Alhaji Dr. Rasheed Olayode

Folorunso for being there for me always, for the sleepless night, for your prayers and for

being my eyes to read this work. Almighty Allah will strengthen you and make all that you

touch to prosper in your sight.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

vi

ABSTRACT

Classification is the process of finding a set of models that distinguish data classes to

predict unknown class label in data mining. The class imbalance problem occurs when

standard classifiers are majority-biased while the minority class is ignored. Existing

classifiers tend to maximise overall prediction accuracy and minimise error at the expense

of the minority class. However, research had shown that misclassification cost of the

minority class is higher and should not be ignored since it is the class of interest. This work

was therefore designed to develop advanced data sampling schemes that improve the

classification performance of imbalance datasets with the view of increasing the recall of

the minority class.

Synthetic Minority Oversampling Technique (SMOTE) was extended to SMOTE+300%

and combined with existing under-sampling schemes: Random Under-Sampling (RUS),

Neighbourhood Cleaning Rule (NCL), Wilson’s Edited Nearest Neighbour (ENN) and

Condense Nearest Neighbour (CNN). Five advanced data sampling scheme algorithms:

SMOTE300ENN, SMOTE300RUS, SMOTE300NCL, SMOTENCL and SMOTERUS

were coded using JAVA and implemented in WEKA, a data mining tool as an Application

Programming Interface. The existing and developed schemes were applied to 886 Diabetes

Mellitus (DM), 1,163 Senior Secondary School Certificate Result (SSSCR) and 786

Contraceptive Methods (CM) datasets. The datasets were collected in Ilesha and Ibadan,

Nigeria. Their performances were determined with different classification algorithms

using Receiver Operating Characteristics (ROC), recall of the minority class and

performance gain metrics. Friedman’s Test at p = 0.05 was used to analyse these schemes

against the classification algorithms.

The ROC metric revealed that the mean rank values for DM, SSSCR and CM datasets

treated with the advanced schemes ranged from 6.9-13.8, 3.8-12.8 and 6.6-13.5,

respectively when compared with the existing schemes which ranged from 3.4-7.8, 2.6-

12.6 and 2.8-7.9, respectively. These results signifies improved classification

performance. The Recall metric analysis for the DM, SSSCR and CM datasets in the

advanced schemes ranged from 9.4-13.0, 6.3-14.0 and 7.3-13.6, respectively when

compared with the existing schemes 2.0-7.5, 2.5-8.9 and 2.1-7.4, respectively. These

results show increased detection of the minority class. Performance gains by the advanced

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

vii

schemes over the original dataset (DM, SSCE and CM) were: SMOTE300ENN (27.1%),

SMOTE300RUS (11.6%), SMOTE300NCL (15.5%), SMOTENCL (8.3%) and

SMOTERUS (7.3%). Significant difference was observed amongst all the schemes. The

higher the mean rank value and performance gain, the better the scheme. The

SMOTE300ENN scheme gave the highest ROC and recall values in the three datasets

which were 13.8, 12.8, 12.3 and 13.0, 14.0, 13.6, respectively.

The developed Synthetic Minority Oversampling Technique 300 Wilson’s Edited Nearest

Neighbour scheme significantly improved classification performance and increased the

recall of the minority class over the existing schemes using the same dataset. It is therefore

recommended for classification of imbalanced datasets.

Keywords: Imbalanced dataset, Receiver operating characteristics, Data reduction

techniques, Cost sensitive learning

Word count: 445

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

viii

Table of contents

Contents Page

Title Page…………………………………………………………………….. i

Certification………………………………………………………………….. ii

Dedication …………………………………………………………………… iv

Acknowledgement…………………………………………………………… v

Abstract………...…………………………………………....……………….. vi

Table of Contents…………………………………………....……………….. vii

List of Tables………………………………………………………………… xiii

List of Figures………………………………………………………………... xvi

Chapter One: Introduction

1.0 Background to the study………………….………………………..… 1

1.1 Motivation of Study….………..………………………...................... 3

1.2 Justification of Study………..…………..…………………………… 3

1.3 Research aim and objectives…………………………………………. 3

1.4 Research Methodology……………………………........................... 4

1.5 Scope and limitation of the study……………………………..…….. 5

1.6 Organisation of thesis……..…………………………..………….… 5

1.7 Glossary of terms…….……………………………………………… 5

Chapter Two: Literature Review

2.0 Introduction ……………………………………………..…………. 8

2.1 Class Imbalance Problem………...…………………………..……… 9

2.2 Problems associated with class imbalance……….……………….… 10

2.2.1 Difficulties encountered in imbalance classification……………….. 10

2.2.2 Multiple class problems…………………………….……….............. 14

2.3 Methods of multiple classes problem decomposition…….……….… 14

2.3.1 Direct multiclass classification………………………………………. 14

2.3.2 Multiclass Extension: Decomposition……………………………… 15

2.3.3 Methods of decomposing multiple class problems…………………. 15

2.3.3.1 One- versus- one (OVO) method…………………………………… 15

2.3.3.2 One- versus- all (OVA) method…………………………………..… 16

2.3.3.3 P- against Q (PAQ) method…………………………………………. 16

2.3.3.4 Error correcting code design method……………………………..… 16

2.4 Evaluation metrics………………………………………………….. 17

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

ix

2.4.1 Confusion matrix…………………………………………………… 17

2.4.2 F_ measure……………………………………………….................. 18

2.4.3 Kappa Statistics or Cohen’s Kappa Coefficient…...………………... 20

2.4.4 G- means criterion…………………………………………………… 20

2.4.5 Matthew’s correlation coefficient…………………………………… 21

2.4.6 ROC (Receiver Operating characteristic) and AUC

(Area Under the Curve of ROC)……………………………………. 21

2.4.7 Precision- Recall curves…………………………………………....... 23

2.4.8 H- measure…………………………………………………………… 24

2.4.9 Cross Validation…………………………………………………..… 24

2.4.10 Root Mean Squared Error (RMSE)…………………………………. 24

2.5 Challenges faced by class imbalance problem……………………… 24

2.6 Solutions to class imbalance problem………………………………. 25

2.6.1 Sampling schemes ………………………………………………..… 28

2.6.1.1 Under- sampling schemes ………………………..……………….… 28

2.6.1.2 Over sampling schemes……………………………………………… 35

2.6.1.3 Advanced sampling……………………………………………….… 38

2.6.2 Solutions at the algorithm level……………………………………… 38

2.6.2.1 Adjusting algorithm itself…………………………………………… 38

2.6.2.2 One class learning…………………………………………………… 38

2.6.2.3 Cost sensitive learning……………………………………………… 39

2.6.2.4 Ensemble learning…………………………………………………… 40

2.7.1 Why ensemble is better than single classifier?………………………. 42

2.7.2 Ensemble methods…………………………………………………… 43

2.7.3 Methods of combination of ensembles…………….………………… 43

2.7.4 Diversity in ensembles.……………………………….……………… 44

2.7.4.1 Measure of diversity……………………………………..………… 44

2.8 Learning Algorithm………………………………………….……… 45

2.8.1 Random Forest………….……………………………………….…… 45

2.8.2 Random Subspace Method (Decision Forest)…………………….… 45

2.8.3 Random Committee……………………………….………………… 46

2.8.4 MultiClass Classifier ………………………………….……………. 46

2.8.5 Boosting………………………………………………….………..... 46

2.8.6 Stacking……………………………………………………………… 47

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

x

2.8.7 Repeated Incremental Pruning to Produce

Error Reduction (RIPPER)…………..……………………………… 47

2.8.8 Boostrap AGGregatING (BAGGING)….……………….................. 47

2.8.9 Support Vector Machine (SVM)…………….……………………… 47

2.8.10 Artificial Neural Network (ANN)…………………………………… 48

2.8.11 K- Nearest Neighbour…………………………………..…………… 49

2.8.12 Reduced Error Pruning (REP tree)…………………………..……… 49

2.9 Critical appraisal and comparison of the

under-sampling schemes……………………………………….…… 49

2.9.1 Nearest Neigbhours (NN)…………………………………………… 50

2.9.2 Properties of under-sampling schemes…….……………………….. 50

2.9.3 Comparison of under-sampling Technique……..…………………… 54

2.10 Review of related work……………………………..………………. 57

2.11 Remarks……………………………………………….……………. 63

Chapter Three: Research Methodology

3.1 Data mining process……………………………………….………… 65

3.2 Model Development………………………………………………… 67

3.2.1 The Enhanced Data Sampling Schemes Algorithms……………..… 67

3.2.2 Algorithm SMOTE (𝑇, 𝑁, 𝑘)…………………..…………………… 68

3.2.3 Algorithm ENN (𝑇, 𝜃, 𝑘) ……………………………..……………… 70

3.2.4 Algorithm NCL (𝑇, 𝐶, 𝑘)…………………………………………… 70

3.2.5 Algorithm RUS (𝑇, 𝑁, 𝐶) …………………………………………… 70

3.3 Implementation of Models in WEKA……………..………………… 70

3.3.1 Basic Functionality……………………………………..…………… 72

3.3.2 Graphical User Interfaces…………………………………………… 74

3.3.3 Extending WEKA…………………………………………………… 75

3.3.3.1 Writing a new filter……………………………………….………… 75

3.4 Evaluation metrics and Statistical analysis tool………………..…… 80

3.4.1 Hypothesis Testing…………………………………………………… 81

3.4.2 FriedMan Test…………………………..…………………………… 81

3.4.3 Analysis Of Variance (ANOVA)…………….………………………. 82

3.4.4 Tukey–Kramer method…………………………….………………… 83

3.4.5 Box and Whisker Plots………………………………….…………… 83

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xi

3.5 The Dataset……………………….………………………………… 84

3.5.1 Diabetes Mellitus (DM) dataset ………..…………………………… 84

3.5.2 Senior Secondary School Certificate Examination

Result (SSS Result) dataset …………............……………………… 85

3.5.3 Tuberculosis (TB) Dataset………………………….………………… 85

3.5.4 Contraceptive Method (CM) dataset………………….……………… 86

3.6 Experimental Design………………………………………………… 87

3.6.1 Classification algorithms’ configuration………………………..…… 92

3.6.1.1 Random Tree……..…………………………………………………. 92

3.6.1.2 RIPPER…………………..…………………………………………. 89

3.6.1.3 Decision Tree………………………………………………………… 89

3.6.1.4 K-Nearest Neighbours classifier (1B3)………………………………. 89

3.6.1.5 REPTree……………………………………………………………… 89

3.6.1.6 Support Vector Machine (SVM)……………………..……………… 90

3.6.1.7 MultiLayerPerceptron (MLP)……………………………..………… 90

3.6.1.8 Multiple Class Classifiers…………………………………………… 90

3.6.1.9 RandomCommittee…………………………………………..……… 90

3.6.1.10Random Forest………………………………………………….…… 91

3.6.1.11Random Subspace (Decision Forest)……..………………………… 91

3.6.1.1 Stacking………………………………………….…………………… 91

3.6.1.13Bagging……………………………………………………………… 91

3.6.1.14Boosting (AdaBoostM1)……………………………………………. 91

3.6.2 Ten - fold Cross Validation…………………………………….…… 92

3.7 Percentage Reduction/ Increment in the dataset…………………..… 92

3.8 Percentage number of the minority class in the dataset…………….. 92

3.9 Measuring the impact of class distribution on

classifier performance…………………………………………….… 92

3.10 Performance Loss/Gain on Classifiers……………………………… 93

Chapter Four: Results and Discussion

4.1 Introduction………………………………………………….……… 94

4.1.1 Analysis of error rates of the minority and

majority class distributions……………………………………….… 94

4.1.1.1 Discussion on the error rates………………………………………… 98

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xii

4.1.2 Steps involved in evaluation of result……………..………………… 98

4.1.3 Dataset Distribution…………………………………….…………… 100

4.1.4 Analysis of classification results of

performance metrics on all datasets………………………….……… 109

4.1.4.1 Analysis of ROC_AUC metrics……………………………………… 109

4.1.4.2 Analysis of Kappa statistics metrics………………………….……… 116

4.1.4.3 Analysis of RMSE metrics………………………………………..… 123

4.1.4.4 Analysis of RECALL of minority class metrics………..…………… 130

4.1.4.5 Analysis of Performance Loss/gain metrics………………..……….. 137

4.1.4.6 Analysis of all metrics on Tuberculosis (TB) dataset……..…………. 144

4.1.5 Statistical Analysis of classification results

on performance metrics………………………………………..……. 147

4.1.5.1 Report of Friedman’s test on ROC_AUC

metric for all dataset…………………………………………………... 147

4.1.5.2 Report of Friedman’s test on Kappa statistics

metric for all datasets……………………………………………….… 150

4.1.5.3 Report of Friedman’s test on RMSE

metric for all datasets……………………………………………..…… 153

4.1.5.4 Report of Friedman’s test on RECALL of the

minority class metric for all datasets………………………..………… 156

4.1.5.5 Report of Friedman’s test on ROC_AUC

metric for all classifiers ……………………………………………… 159

4.1.5.6 Report of Friedman’s test on Performance Loss/gain

metric for on all datasets……………………………………………… 162

4.1.6 Result of analysis of Analysis of Variance (ANOVA)………………. 165

4.1.6.1 ANOVA test on ROC_AUC metric on all datasets………………… 165

4.1.6.2 ANOVA test on all datasets using Kappa statistics metric……….… 168

4.1.6.3 ANOVA test on RMSE metric all datasets………….……………… 170

4.1.6.4 ANOVA test on RECALL of minority class

metric on all datasets………………………………………………… 172

4.1.6.5 ANOVA test on all classifiers……………………………………… 174

 4.1.6.6ANOVA on all datasets with all data sampling

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xiii

 schemes using performance loss/gain metric………………………... 177

4.1.7 Box and whisker Plot ……………………………….……………… 181

4.2 Remarks…………………………………………………………….. 200

4.2.1 Analysis of performance of datasets generated

from existing data sampling schemes………………………………. 200

4.2.2 Analysis of performance datasets generated

from the enhanced data sampling schemes…………….…………… 202

4.2.3 Analysis of performance of the Tuberculosis dataset……….……… 204

4.2.4 Analysis of classifiers…………………………………………….… 205

Chapter Five: Summary, Conclusion and Recommendations

5.1 Summary…………..………………………………………………… 206

5.2 Contribution to the study…………………………………………… 207

5.3 Conclusion………………………………………………………….. 207

5.4 Recommendations…………………….…………………………….. 208

References………………………………………..…………………………… 209

Appendix A The screenshots of the predictions of

datasets on classification algorithm………….……………… 222

Appendix B The class boundary diagram for DM dataset ..………………… 229

Appendix C Java Codes for SMOTE Class …………………………………. 236

Appendix D Java codes for Wilson’s Edited Nearest

Neigbhour (ENN) Class ……………………………………….. 248

Appendix E Java codes for Neigbhourhood Cleaning

Rule (NCL) Class ……………………………………………… 264

Appendix F Java codes for Condense Nearest Neighbour (CNN) Class . 280

Appendix G Java codes for Random Under Sampling (RUS) Class ………… 294

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xiv

LIST OF TABLES

Table 2.1:Confusion Matrix…………………………………........................ 19

Table 2.2:Cost Matrix…………………………………………..................... 41

Table 2.3:Comparison of under-sampling technique………………………… 56

Table 3.1: Summary of datasets………………………………………..…… 88

Table 4.1: Confusion matrix of the bi-class from Decision Tree

classifier on study dataset…………………………………….……… 95

Table 4.2: Error rates of the study datasets with Decision Tree Classifier… 96

Table 4.3: DM Dataset class distribution…………………………………… 101

Table 4.4: TB Dataset class distribution…………………………………… 103

Table 4.5: CM Dataset class distribution……………………………………. 105

Table 4.6: CM Database class distribution…………………………………. 107

Table 4.7: ROC_AUC metric values for DM dataset……………………… 110

Table 4.8: ROC_AUC metric values for SSS Result dataset………………… 112

Table 4.9: ROC_AUC metric values for CM dataset………………………… 114

Table 4.10: Kappa Statistic metric values for DM dataset………………….. 117

Table 4.11: Kappa Statistic metric for SSS Result dataset…………………… 119

Table 4.12: Kappa Statistics metric values for CM dataset………………… 121

Table 4.13: RMSE metric values for DM dataset…………………………… 124

Table 4.14: RMSE metric for SSS Result dataset………………………… 126

Table 4.15: RMSE metric values for CM dataset…………………………… 128

Tables 4.16: RECALL of minority class (GDM)

metric values for DM dataset………………………………… 131

Table 4.17: RECALL of the minority class (PASSWAEC)

metric values for SSS Result dataset…………………………… 133

Table 4.18: RECALL of the minority class (NONE)

metric values for CM dataset…………………………….……… 135

Table 4.19: Performance Loss/gain values for on DM dataset

against RAW DATA using ROC_AUC metric………………. 138

Table 4.20: Performance Loss/gain values for SSS Result dataset

against RAW DATA using ROC_AUC metric…………… 140

Table 4.21: Performance Loss/gain values for CM dataset

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xv

against RAW DATA using ROC_AUC metric………………………… 142

Table 4.22: All metrics values for Tuberculosis dataset……………………... 145

Table 4.23: Result of Friedman’s analysis on ROC_AUC

metric for all datasets………….……………………………… 148

Table 4.24: Result of Friedman’s analysis on Kappa Statistics

metric for all datasets…….…………………………………… 151

Table 4.25: Result of Friedman’s analysis on RMSE

metric for all datasets……….………………………………… 154

Table 4.26: Report of Friedman’s analysis on RECALL of

Minority class metric for all datasets…………………………………… 157

Table 4.27: Report of Friedman’s analysis of on ROC_AUC

metric for all classifiers……………………….………………………… 159

Table 4.28: Result of Friedman’s analysis on Performance Loss/gain

metric for all datasets…………………………………………… 163

 Table 4.29: ANOVA on all datasets with all data sampling

 schemes using ROC_AUC metric………………………… 167

Table 4.30: ANOVA on all datasets with all data sampling schemes

 using Kappa Statistics metric……………………………… 169

Table 4.31: ANOVA on all datasets with all data sampling schemes

 using RMSE metric…………………………………………… 171

Table 4.32: ANOVA on all datasets with all data sampling schemes

 using RECALL of minority class metric……………………… 173

Table 4.33: ANOVA on all classifiers with all data sampling schemes

using ROC_AUC metric………………………………………………... 176

Table 4.34: ANOVA on all datasets with all data sampling schemes

 using performance loss/gain metric………………………… 178

Table 4.35: Summary of performance gain/loss on performance of

scheme compared to the RAW DATA in percentage…….………… 179

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xvi

LIST OF FIGURES

Figure 2.1: Class overlapping problem…………………..…………….. 11

Figure 2.2: Small class disjuct …………………..……………………… 13

Figure 2.3: ROC_AUC graph ………………………………………….. 22

Figure 2.4(a) An Imbalanced dataset………………………………… 26

Figure 2.4(b) A balanced dataset……………………………………… 27

Figure 2.5(a) Imbalanced Dataset …………………………….…………… 31

Figure 2.5(b) Balanced Dataset using TLink………………………….. 32

Figure 2.6(a) Imbalanced dataset……………………………………… 33

Figure 2.6(b) a balanced dataset after CNN…………………………… 34

Figure 3.1: The research methodology ………..………………………. 66

Figure 3.2: The standard WEKA’s GUI with filters………………….. 71

Figure 3.3: The enhanced data sampling implemented in WEKA…..…..… 74

Figure 4.1: Steps used for the pre-processing and analysis of result…….…. 99

Figure 4.2: Chart showing the DM Dataset class distribution……………… 102

Figure 4.3: Chart showing the SSS Result Dataset class distribution……..… 104

Figure 4.4: Chart showing the TB Dataset class distribution………………… 106

Figure 4.5: Chart showing the CM Dataset class distribution……………… 108

Figure 4.6: Chart showing the ROC_AUC metric values for DM dataset…… 111

Figure 4.7: Chart showing the ROC_AUC metric values

for SSS Result dataset…... 113

Figure 4.8: Chart showing the ROC_AUC metric values for CM dataset…… 115

Figure 4.9: Chart showing the Kappa Statistics metric

values for DM dataset…………………………………………..………. 118

Figure 4.10: Chart showing the Kappa Statistics metric

values for SSS Result…………………………………..……………. 120

Figure 4.11: Chart showing the Kappa Statistics metric

values for CM dataset…………………………………………………… 122

Figure 4.12: Chart showing the RMSE metric values for DM dataset….…… 125

Figure 4.13: Chart showing the RMSE metric values

for SSS Result dataset…………………………………………………… 127

Figure 4.14: Chart showing the RMSE metric values for CM dataset…...……. 129

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xvii

Figure 4.15: Chart showing the RECALL of the minority class

(GDM) metric values for DM dataset…………….……………… 132

Figure 4.16: Chart showing the RECALL of the minority class

(PASSWAEC) metric values for SSS Result dataset…………………… 134

Figure 4.17: Chart showing the RECALL of the minority class

(NONE) metric values for CM dataset………………………………….. 136

Figure 4.18: Chart showing the Performance Loss/gain values for on

DM dataset against RAW DATA using ROC_AUC metric…………….. 139

Figure 4.19: Chart showing the Performance Loss/gain values for on SSS

Result dataset against RAW DATA using ROC_AUC metric……..…… 141

Figure 4.20: Chart showing the Performance Loss/gain values for on CM

dataset against RAW DATA using ROC_AUC metric…………….……. 143

Figure 4.21: Chart showing all metrics values for Tuberculosis dataset……. 146

Figure 4.22: Chart showing the Friedman’s analysis on

ROC_AUC metric for all datasets…………………………….………… 149

Figure 4.23: Chart showing the Friedman’s analysis on Kappa Statistics

metric for all datasets…………………..…………………………… 152

Figure 4.24: Chart showing the Friedman’s analysis on

RMSE metric for all datasets………………………………………… 155

Figure 4.25: Chart showing the Friedman’s analysis on

RECALL of minority class metric for all datasets……………………… 158

Figure 4.26: Chart showing the Report of Friedman’s analysis of

on ROC_AUC metric for all classifiers………….…………………… 161

Figure 4.27: Chart showing the Result of Friedman’s analysis

on Performance Loss/gain metric for all datasets……………………….. 164

Figure 4.28: Chart showing the summary of on Performance

Loss/gain on performance of the scheme compared to

the RAWDATA in percentages…………………….……………….. 180

Figure 4.29: Box and whisker plots for ROC_AUC metric

for DM dataset……………………………………….………………. 182

Figure 4.30: Box and whisker plots for ROC_AUC metric

for SSS Result dataset…………………………………………………… 183

Figure 4.31: Box and whisker plots for ROC_AUC metric

for CM dataset………………………………….……………………….. 184

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xviii

Figure 4.32: Box and whisker plots for Kappa Statistics metric

for DM dataset………………………………..………………………… 185

Figure 4.33: Box and whisker plots for Kappa Statistics metric

for SSS Result dataset…………………………………………………… 186

Figure 4.34: Box and whisker plots for Kappa statistics metric

for CM dataset…………………………………………………………… 187

Figure 4.35: Box and whisker plots for RMSE metric for DM dataset……… 188

Figure 4.36: Box and whisker plots for RMSE metric for

SSS Result dataset……………………………………………………… 189

Figure 4.37: Box and whisker plots for RMSE metric for CM dataset……… 190

Figure 4.38: Box and whisker plots for RECALL metric for DM dataset…… 191

Figure 4.39: Box and whisker plots for RECALL metric

for SSS Result dataset…………………………………………………… 192

Figure 4.40: Box and whisker plots for RECALL metric for CM dataset…… 193

Figure 4.41: Box and whisker plots for classifiers on DM dataset………… 194

Figure 4.42: Box and whisker plots for classifiers on SSS Result dataset….. 195

Figure 4.43: Box and whisker plots for classifiers on CM dataset……..…… 196

Figure 4.44: Box and whisker plots on Performance Loss/Gain

on DM dataset………………………………………….…………..… 197

Figure 4.45: Box and whisker plots on Performance Loss/Gain

on SSS Result dataset…………………………………………………… 198

Figure 4.46: Box and whisker plots on Performance Loss/Gain

on CM dataset…………………………………………………………… 199

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

1

CHAPTER ONE

Introduction

1.1 Background to the study

Data mining is defined as the process of discovering patterns in data (Witten et al., 2011).

It can also be referred to as the extraction or “mining” of knowledge from large amounts

of data (Han and Kamber, 2001).

Data mining has attracted lots of attention from the information industry due to availability

of large amont of data and the burning need to transform these data into information and

knowledge. Data mining techniques such as class description, association analysis,

classification and prediction, cluster analysis and outlier analysis are used to specify the

kind of patterns to be found in data mining tasks. Classification is the process of finding

new set of models that describes and distinguish data classes and concepts to be able to

predict unknown class of objects. These newly created models are based on the analysis

of the training data whose class label is known. Since the class label of each training

sample is provided, this step is known as supervised learning. The new model may be

presented in various forms such as classification (IF-THEN) rules or mathematical

formulae. These rules can be used to categorize future data samples, as well as provide a

better understanding of the dataset contents.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

2

Classification can be used to predict the class label of data objects. In many application

domains, users may be interested in mining descriptions that distinguishes a target class

from its contrasting classes in the same dataset. Classification

models/algorithm/classifiers/learners in data mining include Decision Trees, Artificial

Neural Networks, k-Nearest Neigbhour classifiers and Random Forest. Hence,

classification is an important task but a general problem in data mining and machine

learning.

Some of the issues regarding dataset for classification are data cleaning, relevance

analysis, data transformation, class imbalance problem and comparison of classifiers.

These sub-problems impede learning. When constructing a classification model, the

learning algorithm reveals the underlying relationship between the attribute set and class

label and identifies a model that best fits the training data. This model should accurately

predict the class label of previously unknown problem.

However, standard classifiers usually perform poorly on imbalanced data sets because they

are designed to generalize from training data and output the simplest hypothesis that best

fits the data. Therefore, this simplest hypothesis pays less attention to rare cases. However,

in many cases, identification of these rare objects/minority class is of crucial importance;

classification performances on the small/rare/minority classes are the main concerns in

determining the property of a classification model (Sun et al., 2006, Hoens, 2012).

Most traditional classifiers operate on data drawn from the same distribution as the training

data and assume that maximizing accuracy is the principal goal. Also, in a problem with

imbalance level of 99%, a learning algorithm that minimizes error rate could decide to

classify all examples as the majority class, in order to achieve a low error rate of 1%. A

practical example is a domain trying to predict terrorist and non-terrorist or a cancer patient

to a non-cancer patient. The size of the samples representing non-terrorist and non-cancer

patients are more than the terrorist and cancer patient. Most classifiers will assume that the

cost of misclassification for these two classes (terrorist and non-terrorist or cancer and

non-cancer patients) is the same. But the cost of predicting a non-terrorist is much lower

than actual terrorist who carries a bomb at a cinema. Nevertheless, all minority examples

will be wrongly classified in this case (Xu-Ying et. al, 2009). This class imbalance

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

3

problem had been observed to cause a significant deterioration in the performance of

standard classifiers (Barandela et. al., 2003a; Johnson et. al., 2012).

1.2 Motivation of study

Traditional classifiers such as Decision Trees, Artificial Neural Networks (ANN), and

Support Vector Machines (SVM) are ineffective at identifying samples from minority class

which is the class of interest during classification (Garcia et al., 2012). New techniques

are required to ensure that classifier can effectively identify these most important yet rarely

occurring examples.

Secondly, there is also the advantage of low storage requirement (a reduced dataset) and a

high computational advantage when dataset are reduced. Therefore, enhanced sampling

schemes, which are external, independent of any classifier and also versatile, are desirable.

This study therefore is motivated by the need to identify specific domains for which an

imbalance was shown to hurt the performance of standard classifiers. Also to show whether

these class imbalances are always damaging to classification and to what extent do

different types of imbalances affect classification performances.

1.3 Justification for the study

The justification for this research is that most standard classifiers are working towards

achieving a generalised accuracy and low error rate which are biased towards the majority

class while completely ignoring the minority class. But this minority class is the class of

interest. Following closely, is class distribution of a domain where the classifiers assume

that the classification algorithm will work on the dataset drawn from the same class

distribution with training and testing dataset but this is not always true. Furthermore, the

Error cost which is characterised by the situation whereby the classifier assumes that errors

coming from the different classes in the dataset are the same but this is not correct as

misclassification cost of the minority class is higher than the majority class.

1.4 Research aim and objectives

The aim of this study is to develop enhanced data sampling schemes for improving the

performance of imbalance datasets trained on classification models that can increase the

RECALL of the minority class which is the class of interest.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

4

 The specific objectives of the study are to:

i. develop enhanced data sampling schemes to alleviate the effects of class

imbalanced problem;

ii. evaluate the performance of these new data sampling schemes on different

classifiers as well as on homogeneous and heterogeneous ensembles and compare

their performances

1.5 Research methodology

The following methodologies were used in this study:

i. Extensive review of literature in related work

ii. Development of a theoretical taxonomy of the relationship between under-sampling

schemes in class imbalance learning, their underlying data reduction techniques and

their time complexity.

iii. Development of the enhanced data sampling schemes; SMOTE300ENN,

SMOTENCL, SMOTERUS, SMOTE300NCL and SMOTE300RUS using Java

programming language.

iv. Extension of WEKA, a data mining tool to accommodate these enhanced data

sampling schemes.

v. Testing of the new data sampling schemes on selected datasets obtained locally:

Contraceptive Methods (CM), Senior Secondary School Result (SSS Result),

Diabetes Mellitus disease (DM) and Tuberculosis (TB) dataset in Nigeria.

vi. Testing of the enhanced and existing data sampling schemes (CNN, ENN and NCL)

on various base classifiers (Decision Tree, RIPPER, Artificial Neural Network

(ANN), Random Tree, Fast Decision Tree Learner (REPTree), Support Vector

Machine (SVM) and k-Nearest Neighbours Classifier (1B3)), homogeneous

ensembles (Boosting (ADABoostM1), BAGGING, Random Subspace (Decision

Forest), Random Forest, Random Committee and MultiClass Classifier) and

compared the result with heterogeneous ensemble (STACKING using Ripper,

Decision Tree, 1B3, SVM and MLP as base classifiers in this order and Decision tree

as the meta classifier).

vii. Evaluating the results obtained from the study of these datasets using the following

metrics; Receiver Operating Characteristics Area Under Curve (ROC_AUC), Kappa

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

5

Statistics, Root Mean Square Error (RMSE), RECALL of the minority class and

Performance Loss/gain.

viii. Analyses of the results obtained with performance metrics using both parametric

and non-parametric statistical methods; ANOVA, Box and whisker plots and

Friedman test at statistical significance level of 0.05%, confidence level of 95% in

SPSS package.

1.6 Scope of the study

This study spans datasets with imbalance class distribution where the imbalance

distribution among the classes in the dataset hindered the performance of classifiers. The

study focuses on how to increase the RECALL of the minority class which is the class of

interest. The study also identified specific domains for which an imbalanced dataset was

shown to hinder the performance of standard classifiers, determine whether these

imbalances were always damaging and to what extent different types of imbalances affect

classification performances. CM, SSS Result and DM datasets were examples of such

cases where the traditional classifier trained on them is overwhelmed by the number of the

majority class thereby misclassifying the minority class, which is the class of interest.

1.7 Organisation of thesis

The rest of this thesis is organised as follows:

Chapter two gives an extensive review on class imbalance learning and several solutions

reported in the literature. These include the sampling schemes, ensemble techniques,

evaluation metrics and related work. Chapter three gives a comprehensive explanation on

the methods used, the model development and the experimental setup. Chapter four

presents the results obtained and the detailed discussion on the various results obtained.

Finally, Chapter five gives the summary of the study, conclusion drawn from the study

and the recommendations for future work are presented.

1.8 Glossary of terms

Association analysis: This is the discovery of association rules showing attributes-value

conditions that occur frequently together in a given dataset.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

6

Bias: This is defined by Mitchell (1980) as a rule or method that causes

an algorithm to choose one generalised output over another as

explained by Wilson and Martinez, (1997b).

CBOS: Cluster-based Oversampling

Cluster analysis: This technique analyses data objects without consulting a known

class label.

ENN: Wilson’s Edited Nearest Neighbour

MLP: Multi Layer Perceptron

NCL: Neighbour Cleaning Rule

Noise: This is a random error or variance in a measured variable.

OSS: One Sided Selection

Outlier analysis: This is the study of data objects that do not comply with the general

behaviour or models of the data.

Patterns: These are rules generated from mining a dataset. A pattern

represents knowledge if is easily understood by humans, valid on

test data with some degree of certainty and novel.

REPTree: Reduced Error Pruning Tree

RIPPER: Repeated Incremental Pruning to Produce Error Reduction

RNN: Reduced Nearest Neighbour

ROC: Receiver Operating Characteristics

ROS: Random Oversampling

RUS: Random Under Sampling

Samples: This could be used synonymously with examples, instances or

objects. This is referred to as data tuples (rows or records) in a

dataset.

SMO: Sequential Minimization Optimization

SMOTE: Synthetic Minority Oversampling TEchnique

SNN: Selective Nearest Neighbour

Supervised learning: This is a step in which the class label of each training samples is not

known, and the number or set of classes to be learned may not be

known in advance.

TLink: Tomek Link

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

7

Training dataset: These are data tuples analysed to build the model collectively from.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

8

CHAPTER TWO

Literature Review

 This chapter presents the review of literature on class imbalance problem and related work.

2.1 Class Imbalance Problem

The class imbalance problem corresponds to the domain for which one class is represented

by a large number of examples while the other is represented by few (Japkowicz, 2003).

Class imbalance learning is the learning problem in which instances in some classes

heavily outnumber the instances in other classes. Imbalance Data Set (IDS) corresponds

to domain that suffers this problem (Wang et al., 2009).

In such cases, standard classifiers tend to be overwhelmed by the large classes and ignore

the small ones. This imbalance causes sub-optimal classification performance or even

worse (Chawla et al., 2004, Fernanez et al., 2011). It is a fundamental problem of data

mining research (Yang and Wu, 2005) and pattern recognition (Ghanem et al., 2010).

When the prediction model is trained on such an imbalance dataset, it tends to show a

strong bias towards the majority class, since typical learning algorithms intend to

maximize the overall prediction accuracy. In fact, if 95% of the entire dataset belongs to

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

9

the majority class, the model could ignore the remaining 5% of minority class and predict

that all of the test data are in the majority class. Though the accuracy will be 95%, the

instances belonging to the minority class will be absolutely mis-classified (Hido and

Kashima, 2008). The mis-classification cost for the minority class, however is usually

much higher than that of majority class and should not be ignored (Hido and Kashima,

2008, Thai-Nghe et al., 2009).

Domain suffering naturally from class imbalances include detection of oil spill in satellite

radar images (Kubat and Matwin, 1997), diagnosis of diseases in medicine such as rare

diseases (cancer) and rare gene mutation (albino), medical diagnosis (Yang and Ma, 2010),

network monitoring, intrusion detection (Vegard, 2010), earth quakes and nuclear

explosion and helicopter (Guo et al., 2008), risk management (Chawla et al., 2004), text

classification (Estabrooks et al., 2004), education (the ratio of the number of “pass

student” to “fail student”) and detection of fraudulent or default banking (Thai- Nghe et

al., 2009), species distribution prediction in ecology and conservational biology (Johnson

et al., 2012), information retrieval and filtering (Lewis and Gale, 1994), response

optimization in Customer Relationship Management (CRM) (Lessmann, 2004), document

classification (Manevitz and Yousef, 2001), image retrieval (Chen et al., 2001), Deoxyribo

Nucleic Acid (DNA) Microarray time series (Pearson et al., 2003), spam-detection and

filtering (Kolcz et al., 2003) and sentence boundary detection in speech (Liu et al., 2006).

In practical applications, the ratio of the small to large classes can be drastic such as 1:100,

1:1000, or 1 to 10,000 and sometimes even more (Chawla et al., 2004). In a classification

problem, algorithm is used to construct a model by learning from training set which

contains examples with class labels (Boontarika and Maythapolnum, 2011).

2.2 Problems associated with class imbalance

Class imbalance occurs when there are significantly fewer training instances of one class

compared to other classes (Thai- Nghe et al., 2009, Chawla et al., 2004). In some

applications, some data are naturally imbalanced. Examples are in credit card fraud and

rare disease case (cancer). However, imbalance data set can also occur in areas where data

are too expensive to be obtained for the minority class e.g. shuttle failure (Chawla et al.,

2004, Guo et al., 2008) or limitation in collecting data such as cost, privacy, and the large

effort required to obtain a representative data set (Thai-Nghe et al., 2009) thus, creating

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

10

‘artificial’ imbalances (Chawla et al., 2004). Class imbalance gives rise to various

difficulties when learning.

2.2.1 Difficulties encountered in imbalanced classification

Some of the difficulties associated with imbalance dataset classification when allied

according to Lopez et al., (2013), Batista et al., (2004), Nguyen, (2011), Johnson et al.,

(2012), Fernandez et al., (2011) includes:

a. Small Sample Size

This corresponds to the situation where the size of the minority class is extremely

small due to the fact that there is either limitation in collecting data, data are too

expensive or the datasets are naturally imbalanced. So, learning algorithm could not

make generalisations about the class distribution because of lack of information or

enough data. In this situation, the minority class becomes poorly represented. The

combination of imbalanced data and the small sample size problem presents a new

contest as the minority class can be poorly represented and the classifier to learn this

data space become too specific, leading to over fitting.

b. Class Overlapping

The problem of overlapping between classes appears when a region of the data space

contains a similar quantity of training data from each class as shown in Figure 2.1.

This problem may lead to developing an inference with almost the same apriori

probabilities in this overlapping area, which makes it very hard or even impossible to

distinguish between the two classes. Classification of imbalance dataset becomes sub-

optimal when allied with class overlapping problem. However, any linearly separable

problem can be solved by any base classifier irrespective of the class imbalance

problem.

c. Small Disjuncts

The imbalance class problem is identical with small disjuncts problem. This small

disjuncts problem is a condition that arises when sample from minority classes are

represented within sub-clusters which happen as a direct result of underrepresented

concept as established by Weiss and Provost, 2003; Galar et al., 2012 and Rahman

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

11

Figure 2.1: Class overlapping problem (Galar et al., 2012)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

12

and Raju, 2014 and shown in Figure 2.2. Although these small disjuncts are hidden in

most problems, their existence highly increases the complexity of the problem in the

case of imbalance because it becomes hard to know whether these samples represent

an actual sub-concept or are merely attributed to noise as concurred by Jo and

Japkowicz (2004).

d. Dataset Shift

This phenomenon occurs when there is difference in the distribution of training and

test samples of the same dataset as confirmed by Quinonero et al., (2009). This issue

is significant in the presence of class imbalance dataset as a single mis-classification

on the minority class can cause a sub-optimal performance in classifiers. This issue is

especially relevant when dealing with imbalanced classification, because in highly

imbalanced domains, the minority class is particularly sensitive to singular

classification errors, due to the typically low number of examples it presents.

e. Concept Complexity

This is an important factor in a classifier ability to alleviate class imbalance problem.

Concept complexity in data corresponds to the level of separabilty of classes within

the dataset (Japkowicz and Stephen, 2002). The class imbalance factor starts affecting

the classifier generalisation ability as the degree of data complexity increases.

High complexity refers to inseparable datasets with highly overlapped classes,

complex boundaries and high noise level. When samples of different classes overlap

in the feature space, finding the ideal class boundary becomes tough (Nguyen et al.,

2009).

f. Noise

The class imbalance problem is more significant when the data sets have a high level

of noise. Noise in datasets can emerge from various sources like data samples are

poorly acquired or incorrectly labelled, or extracted features are not sufficient for

classification as explained by Nguyen et al., (2009).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

13

Figure 2.2: Small class disjuct (Galar et al., 2012)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

14

2.2.2 Multiple Class Problems

Typically, there are two types of classes for imbalance datasets namely: bi-class and

multiple classes (more than two classes or multi-class). In a bi-class application, the

imbalanced problem is observed as one class, represented by a large amount of samples

while the other is represented only by a few. The class with the few training sample are

usually associated with high identification importance, is referred to as the positive class;

the other one is the negative class (Thai-Nghe et al., 2010, Sun et al., 2006). In practice,

most applications have more than two classes where unbalanced class distribution hinders

the performance of the classifier. They suffer from more classification difficulties.

Most of the solutions reported to alleviate class imbalance problem so far are mainly two-

class imbalance problems. Most real-world applications however have more than two

classes with imbalanced distributions. They pose new challenges that are not observed in

two-class problems. The multi-class classification problem is an extension of the

traditional binary class problem where a dataset consists of 𝑘 different classes instead of

two. Though class imbalance exists in binary class datasets where one class severely

outnumbers the other class, it also extends to multiple classes where the effects of

imbalance are even more problematic. That is, given 𝑘 different classes; there are multiple

ways for class imbalance to manifest itself in the dataset. One typical way is that there is

one “super majority” class which contains most of the instances in the dataset. Another

typical example of class imbalance in multi-class datasets is the result of a single minority

class. In such instances, each 𝑘 − 1 instances consists of roughly 1 (𝑘 − 1)⁄ of the dataset,

and the “minority” class makes up the rest (Hoens et al., 2012). Multi-class imbalance

problems suffer from more classification difficulties.

2.3 Methods of multiple classes’ problem decomposition

There are several methods by which multi-class classification can be resolved. These are

discussed in sections 2.3.1 to 2.3.3:

2.3.1 Direct multiclass classification

This scheme works by performing classification on the learning algorithm directly. This

involves using the learning algorithm directly without any changes in parameters to

alleviate a multiple class problem. Examples of such algorithms are K-Nearest Neighbour,

Decision Tree, Bayes Classifier (Naïve Bayes) and Support Vector Machine.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

15

2.3.2 Multiclass Extension: Decomposition

This is a technique of processing multiple class by transforming the problem into multiple

or several binary (two-class) classification sub-problems. Decomposing a big problem has

some advantages which according to Wang (2011) includes:

a. Individual classifiers are likely to be simpler than a classifier learnt from the whole

data set.

b. They can be trained simultaneously for less modelling time

c. They can be trained independently which allows different feature spaces, feature

dimensions and architectures. The change in one classifier will not affect the others.

However, the potential drawbacks of decomposition method according to Wang (2011)

are:

a. each individual classifier is trained without full data knowledge and

b. It can cause classification ambiguity or uncovered data regions with respect to each

type of decomposition.

2.3.3 Methods of Decomposing Multiple Class Problems

There are several approaches/methods in decomposing a multi classification problem.

These methods as outlined by Boontarika and Maythapolnun, (2011) are discussed in

2.3.3.1 to 2.3.3.4:

2.3.3.1 One-versus-One (OVO) Method

This approach creates a classifier for each pair of classes. The training set for each pair

classifier (𝑖, 𝑗) includes only those instances that belong to either class 𝑖 𝑜𝑟 𝑗. A new

instance, 𝑥, belongs to the class upon which most pair classifiers agree. The prediction

decision is quoted from the majority vote technique. There are 𝑛
(𝑛−1)

2
 classifiers to be

computed, where 𝑛 is the number of classes in the dataset. It is evident, that the

disadvantage of this scheme is that there is need to generate a large number of classifiers,

especially if there are a large number of classes in the training set. For example, if there is

a training set of 1,000 classes, then 499,500 classifiers are needed. On the other hand, the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

16

size of the training set for each classifier is small because all instances that do not belong

to that pair of classes are excluded as discussed by Awad et al. (2009).

2.3.3.2 One-versus-All (OVA) Method

It creates a classifier for each class in the dataset. The training set is pre-processed such

that, for a classifier 𝑗, instances that belong to class j are marked as class (+1) and

instances that do not belong to class j are marked as class (−1). In the OVA scheme, one

computes n classifiers, where n is the number of pages that users have visited (at the end

of each session). A new instance, x, is predicted by assigning it to the class that its classifier

outputs has the largest positive value (that is maximal marginal). The main advantage of

this method is that it introduces redundancy which creates generalisation in the

classification but causes an over fitting problem when applied to a small sample size

because each classifier uses data from two classes of interest and ignores the rest as

conferred by Zhou and Tuck (2007).

The advantage of OVA scheme when compared to the OVO scheme is that it has fewer

classifiers. On the other hand, the size of the training set is larger for OVA scheme than

for an OVO scheme because the whole original training set was used to compute each

classifier.

2.3.3.3 P-Against-Q (PAQ) Method

This is a generalised concept of a coding scheme. A code word length is equivalent to the

sum of P and Q, where 𝑃 ≥ 1 and 𝑄 ≥ 1. P is the number of “on” (binary 1) bits, and Q

is the number of “off” (binary 0) bits. OVA is a PAQ scheme with 𝑃 = 1 𝑎𝑛𝑑 𝑚 = 𝑘 as

debated by Ou et al, (2004).

2.3.2.4 Error-Correcting Code Design Method

Error-correcting output code is defined to be a matrix of binary values. The length of a

code is the number of columns in the code. The number of rows in the code is equal to the

number of classes in the multiclass learning problem. A “code word" is a row in the code.

A good error-correcting output code for a k-class problem should satisfy two properties:

Row separation where each code word should be well-separated in Hamming distance

from each of the other code words and column separation where each bit-position function

𝑓𝑖 should be uncorrelated with the functions to be learned for the other bit positions 𝑓𝑗 , 𝑗 ≠

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

17

𝑖. The power of a code to correct errors is directly related to the row separation as

concluded by Dietterich and Bakiri, (1995).

2.4 Evaluation metrics

Accuracy is the most common evaluation metrics used by most traditional application. But

accuracy is not suitable to evaluate imbalance data sets as it places more weight on the

majority class than the minority class as affirmed by (Weiss and Provost 2003; Guo et al.,

2008). However, it has been observed that for extremely skewed class distribution, the

RECALL/True Positive Rate (TPR) of the minority class is often 0, which means that there

are no classification rules generated for the minority class as conferred by Guo et al.

(2008). The under listed metrics in sections 2.4.1 to 2.4.10 are the most frequently used.

2.4.1 Confusion Matrix

In a bi-class problem, the confusion matrix records the result of correctly and incorrectly

recognised examples of each class (Galar et al., 2012; Thai-Nghe et al., 2009). Table 2.1

presents the confusion matrix of a bi–class problem. The positive class represents the

minority class while the negative class represent the majority class. True Positive (TP)

shows the number of positive class correctly classified as positive, while True Negative

(TN) shows the number of negative class correctly classified as negative class. False

Positive (FP) shows the number of negative classes that were incorrectly classified as the

positive class while false negative (FN) shows the number of positive classes that were

incorrectly classified as negative class. The Recall/Sensitivity/True Positive Rate (TPR) is

the likelihood that a positive class is correctly classified as positive as depicted by

(equation 2.3). Positive Predictive Value (PPV)/Precision is the likelihood that positive

prediction is correct as depicted by (equation 2.2) while NPV is the likelihood that a

negative predictions correct as depicted by (equation 2.7). False Negative Rate (FNR) is

the likelihood that a positive example is classified as negative example as depicted by

(equation 2.5). This confusion matrix could be extended and expanded to multiple class

problems.

Accuracy =

TP

FN+FP+TN

 (2.1)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

18

Precision/PPV =

TP

TP+FP
 (2.2)

Recall (TPR or Sensitivity) =

TP

TP+FN
 (2.3)

FPR =

FP

FP+TN
 (2.4)

FNR =

FN

TP+FN
 (2.5)

Specificity/TNR =

TN

TN+FP
 (2.6)

NPV =

TN

TN+FN
 (2.7)

2.4.2 F_ measure

This metric harmonises the mean between Recall and Precision and it is depicted by

(Equation 2.8). It can be calculated by picking its values from Table 2.1. It generally focus

the learning accuracy on positive class from completeness and efficiency aspect

respectively (Ding, 2011). It is high when both Recall and Precision are high and can be

adjusted through changing the value of (Guo et al., 2008, Thai-Nghe. et al., 2009). The

relative importance of precision versus recall is denoted by and it is usually set to 1

(Chawla, 2005).

F_ Measure =

2

2

1+β Recall×Precision

β Recall+Precision
 (2.8)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

19

 Table 2.1 Confusion Matrix

 Positive Prediction Negative Prediction

Positive Class

True Positive (TP)

False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

20

2.4.3 Kappa statistic or Cohen's kappa coefficient

 It is used to measure the agreement between predicted and observed categorisation of a

dataset, while correcting for an agreement that occurs by chance. Its maximum value is

100% (perfect agreement) and the expected value for random predictor with the column

total is 0 (no agreement) (Witten et al., 2011). Cohen's kappa coefficient is a statistical

measure of inter-rater agreement or inter-annotator agreement or qualitative (categorical)

items (Carletta, 1996). It is generally thought to be a more robust measure than simple

percent agreement calculation since κ takes into account the agreement occurring by

chance.

The equation for κ is depicted in (equation 2.9):

Pr() Pr()

1 Pr()

a e

e
k

 (2.9)

Where Pr (a) is the relative observed agreement among raters, and Pr (e) is the hypothetical

probability of chance agreement, using the observed data to calculate the probabilities of

each observer randomly in each category. If the raters are in complete agreement, then 𝑘 =

1. If there is no agreement among the raters other than what would be expected by chance

(as defined by Pr (e)), 𝑘 = 0. Landis and Koch (1977) characterized values Kappa

Statistic, 𝑘 < 0 as indicating no agreement and, 0 < 𝑘 ≤ 0.20 as slight, 0.21 < 𝑘 ≤ 0.40

as fair, 0.41 < 𝑘 ≤ 0.60 as moderate, 0.61 < 𝑘 ≤ 0.80 as substantial, and 0.81 < 𝑘 ≤ 1

as almost perfect agreement.

2.4.4 G- Means Criterion

Also known as geometric means and it combines the performance of both positive class

and negative class i.e. geometric mean of the accuracies measured separately on each class

(Positive and Negative) and depicted by (Equation 2.10) calculated from Table 2.1. It is

calculated as the product of the prediction accuracies for both classes. High prediction

accuracy on both positive and negative class will give rise to a high G-means value (Ding,

2011). Also, it measures the avoidance of the over fitting to the negative class and the

degree to which the positive class is ignored.

http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Inter-rater_agreement

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

21

G-Mean = Specificity Sensitivity (2.10)

2.4.5 Matthews Correlation Coefficient (MCC)

This is a strong metric that considers both accuracies and error rates on both classes, since

all the four values in the confusion matrix are involved in this formula. A high MCC value

means the learner should have high accuracies on positive and negative classes, and also

have less mis-classification on the two classes. Therefore, MCC can be considered as the

best singular assessment metric so far (Ding, 2011). This is represented in (Equation 2.11).

MCC =

 C C r r

TP×TN - FP×FN

P ×N ×P ×N
 (2.11)

 Where Pc = TP+FN

 Nc = TN+FP

 Pr = TP+FP

 Nr = FN+TN

2.4.6 ROC (Receiver Operating characteristic) and AUC (Area Under the Curve of ROC)

ROC graph is a technique for visualising, organising and selecting classifier based on their

performances (Fawcett, 2003). It has properties that make them especially useful for

domains with skewed class distribution and unequal classification error cost (Fawcett,

2006). It is a two-dimensional graph in which TP rate is plotted on the Y- axis and FP rate

on the X- axis. ROC graph depicts relative trade-offs between benefits (TPR) and costs

(FPR) as depicted in Figure 2.3. So far, all the metrics discussed are based on fixed values

of TP, TN, FP, FN, where such values can be easily collected when the class labels and

predicted values are both discrete. However, in some other cases, such as the Bayesian

network, or some neural network, or some ensemble classifiers, the prediction on testing

data are continuous values, and a threshold have to be chosen to discretize them. Shifting

the threshold within certain range can produce different groups of TP, TN, FP, FN values.

By linking these TP and FP values jointly and plotting them on a 2-D axis, a Receiver

Operating Characteristics (ROC) graph is constructed, as depicted in Figure 2.3. The ideal

model should produce a point in Position A—the top left corner of Figure 2.3, where TPR

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

22

Figure 2.3: ROC_AUC graph (Ding, 2011)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

23

is 1 and FPR is 0; and the worst model should be the point B at the bottom right corner.

Hence, a good classification model should be as close to the top left corner as possible.

Meanwhile, a model making random guess will be located on the diagonal, where the TPR

and FPR are equal to each other. Note that the point D on the bottom left corner means the

classifier predicts every examples as negative, and point C on the top right means all the

predictions are positive. The ROC curve is created by connecting all groups of TPR and

FPR values and point D and C together. The closer the ROC curve approaches to the top-

left corner, the better the classification performance is (Weiss and Provost, 2003).

However, directly comparing two or more ROC curves are challenging and impractical,

e.g., two curves may be interleaved together and it is hard to claim the better one. Thus, a

single numerical value to represent the effectiveness of the ROC curve is necessary, which

brings the Area under the ROC curves (ROC_AUC).

Clearly, the ROC_AUC value is ranged from 0 to 1, and the higher it is, the better the

classifier. Although the ROC curve provides a straight visualization for performance

evaluation, it also has a particular limitation when it is applied to the highly imbalanced

data set (Davis and Goadrich, 2006).

ROC attractive property is that they are insensitive to changes in class distribution. If the

proportion of positive to negative instances changes in a test set, the ROC curves will not

change. For ROC, graphs are based upon TPR and FPR, in which dimension is a strict

columnar ratio, so do not depend on class distribution (Fawcett, 2006). (Equation 2.12)

represents the formula for calculation.

 1+ TPR FPR
ROC_AUC=

2

 (2.12)

2.4.7 Precision-Recall Curves (PRC)

 The PRC depicts the relationship between precision and recall as the classification

threshold varies (Thai-Nghe et al., 2009; Davis and Goadrich, 2006). The recall (measures

how often a positive class instance in the dataset is predicted as a positive class instance)

is plotted on the X-axis and precision (which measures how often an instance which was

predicted as positive is actually positive) is on the Y-axis.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

24

2.4.8 H-Measure

H–Measure was proposed by Thai-Nghe et al. (2011). It uses asymmetric Beta distribution

B42 to evaluate classifier when learning from imbalance datasets. H-Measure is used to

replace the implicit cost weight distribution in the AUC. AUC has serious deficiency, since

it implicitly uses different mis-classification cost distributions for different classifiers

(Nguyen, 2011).

2.4.9 Cross Validation (CV)

 This is a methodology often used when independent testing data are not available. Given

a Training data set, equally split the set into K folds and then iteratively choose one fold

for testing, and the others for training, until all folds have been used exactly once for

testing. K can be pre-specified by user, and is normally chosen to be 5, 7 and 10. When K

equals to the total number of examples in the data set, it is also called leave-one-out cross

validation (LOOCV) (Ding, 2011).

2.4.10 Root Mean Square Error (RMSE)

 The Root Mean Square Error (RMSE) is a frequently used measure of the difference

between values predicted by a model and the values actually observed from the

environment that is being modelled. These individual differences are also called residuals,

and the RMSE serves to aggregate them into single measure of predictive power.

(www.ctec.ufal.br/professor/crfj).

The RMSE of a model prediction with respect to the estimated variable 𝑋𝑚𝑜𝑑𝑒𝑙 is defined

as the square root of the mean squared error:

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑏𝑠𝑖−𝑋𝑚𝑜𝑑𝑒𝑙𝑖)2𝑛

𝑖=1

𝑛
 (2.12)

Where 𝑋𝑜𝑏𝑠 is observed values and 𝑋𝑚𝑜𝑑𝑒𝑙 is modelled values at time/place i.

 2.5 Challenges faced by class imbalance problem

Some of the challenges faced by class imbalance problem according to Wasiowski and

Chen (2010) were stated as follows:

http://www.ctec.ufal.br/professor/crfj

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

25

i. It is not always easy to distinguish between noise examples and minority class

examples as they are completely ignored by the classifier.

ii. The use of standard accuracy rate that benefits the covering of the majority

examples.

iii. Classification rules that predict the positive class are often highly specialised and

their covering is low, hence they are discarded in favour of more general rules.

iv. The combination of imbalance and the small sample size poses a problem to

class imbalance learning

2.6 Solutions to class imbalance problem

Numerous existing solutions to Class Imbalance Problem were developed both at data and

algorithmic levels. Almost all the solutions developed were designed for a two-class

problem, where the imbalance problem observed is that one class is highly under

represented but associated with a higher identification importance. All the existing

solutions to class imbalance learning manipulates the training size, class prior, cost matrix

and placement of decision boundary (Liu et al, 2008). At the data level, the objective is to

re-balance the class distribution by re-sampling the data space while at the algorithm level,

solutions try to adapt existing classifier learning algorithm to strengthen learning with

regards to the minority class. The main advantage at the data level techniques is that they

are independent of the underlying classifier (Fernandez et al. 2011, Ding, 2011)

At the data level; re-sampling technique balances the class distribution in the training data,

by either adding examples to the minority class (Oversampling) or removing examples

from the majority class (under- sampling) (Yang and Wu, 2006; Ding, 2011) or

combination of oversampling and under-sampling (Sun et al., 2006; Guo et al., 2008,

Ding, 2011). The resulting sampled dataset is then made more amenable to traditional

algorithm which can then be used to classify the data. Figure 2.4 (a) shows an imbalance

dataset where there were many more majority classes than the minority classes while

Figure 2.4 (b) shows a balanced dataset with well-defined clusters.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

26

Figure 2.4(a): An Imbalanced dataset

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

27

Figure 2.4(b): A balanced dataset

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

28

2.6.1 Sampling schemes

The under listed sampling schemes were commonly used for dealing with the class

imbalance problem. Their advantage over other methods is that they are external and thus

easily transportable. Though, these approaches can be simple to implement, tuning them

can be difficult.

2.6.1.1. Under-sampling schemes

Sampling can be used as a data reduction technique because it allows a large dataset to be

represented by a smaller subset of the dataset. This technique removes examples from the

dataset to a desired distribution. There are two types of under-sampling: random and

informed.

a. Random Under-Sampling (RUS)

This is random elimination of majority class examples. RUS makes no attempt to

“intelligently” remove examples from the training data. Instead, RUS simply

removes examples from the majority class at random until a desired class

distribution is achieved. It can discard potentially useful data that could be

important for the induction process, and this can make the decision boundary

between minority and majority harder to learn (Ding, 2011; Seiffert et al., 2010).

It creates a subset of the original dataset by the eliminated instances.

b. Informed Under sampling.

This technique removes instances from the dataset intelligently. Examples of these

techniques are:

i. Reduced Nearest Neighbour (RNN)

This algorithm starts with S = T where S and T are datasets and removes

each instance from S if such removal does not cause any other instances in

T to be mis-classified. It is able to remove noisy and internal instances while

retaining border points (Gates, 1972). This rule is an extension of the

Condensed Nearest Neighbour (CNN) rule and it corrects the case of

inconsistency in CNN (Miloud-Aouidate and Baba-Ali, 2011).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

29

ii. Selective Nearest Neighbour (SNN)

This method extends CNN such that every member of dataset, T must be

closer to a member of S of the same class rather than to a member of T

(instead of S) of a different class. Though, this algorithm is still sensitive to

noise, there is great reduction in training set as well as a higher accuracy than

CNN. It is more complex than most other reduction technique and learning

rate is significantly greater (Ritters et al., 1975).

iii. Wilson’s Edited Nearest Neighbour Rule (ENN)

Wilson, (1972) proposed an edited k- NN rule to improve the 1- NN rule. In

his rule, editing the reference set is first performed: Each sample in the

reference set is classified using the 3-NN rule and the set formed by

eliminating it from the reference set. All the samples mis-classified are then

deleted from the reference set. Afterward, any input sample is classified

using the 1-NN rule and the edited reference set. Ties would be randomly

broken whenever they occur (Wilson, 1972).

iv. Neighbourhood Cleaning Rule (NCL)

In this technique, ENN rule is used to identify and remove majority class.

The algorithm first finds the three nearest Neighbours for each of 𝐸𝑖examples

in the training set. If 𝐸𝑖 belong to the majority class and it is mis-classified

by its three Nearest Neighbours (3-NN), then Ei is removed. If 𝐸𝑖 belongs to

the minority class and it is mis-classified by its 3-NN to be the majority class,

then removes the three nearest Neighbour. In order to avoid excessive

reduction of small classes, only examples from classes mis-classified by 2-

NN of its 3-NN are removed (Laurikala, 2001).

v. Tomek Links (TLink)

TLink under sampling technique was proposed by Ivan Tomek (Tomek,

1976) as a method of enhancing the Nearest-Neighbor Rule. Tlink algorithm

removes both noise and borderline example. Let 𝐸𝑖,𝐸𝑗, belong to different

classes, 𝑑(𝐸𝑖, 𝐸𝑗) is the distance between them. A (𝐸𝑖 , 𝐸𝑗) pair is called a

Tomek link if there is no example 𝐸1, such that 𝑑(𝐸𝑖, 𝐸1) <

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

30

𝑑(𝐸𝑖 , 𝐸𝑗) 𝑜𝑟 𝑑(𝐸𝑗 , 𝐸1) < 𝑑(𝐸𝑖, 𝐸𝑗). Examples participating in Tomek link

are either borderline or noisy (Tomek, 1976). Figure 2.5 (a) shows an

imbalanced dataset while Figure 2.5 (b) shows a more balanced dataset

where points forming Tomek Link have been found and removed. Only

majority class examples have also been removed.

vi. Condensed Nearest Neighbour Rule (CNN)

This technique is used to find a consistent minimum subset of examples and

also to identify redundant examples that do not affect classification. A subset

𝐸𝑖 of 𝐸 is consistent with 𝐸 if using a 1-Nearest Neighbour, 𝐸𝑖 correctly

classifies the example 𝐸. Let 𝐸 be the original training set. Let 𝐸𝑖 contains

all positive examples from S and one randomly selected negative example.

Then, classify 𝐸 with the 1- NN rule using the examples in 𝐸𝑖. Move the

entire mis-classified example from 𝐸 to 𝐸𝑖 (Hart, 1968).

This algorithm is sensitive to noise, thus causing even more

misclassifications than before misclassification. Figure 2.6(a) presents an

imbalance dataset while Figure 2.6(b) shows a balanced dataset after

applying the CNN algorithm.

vii. One - Sided Selection (OSS)

This is a combination of Tomek link followed by the application of CNN.

Tomek Link is used to remove noisy and border line majority class examples.

Then, CNN will remove example from the majority class that are distant

from decision border and redundant to create a constituent subset. Then a

consistent subset of the majority class is formed. The learner always keeps

all positive examples as they are too rare to be wasted, only noisy and

negative examples are pruned out (Kubat and Matwin, 1997). It is an efficient

algorithm especially in the case of high imbalanced data, but it requires

significant execution time and processing resources (Jo and Japkowicz,

2004; Batista et al., 2004 and Bekkar and Alitouche, 2013).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

31

Figure 2.5(a): Imbalanced Dataset

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

32

Figure 2.5(b): Balanced Dataset using TLink

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

33

Figure 2.6(a): Imbalanced dataset

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

34

Figure 2.6(b): a balanced dataset after CNN

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

35

i. CNN + Tomek Link

Here, the learner will first select a consistent subset of the negative examples

using CNN and then use Tomek link to remove them. The training set

becomes more balanced. The objective is to evaluate with OSS as finding

Tomek link is computationally demanding, it would be computationally

cheaper if it was performed on a reduced data set (Batista et al., 2004).

2.6.1.2 Over-sampling schemes

This is a replication of minority class examples (Thai-Nghe et al., 2010), but can increase

the likelihood of occurring over fitting and time consuming for the learning process (Guo

et al., 2008). It creates a superset of the original dataset replicating some instances or

creating new instances from existing ones (Fernandez et al., 2011). There are two types to

this technique; Random and Informed over sampling.

a. Random OverSampling (ROS)

This is the continuous replication of the minority class at random until a more

balanced or desired distribution is reached.

b. Informed oversampling

This technique intelligently picks data point from the minority class to be

oversampled rather than picking them at random. This technique includes:

i. SMOTE (Synthetic Minority Oversampling TEchnique)

This technique generates synthetic examples by operating in feature space

rather than data space. The minority class is oversampled by taking each

minority class sample and introducing synthetic examples along the line

segments joining any/all of the k minority class nearest neighbours. This

technique overcomes the over fitting problem and broadens the decision

region of the minority class examples. Synthetic samples were generated in

the following ways (Chawla et al., 2002):

a. The difference between the feature vector (sample) under consideration

and its Nearest Neighbour was taken.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

36

b. This difference was multiplied by a random number between 0 and 1,

and

c. Add the result of (b) above to the feature vector under consideration.

Synthetic samples for nominal variable were generated in the following way:

(Chawla et al., 2003)

a. Take the majority vote between the feature vector in consideration and

its k-Nearest Neighbours for the nominal feature value.

b. Choose at random if there is a tie

c. Assign the value to the new synthetic minority class sample

ii. Cluster-based oversampling (CBOS)

This technique attempts to even out the between-class imbalance as well as

the within-class imbalance. There may be subsets of the examples of one

class that are isolated in the feature-space from other examples of the same

class, creating a within-class imbalance. Small subsets of isolated examples

are called small disjuncts. Small disjuncts often cause degraded classifier

performance, and CBOS aims to eliminate them without removing data (Jo

and Japkowicz, 2004).

iii. ADASYN (ADAptive SYNtethic)

The essential idea of ADASYN is to use a weighted distribution for different

minority class examples according to their level of difficulty in learning,

where more synthetic data is generated for minority class examples that are

harder to learn compared to those minority examples that are easier to learn.

As a result, the ADASYN approach improves learning with respect to the

data distributions in two ways:

a. reducing the bias introduced by the class imbalance, and

b. adaptively shifting the classification decision boundary toward the

difficult examples; therefore improving learning performance.

These two objectives are accomplished by a dynamic adjustment of weights

and an adaptive learning procedure according to data distributions. The new

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

37

method was tested on six different dataset form University of California,

Irvine (UCI) data repository and evaluate using ROC, Precision, Recall, F-

measure and G-mean using Decision tree as base classifier. The result

obtained from ADASYN was compared with SMOTE and the original

dataset and shows that for the overall winning, ADASYN outperformed the

other methods. The conclusion was that ADASYN can autonomously shift

the classifier decision boundary to be more focused on those difficult to learn

examples, therefore improving learning performance. (He et al., 2008).

iv. Border_Line SMOTE

This oversampling technique presents two new minority oversampling

methods named Borderline- SMOTE1 and Borderline-SMOTE2, in which

only the borderline examples of the minority class are oversampled. This

technique selects minority examples which are considered to be on the border

of the minority decision region in the feature-space and only performs

SMOTE to oversample those instances, rather than oversampling them all or

a random subset. It first finds out the borderline minority examples; then

synthetic examples are generated from them and added to the original

training set. Borderline-SMOTE2 not only generates synthetic examples

from each minority samples that is on the decision border and it’s positive

nearest neighbours but also does that from its nearest negative neighbour in

the majority class region. The TPR and F- Measure of the minority class was

used as metric with four datasets from UCI data repository and Decision Tree

classifier was applied. Borderline-SMOTE1 and Borderline-SMOTE2 were

compared with SMOTE and ROS. The result of the experiment revealed that

both new schemes behaved excellent but Borderline-SMOTE2 was super on

TPR because it generated synthetic examples from both the minority

borderline examples and their nearest neighbours of the majority class,

however, the procedure caused overlap between the two classes, thus

decreases its F-value to some extent. The conclusion was that experiments

indicated that the two new methods behaved better, which validated the

efficiency of the methods. Some of the future recommendations were to

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

38

combine the new methods with under-sampling methods and integrate the

new methods to some data mining algorithms (Han et al., 2005).

2.6.1.3 Advanced Sampling

 This is also called Hybrid Sampling methods. It combines both oversampling and under-

sampling methods to achieve better classification. It also adds the advantage that the

dataset can be balanced without losing too much information or loses too much

information (Ding, 2011). This type of technique includes SMOTE + ENN, SMOTE +

Tomek link and CNN+ TL (Batista et al., 2004).

2.6.2 Solution at the algorithm level

At the algorithm level, solutions try to adapt existing classifier learning algorithm to

strengthen learning with regards to the minor class solutions. This is achieved either by:

2.6.2.1 Adjusting algorithm itself

This is also the same as adjusting the decision threshold. This technique forces decision

making of the classifier to be biased towards the expensive class that is minority class

(Boontarika and Maythapolnun, 2011). The classifier is manipulated internally to solve

the class imbalance problem but it is not re-usable for another application domain (Guo et

al., 2008). Examples: For Support Vector Machine (SVM), few attempts have dealt with

the imbalanced training-data problem (Karakoulas and Taylor, 1999; Lin et al., 2002;

Veropoulos et al., 1999) while Lin et al., (2002); Veropoulos et al., (1999) and Wu and

Chang, (2003) used different penalty constants for different classes of data.

2.6.2.2 One-Class Learning

 Also called recognition-based learning which learn examples mainly or only from one

class rather than two-class (discrimination-based). It guarantees that some rules will be

learned for minority class (Zhang and Mani, 2003). Japkowicz et al. (1995) developed a

recognition based Multi Layer Perceptron (MLP) for unbalanced dataset. In this case,

modelling is performed using examples from the positive (minority) class only and the

one–class model often performs reasonably (Raskutti and Kowalyczyk, 2004). The

problem of one-class classification is harder than the standard two-class classification

problem. In two class classification, when examples of majority and minority are both

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

39

available, a decision boundary is supported from both sides by examples of each of the

classes. In the case of one-class classification only the minority class is available, just one

side of the boundary is supported. Based on the examples of one class only, it is hard to

decide how tight the boundary should fit around the minority class. The absence of

majority examples makes it also very hard to estimate the classification error (Juszczack

and Duin, 2003). Examples are one- class SVM (Wang et al, 2009, Chawla et al., 2004,

Guo et al., 2008, Manevitz and Yousef, 2001).

2.6.2.3 Cost Sensitive Learning (CSL)

This technique incorporates cost in the decision making of classification. This is achieved

by adjusting the cost of various classes to counter the class imbalance. Most classifiers

assume that the mis-classification costs are the same (Thai-Nghe. et al., 2009). This

assumption is not correct. For example, the cost of mis-classifying a terrorist as a non-

terrorist is higher than mis-classifying non- terrorist as terrorist. Cost could be money, a

waste of time, or even severity of an illness (Nguyen, 2011; Elkan, 2001). The purpose of

CSL is to build a model with minimum mis-classification cost. The costing is achieved

using a cost matrix which encodes the penalty of classifying samples from one class to

another (Sun, 2007; Galar et al., 2012).

This method is most direct for dealing with highly skewed class distribution with unequal

mis-classification cost (McCarthy et al., 2005). A cost sensitive learner can accept cost

information from a user and assign different costs to different type of mis-classification

errors. But not all learners are cost sensitive. Altering the class probability thresholds used

to assign the classification value and rebalancing the proportion of the positive and

negative training examples in the training set are the commonest method of implementing

CSL in learners (Elkan, 2001, McCarthy et al., 2005, Domigos, 1999, Liu and Zhou,

2006). Cost matrix of a binary class presented in Table 2.2 corresponds to the confusion

matrix presented in Table 2.1 and it will provide the costs associated with the four

outcomes in the confusion matrix denoted by cost of true positive (𝐶𝑇𝑃), cost of false

positive (𝐶𝐹𝑃), cost of false negative (𝐶𝐹𝑁) and cost of true negative (𝐶𝑇𝑁). With CSL, no

cost is assigned to correct classification such that 𝐶𝑇𝑃 = 𝐶𝑇𝑁 = 0. The cost assigned to the

positive (minority) class is often higher than the negative (majority) class since the positive

is the class of interest (𝐶𝐹𝑁 > 𝐶𝐹𝑃). It could also be extended to multiple class problems.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

40

The disadvantages of CSL include:

a. Many learning algorithms are not cost sensitive.

b. Mis-classifications cost are often not known

c. AdaCost (Sun, 2007), CSB1 MetaCost (Domigos, 1999) and AdaC2 (Sun et al.,

2006) are some few examples of CSL.

2.6.2.4 Ensemble Learning

Combining classifiers could also be referred to as committee of learners, mixture of

experts, classifier ensembles, and multiple classifier systems consensus theory (Kuncheva

and Whitaker, 2003). They combine the power of multiple (usually weak) classifiers on

similar datasets to provide accurate predictions for future instances (Hoens and Chawla,

2010).

The basic idea is to construct several classifiers from the original data and then aggregate

their predictions when instances are presented and this improves the generalisation ability

of each classifier: each classifier is known to make errors, but since they have been trained

on different datasets or they have different behaviours over different part of the input

space, mis-classified examples are not necessarily the same. To generate a model, several

classifiers, called base classifiers, are trained, and they can be constructed from different

classification algorithms, which make up a heterogeneous, or from the same algorithm,

which result in a homogeneous ensemble (Boontarika and Maythapolnum, 2011).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

41

Table 2.2: Cost Matrix

 Actual negative Actual negative

Predicted negative

 𝐶(0,0) = 𝐶𝑇𝑃

 𝐶(0,1) = 𝐶𝐹𝑃

Predicted positive 𝐶(1,0) = 𝐶𝐹𝑁 𝐶(1,1) = 𝐶𝑇𝑁

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

42

A heterogeneous ensemble includes classifiers of various learning algorithm which gives

diversity to the model. In a homogeneous ensemble, diversity is introduced by training

different classifiers with different sets of data (Singhi and Liu, 2005). The training data is

often varied in such a way as to give each classifier a (slightly) different dataset so as to

avoid over fitting. There are several training parameters and factors which can be

manipulated to create ensemble members and these according to Sun (2007) include:

a. The initial condition

b. The training data

c. The architecture of the classifier and

d. The training algorithm.

2.6.2.4.1 Why Ensemble Might Be Better Than Single Classifier?

There are three fundamental reasons that make ensemble to be better than single classifier.

These, according to Dietterich (2000) include among other things, the following:

a. The Statistical Problem

This arises when the hypothesis space is too large for the amount of available data.

Hence, there are many hypotheses with the same accuracy on the data and the

learning algorithm chooses only one of them. There is a risk that the accuracy of the

chosen hypothesis is low on an unseen data.

b. The Computation Problem

An ensemble constructed by running the local search from many different starting

points may provide a better approximation to the true unknown function than any of

the individual classifier.

c. The Representational Problem

It arises when the true function f cannot be represented by any of the hypotheses

space.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

43

 2.6.2.4.2 Ensemble Methods

This refers to collection of classifiers that are minor variants of the same classifier, whereas

“multiple classifier systems” is a broader category that also includes those combinations

that consider the hybridization of different models (Galar et al., 2012). When forming

ensembles, creating diverse classifiers (but maintaining their consistency with the training

set) is a key factor to make them accurate. A necessary and sufficient condition for an

ensemble of classifiers to be more accurate than any of its individual members is if

classifiers are accurate and diverse. One key to successful ensemble methods is to

construct ensembles with error rates below 0.5 whose errors are least somewhat

uncorrelated (Dietterich, 2000). Ensembles can either be homogeneous, in which every

base classifier is constructed with the same algorithm, or heterogeneous, in which different

algorithms are used to learn the ensemble members (Chawla and Sylvester; 2007, Gilpin

and Dunlavy, 2009).

2.6.2.4.3 Methods of combination of ensembles

 The following are some of the methods of combination of ensembles.

a. Bayesian Voting

This primarily addresses component of ensembles. The Bayesian Committee is not

optimal as it does not address the computational and representational problems in

any significant way.

b. Manipulating the Training Examples

The single learning algorithm is run several times each time with a different subset

of the training examples. This technique works best especially for unstable learning

algorithms whose output classifier undergoes major changes in response to small

changes in the training data. Examples are Bagging (Bootstrap AGGregatING)

(Breinman, 1996), Boosting (Freud and Schapire (1995, 1996), Cross Validated

Committee (Parmanto et al., 1996).

c. Manipulating the Input Features

This technique creates different subsets of the input features of the training set

available to the learning algorithm. The resulting ensemble will be accurate and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

44

diverse but only works when the input features are highly redundant. Examples are

Decision Forest (Ho, 1998), Rotation Forest (Rodriguez et al., 2006), Random

Forest (Breinman, 2001).

d. Manipulating the Output Targets

This method manipulates the y values given to the learning algorithm. Examples are

Error Correcting Output Coding methods (Dietterich and Bakiri, 1995) and

AdaBoost.OC (Schapire, 1997).

e. Injecting Randomness

This is another method of ensemble creation. When randomness is injected into the

classifier, the resulting classifier will be different and will be applied to the same

dataset.

2.6.2.4.4 Diversity in Ensembles

This is the degree to which classifiers make different decisions on one problem. It allows

voted accuracy to be greater than that of single classifier. Generally, larger diversity causes

better recall for minority, but worse for minority classes. The best F-measure and G- mean

value do not appear at the status with high accuracy/low diversity or the status with low

accuracy/high diversity. Proper diversity degree results in better performance (Wang et al.

2009).

2.6.2.4.5 Measure of Diversity

There are different measures of diversity of ensembles. Ten statistics were studied

(Kuncheva and Whitaker, 2003) which can measure diversity among binary classifier

outputs (correct or incorrect vote for the class label). Four averaged pairwise measures are

Q-Statistics, The Correlation Co-efficient,, The Disagreement Measure and the Double-

Fault measure. The six non- pairwise measures are the Entropy Measure E, the Measure

of “Difficulty”; 𝜃, the Kohavi-Wolpert variance, the Measure of Inter rater agreement ,

the Generalised Diversity, and the coincident failure diversity

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

45

2.7 LEARNING ALGORITHMS

This section presented the various learning algorithms or learner or classifier used in this

study

2.7.1 Random Forest

This algorithm is a refinement of bagged trees to construct a collection of decision trees

with controlled variations. This method combines Breinman’s bagging and random

subspace methods. This algorithm improves on bagging by de-correlating the trees. It

grows the trees in parallel independently of one another (Chandrahasan et al., 2011). A

random forest consists of a collection of tree-structured classifier {ℎ(𝑥, 𝜃𝑘), 𝑘 = 1 … 𝑛}

where the {𝜃𝑘} are independent identically distributed random vectors and each tree casts

a unit vote for the most popular class at input 𝑥. This is a combination of tree predictors

such that each tree depends on the values of a random vector sampled independently and

with the same distribution for all trees in the forest. The generalisation error for forests

converges to a limit, as the number of trees in the forest becomes large. The framework in

terms of strength of the individual predictors and their correlations give insight into the

ability of the random forest to predict (Breinman, 2001).

2.7.2 Random Subspace Method (Decision Forest)

This is an ensemble of decision tree based classifier that maintains the highest accuracy

on training data and improves on generalisation accuracy as it grows in computational

complexity. The classifier consists of multiple trees contrasted systematically by pseudo

randomly selecting subsets of components of the feature vector, that is, trees constructed

in randomly chosen subspaces. In each pass, such a selection is made and a subspace is

fixed where all points have a constant value (say, zero) in the unselected dimensions. All

samples are projected to this subspace, and a decision tree is constructed using the

projected training samples. In classification, a sample of an unknown class is projected to

the same subspace and classified using the corresponding tree. For a given feature space

of n dimensions, there are 2𝑛 such selections that can be made, and with each selection a

decision tree was constructed. Decision trees were generated using only the selected

feature components. Each tree generalises classification to unseen points in different ways

by invariances in the unselected feature dimensions. Decisions of the trees were combined

by getting the average of the estimates of posterior probabilities at the leaves (Ho, 1998).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

46

2.7.3 Random Committee

This classifier builds an ensemble of randomizable base classifiers (Random Tree). Each

base classifier is built using a different random number seed (but based on the same data).

The final prediction is a straight average of the predictions generated by the individual

base classifiers (Bouckaert et al, 2010).

2.7.4 MultiClass Classifier

This is a meta classifier for handling multiple class with 2-class classifiers. This classifier

is capable of applying OVO, OVA and error correcting output codes on datasets for

increased accuracy.

2.7.5 Boosting

This algorithm uses the whole dataset to train each classifier serially, but after each round,

it gives more focus to difficult instances, with the goal of correctly classifying examples

in the next iteration that were incorrectly classified during the current iteration. Hence, it

gives more focus to examples that are harder to classify, the quantity of focus is measured

by a weight, which initially is equal for all instances. The boosting algorithm takes as input

a training set of m examples 𝑆 = (𝑋1, 𝑌1, … 𝑋𝑚𝑌𝑚) 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 is an instance drawn from

some space 𝑋 and represented in some manner (typically, a vector of attribute values), and

𝑌𝑖 ∈ 𝑌 is the class label associated with 𝑋𝑖 . The boosting algorithm has access to another

unspecified learning algorithm, called the weak learning algorithm, which is denoted

generically as WeakLearn. The boosting algorithm calls WeakLearn repeatedly in a series

of rounds. On round t, the booster provides WeakLearn with a distribution 𝐷𝑡 over the

training set 𝑆. In response, WeakLearn computes a classifier or hypothesis ℎ𝑡: 𝑋 → 𝑌

which should correctly classify a fraction of the training set that has large probability with

respect to 𝐷𝑡. That is, the weak learner’s goal is to find a hypothesis ht which minimizes

the (training) error 𝜀𝑡 = 𝑝𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖]. It should be noted that this error is

measured with respect to the distribution Dt that was provided to the weak learner. This

process continues for T rounds, and, at last, the booster combines the weak hypotheses

ℎ1 … ℎ𝑇into a single final hypothesis hfn (Freud and Schapire, 1996 and 1999).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

47

2.7.6 Stacking

This is an ensemble method by which different classifiers could be combined using another

classifier at a meta-level. The outputs from base classifier and the corresponding true class

labels would be used as the new dataset of learning in the meta-level. This dataset will be

used to construct a meta classifier in order to learn any existing pattern of mis-

classification by base classifiers (Singhi and Liu, 2005). This is done by partitioning the

data set into a held-in data set and a held-out data set; training the models on the held-in

data; and then choosing whichever of those trained models performs best on the held-out

data. This is the cross-validation technique. Stacking exploits this prior belief further. It

does this, by using performance on the held-out data to combine the models rather than

choose among them, thereby typically getting performance better than any single one of

the trained models.

2.7.7 Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

This class implements a propositional rule learner, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), which was proposed by William W. Cohen as an

optimized version of Incremental Reduced Error Prunning (IREP) (Cohen, 1995). RIPPER

is a program for inducing sets of classification rules. Each rule is a conjuction of conditions

on attribute values. Rules are returned as an ordered list and the first rule that evaluates to

true is used to assign the classification.

2.7.8 Boostrap AGGregatING (BAGGING)

The concept of bagging is to construct an ensemble which consists of X training different

classifiers with boostrap replicas of the original training dataset. A new dataset is formed

to train each classifier by randomly drawing (with replacement) instances from the original

dataset (usually maintaining the original dataset size). Hence, diversity is obtained with

the re-sampling procedure by the usage of different data subset. Finally, when an unknown

instance is presented to each individual classifier, a majority or weighted vote is used to

infer the class (Breinman, 1996).

2.7.9 Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the binary classiffiers based on maximum

margin strategy introduced by Vapnik and Lerner, 1963. Originally, SVM was for linear

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

48

bi-class classiffication with margin, where margin means the minimal distance from the

separating hyper plane to the closest data points. SVM seek an optimal separating hyper

plane, where the margin is maximal. The solution is based only on those data points at the

margin. These points are called as support vectors. The linear SVMs have been extended

to nonlinear examples when the nonlinear separated problem is transformed into a high

dimensional feature space using a set of nonlinear basis functions. However, the SVMs

are not necessary to implement this transformation to determine the separating hyper plane

in the possibly high dimensional feature space. Instead, a kernel representation can be

used, where the solution is written as a weighted sum of the values of a certain kernel

function evaluated at the support vectors (Sun, 2007). The kernel function is thus the key

component in this approach. Gaussian radial basis functions and polynomial kernel

functions are often used in practice. When perfect separation is not possible, slack

variables are introduced for sample vectors to balance the tradeoff between maximizing

the width of the margin and minimizing the associated error.

2.7.10 Artificial Neural Network (ANN)

Neural networks have the topology of a directed graph and loosely simulate the structure

of biological neural networks in human brains. They are composed of processing nodes

that transfer activities to each other via connections. These one-way inter-unit connections

hold the processing ability of the network through weights obtained by learning from a set

of training data. Each node evaluates the input values, calculates a total for the combined

input values, compares the total with a threshold value, and determines what its own output

will be. A neural network's learning is defined as changes in the memory weight matrix.

There is a variety of strategies to train the network, including applications of numerical

and statistical methods such as back propagation errors, differential equations, least-

squares fitting and others (Sun, 2007). Back propagation network is a feed-forward

network with one input layer with many inputs, one output layer with many outputs, and

one or more hidden layers. The activation function of a hidden node is often a sigmoid-

function. Reported experimental results by Japkowicz and Stephen 2002 indicated that the

back propagation performed deficiently with imbalanced data sets. The main reason is the

small class is inadequately weighted in the network.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

49

2.7.11 k- Nearest Neighbour

k-Nearest Neighbour is an instance-based classifier, which uses specific training instances

to make predictions without having to maintain a model derived from data (Aha et.al.,

1991). The conceptual idea of the k-Nearest Neighbour algorithm is simple and intuitive.

Given a test sample, the algorithm computes the distance (or similarity) between the test

sample and all of the training samples to determine its k-nearest neighbours. The class of

the test sample is decided by the most abundant class within the k-nearest neighbour

samples. In the presence of the imbalanced training data, samples of the small classes occur

sparsely in the data space. Given a test sample, the calculated k-nearest neighbours bear

higher probabilities of samples from the prevalent classes. Hence, test cases from the small

classes are prone to being incorrectly classified (Sun, 2007).

2.7.12 Reduced Error Pruning (REP tree)

This is a fast decision tree learner that builds a decision/regression tree using information

gain/variance and prunes it using reduced-error pruning (with back fitting). Only sorts

values for numeric attributes once. Missing values are dealt with by splitting the

corresponding instances into pieces (i.e. as in decision tree).

2.9 Critical appraisal and comparison of the under sampling techniques

This section takes a critical appraisal of various under sampling techniques reported in the

literature against issues in their underlying data reduction techniques.

One of the techniques of alleviating class imbalance learning is based on prototype

selection/data pre-processing or data reduction (Garcia et al., 2012). Most under sampling

techniques are modifications of classic prototype selection methods to balance the dataset

(Batista et al., 2004). These under sampling techniques aimed at obtaining a representative

training set with a lower size compared to the original one and with similar or even higher

classification accuracy for new incoming data. A formal specification of the under samples

problem is as follows: let S Training Set be the subset of the selected samples resulting

from the execution of an under sampling algorithm, then one classifies a new pattern Xj

from reduced dataset by the K-nearest neighbour rule acting over S than of the Training

Set (Garcia et al., 2012).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

50

2.9.1 Nearest Neigbhours (NN)

Distance is evaluated from all training points to sample point and the point with the lowest

distance is called Nearest Neighbour (NN) (Bathia and Vandana, 2010). Given a set of

previously labeled training set (TS), NN rule assigns a sample to the same class as the

closest Neighbour in the set, according to a similarity/distance in the feature space

(Vazquez et al., 2005; Dasarathy, et al., 2000). The basic NN algorithm retains all of the

training instances in dataset, hence, requires relatively large storage, high computational

complexity and low noise tolerant (Garcia et al., 2012). It learns very quickly (O(n) time)

for it only needs to read in the training set without further processing (Wilson and

Martinez, 1997c) and generalizes accurately for most applications (Wilson and Martinez,

2000). Also, noisy instance are stored as NN stores all instances in the training set (TS)

which degrades generalization accuracy. Two broad groups techniques of under-sampling

reported in the literature were when the algorithm tries to remove erroneously labeled

dataset and also “clean” the possible overlapping between regions of different classes

referred to as Editing (Vazquez et al., 2005). The second group, which is aimed at selecting

the minimal subset of training set (TS) but also lead to the same performance as the NN

rule using the whole training set (TS) referred to as Condensing (Dasarathy et al., 2000).

These techniques include: Reduced Nearest Neighbour (RNN), Selective Nearest

Neighbour (SNN), Condensed Nearest Neighbour (CNN), One-Sided Selection (OSS),

Neighbour Cleaning Rule (NCL) and Tomek Link.

2.9.2 Properties of Under-samplingTechniques.

 According to Wilson and Martinez (2000, 2000b), the properties of under sampling

techniques includes the following:

i. Representation

This factor seeks to retain a subset of the original instances (collection of training

examples). Representation methods could be hyper-rectangles, rules or

prototypes (Dasarathy et al., 2000). Choices to be made when designing training

set for under sampling algorithm are whether to under sample the original TS into

a subset or to modify using a new representation. The problem with using the

original dataset is that there is difference in the class distribution.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

51

ii. Direction of search

When searching to form a subset or modify training set (TS) to keep from the TS,

various direction of search were involved. These include the under listed factors:

a. Incremental search

This begins with an empty subset S, and adds each instance of T to S, if

it meets some criteria. The advantage here is that instances can be added

to S continuously with the same criteria after training is completed.

Another advantage is that they are faster and uses less storage during

learning. However, they are prone to errors: initial criteria were based on

limited information, thus sensitive to order of presentation. e. g. CNN.

b. Decremental search

Here, all examples are available for examination, so a decision can be

made on which instance is best to be removed during learning. This search

begins with S = T; then searches for instances to remove from S.

Examples of algorithm belonging to this search methods are RNN, SNN,

ENN. Though, it can result in greater storage reduction but is often more

computationally expensive.

c. Batch

All examples in the TS are available for examination. The examples that

meet the removal criteria are removed from the TS at once. The algorithm

is relieved from having to constantly update the list of nearest neighbours

when instances are removed individually, but it suffers from increased

time complexity.

iii. Border points Versus Central points

There are four types of negative examples to be removed when under

sampling/reducing training set (Kubat and Matwin, 1997): Those that suffer from

the class-label, borderline examples that are close to the boundary between the

positive and negative regions. They are unreliable: even a small amount of attribute

noise can send the example to the wrong side of decision surface, those that are

redundant so that their part can be taken over by other examples and safe examples

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

52

that are worth being kept for future classification tasks. The decision to retain

border point, central or some other point distinguishes one under sampling

technique from another. Border points forms decision boundaries between classes

so, removing them leaves smooth decision boundary behind. Noisy points are point

that does not agree with their neighbours. ‘Internal’ or centre points do not affect

decision boundaries so much and thus their removal will have relatively little effect

on classification.

iv. Similarity (Distance) function

This is the distance between neighbours. It is used to decide which neighbours are

closest to an input vector and can have a drastic effect on learning algorithm. The

training points are assigned weights according to their distance from sample data

point (Bathia and Vandana, 2010). Some examples of this function are:

a. Linear Distance function

It measures the distance between two input vectors with their number of

attribute/variables (Wilson and Martinez, 2000). It cannot handle instances

with both linear and nominal attributes. Examples include Euclidean distance

function and Mahalanobis.

b. Value Difference Metric for Nominal Attributes (Stanfill and Waltz,

1986)

It is suitable for nominal attributes but inappropriate for direct use on

continuous attributes. Example is Value Difference Metric (VDM).

c. Interpolated Value Difference Metric (Wilson and Martinez, 2000)

This function is appropriate for linear (discrete, but ordered), continuous

(real valued) and nominal (discrete, unordered) attributes. Known example

is Interpolate Value Difference Metric (IVDM).

d. Heterogeneous Distance function (Wilson and Martinez, 1997)

This handles application with both continuous and nominal attributes.

Common examples are the Heterogeneous Euclidean-Overlap Metric

(HOEM) and Heterogeneous Value Difference Metric (HVDM).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

53

v. Voting

k is the number of neighbours used to decide the output of a class of an input vector.

The under sampling algorithm has to decide on value of k which is typically a small,

odd integer (1, 3, or 5). Cover and Hart (1967) proposed a k-NN rule in which NN

is calculated on the basis of value of k that specifies how many NN are to be

considered to define class of a sample data point.

vi. Evaluation strategies

Relative strength and weaknesses of each under-sampling algorithm should be

compared based on a number of characteristics namely; storage reduction, speed

increase, generalization accuracy, noise tolerance, learning speed (Wilson and

Martinez, 2000, Wilson and Martinez, (2000b), and algorithm complexity

(Jankowski and Grochowski, 2004).

vii. Types of selection

This factor only classifies the technique into Condensation, Edition or the mixture

of the two algorithms as represented below:

a. Condensing

This technique aims at selecting a sufficiently minimal subset of training

instances without a significant degradation of accuracy (Sanchez, 2004). It

includes the techniques which aim to retain the points which are closer to the

decision boundaries, also called border points. The intuition behind retaining

border points is that internal points do not affect the decision boundaries as

much as border points, and thus can be removed with relatively little effect on

classification. Nevertheless, the reduction capability of condensation methods

is normally high due to the fact that there are fewer border points than internal

points in most of the data but can often result in marginally poorer

classification/recognition performance (Dasarathy et al., 2000).

b. Edition

They remove points that are noisy or do not agree with their Neighbours. This

removes close border points, leaving smoother decision boundaries behind.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

54

However, such algorithms do not remove internal points that do not

necessarily contribute to the decision boundaries. The effect obtained is related

to the improvement of generalization accuracy in test data, although the

reduction rate obtained is lower. However, the focus of this algorithm is not

on reducing the training set but on defining a high quality training set by

removing outliers (sanchez, 2004).It ‘cleans’ possible overlapping among

region from different classes.

c. Hybrid

Hybrid methods try to find the smallest subset S which maintains or even

increases the generalization accuracy in test data. To achieve this, it allows the

removal of internal and border points based on criteria followed by the two

previous strategies. The k-NN classifier is highly adaptable to these methods,

obtaining great improvements even with a very small subset of instances

selected.

2.9.3 Comparison of under-sampling Technique

A comparison of all under-sampling techniques (RNN, SNN, CNN, OSS, ENN, and NCL)

with their characteristics were compared and presented in Table 2.3. They all shared

similar advantages that is, reduction in the size of the training data, improvement in query

time, low memory requirement and reduction in the recognition rate. Their drawbacks are

a high computational complexity, high cost and time consuming.

The Reduced Nearest Neighbour (RNN), Selective Nearest Neighbour (SNN), Condense

Nearest Neighbour (CNN) and One-Sided Selection (OSS) all attempted to create a subset

which is a smaller version of the original dataset/training samples.

Wilson’s Edited Nearest Neighbour (ENN) and Neighbourhood Cleaning Rule (NCL)

presented their reduced dataset as a modified version of the original dataset while All K-

NN presented its reduced version as a mixture of both subset and modification.

The direction of search for samples to under sample could be in the form of incremental,

decremental and batch mode. While RNN, SNN, ENN and NCL performed a decremental

search for samples to be removed, CNN searches the training set in the incremental mode

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

55

while All K- NN batches all the training samples before searching. ENN, NCL and All K-

NN served more as a “cleaning agent” rather than data reduction. Hence, their popular use

in Class Imbalance Problem (CIP). They attempted to remove noisy, erroneous and border

point that could hinder classification performance. Both NCL and All k-NN were

modifications of ENN. CNN, RNN and SNN served to effectively reduce the dataset by

removing samples from the dataset but a consistent subset is not guaranteed. OSS is the

combination of All K-NN and CNN.

ENN and NCL used Heterogeneous Value Distance Metric (HVDM) to detect its nearest

neighbours while RNN, SNN, CNN, OSS and All K-NN detected its nearest neighbour,

using Euclidean distance function.

All the under sampling technique used 1–NN, except ENN and NCL which performed

removal of samples from the dataset with 3-NN. RNN, SNN and CNN selected samples

to be removed from the training set by condensing the training set while ENN and NCL

selected prototypes by editing the training set. Since OSS is the combination of CNN and

All K–NN, it inherited the properties of the techniques by condensing the training set

before editing the remaining samples.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

56

Table 2.3: Comparison of under-sampling technique

Properties RNN

(Gates,1972)

SNN (Ritters et

al., 1975)

ENN

(Wilson,1972)

CNN

(Hart,1968)

ALL K-NN

(Tomek,1976)

OSS (Kubat&

Matwin,1997)

NCL Laurikala,

(2001)

Presentation Subset Subset Modified Subset Mixed Subset Modified

Direction of

search

Decremental Decremental Decremental Increamental Batch Batch Decremental

Border versus

Point

Noisy and

Internal point

Internal point Noisy and Border

point

Internal point Noisy and border

point

Noisy and border

point

Internal and

border point

Distance

function

Euclidean Euclidean HVDM Euclidean Euclidean Euclidean HVDM

Voting 1-NN 1-NN 3-NN 1-NN 1-NN 1-NN 3-NN

Algorithm

Complexity

O (n3) O (n3) O (n2) O (n3) O (n2) O (n3) O(n2)

Type of

Selection

Condensing Condensing Editing Condensing Editing Editing and

Condensing

Editing

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

57

2.10 Related work

This section presents the review of existing work done by researchers to alleviate the class

imbalance problem in specific domains.

Kubat and Matwin (1997) discussed the criteria to evaluate the utility of classifiers induced

from such training sets, give explanation of the poor behaviour of some learners under

these circumstances and suggest as a solution a simple technique called OSS of examples.

They combined two under-sampling schemes to reduce original dataset to a consistent

subset. They first applied Tomek Link (TL) to remove noisy and border line examples

from the dataset. Then, Condense Nearest neighbour (CNN) was applied to remove

redundant examples to create a consistent subset of the original dataset. Accuracies on

both minority and majority classes, average accuracy on both classes and geometric mean

was used to measure the performance on 1-NN and Decision Trees classifiers. The domain

on the schemes were applied significantly profited from the scheme. The sensitivity of

imbalanced distribution of examples can be mitigated by OSS scheme and should be

applied only if values of the accuracies of either the majority or minority class are low.

The solution developed addresses only two class problem. The combination of under-

sampling reduces the dataset greatly thereby removing too much information.

Barandela et al. (2003b) conducted research to explore issues related to the class imbalance

problem. They focused resampling the dataset and also on internally biasing the

discrimination-based process, as well as on a combination of them. The solution developed

was evaluated over four real datasets using Nearest neighbour (NN) classifier and ROC

and geometric mean as metric to measure performance. Editing schemes: Wilson’s Edited

Nearest Neighbour (WE) and k-Nearest Centroid Neighbour (NCN), were used to delete

noisy examples from majority class alone. Condensing scheme: Modified Selective (MS)

was combined with WE and k-NCN respectively to also downsize only the majority classes

of the dataset and also to both classes. Also, a weighted distance function is assigned to

respective classes and not individual examples to internally bias the discrimination

procedure during classification. So, WE, WE+MS, k-NCN, k-NCN+MS and MS schemes

were used to under sample only the majority class, MS, WE and WE+MS schemes were

used to under sample both classes and were learned on both discrimination and non-

discrimination NN classifier. The weighted distance procedure (discrimination-based)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

58

produced an improvement in performance measure. Also that repeated application of

editing shows similar or better results than those of the single editing.

Batista et al. (2004) performed experimental evaluation involving ten sampling techniques

(ROS, RUS, TLink, CNN, OSS, NCL and SMOTE) and methods: CNN+TL, SMOTE +

TL and SMOTE + ENN schemes were proposed by the author as a data cleaning process

after oversampling. This experiment was performed on 13 dataset from UCI data

repository. The Decision Tree learner was used with Pruning and non-Pruning properties.

ROC_AUC was used as the performance metric and Hsu’s Multiple Comparison with the

Best (MCB) was used for statistical analysis. Also, the number of rules/branches and mean

number of conditions per rule were reported for the original and oversampled datasets.

Two of the proposed methods are generally ranked among the best for datasets with fewer

minority classes. They concluded that datasets with larger number of minority class

samples should be treated with ROS as it will also produce meaningful results. They

recommended investigation into why allocating half of the training examples to the

minority class does not always provide optimal classification results. Further, Tomek

Links and NCL that do not allow user to specify the resulting class distribution should be

improved upon.

Lessmann (2004) aimed at improving the detection of respondents of mailing campaign

(response optimisation) in Customer Response Management (CRM) which is a class

imbalance problem using SVM. He first evaluates SVM’s capabilities of handling this

problem internally by adjusting its parameterization (kernel). Then, combining all

parameter settings for the linear and Gaussian SVM to obtain a total of 130 experiments.

Secondly, he resampled the dataset using ROS and RUS to 1:2 and 1:1 respectively and

learned on SVM. F-Measure and Geometric mean were used as evaluation metrics. The

result revealed that SVM can account for class imbalance through internal parametization

within the model selection stage. SVM is also robust

Hulse et al. (2007) applied seven sampling techniques (RUS, ROS, OSS, CBOS, WE,

SMOTE, and Border_line SMOTE) and also their variation to make 31 sampling

techniques with 35 different benchmark datasets and 11 commonly used learning

algorithm (C4.5N, C4.5D, IB2, IB5, NB, MLP, RBF, RIPPER, RF, LogisticRegression

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

59

and SVM). Statistical analysis was performed using a 1-way ANOVA to understand the

statistical significance of the results obtained and Tukey’s Honestly Significant Difference

(HSD) was used to create homogenous subsets. The objective of the study was to present

a comprehensive and systemic experimental analysis of learning from and providing

practical guidance to machine learning practitioners when building classifiers from

imbalanced data. The data clearly demonstrated that sampling is often critical to improving

classifier performance, especially optimising threshold-dependent measures such as the

geometric mean, TPR, F-measure and Accuracy and ROC_AUC and Kolmogorov-

Smirnov (K/S). It was concluded that RUS and ROS performed better than the rest

especially CBOS which performed worst. Furthermore, that individual learner responds

differently to the application of sampling.

Gu (2007) developed an effective scoring model to predict potential cross-sell take-ups

but the dataset is imbalanced and the classes were overlapped. He proposed combination

of random forest based techniques and sampling methods to identify the potential buyer.

Firstly, the dataset was cleaned by the elimination of dangerous negative instances. The

dataset were divided into the minor instances set P and the major instances set N where N

was further divided into n subsets equal size. For each Ni, he trained a Random Forest from

the rest instances in N and the entire P. The trick was that for every classification tree in

the forest, the class distribution in the corresponding training data was not balanced, that

is, more negative instances than positive instances. Then, all instances in Ni that were

incorrectly classified by RF were removed. Secondly, he trained a variant of random forest

for which each tree was based towards the positive class to classify the dataset where a

majority voting was made for prediction. The proposed method was then compared with

SMOTE, RUS, ROS, TLink and CNN on 8 UCI datasets to obtain ROC_AUC metric. The

method was used to evaluate the customer dataset as well as 8 datasets from UCI data

repository where the proposed scheme performed best on 4 of the UCI dataset when

compared with standard sampling schemes. The proposed method achieved the best

performance with the highest AUC score.

Nguyen et al. (2009) introduced a new learning approach that aimed at tackling the class

imbalance problem. They first proposed a new under-sampling method based on

clustering. The clustering technique was employed to partition the training instances of

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

60

each class independently into a smaller set of training patterns such that each cluster

contains samples from the same class and each class can have several clusters. Then, a

weight was assigned to each training prototype to address the class imbalance problem.

The weighting strategy was introduced in the cost function such that the class distributions

becomes roughly even. In the extreme imbalance cases, where the number of minority

instances is small, unsupervised learning were used to resample only the majority

instances, cluster centres were selected as prototype samples but all the minority class

samples were kept. The proposed approach which combines unsupervised and supervised

learning to deal with the class imbalance problem can be applied to any classifier. MLP

classifier was applied to five imbalanced dataset from UCI data repository (Blake and

Merz, 1998) and G-mean, F-measure, specificity and sensitivity were used as evaluation

metric. Experimental results showed that the proposed approach can effectively improve

the classification accuracy of the minority class, while maintaining the overall

classification performance.

Awokola (2010) applied REP Tree, RIPPER, Ridor rules and Decision Tree classifiers to

predict the presence of diabetes mellitus disease in patients in a teaching hospital.

Accuracy metric was used to evaluate the classifiers. But the dataset is highly skewed and

this was not put into consideration. The result showed that most of the diabetes patients

had TYPE2 diabetes and were 40 years of age. The class imbalance in this dataset gave a

sub-optimal performance during classification. The minority class, GDM, was not well

detected by any of the classifiers.

Agboola (2010) applied Random Tree, Decision Tree, Decision Stump, Best First Decision

Tree, Simple Classification And Regression Tree (CART), LogitBoost Alternating Tree

(LADTree), NAIVEBAYES and Functional Tree to Senior Secondary School (SSS)

Result examination result dataset to discover the reasons for the abysmal results recorded

in the two examinations that were collected in five model secondary schools in Ibadan,

Nigeria. Accuracy and RMSE metric were used for evaluation and pair t-Test and

correlation were used to analyse the results obtained. Random tree performed best for

having obtained the highest accuracy value and lowest RMSE. The conclusion is that the

results of the two exams were significantly different and their result does not depend on

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

61

one another. But the dataset were highly skewed and the minority class was not predicted

by any of the classification algorithm considered.

Georgescu et al. (2010) applied several techniques for data reduction (Principal

Component Analysis (PCA), Partial Least Square (PLS), Structurally Random Matrices

(SRM) and Orthogonal Matching Pursuit (OMR)) to publicly available datasets

(IONOSPHERE, Wisconsin Breast Cancer and NASA) with the goal of comparing how

an increasing level of compression affects the performance of SVM-type classifiers.

However, these data reduction techniques cannot remove the class imbalance problem in

an imbalanced dataset.

Hoens and Chawla (2010) aimed at overcoming the class imbalance problem by proposing

an ensemble framework that combines random sub-space method with sampling schemes

(SMOTE and RUS). This is a special case of RSM + sampling where SMOTE or RUS

were used within each randomly selected subspace. In the RSM during the training phase

each classifier is trained on a subset of the data in which some features were removed.

After removing a subset of the features, SMOTE/RUS was then applied to the dataset,

which was subsequently used to train the classifier. ROC metric was used for evaluation

and comparison with Random Forest, Random Subspace, BAGGING Boosting

(AdaBoost.M1). Friedman and Bonferroni-Dunn test were used as statistical tool.

RSM+SMOTE performs significantly better than other classifiers followed by

RSM+RUS. Since SMOTE is dependent upon the features, and in ensemble methods

having classifiers with different biases is optimal, RSM+SMOTE provided better

performance over other techniques. However, it is not recommended for low dimensional

dataset (with fewer features e.g. 2).

Asha et al. (2011 and 2012) proposed the use of Classification based on Predictive

Association Rules (CPAR), Predictive Rule Mining (PRM) and First Order Inductive

Learner (FOIL) with Statistical test along with Laplace accuracy as rule evaluation

measures with different testing modes. The performance of these methods on tuberculosis

dataset were analysed with two classes; Pulmonary Tuberculosis (PTB) and Retroviral

PTB (RPTB) that is those having TB with HIV. Though results obtained showed that

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

62

CPAR and PRM learned the dataset classes correctly, no consideration was given to the

class distribution of the used dataset.

Johnson et al., (2012) intended to model species’ distribution with focus on the problem

of class imbalance. The study focused on nine species of small to medium sized birds

belonging to the Vireo genus prevalent in the North-eastern United States. Eight models

were used for learning: both pruned and un-pruned Decision tree, Classification and

Regression Trees (CART), Logistic Regression (LR), MAXimum ENTropy (MAXTENT:

a method based specifically on the concept of the ecological niche), Naïve Bayes (NB),

Hellinger Distance Decision Trees (HDDT), Random Forest (RF) and RF with SMOTE

and evaluated using ROC_AUC, AUPR and mean Correlation. Distribution maps were

used to display results geographically to show distributions predicted with several

modelling methods. Results showed that though not dominant on any given species

dataset, HDDT is handily the dominant performer with respect to ROC_AUC, AUPR and

mean Correlation. They concluded that AUPR is a useful tool for evaluating species

distribution models. Secondly, HDDT generally modelled species with performance

competitive with MAXTENT, an established specie distribution model. They

recommended the use of ROC_AUC and AUPR together as evaluation metric.

Nagabhushanam et al. (2013) explored the need to develop a data mining solution to make

diagnosis of tuberculosis as accurate as possible and helps decide if it is reasonable to start

tuberculosis treatment on suspected patients without waiting for the exact medical test

results or not. They proposed the use of Sugeno-type “adaptive network-based fuzzy

inference system” (ANFIS) to predict the existence of Mycobacterium tuberculosis (the

causative agent of tuberculosis). They also implemented a MLP and PART learning model

using the same data set and used RMSE to evaluate their performances but did not consider

the class imbalance nature of the dataset.

Rahman and Davis (2013) examined the performance of over-sampling (SMOTE) and

under-sampling (Cluster based) techniques to balance cardiovascular data. They modify

Yen and Lee, (2009)’s cluster based under-sampling method by first separating the data

into two subsets: majority and minority class samples. Then, the majority class is further

separated into K clusters. The aim is to reduce the gap between the majority and minority

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

63

samples. All the majority sample clusters/subsets are separately combined with minority

samples to make k different training sets and are then classified using decision tree and

Fuzzy Unordered Rule Induction algorithm. The dataset with the highest accuracy were

kept for further data mining process. Using ROC metric and accuracy, SMOTE shows

good classification performance and in some cases, very close to the performance of the

proposed method. The proposed method is found useful for datasets where class labels are

not certain. However, only two classification algorithms were used on a single dataset.

Habibi et al., (2015) examined a predictive model using features related to the diabetes

TYPE2 risk factors. The diabetes dataset used was obtained from a database in a diabetes

control system in Tabriz, Iran. They used Decision tree classifier to build the model,

ROC_AUC and Kappa Statistics as the main evaluation measure and implemented in

WEKA. The classification result was sub-optimal as the dataset was highly skewed.

Fattahi et al., (2015) introduced a new ensemble based method consisting of SMOTE and

Rotation Forest. They constructed classifiers with obtaining rotating subspaces of the

original dataset using PCA. The study was evaluated using 20 binary imbalanced dataset

from the KEEL dataset repository using RMSE, ROC_AUC, FNR and Kappa statistics as

performance metrics. The Kappa-Error diagram was plotted for the analysis of the result

obtained

2.11 Remarks

This chapter reviewed the Class Imbalance Problem, existing solutions and domains where

it was shown that the class imbalance problem give sub optimal classification

performance.

Two school of thoughts proposed solutions to alleviated Class Imbalance Problem. The

first postulation applied solution at the data level which is external to classification

algorithms. The major drawback at this level is that there is loss of information on the

datasets and overfitting during classification.

The second school of thought believed that solution should be applied at the algorithm

level. The major drawback at this level is that the classification algorithms are specific for

that dataset and cannot be reused.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

64

Thus, the research gap identified is that there is need for solution which will be external

and portable to classification algorithm, prevent information loss, avoid over fitting,

increases the RECALL of the minority class and gain in performance after applying the

solution through the developed enhanced data sampling schemes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

65

CHAPTER THREE

Research Methodology

This chapter gives a detailed explanation of the methodology used in the study

3.1 The flow diagram of the data mining process used for the study is presented in Figure

3.1. The research data on Diabetes Mellitus (DM) disease were obtained from

Wesley Guilds Hospital, Ilesha (Awokola, 2010), Senior Secondary School Result

(SSS Result) examination results were obtained from West African Examination

Council (WAEC) office in Ibadan (Agboola, 2010), Tuberculosis dataset was

obtained from Ijaye State Hospital, Abeokuta and Contraceptive Methods (CM)

dataset was obtained from health center, Ibadan North East Local Government,

Ibadan. The obtained datasets were pre-processed with the both the existing and

enhanced data sampling schemes before classification.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

66

Figure 3.1 The research methodology

Problem

Identification

and Definition

SMOTENCL

Pre- processing the

datasets with application

of existing and enhanced

data sampling schemes

SMOTERUS SMOTE300ENN

SMOTE300NCL SMOTE300RUS

Selection

of data

mining task

Interpretation

and

evaluation of

results

Extracted

knowledge
Obtaining

of datasets

ENN NCL CNN SMOTE SMOTE300 SMOTEENN RUS 5ENN

Diabetes Mellitus Disease (DM)

Senior Sec. Sch. (SSS) Result

Contraceptive Methods (CM)

Tuberculosis (TB)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

67

3.2 Model Development

This section presents the algorithm for enhanced sampling schemes developed in the study.

The enhanced data sampling schemes namely SMOTE300ENN, SMOTENCL,

SMOTERUS, SMOTE3OORUS and SMOTE300NCL were coded using Java

programming language and implemented in Waikato Environment for Knowledge

Analysis (WEKA) version 3.6.8 as additional filters available for use in the filter library.

3.2.1 The Enhanced Data Sampling Schemes Algorithms

Given a dataset, 𝑇, which consists of pair (𝑥𝑖, 𝑦𝑖), where 𝑖 = 1,2, … 𝑚 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖denote the

input attributes and yi denote the class labels. T contains n instances with m attributes each

and either belong to a positive (minority) or negative (majority) class. The minority class

C which is also the class of interest is a subset of 𝑦𝑖: 𝐶 ⊂ 𝑦𝑖. The minority class was

oversampled by taking each minority class samples and introducing synthetic examples

along the line segments joining any/all of the k nearest Neighbours. In this study, k = 5-

Nearest Neighbour was used and the rate of oversampling used was 300%. The reason for

this choice is that different rate of oversampling had been tried on various datasets with

300% being the best. The existing SMOTE uses 100% rate of oversampling. This

technique generated synthetic examples in a less application specific manner, by operating

in “feature space” rather than “data space”.

Synthetic samples for continuous variable were generated in the following ways:

a. The difference between the feature vector (sample) under consideration and its Nearest

Neighbour was taken.

b. This difference was multiplied by a random number between 0 and 1, and

c. Add result of (b) above to the feature vector under consideration.

Synthetic samples for nominal variable were generated in the following ways:

a. Take the majority vote between the feature vector in consideration and its k-Nearest

Neighbours for the nominal feature value.

b. Choose at random if there is a tie

c. Assign the value to the new synthetic minority class sample

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

68

The illustration for this is as follows:

Consider a sample (6, 4) and let (4, 3) be its Nearest Neighbour.

(6, 4) is the sample for which k- Nearest Neighbors are being identified

(4, 3) is one of k-Nearest Neigbhour

Let:

f1_1 = 6 f2_1 = 4, f2_1 – f1_1 = -2

f1_2 = 4, f2_2 = 3, f1_2 – f2_2 = -1

The new samples will be generated as

(f1', f2') = (6, 4) + rand (0-1) * (-2, -1)

rand(0-1) generates a random number between 0 and 1

This caused the selection of a random point along the line segment between three specific

features as against the original one specific feature. This approach effectively forced the

decision region of the minority class to become more general. Then, Wilson’s Edited

Nearest Neighbour (ENN), Neighbourhood Cleaning Rule (NCL) and Random Under-

sampling (RUS) under-sampling schemes were applied respectively to both original

SMOTE and SMOTE+300% to remove noisy, erroneous, internal and border points in the

dataset.

3.2.2 Algorithm SMOTE(T, N, k)

Input: Number of minority class samples T; amount of SMOTE N%; Number of Nearest

Neighbors, k

Output: (N/100) *T synthetic minority class samples. This algorithm was implemented in

java codes as presented in Appendix C.

1. (* if N is less than 100%, randomize the minority class samples as only a random

percent of them will be SMOTEd.*)

2. If N <100

3. Then Randomize the T minority class samples

4. T = (N/100) * T

5. N = 100

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

69

6. End if

7. N = (int) (N/100) (* The amount of SMOTE is assumed to be in integral multiples

of 100. *)

8. k = Number of Nearest Neighbhour

9. numattrs = number of attributes

10. Sample [] []: array for original minority class samples

11. newindex:keeps a count of number of synthetic samples generated, initialized to 0

12. Synthetic [] []: array of synthetic samples

(* compute k nearest neighbors for each minority class sample only *)

13. for i 1 to T

14. compute k nearest neighbors for i, and save the indices in the nnarray

15. Populate (N, i, nnarray)

16. endfor

 Populate (N, i, nnarray) (*Function to generate the synthetic samples.*)

17. While N 0 do

18. Choose a random number between 1 and k, call it nn. This step chooses one of the

k nearest neighbor of i.

19. for attr 1 to numattrs

20. Ifattr = continuous feature

21. Compute: di f = Sample [nnarray [nn]] [attr] – Sample [i] [attr]

22. Compute: gap = random number between 0 and 1

23. Synthetic[newindex] [attr] = Sample [i] [attr] + gap * dif

24. else

25. attr_ value = majority vote for the attr values between i and nn. If no majority then

choose at random.

26. synthetic [newindex] [attr] = attr_value

27. endfor

28. newindex ++

29. N = N – 1

30. end while

31 return (* End of pseudo-code for SMOTE*)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

70

3.2.3 Algorithm ENN (𝑻, 𝜽, 𝒌)

Input: Total number of all class samples T; Number of Nearest Neighbors, k; class 𝜃

This algorithm was implemented in java codes as presented in Appendix D and is based

on the idea that if a sample is erroneously classififed using 𝑘 − 𝑁𝑁, it has to be removed

from 𝑇

Initialisation: 𝑇 ← 𝑋

For each 𝑥𝑖 ∈ 𝑋 ;

i. Find the k –Nearest Neighbours of {𝑥𝑖} inside 𝑋 − {𝑥𝑖}, ties are randomly broken

when they occur.

ii. If 𝛿𝑘−𝑁𝑁 (𝑥𝑖) ≠ 𝜃𝑖 𝑡ℎ𝑒𝑛 𝑇 ← 𝑇 − {𝑥𝑖}

3.2.4 Algorithm NCL (𝑻, 𝑪, 𝒌)

This algorithm was implemented in java codes as presented in Appendix E.

i. Split the dataset 𝑇 into the minority class 𝐶 and the rest of the data to 𝑂

ii. Identify noisy data 𝐴1 in 𝑂 with the Algorithm ENN

iii. For each class 𝐶𝑖 𝑖𝑛 𝑂

If (𝑥 ∈ 𝐶𝑖 𝑖𝑛 3 − 𝑁𝑁 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑦 ∈ 𝐶)

and (|𝐶𝑖| ≥ 0.5 𝑜𝑓 |𝐶|) 𝑡ℎ𝑒𝑛 𝐴2 = {𝑥} ∪ 𝐴2

iv. Reduced data 𝑆 = 𝑇 − (𝐴1 ∪ 𝐴2)

3.2.5 Algorithm RUS (𝑻, 𝑵, 𝑪)

This algorithm was implemented in java codes as presented in Appendix F.

Input: Total number of instances in a dataset T; Number of minority class samples C;

a 𝑇𝑇𝑡 =
𝑡

𝑇
∗

(𝑡−1)

(𝑇−1)
∗

(𝑡−2)

(𝑇−1)
∗ … ∗

1

(𝑇−𝑡+1)
=

𝑡!(𝑇−𝑡)!

(𝑇)!
=

1

𝑇𝑇𝑡

i.e 𝑃𝑟(𝑋1) = 𝑃𝑟(𝑋2) = ⋯ 𝑃𝑟(𝑋𝑇) =
1

𝑇

b Repeat (a) above

 Until 𝐶 = 𝑂

 𝑇 = (𝐶 ∪ 𝑂)

3.3 Implementation of models in WEKA

The data mining tool used is called Waikato Environment for Knowledge Analysis

(WEKA) version 3.6.8 (Bouckeart et al., 2010). The standard WEKA GUI with its filters

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

71

is shown in Figure 3.2. The SpreadSubSample which depict RUS and SMOTE data

sampling schemes were already in a typical standard WEKA filter library as shown in

Figure 3.2.

Figure 3.2: The standard WEKA’s GUI with filters

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

72

The existing data sampling schemes namely: CNN, EditedNN (ENN),

NeighborhoodCleaning (NCL) and TomekLink were then added to the WEKA filter

library as shown in Figure 3.3 and implemented in java codes in Appendix C, D, E, F and

G. The enhanced data sampling schemes were combinations of SMOTE and these existing

schemes. For instance, to implement SMOTE300 data sampling scheme, the user will

select SMOTE and oversample rate of 300%.

3.3.1 Basic Functionality of WEKA

The following are the basic functionalities offered by WEKA and which were also

employed in this study

a. Data pre-processing

WEKA supports various other formats (for instance CSV, Matlab ASCII files) as well

native file format (ARFF) and database connectivity through JDBC. Data can be filtered

by a large number of methods (over 75), ranging from removing particular attributes to

advanced operations such as principal component analysis.

All the datasets collected are represented in a spreadsheet. The spreadsheet allows us to

export data into a file in Comma – Separated Value (CSV) format as a list of records with

commas between items. So, the spreadsheet are converted to ARFF files.

b. Classification

One of WEKA’s drawing cards is that it contains more than 100 classification methods.

Classifiers are divided into “Bayesian” methods (Naive Bayes, Bayesian nets, etc.), lazy

methods (nearest neighbour and variants), rule-based methods (decision tables, OneR,

RIPPER), tree learners (C4.5, Naive Bayes trees, M5, Random trees), function-based

learners (linear regression, SVMs, Gaussian processes, MLP), and other miscellaneous

methods.

Furthermore, WEKA includes meta-classifiers like bagging, boosting, stacking; multiple

instance classifiers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

73

Figure 3.3: The enhanced data sampling schemes implemented in WEKA

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

74

c. Clustering

Unsupervised learning is supported by several clustering schemes, including EMbased

mixture models, k-means, and various hierarchical clustering algorithms. Although not

many methods of clustering are available as for classification, but most of the classic

algorithms are included.

d. Attribute selection

The set of attributes used is essential for classification performance. Various attribute

selection criteria and search methods are available.

e. Data visualization

Data can be inspected visually by plotting attribute values against the class, or against

other attribute values. Classifier output can be compared to training data in order to detect

outliers and observe classifier characteristics and decision boundaries. For specific

methods there are specialized tools for visualization, such as a tree viewer for any method

that produces classification trees.

WEKA also support association rule mining, comparing classifiers, data set generation,

facilities for annotated documentation generation for source code, distribution estimation

and data conversion.

3.3.2 Graphical User Interfaces

WEKA’s functionality can be accessed through various graphical user interfaces,

principally the Explorer, Experimenter and the Knowledge Flow interface.

The most popular interface, the Explorer, allows quick exploration of data and supports

data loading and filtering, classification, clustering, attributes selection and various forms

of visualization; in an interactive fashion.

The Experimenter is a tool for setting up machine learning experiments that evaluate

classification and regression methods. It allows easy comparison of performance, and can

tabulate summaries in ways that are easy to incorporate into publications. Experiments can

be set up to run in parallel over different computers in a network so that multiple repetitions

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

75

of cross validation (the default method of performance analysis) can be distributed over

multiple machines.

The Knowledge Flow interface is a Java Beans application that allows the same kind of

data exploration, processing and visualization as the Explorer (along with some extras),

but in a workflow oriented system. The user can define a workflow specifying how data is

loaded, pre-processed, evaluated and visualized, which can be repeated multiple times.

This makes it easy to optimize the workflow by tweaking parameters of algorithms, or to

apply it to other data sources.

WEKA also includes some specialized graphical interfaces, such as a Bayes network editor

that focuses on Bayes network learning and inference, an SQL viewer for interaction with

databases, and an ARFF data file viewer and editor.

All functionality and some more specialized functions can be accessed from a command

line interface, so WEKA can be used without a windowing system.

3.3.3 Extending WEKA

One of WEKA’s major strengths is that it is easily extended with customized or new

classifiers, Filters, Clusterers, attribute selection methods, and other components. To add

a new Filter or classifier, all that is needed is a class that derives from the Classifier class

and implements the buildFilter or buildClassifier method for learning, and a FilterInstance

or ClassifyInstance method for testing/predicting the value for a data point.

Any new class is picked up by the Graphical User Interfaces (GUI) through Java

introspection: no further coding is needed to deploy it from WEKA’s GUIs. This makes it

easy to evaluate how new algorithms perform compared to any of the existing ones, which

explains WEKA’s popularity among machine learning researchers.

3.3.3.1 Writing a new Filter

The enhanced schemes were added to WEKA filter library. Filters perform many tasks,

from resampling data, to deleting and standardizing attributes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

76

The following methods are of importance for the implementation of a filter. These methods

are declared in the weka.filters.Filter class. These are:

a. getCapabilities()

b. setInputFormat(Instances)

c. getInputFormat()

d. setOutputFormat(Instances)

e. getOutputFormat()

f. input(Instance)

g. bufferInput(Instance)

h. push(Instance)

i. output()

j. batchFinished()

k. flushInput()

l. getRevision()

But only the following methods were modified in this study. In order to include the

enhanced data sampling scheme in WEKA

i. getCapabilities()

ii. setInputFormat(Instances)

iii. input(Instance)

iv. batchFinished()

v. getRevision()

setInputFormat(Instances)

With this call, the user tells the filter what structure, i.e., attributes, the input data has. This

method also tests, whether the filter can actually process this data, according to the

capabilities specified in the getCapabilities()method. If the output format of the filter, i.e.,

the new Instances header, can be determined based alone on this information, then the

method should set the output format via setOutputFormat(Instances) and return true,

otherwise it has to return false.

getInputFormat()

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

77

This method returns an Instances object containing all currently buffered Instance objects

from the input queue.

setOutputFormat(Instances)

This method defines the new Instances header for the output data. For filters that work on

a row-basis, there should not be any changes between the input and output format. But

filters that work on attributes, e.g. removing, adding, modifying, will affect this format.

This method must be called with the appropriate Instances object as parameter, since all

Instance objects being processed will rely on the output format (they use it as dataset that

they belong to).

getOutputFormat()

This method returns the currently set Instances object that defines the output format. In

case setOutputFormat(Instances) has not been called yet, this method will return null.

input(Instance)

This method returns true if the given Instance can be processed straight away and can be

collected immediately via the output() method (after adding it to the output queue via

push(Instance), of course). This is also the case if the first batch of data has been processed

and the Instance belongs to the second batch. Via isFirstBatchDone() one can query

whether this Instance is still part of the first batch or of the second.

If the Instance cannot be processed immediately, e.g., the filter needs to collect all the data

first before doing some calculations, then it needs to be buffered with

bufferInput(Instance) until batchFinished() is called. In this case, the method needs to

return false.

bufferInput(Instance)

In case an Instance cannot be processed immediately, one can use this method to buffer

them in the input queue. All buffered Instance objects are available via the

getInputFormat() method.

push(Instance)

This method adds the given Instance to the output queue.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

78

Output()

This method returns the next Instance object from the output queue and removes it from

there. In case there is no Instance available this method returns null.

batchFinished()

This method signals the end of a dataset being pushed through the filter. In case of a filter

that could not process the data of the first batch immediately, this is the place to determine

what the output format will be (and set if via setOutputFormat(Instances)) and finally

process the input data. The currently available data can be retrieved with the

getInputFormat() method.

After processing the data, one needs to call flushInput() to remove all the pending input

data.

flushInput()

This method removes all buffered Instance objects from the input queue. This method must

be called after all the Instance objects have been processed in the batchFinished() method.

Option handling

If the filter should be able to handle command-line options, then the interface

weka.core.OptionHandler needs to be implemented. In addition to that, the following code

should be added at the end of the setOptions(String[]) method:

if (getInputFormat() != null) {

setInputFormat(getInputFormat());

}

This will inform the filter about changes in the options and therefore reset it.

The following examples, covering batch and stream filters, illustrate the filter framework

and how to use it. Unseeded random number generators like Math.random() should never

be used since they will produce different results in each run and repeatable experiments

are essential in machine learning.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

79

BatchFilter

This simple batch filter adds a new attribute called blah at the end of the dataset. The rows

of this attribute contain only the row’s index in the data. Since the batch-filter does not

have to see all the data before creating the output format, the setInputFormat(Instances)

sets the output format and returns true (indicating that the output format can be queried

immediately). The batchFinished() method performs the processing of all the data.

import weka.core.*;

import weka.core.Capabilities.*;

public class BatchFilter extends Filter {

public String globalInfo() {

return "A batch filter that adds an additional attribute ’blah’ at the end "

+ "containing the index of the processed instance. The output format "

+ "can be collected immediately.";

}

public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();

result.enableAllAttributes();

result.enableAllClasses();

result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set

return result;

}

public boolean setInputFormat(Instances instanceInfo) throws Exception {

super.setInputFormat(instanceInfo);

Instances outFormat = new Instances(instanceInfo, 0);

outFormat.insertAttributeAt(new Attribute("blah"),

outFormat.numAttributes());

setOutputFormat(outFormat);

return true; // output format is immediately available

}

public boolean batchFinished() throws Exception {

if (getInputFormat() = null)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

80

throw new NullPointerException("No input instance format defined");

Instances inst = getInputFormat();

Instances outFormat = getOutputFormat();

for (int i = 0; i < inst.numInstances(); i++) {

double[] newValues = new double[outFormat.numAttributes()];

double[] oldValues = inst.instance(i).toDoubleArray();

System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);

newValues[newValues.length - 1] = i;

push(new Instance(1.0, newValues));

}

flushInput();

m_NewBatch = true;

m_FirstBatchDone = true;

return (numPendingOutput() != 0);

}

public static void main(String[] args) {

runFilter(new BatchFilter(), args);

}

}

3.4 Evaluation metrics and Statistical analysis tool

Statistical significance is a measure from statistics which attempts to determine how

unlikely a result is to have occurred by chance. After performing cross validation over a

wide variety of RAW DATA and 13 data sampling schemes to produce results, then there

is need to determine which classifier is better or which data sampling scheme is the best.

In this study, ROC_AUC, RECALL of the minority class, RMSE, Kappa Statistics and

performance Loss/gain metric were used for evaluation. ROC_AUC, RMSE and Kappa

Statistics are used to measure the general ability of the classifier to separate the positive

and negative classes while RECALL utilized the threshold of 0.5 (if the posterior

probability of positive class membership is greater than 0.5, the example is classified as

belonging to positive class). The results generated were analysed using both non-

parametric and parametric statistical methods. Friedman Test, ANOVA with Tukey Post

Hoc and box and whisker plot at statistical significance level of 0.05% with confidence

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

81

level of 95% in Statistical Package for Social Sciences (SPSS) software (SPSS, 2007) were

used to determine which classifier is better and on which data sampling scheme.

3.4.1 Hypothesis Testing

A statistical hypothesis test involves using statistical inference to test the validity of

postulated values for the population parameter. A test’s result is said to be statistically

significant if it has been predicted as unlikely to have been due to sampling error alone,

according to a threshold probability—the significance level. Hypothesis tests are used in

determining what outcomes of a study would lead to a rejection of the null hypothesis for

a pre-specified level of significance.

𝐻0 (𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠): All 𝜇𝑖 are equal.

 𝐻1 (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠): At least one 𝜇𝑖 are different.

where

𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛

Significance Level used is α = 0.05.

The rejection region is a region at which the null hypothesis is being rejected and is set at

p-value = 0.05.

3.4.2 Friedman Test

The Friedman test is a non-parametric test that compares three or more matched or paired

groups. It is used to detect differences in treatments across multiple tests attempts. The

Friedman test first ranks the values in each matched set (each row) from low to high. Each

row is ranked separately. It then sums the ranks in each group (column). If the sums are

very different, the ρ value will be small. The mean rank value of the Friedman statistic is

calculated from the sums of ranks and the sample sizes.

3.4.3 Analysis Of Variance (ANOVA)

ANOVA is a method of multiple comparisons of means of several variables with more

than two independent variables. It employ tests based on variance ratios to determine

whether or not significant differences exist among the means of several groups of

observations, where each group follows a normal distribution (Olatayo et al. 2011). A one-

http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Sampling_error
http://en.wikipedia.org/wiki/Null_hypothesis

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

82

way ANOVA is used to determine the effect of one independent variable (CLASSIFIER)

on a dependent variable (VALUES) as presented in equation 3.1. A two-way ANOVA is

used to determine the effects of two independent vatiables (SCHEMES and CLASSIFIER)

on a dependent variable (VALUES) as presentesbin equation 3.2.

A one-way ANOVA model is presented in equation 3.1.

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗 (3.1)

Where

𝑦𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛

𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑒𝑎𝑛

𝛼𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑡ℎ 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝜀𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

Testing for CLASSIFIER effects

𝐻0: All 𝛼𝑖 are equal.

 𝐻1: At least one 𝛼𝑖 are different.

A two-way ANOVA model is presented in equation 3.2.

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗 (3.2)

Where

𝑦𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛

𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑒𝑎𝑛

𝛼𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑡ℎ 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝛽𝑗𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑗𝑡ℎ 𝑆𝐶𝐻𝐸𝑀𝐸𝑆 𝑒𝑓𝑓𝑒𝑐𝑡

𝜀𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

Testing for CLASSIFIER effects

𝐻0: All 𝛼𝑖are equal.

 𝐻1: At least one 𝛼𝑖 are different.

Testing for SCHEMES effects

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

83

𝐻0: All 𝛽𝑗 are equal.

 𝐻1: At least one 𝛽𝑗 are different.

3.4.4 Tukey–Kramer method

This is a single-step multiple comparison procedure and statistical test. It can be used on

raw data or in conjunction with an ANOVA (Post-hoc analysis) to find means that are

significantly different from each other. It compares all possible pairs of means, and is

based on a studentized range distribution (q).

3.4.5 Box and Whisker Plots

These plots offer a pictorial summary of important dataset characteristics including the

central tendency, dispersion, asymmetry and extremes arrived at through percentile rank

analysis and the plotting of maximum and minimum dataset values. Its graphically

compact nature facilitates side by side comparison of multiple datasets, which can

otherwise be difficult to interpret using more complete representations such as the

histogram (Banaco, 2011). Ordered data are divided into lower and upper half by the

median. The median of the lower half is the lower quartile. The median of the upper half

is the upper quartile. The lower extreme is the least data value. The upper extreme is the

greatest value. Important characteristics of each scheme: central tendency, skewness,

dispersion and extremes are easy to interpret and visualise. Each box in the box plots

represents a data sampling scheme. The whiskers at the end of the box plots show the

minimum and maximum values, while the bar shows the median. If the median bar is

above zero or higher, the data sampling scheme represented by the box plot is doing better

on average than the data sampling scheme that is being compared with. And if the complete

box, including the whiskers, is above zero, then that data sampling scheme is better than

the other data sampling schemes.

3.5 The Datasets

When conducting research on classification, the norm is to test algorithm on, and draw

conclusion from, a number of different datasets from different problem domains. If some

of the conclusions drawn holds true for different tasks, then the conclusion will most likely

hold true for all in general. In this study, the datasets used were collected from different

domains in South Western Nigeria.

http://en.wikipedia.org/wiki/Multiple_comparison
http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/ANOVA
http://en.wikipedia.org/wiki/Post-hoc_analysis
http://en.wikipedia.org/wiki/Sample_mean
http://en.wikipedia.org/wiki/Studentized_range_distribution

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

84

3.5.1 Diabetes Mellitus (DM) dataset

Diabetes mellitus or simply diabetes is a group of metabolic diseases in which a person

has high blood sugar content, either because the pancreas does not produce enough insulin,

or because cells do not respond to the insulin that is produced. This high blood sugar

content produces the classical symptoms of polyuria (frequent

urination), polydipsia (increased thirst) and polyphagia (increased hunger).

Three main types DM considered were:

a. Type1 DM which is the outcome of the body's failure to produce insulin, and

requires the person to inject insulin or wear an insulin pump. This form was

previously referred to as "insulin-dependent diabetes mellitus" (IDDM) or

"juvenile diabetes".

b. Type2 DM which results from insulin resistance, a condition in which cells fail to

use insulin properly, sometimes this is combined with an absolute insulin

deficiency. This form was previously referred to as non-insulin-dependent diabetes

mellitus (NIDDM) or "adult-onset diabetes".

c. The third main form, gestational diabetes (GDM) occurs when pregnant women

without a previous diagnosis of diabetes develop a high blood glucose level. It may

preceed development of type 2 DM and is the class of interest (minority class) in

this study.

Other forms of DM include congenital diabetes, which is due to genetic defects of

insulin secretion, cystic fibrosis-related diabetes, steroid diabetes induced by high

doses of glucocorticoids, and several forms of monogenic diabetes (Sarwar et al.,

2010).

The raw data for this disease condition used in this study was obtained from the records

department of the Family Medicine Clinic of Wesley Guild Unit of Obafemi Awolowo

University Teaching Hospital Complex, Ilesha, Osun State, Nigeria. The dataset of

outgoing patients suffering from DM was extracted, reviewed and processed. The dataset

contained 886 instances of complete record of DM patients from January 2009 to May

2010. This dataset was collected by Awokola (2010) for research purpose. It contained

information about patients with three types of diabetes. The dataset contained 886

instances, had 18 attributes and three different classes namely: TYPE1, TYPE2 and

Gestational Diabetes Mellitus (GDM). The dataset class distribution was 807:62:17 where

http://en.wikipedia.org/wiki/Blood_sugar
http://en.wikipedia.org/wiki/Pancreas
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Polyuria
http://en.wikipedia.org/wiki/Polydipsia
http://en.wikipedia.org/wiki/Polyphagia
http://en.wikipedia.org/wiki/Diabetes_mellitus_type_1
http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
http://en.wikipedia.org/wiki/Insulin_resistance
http://en.wikipedia.org/wiki/Gestational_diabetes
http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Cystic_fibrosis
http://en.wikipedia.org/wiki/MODY

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

85

TYPE2 had 807 instances, TYPE1 had 62 instances and GDM had only 17 instances (the

minority class and also the class of interest). The dataset is highly skewed.

3.5.2 Senior Secondary School Certificate Examination Result (SSS Result) dataset

The data collected comprised of results of students in five secondary schools in Ibadan,

Nigeria. The records of students who sat for SSS Result consisting of both West Africa

Examination Council (WAEC) and Nigeria Examination Council (NECO) examinations

results in the schools were used for analysis. These results were for both public and private

secondary schools within Ibadan metropolis, Oyo state, Nigeria for a period of five years

(2005-2009). This dataset was collected by Agboola (2010) for research purpose. For the

purpose of this study, only data on English Language and Mathematics were used for the

analysis because they were compulsory for all students. Any student that passes both

English Language and Mathematics in both WAEC and NECO was regarded as

PASSBOTH, students that failed English Language and Mathematics both in WAEC and

NECO examination was regarded as FAILBOTH. Students that passed English Language

and Mathematics in WAEC alone was regarded as PASSWAEC while students that passed

both English Language in NECO alone was regarded as PASSNECO. The dataset contains

1163 instances consisting of 8 different attributes with four different classes namely:

FAILBOTH with 775 instances, PASSNECO with 248 instances, PASSWAEC with 45

instances and PASSBOTH with 95 instances. PASSWAEC is the class of interest and also

the minority class in this study. The dataset class distribution was 775:248:45:95.

3.5.3 Tuberculosis (TB) dataset

Tuberculosis (TB) is a disease caused by bacteria called Mycobacterium tuberculosis. It is

usually spread through the air and attacks low immune bodies such as patients with Human

Immuno-deficiency Virus (HIV) (Asha et al,. 2011). It is a disease which can affect

virtually all organs, not sparing even the relatively inaccessible sites. The microorganisms

usually enter the body by inhalation through the lungs. They spread from the initial

location in the lungs to other parts of the body via the blood stream. It presents a diagnostic

dilemma even for physicians with a great deal of experience with this disease.

Hence Tuberculosis (TB) is a contagious bacterial disease caused by mycobacterium

which affects usually lungs and is often co-infected with HIV/AIDS (Asha et al., 2012).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

86

Nigeria has the tenth highest burden of TB among the 22 TB high –burden countries in the

world (Lawson et al., 2012)

The medical dataset that were classified included 768 real records of patients suffering

from tuberculosis (TB) obtained during the cause of this study from Ijaye State Hospital,

Ogun State. The entire dataset was put in one file having many records. Each record

corresponds to most relevant information of one patient. Initial queries by Doctors for

symptoms and required test result details of patients were considered as main attributes.

On the aggregate, there were 12 attributes (symptoms) and four classes namely: Pulmonary

TB (PTB), Extra PTB (EPTB), Retroviral PTB (RPTB) and Retroviral EPTB (REPTB)

which is the minority class and also the class of interest. The dataset class distribution was

589:124:37:6 where PTB had 589 instances, RPTB had 124 instances, EPTB had 37

instances and REPTB had only 6 instances (the minority class and also the class of

interest).

3.5.4 Contraceptive Method (CM) dataset

This dataset was collected during this study from the Government Health Centre clinic at

Ibadan North East Local Government, Ibadan, Oyo state. The dataset was collected for a

period of seven (7) years (2008–2014) for this research purpose. The dataset contained

775 instances, 20 attributes with 5 different classes namely: NONE, SECONDARY+,

SECONDARY, PRIMARY and PRIMARY+. NONE represented patients without any

education that is illiterate, PRIMARY represented patients that attended primary school

but did not complete their education, PRIMARY+ represented patients that had elementary

primary education with certificate, SECONDARY represented patients that went to

secondary school but did not complete the senior secondary school but could have or have

not completed the junior secondary school while SECONDARY+ stood for patients that

had a complete secondary education and/or with either College of Education, Polytechnic

or University education. The dataset class distribution was 414:247:45:53:16 where

SECONDARY+ had 414 instances, SECONDARY had 247 instances, PRIMARY had 45

instances, PRIMARY+ had 53 instances and NONE had only 16 instances (the minority

class and also the class of interest).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

87

The summary of datasets used in this study is presented in Table 3.1. It showed the datasets

with the number of attributes, the number of classes they contain and the percentage of

minority class.

3.6 EXPERIMENTAL DESIGN

This section describes the specific configuration used by all the classification algorithms

in this study. For simplicity, WEKA default values were used for all algorithm

configuration.

3.6.1 Classification algorithms’ configuration

This section give the details of specific configuration and factors used with the

classification algorithm for their implementation in WEKA. The classification task was

carried out by a set

of n input instances 𝑋1, 𝑋2, … , 𝑋𝑛 𝑤𝑖𝑡ℎ 𝑗 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎1, 𝑎2, … , 𝑎𝑗 ∈ 𝑇 which can either be

nominal or numerical values, whose desired output class labels 𝑌𝑖 ∈ 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}.

Hence, the classifier or learner generates a mapping function that is defined over the

pattern 𝑇𝑖 → 𝐶

3.6.1.1 Random Tree

This is a classifier for constructing a tree that considers K randomly chosen attributes at

each node. It performed no pruning. Also, allowed estimation of class probabilities based

on a hold-out set. The number of randomly chosen attributes was set to 0

log 2 (number_of_attributes) +1). The maximum depth of the tree was also set to 0 for

unlimited. The number of folds which determines the amount of data used for back fitting

was set to 0 that is no back fitting and the random number seed used for selecting attributes

was set to 1.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

88

Table 3.1 Summary of datasets

Datasets Attributes Number of

classes

%Minority class

DM 19 3 2

SSS Result 8 4 4

TB 13 4 0.79

CM 20 5 7

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

89

3.6.1.2 RIPPER

This class implements a propositional rule learner, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), which was proposed by Cohen (1995) as an optimized

version of Incremental Reduced Error Prunning (IREP). The number of folds used was 3.

The minimum number total weight of the instances in a rule was 2, the number of

optimization runs was 2, the seed used for randomizing the data was set to 1 and it was un-

pruned.

3.6.1.3 Decision Tree

This was used for generating a pruned or un-pruned C4.5 decision tree with a Confidence

Factor of 0.25. One of the reasons to avoid pruning is that most pruning scheme attempt

to minimize the overall error rate. These pruning schemes can be detrimental to the

minority class, since reducing the error rate in the majority class, which stands for most of

the examples, would result in a greater impact over the overall error rate (Batista et al.,

2004, Zadrozny and Elkan, 2001, Chawla, 2003). The minimum number of instances per

leaf was 2 and the number of folds was 3. The number of seed used for randomizing the

data when reduced-error pruning was used was 1. The tree was not pruned, Laplace

smoothing and MDL correction was used. Hence, for this configuration, the decision tree

used was C4.4, a variant of C4.5.

3.6.1.4 K-Nearest Neighbours classifier (1B3)

K-Nearest Neighbours classifier where k = 3 is the number of nearest neighbour (Aha et

al., 1991). Hold-one-out cross-validation was used to select this k value. The nearest

neighbour search algorithm used was neighboursearch.Linear NNSearch based on distance

weighting method.

3.6.1.5 REPTree

This is a fast decision tree learner that built a decision/regression tree using information

gain/variance and pruneed it using reduced-error pruning (with backfitting). Missing

values are dealt with by splitting the corresponding instances into pieces. The maximum

tree depth was set to -1 for no restriction, the minimum total weight of the instances in a

leaf was 2 with no Pruning, and the number of folds was set to 3 while the seed used for

randomizing the data was set to 1.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

90

3.6.1.6 Support Vector Machine (SVM)

This implementation globally replaced all missing values and transformed nominal

attributes into binary ones (Platt, 1998). It also normalized all attributes by default. (The

coefficients in the output are based on the normalized data, not the RAW DATA data as

this is important for interpreting the classifier.) Multi-class problems are solved using

pairwise classification (one-vs-one). The complexity parameter was set to 1. The epsilon

for round-off error was set to 1.0E-12. The kernel used was kernel Polykernel and the

number of folds for the cross-validation that used to generate the training data for logistic

models was set to 1.

3.6.1.7 MultiLayerPerceptron (MLP)

This classifier used back-propagation to classify instances. The nodes in this network are

all sigmoid. This divided the starting learning rate by the epoch number, to determine what

the current learning rate should be. The number of hidden layers of the neural network

used here was 1. The learning Rate was set to 0.3 while the momentum was set to 0.2. The

seed used to initialize the random number was set to 0. The TrainingTime, which is the

number of epochs to train through, was set to 500, the percentage size of the validation set

was set to 10 and the validation Threshold used to terminate validation testing was set to

20.

3.6.1.8 Multiple Class Classifier

This is a meta classifier for handling multiple class datasets with 2-class classifiers. This

classifier is also capable of applying error correcting output codes for increased accuracy.

The random number seed used is 1. The base classifier used is an unpruned decision tree

with Laplace Smoothing and Minimum (MDL) correction. The decomposition method

used for transforming the multi-class problem into several 2-class ones was one – against

– all (OVA).

3.6.1.9 RandomCommittee

This an ensemble of randomizable base classifiers (Random Tree). Each base classifier

was built using a different random number seed (but based on the same data). The final

prediction was a straight average of the predictions generated by the individual base

classifiers. The base classifier used was random tree. The number of iterations was 10 on

1 and the random number seed.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

91

3.6.1.10 Random Forest

This is an ensemble of random trees for constructing a forest trees by using bootstrap

samples of training data. This algorithm was used with all its default value set. The

maximum depth of the trees set to 0 for unlimited. The number of trees to be generated

was set to 10 and the random number seed to be used was set to 1.

3.6.1.11 Random Subspace (Decision Forest)

This ensemble method constructs a decision tree based classifier that maintained highest

accuracy on training data and improved on generalization accuracy as it grows in

complexity. The classifier consists of multiple trees constructed systematically by pseudo

randomly selecting subsets of components of the feature vector, that is, trees constructed

in randomly chosen subspaces. The base classifier used is decision tree (C4.4). The number

of iterations performed was 10 and the random number seed used was 1. The size of each

subspace was 0.5.

3.6.1.12 Stacking

This is an ensemble of classifiers that combine four different classifiers using the stacking

method. The base classifiers were arranged to form a heterogeneous ensemble in this order:

RIPPER, Decision tree, 1B3, Support Vector Machine and MultilayerPerceptron. The

meta classifier used was the decision tree, un-pruned and Laplace smoothing with a seed

number of 1 and 10 folds for cross-validation.

3.6.1.13 Bagging

This is an ensemble method for bagging a classifier to reduce variance. The size of each

bag (as a percentage of the training set size) was set to 100 and the base classifier was

decision tree (C4.4). 10 iterations were performed on the dataset with 1 random number

seed.

3.6.1.14 Boosting (AdaBoostM1)

This is an ensemble for boosting a nominal class classifier using the AdaboostM1 method.

Only nominal class problems can be tackled. Often dramatically improves performance,

but sometimes over fits. Decision tree (C4.4) was used as the base classifier. 10 iterations

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

92

were performed with 1 random number seed. Weight threshold for weight pruning was set

to 100.

3.6.2 Ten - fold Cross Validation

Ten-fold cross validation was used for training the datasets. All the datasets were all

divided randomly into ten parts in which the class is represented in approximately the same

proportion as in the full dataset. Each part is held out in turn and the learning scheme

trained on the remaining nine – tenths; then its error rate is calculated on the holdout set.

Thus, the learning procedure is executed a total of 10 times on different training sets (each

set has a lot in common with the others). Finally, the ten error estimates are averaged to

yield an overall error estimate.

3.7 Percentage Reduction/Increment in the dataset

The formula used to calculate the percentage reduction/ increment in the entire dataset

after applying the enhanced schemes and the existing class imbalance schemes presented

in Equation 3.2.

OriginalSize - NewSize
%Reduction/Increment = ×100

OriginalSize
 (3.2)

3.8 Percentage number of the minority class in the dataset

The procedure used to calculate the percentage number of the minority class in the total

number of instances in the entire dataset is presented in Equation 3.3

total number of instances of minority class
%minority class = ×100

total number of instances in the dataset
 (3.3)

3.9 Measuring the impact of class distribution on classifier performance

This section focused on identifying and explaining any differences in classification

performance between the minority and majority class. It was observed that there was a

large error rate for minority class. The analysis of this section was to show that the minority

class predictions and test samples both had larger error rate than their majority class

counter parts. Though the three datasets used in this study were multiple class problems,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

93

the classes were collapsed to two class problems where the positive class represented the

minority class while the negative class represented the majority class. Equations 3.4-3.7

was used to calculate the errors. 𝑃𝑃𝑉̅̅ ̅̅ ̅̅ is the minority class prediction error. 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ is the

majority class prediction error. False Negative Rate (FNR) is the likelihood that a positive

example is classified as a negative example. FNR is the error rate associated with the

positive examples. False Positive Rate (FPR) is the likelihood that a negative example is

classified as a positive example. FPR is the error associated with the negative examples.

PPV
FP

=
TP+FP

 (3.4)

NPV
FN

=
TN+FN

 (3.5)

FN
FNR =

TP+FN
 (3.6)

FP
FPR =

TN+FP
 (3.7)

3.10 Performance Loss/Gain on classifiers

The performance loss or gain was calculated relative to the original distribution of each

dataset. The formula is presented in equation 3.8

PerformanceLoss/gain =
ROCOriginal ROCNew

ROCOriginal

 (3.8)

where ROCOriginal is the performance obtained from the RAW DATA dataset on a

classifier measured in ROC_AUC and ROCNew is the performance obtained with the new

datasets generated using all data sampling schemes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

94

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results obtained from the implementation of both the enhanced

and existing data sampling schemes in WEKA. A total of thirteen (13) balanced datasets

which were created from the 13 different data sampling schemes (both existing and

enhanced) were trained on fourteen (14) different classifiers. The results obtained were

analyzed statistically using Friedman test, Analysis Of Variance (ANOVA) test and Box

and whisker plot. This chapter also presented the discussion of the result obtained.

4.1.1 Analysis of error rates of the minority and majority class distributions

A typical classification analysis using a Decision Tree classifier illustrates the motivation

for this study. The four test datasets namely Diabetes Mellitus disease (DM), Senior

Secondary School Result (SSS Result), Contraceptive Methods (CM) and Tuberculosis

(TB) used in the study were converted to binary class problems and Decision Tree

classifier was used to train them. For the binary class, the minority is the positive class

while the majority class is the negative class. The confusion matrices obtained for the

binary class datasets are presented Table 4.1. The error rates from both classes are

presented in Table 4.2. This table showed the percentage of the minority class examples

in their natural class

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

95

Table 4.1: Confusion matrix of the bi-class from Decision Tree classifier on study dataset

Dataset DM SSS Result CM TB

 Positive

Prediction

Negative

Prediction

Positive

Prediction

Negative

Prediction

Positive

Prediction

Negative

Prediction

Positive

Prediction

Negative

Prediction

Actual Positive 3 14 0 45 2 14 6 0

Actual Negative 1 869 0 1118 1 758 0 751

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

96

Table 4.2: Error rates of the study datasets with Decision Tree Classifier

 Prediction error Actual error

Dataset

% minority

examples

Minority

 𝑃𝑃𝑉

Majority

𝑁𝑃𝑉

Minority

(FNR)

Majority

(FPR)

DM 2 25 1.6 82 0.11

SSS Result 4 100 3.87 100 0

CM 7 33 1.8 88 0.13

TB 0.79 0 0 0 0

Average 39.5 1.82 67.5 0.06

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

97

distribution of each dataset. The prediction error columns show the error rates obtained for

the minority and majority class after training the test datasets with Decision Tree classifier.

The actual error column presents the actual classification error rates for the minority and

majority class samples.

The percentage of minority class to the total number of examples in DM dataset was 2%.

The minority labelled predictions had an error rate of 25% while that of the majority was

1.6%. The minority class test samples had a classification error of 82% while that of

majority class test samples was 0.11%.

The percentage of minority class to the total number of examples in SSS Result dataset

was 4%. The minority labelled predictions had an error rate of 100% while that of the

majority was 3.87%. The minority class test samples had a classification error of 100%

while that of the majority class test samples was 0%.

The percentage of minority class to the total number of examples in CM dataset was 2%.

The minority labelled predictions had an error rate of 33% while that of the majority was

1.8%. The minority class test samples had a classification error of 88% while that of the

majority class test samples was 0.13%.

TB disease dataset had the percentage of minority class to the total number of examples to

be 0.79%. The minority labelled predictions had an error rate of 0% while that of majority

labelled prediction was 0%. The minority and majority class test samples zero

classification error.

The minority samples predictions had average error rate of 39.5% while that of majority

samples predictions was 1.82% on all four datasets. It can also be observed that the average

error rate for minority class test samples (FNR) was 67.5% while the average error rate for

the majority class test samples was 0.06% from Table 4.2. It can be inferred from the

results in Table 4.2 that the minority class predictions performance were worse than the

majority class predictions and that the minority class examples were mis-classified more

frequently than the majority class. In all the datasets, the minority class test examples had

a higher error rate than the majority class test examples except for TB dataset. The TB did

not show that it was affected by the class distribution of samples in the classification result.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

98

Hence, it cannot benefit from the application of any data sampling schemes intended to

further improve the classification result.

4.1.1.1 Discussion on the error rates

The minority class predictions of datasets (DM, SSS Result and CM) had a higher error

rate 𝑃𝑃𝑉 than their majority class predictions 𝑁𝑃𝑉. One of the reasons why the minority

class predictions are so error prone is that from the results obtained from Table 4.2, it

showed that naturally imbalanced dataset yielded classifiers with higher error

concentrations than their balanced versions (datasets treated with data sampling schemes)

of the same datasets. The explanation for this behaviour is that the test distribution effect

makes the minority class harder to train especially when allied with class disjuncts. The

explanation why minority class test examples are misclassified much more often than

majority class test examples (FNR>FPR) according to Japkowicz and Stephen, (2002) is

that since the fraction of positive examples in the test set is very small, the true negative

rate is weighted more than the true positive rate. This means that a plan to maximize

accuracy will place higher emphasis on maximizing the number of true negatives (TN)

than maximizing the number of true positives (TP), and also more emphasis on minimizing

the number of false negatives. A classifier tendered towards maximizing accuracy would

prefer false negative errors to false positive errors. Another reason why minority class

examples are mis-classified more often is that fewer minority class are likely to be sampled

from the class distribution. Therefore, the training data are less likely to include (enough)

instances of all the minority class and the classifier may not have the opportunity to

represent all truly positive regions. For this reason, some minority class samples will be

mistakenly classified as belonging to the majority class. The reason why a lower error rate

is generally observed for majority class test samples (FN>FP) is because the majority class

is predicted far more often than the minority class as agreed by Weiss and Provost, (2003).

4.1.2 Steps involved in evaluation of result

The datasets used in the study were pre-processed with both the enhanced and existing

data sampling schemes. Thirteen (13) different datasets were created from the pre-

processing. These datasets were then trained on 14 different classification algorithms.

Figure 4.1 presents the steps taken in the pre-processing, evaluation, statistical analysis

and reporting of the result. The classification algorithms were chosen from different

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

99

Figure 4.1: Steps used for the pre-processing and analysis of result

Select Test data (DM, SSS Result, TB

and CM) datasets

Apply the 13 (Enhanced

and existing) data sampling

schemes to test datasets

Apply the 14 different Classifiers

implemented in Weka to the 13

balanced dataset plus the RAW

DATA test dataset

Carry out statistical tests

(Friedman’s test, ANOVA

and Box Plot) on results

obtained

Generate results with

performance metrics namely:

ROC_AUC, Kappa Statistics,

RMSE, RECALL of the

minority class and

Performance loss/gain.

Perform evaluation and

Report

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

100

categories namely: base, homogeneous and heterogeneous ensemble classification

algorithms. The results obtained with these performance measures (Kappa Statistics,

RMSE, RECALL of the minority class, ROC_AUC and Performance loss/gain) were

analysed using ANOVA, Friedman’s test and Box plot.

4.1.3 Dataset Distribution

The class distributions generated for all the datasets used in the study after the application

of the 13 data sampling schemes to the RAW DATA were presented in Tables 4.3, 4.4,

4.5 and 4.6 and also plotted in Figure 4.2, 4.3, 4.4 and 4.5. These tables and figures showed

all the data sampling schemes used in the study, the various class distribution obtained

after the application of the 13 data sampling schemes, the total number of instances of the

resultant datasets, the percent reduction or increment in the size of the dataset compared

to the RAW DATAsets and the percentage of the minority class in each dataset. The results

presented in these tables form the basis for the analysis presented in this chapter.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

101

Table 4.3: DM Dataset class distribution

S/N

Data Sampling

Schemes Class distribution

Number of

Instances

%Reduction/

Increment % Minority Class

TYPE2 TYPE1 GDM

1 RAW DATA 807 62 17 886 2

2 CNN 164 50 15 229 74 7

3 ENN 778 11 4 793 10 1

4 RUS 17 17 17 51 94 33

5 NCL 698 62 17 777 12 2

6 5ENN 784 12 4 800 10 1

7 SMOTE 807 62 34 903 -2 4

8 SMOTE300 807 62 68 937 -6 7

9 SMOTEENN 770 14 21 805 9 3

10 SMOTENCL 700 62 34 796 10 4

11 SMOTERUS 34 34 34 102 88 33

12 SMOTE300ENN 766 15 58 839 5 7

13 SMOTE300NCL 693 62 68 823 7 8

14 SMOTE300RUS 62 62 62 186 79 33

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

102

Figure 4.2: Chart showing the DM Dataset class distribution

0

100

200

300

400

500

600

700

800

900

TYPE2 TYPE1 GDM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

103

Table 4.4: SSS Result Dataset class distribution

S/N

Data Sampling

Schemes Class distribution

Number of

Instances

%Reduction/

Increment

%Minority

Class

FAILBOTH PASSNECO PASSWAEC PASSBOTH

1 RAW DATA 775 248 45 95 1163

4

2 CNN 195 211 45 77 528 55 9

3 ENN 699 86 1 60 846 27 0

4 RUS 45 45 45 45 180 85 25

5 NCL 657 248 45 95 1045 10 4

6 5ENN 699 86 1 60 846 27 0

7 SMOTE 775 248 90 95 1208 -4 7

8 SMOTE300 775 248 180 95 1298 -12 14

9 SMOTEENN 699 83 10 56 848 27 1

10 SMOTENCL 661 248 90 95 1094 6 8

11 SMOTERUS 90 90 90 90 360 69 25

12 SMOTE300ENN 699 82 103 16 900 23 11

13 SMOTE300NCL 661 248 180 95 1184 -2 15

14 SMOTE300RUS 95 95 95 95 380 67 25

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

104

Figure 4.3: Chart showing the SSS Result Dataset class distribution

0

100

200

300

400

500

600

700

800

900

FAILBOTH PASSNECO PASSWAEC PASSBOTH

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

105

Table 4.5: TB Dataset class distribution

Schemes Class distribution

Number of

Instances % Minority Class

 PTB RPTB EPTB REPTB

RAW DATA 589 124 37 6 758 0.79

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

106

Figure 4.4: Chart showing the TB Dataset class distribution

0

100

200

300

400

500

600

700

PTB RPTB EPTB REPTB

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

107

Table 4.6: CM Dataset class distribution

S/N Data Sampling

Schemes Class distribution

Number

of

Instances

%Reduction

/Increment

%Minority

Class

 SECONDARY+ SECONDARY PRIMARY PRIMARY+ NONE

1
RAW DATA 414 247 45 53 16 247 7

2
CNN 275 201 44 50 15 585 25 3

3
ENN 386 209 36 43 14 688 11 2

4
RUS 16 16 16 16 16 80 90 20

5
NCL 337 247 45 53 16 698 10 2

6
5ENN 384 196 26 27 9 642 17 1

7
SMOTE 414 247 45 53 32 791 -2 4

8
SMOTE300 414 247 45 53 64 823 -6 8

9
SMOTEENN 386 210 35 35 27 702 9 4

10
SMOTENCL 337 247 45 53 32 714 8 5

11
SMOTERUS 32 32 32 32 32 160 79 20

12
SMOTE300ENN 385 207 34 45 58 729 6 8

13
SMOTE300NCL 335 247 45 53 64 744 4 9

14
SMOTE300RUS 45 45 45 45 45 225 71 20

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

108

Figure 4.5: Chart showing the CM Dataset class distribution

0

50

100

150

200

250

300

350

400

450

SECONDARY+ SECONDARY PRIMARY PRIMARY+ NONE

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

109

4.1.4 Analysis of classification results of performance metrics on all datasets

This sub section presents performance metrics used for the classification results obtained

from training the 13 datasets created from the data sampling schemes and the RAW DATA

on the 14 classifiers. The performance metrics are ROC_AUC, Kappa Statistics, RMSE,

RECALL of the minority class, and Performance loss/gain. The values for the best

performing scheme are in bold. The screen shots for all results obtained in WEKA’s API

are presented in Appendix A.

4.1.4.1 Analysis of ROC_AUC metrics

The results obtained using the ROC_AUC metric on all data sampling schemes including

RAW DATA on all the 14 classifiers on DM dataset is presented in Table 4.7 and displayed

in Figure 4.6. It was observed that SMOTE300ENN, one of the enhanced data sampling

schemes consistently gave the best performance with the majority of the classifiers.

SMOTEENN, one the existing data sampling schemes gave a comparable performance to

SMOTE300ENN. The class boundary diagram for visualising the class probability

estimates of this dataset with all data sampling schemes is presented in Appendix B

The ROC_AUC metric values for SSS Result dataset is presented in Table 4.8 and charted

in Figure 4.7. It was observed that SMOTE300ENN, one of the enhanced data sampling

schemes gave the best performance. 5ENN, ENN and SMOTEENN which are all existing

data sampling schemes also had comparable performance in many instances.

The result obtained for the CM dataset is presented in Table 4.9 and plotted in Figure 4.8.

It was observed that SMOTE300RUS had the best performance followed by

SMOTE300ENN.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

110

Table 4.7: ROC_AUC metric values for DM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.90 0.61 0.72 0.63 0.65 0.84 0.80 0.76 0.79 0.88 0.80 0.82 0.79 0.79

Decision Tree 0.95 0.87 0.67 0.82 0.87 0.86 0.80 0.86 0.87 0.97 0.88 0.89 0.91 0.86

Random Forest 0.98 0.86 0.70 0.83 0.85 0.88 0.77 0.88 0.87 0.97 0.9 0.84 0.92 0.87

Random Tree 0.88 0.68 0.60 0.63 0.73 0.80 0.69 0.72 0.75 0.83 0.81 0.69 0.81 0.77

REPTree 0.96 0.80 0.71 0.74 0.85 0.94 0.83 0.73 0.81 0.97 0.81 0.87 0.87 0.84

MLP 0.96 0.74 0.67 0.82 0.64 0.86 0.61 0.85 0.88 0.94 0.90 0.73 0.89 0.75

SVM 0.86 0.50 0.50 0.50 0.50 0.54 0.59 0.51 0.69 0.51 0.60 0.76 0.74 0.80

1B3 0.94 0.80 0.23 0.74 0.77 0.77 0.59 0.79 0.82 0.88 0.76 0.76 0.85 0.83

Boosting 0.99 0.83 0.65 0.83 0.89 0.78 0.78 0.84 0.87 0.93 0.88 0.84 0.90 0.86

Bagging 0.98 0.88 0.67 0.85 0.89 0.87 0.81 0.88 0.89 0.97 0.89 0.88 0.91 0.87

MulticlassClassifier 0.96 0.87 0.70 0.83 0.86 0.86 0.80 0.86 0.88 0.97 0.88 0.87 0.87 0.84

RandomCommittee 1.00 0.89 0.67 0.83 0.89 0.90 0.79 0.86 0.87 0.95 0.91 0.86 0.92 0.88

Decision Forest 0.98 0.89 0.7 0.84 0.93 0.89 0.80 0.87 0.87 0.98 0.9 0.86 0.90 0.86

Stacking 1.00 0.86 0.80 0.77 0.87 0.84 0.70 0.83 0.87 0.95 0.88 0.82 0.88 0.86

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

111

Figure 4.6: Chart showing the ROC_AUC metric values for DM dataset

0 2 4 6 8 10 12 14

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN RAW DATA

ENN NCL RUS SMOTE

SMOTE 300 SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

112

Table 4.8: ROC_AUC metric values for SSS Result dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.99 0.99 0.51 0.59 0.99 0.71 0.69 0.61 0.64 0.98 0.68 0.73 0.70 0.80

Decision Tree 1.00 1.00 0.56 0.81 1.00 0.86 0.70 0.82 0.84 1.00 0.86 0.77 0.88 0.81

Random Forest 1.00 1.00 0.53 0.81 1.00 0.86 0.69 0.82 0.84 1.00 0.87 0.76 0.88 0.80

Random Tree 1.00 1.00 0.52 0.81 1.00 0.86 0.68 0.82 0.83 1.00 0.87 0.75 0.88 0.80

REPTree 1.00 1.00 0.54 0.81 1.00 0.86 0.73 0.82 0.84 1.00 0.87 0.76 0.88 0.80

MLP 0.96 0.82 0.63 0.77 0.95 0.80 0.73 0.77 0.79 0.95 0.82 0.74 0.81 0.74

SVM 0.95 0.86 0.58 0.68 0.94 0.75 0.75 0.69 0.72 0.93 0.74 0.76 0.77 0.77

1B3 1.00 1.00 0.53 0.81 1.00 0.86 0.69 0.82 0.84 1.00 0.87 0.76 0.88 0.80

Boosting 1.00 1.00 0.55 0.79 1.00 0.86 0.68 0.82 0.83 1.00 0.87 0.72 0.88 0.75

Bagging 1.00 1.00 0.56 0.82 1.00 0.87 0.72 0.82 0.84 1.00 0.87 0.77 0.88 0.81

MulticlassClassifier 1.00 1.00 0.57 0.81 1.00 0.86 0.72 0.82 0.83 1.00 0.86 0.76 0.87 0.79

RandomCommittee 1.00 1.00 0.52 0.81 1.00 0.86 0.68 0.82 0.83 1.00 0.87 0.75 0.88 0.79

Decision Forest 0.99 0.99 0.60 0.82 0.99 0.87 0.74 0.82 0.84 0.99 0.87 0.77 0.87 0.81

Stacking 0.99 0.99 0.60 0.78 0.99 0.84 0.71 0.80 0.82 0.99 0.84 0.74 0.87 0.78

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

113

Figure 4.7: Chart showing the ROC_AUC metric values for SSS Result dataset

0 2 4 6 8 10 12 14

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

114

Table 4.9: ROC_AUC metric values for CM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.59 0.56 0.50 0.52 0.54 0.50 0.59 0.53 0.58 0.56 0.54 0.65 0.59 0.64

Decision Tree 0.70 0.58 0.52 0.57 0.61 0.57 0.48 0.58 0.61 0.59 0.59 0.62 0.64 0.67

Random Forest 0.70 0.67 0.52 0.61 0.64 0.64 0.53 0.62 0.65 0.66 0.62 0.64 0.68 0.71

Random Tree 0.65 0.59 0.48 0.56 0.57 0.58 0.52 0.54 0.61 0.61 0.62 0.62 0.63 0.70

REPTree 0.62 0.53 0.47 0.53 0.49 0.50 0.43 0.49 0.61 0.50 0.50 0.62 0.60 0.64

MLP 0.55 0.59 0.51 0.52 0.59 0.54 0.48 0.55 0.56 0.59 0.56 0.63 0.57 0.67

SVM 0.68 0.64 0.53 0.58 0.63 0.62 0.64 0.60 0.64 0.65 0.62 0.67 0.66 0.71

1B3 0.67 0.67 0.42 0.58 0.61 0.59 0.59 0.58 0.63 0.64 0.61 0.65 0.64 0.72

Boosting 0.69 0.61 0.53 0.57 0.64 0.61 0.50 0.60 0.62 0.62 0.61 0.68 0.65 0.65

Bagging 0.64 0.54 0.51 0.52 0.55 0.55 0.49 0.55 0.58 0.58 0.56 0.65 0.62 0.69

MulticlassClassifier 0.66 0.55 0.52 0.55 0.56 0.55 0.50 0.56 0.61 0.58 0.57 0.63 0.63 0.65

RandomCommittee 0.69 0.64 0.48 0.58 0.61 0.63 0.60 0.61 0.63 0.64 0.61 0.67 0.67 0.68

Decision Forest 0.65 0.57 0.52 0.56 0.59 0.59 0.51 0.57 0.63 0.60 0.61 0.66 0.66 0.69

Stacking 0.66 0.64 0.59 0.52 0.59 0.56 0.54 0.58 0.61 0.61 0.57 0.62 0.64 0.68

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

115

Figure 4.8: Chart showing the ROC_AUC metric values for CM dataset

0 1 2 3 4 5 6 7 8 9 10

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

116

4.1.4.2 Analysis of Kappa statistics metrics

Kappa statistics metric values are presented in Table 4.10 and also plotted in Figure 4.9

for all results obtained on all data sampling schemes on all the 14 classifiers on DM dataset.

It was also observed that SMOTE300ENN, one of the enhanced data sampling schemes

consistently had the best performance.

The report on Kappa statistics metric for SSS Result dataset is presented in Table 4.11 and

charted in Figure 4.10. It was observed that SMOTE300ENN, one of the enhanced data

sampling schemes had the best performance

 The results for CM dataset is presented in Table 4.12 and also plotted in Figure 4.11. The

values showed that SMOTE300ENN and SMOTE300RUS which are two of the enhanced

data sampling schemes had the best performance.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

117

Table 4.10: Kappa Statistic metric values for DM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.84 0.25 0.35 0.23 0.41 0.69 0.56 0.53 0.60 0.74 0.65 0.63 0.65 0.54

Decision Tree 0.81 0.30 0.25 0.31 0.26 0.59 0.50 0.48 0.55 0.75 0.65 0.68 0.68 0.53

Random Forest 0.85 0.21 0.17 0.32 0.23 0.64 0.44 0.46 0.60 0.75 0.70 0.59 0.70 0.58

Random Tree 0.80 0.34 0.21 0.22 0.38 0.54 0.38 0.42 0.49 0.61 0.59 0.38 0.56 0.52

REPTree 0.84 0.53 0.31 0.44 0.54 0.60 0.59 0.52 0.59 0.76 0.68 0.68 0.70 0.64

MLP 0.77 0.21 0.10 0.25 0.12 0.52 0.12 0.27 0.55 0.45 0.52 0.34 0.61 0.42

SVM 0.77 0.00 0.00 0.00 0.00 0.12 0.15 0.00 0.50 0.00 0.27 0.47 0.55 0.54

1B3 0.72 -0.00 -0.13 0.19 -0.00 0.28 0.15 0.31 0.49 0.44 0.32 0.35 0.56 0.44

Boosting 0.88 0.36 0.23 0.33 0.38 0.60 0.47 0.50 0.54 0.80 0.67 0.62 0.67 0.53

Bagging 0.84 0.33 0.25 0.36 0.14 0.65 0.62 0.52 0.62 0.76 0.71 0.69 0.71 0.59

MulticlassClassifier 0.82 0.10 0.65 0.29 0.03 0.61 0.56 0.50 0.59 0.76 0.68 0.63 0.70 0.58

RandomCommittee 0.88 0.20 0.18 0.31 0.30 0.63 0.53 0.46 0.56 0.76 0.69 0.60 0.71 0.60

Decision Forest 0.57 0.00 0.132 0.07 0.00 0.12 0.53 0.26 0.33 0.38 0.48 0.60 0.49 0.58

Stacking 0.81 0.40 0.25 0.27 0.25 0.51 0.24 0.38 0.53 0.65 0.65 0.49 0.66 0.57

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

118

Figure 4.9: Chart showing the Kappa Statistics metric values for DM dataset

-1 0 1 2 3 4 5 6 7 8 9

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN RAW DATA

ENN NCL RUS SMOTE

SMOTE 300 SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

119

Table 4.11: Kappa Statistic metric for SSS Result dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DAT

A

ENN NCL RUS SMOTE
SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.99 0.98 -0.11 0.20 0.99 0.42 0.21 0.24 0.29 0.97 0.35 0.31 0.38 0.47

Decision Tree 0.99 0.98 -0.14 0.39 0.99 0.53 0.24 0.38 0.42 0.98 0.52 0.42 0.54 0.45

Random Forest 0.99 1.00 -0.16 0.40 0.99 0.76 0.29 0.39 0.43 0.99 0.51 0.41 0.52 0.44

Random Tree 0.99 0.99 -0.21 0.38 0.99 0.51 0.20 0.38 0.42 0.99 0.50 0.42 0.53 0.46

REPTree 0.99 0.98 -0.16 0.38 0.99 0.51 0.35 0.37 0.42 0.99 0.52 0.43 0.53 0.46

MLP 0.74 0.62 0.03 0.29 0.71 0.42 0.44 0.24 0.32 0.68 0.41 0.29 0.35 0.25

SVM 0.91 0.80 0.14 0.37 0.90 0.48 0.36 0.37 0.37 0.86 0.47 0.43 0.45 0.44

1B3 0.99 0.97 -0.21 0.38 0.98 0.50 0.2 0.37 0.69 0.98 0.50 0.41 0.52 0.46

Boosting 0.99 0.98 -0.05 0.37 0.99 0.51 0.27 0.38 0.43 0.99 0.50 0.40 0.51 0.41

Bagging 0.98 0.98 -0.12 0.39 0.98 0.53 0.34 0.38 0.42 0.98 0.52 0.43 0.52 0.45

MulticlassClassifier 0.99 0.98 -0.16 0.35 0.99 0.53 0.27 0.38 0.41 0.98 0.52 0.43 0.51 0.45

RandomCommittee 0.99 0.98 -0.21 0.38 0.99 0.51 0.21 0.38 0.41 0.99 0.51 0.43 0.53 0.47

Decision Forest 0.79 0.76 -0.06 0.34 0.78 0.49 0.35 0.34 0.38 0.80 0.47 0.44 0.48 0.44

Stacking 0.99 0.99 0.11 0.31 0.98 0.51 0.27 0.35 0.41 0.98 0.48 0.32 0.50 0.36

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

120

Figure 4.10: Chart showing the Kappa Statistics metric values for SSS Result

dataset

-1 0 1 2 3 4 5 6 7 8 9

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

121

Table 4.12: Kappa Statistics metric values for CM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS

SMOT

E

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.21 0.14 0.03 0.05 0.10 0.05 0.11 0.10 0.19 0.14 0.11 0.25 0.18 0.23

Decision Tree 0.25 0.04 0.03 0.05 0.08 0.08 -0.03 0.08 0.19 0.15 0.11 0.09 0.20 0.21

Random Forest 0.23 0.09 -0.05 0.07 0.05 0.11 0.02 0.10 0.19 0.14 0.10 0.13 0.22 0.23

Random Tree 0.21 0.11 -0.06 0.04 0.04 0.09 0.02 0.03 0.15 0.11 0.13 0.14 0.17 0.26

REPTree 0.17 0.01 -0.11 -0.02 0.00 0.01 -0.08 0.00 0.14 0.00 0.01 0.12 0.16 0.21

MLP 0.05 0.06 -0.02 -0.01 0.07 0.05 -0.06 0.01 0.11 0.03 0.01 0.13 0.09 0.19

SVM 0.33 0.24 0.03 0.13 0.22 0.20 0.19 0.17 0.25 0.29 0.20 0.23 0.29 0.32

1B3 0.25 0.24 -0.11 0.11 0.13 0.12 0.06 0.12 0.19 0.21 0.16 0.22 0.22 0.28

Boosting 0.24 0.10 0.03 0.03 0.12 0.11 0.05 0.10 0.17 0.15 0.12 0.18 0.20 0.18

Bagging 0.26 0.02 0.00 0.03 0.04 0.07 -0.06 0.08 0.16 0.14 0.11 0.14 0.18 0.16

MulticlassClassifier 0.25 0.03 0.02 0.06 0.07 0.07 0.02 0.09 0.19 0.13 0.11 0.15 0.23 0.22

RandomCommittee 0.20 0.07 -0.07 0.01 0.05 0.12 0.11 0.09 0.18 0.13 0.12 0.16 0.22 0.23

Decision Forest 0.23 0.06 0.00 0.03 0.07 0.13 0.03 0.07 0.17 0.15 0.11 0.20 0.21 0.21

Stacking 0.20 0.17 0.07 0.01 0.10 0.06 0.08 0.13 0.17 0.15 0.08 0.17 0.19 0.24

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

122

Figure 4.11: Chart showing the Kappa Statistics metric values for CM dataset

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

123

4.1.4.3 Analysis of RMSE metrics

A low RMSE value indicates a better performance. This means that the lower the RMSE

value for a data sampling scheme, the better the classification performance of the data

sampling scheme.

The results obtained for the RMSE metric on all data sampling schemes on all the 14

classifiers used to train the DM dataset is presented in Table 4.13 and plotted in Figure

4.12. It was observed that ENN, SMOTEENN and 5ENN, all part of the existing data

sampling schemes had the lowest values.

The RMSE values for SSS Result dataset is presented in Table 4.14 and charted in Figure

4.13. It was observed that ENN, SMOTE300ENN, 5ENN and SMOTEENN data sampling

schemes had the lowest RMSE values respectively.

The RMSE values obtained for CM dataset is presented in Table 4.15 and plotted in Figure

4.14. It was observed that 5ENN data sampling schemes had the best classification

performance for the majority of the classifiers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

124

Table 4.13: RMSE metric values for DM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.13 0.13 0.35 0.23 0.11 0.18 0.39 0.22 0.23 0.11 0.22 0.40 0.24 0.44

Decision Tree 0.13 0.11 0.38 0.22 0.10 0.20 0.40 0.22 0.23 0.10 0.22 0.33 0.22 0.37

Random Forest 0.11 0.11 0.38 0.21 0.10 0.19 0.42 0.21 0.21 0.10 0.19 0.37 0.20 0.24

Random Tree 0.14 0.14 0.46 0.29 0.13 0.24 0.52 0.28 0.29 0.15 0.24 0.52 0.29 0.46

REPTree 0.13 0.11 0.39 0.22 0.10 0.19 0.39 0.23 0.23 0.10 0.19 0.35 0.22 0.36

MLP 0.14 0.11 0.38 0.22 0.11 0.19 0.47 0.22 0.23 0.13 0.21 0.43 0.22 0.41

SVM 0.29 0.28 0.39 0.31 0.28 0.32 0.50 0.32 0.32 0.29 0.32 0.41 0.32 0.40

1B3 0.15 0.12 0.49 0.24 0.12 0.25 0.58 0.25 0.25 0.15 0.25 0.46 0.26 0.41

Boosting 0.11 0.12 0.44 0.25 0.11 0.21 0.46 0.24 0.26 0.10 0.20 0.40 0.23 0.43

Bagging 0.12 0.10 0.37 0.21 0.10 0.18 0.38 0.21 0.22 0.10 0.19 0.34 0.20 0.36

MulticlassClassifier 0.30 0.30 0.41 0.33 0.30 0.32 0.41 0.33 0.33 0.30 0.32 0.40 0.33 0.41

RandomCommittee 0.09 0.10 0.39 0.22 0.10 0.18 0.41 0.22 0.22 0.09 0.19 0.37 0.20 0.35

Decision Forest 0.16 0.03 0.36 0.21 0.10 0.20 0.42 0.21 0.24 0.13 0.21 0.39 0.23 0.38

Stacking 0.13 0.10 0.38 0.23 0.11 0.20 0.47 0.25 0.24 0.12 0.19 0.40 0.22 0.37

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

125

Figure 4.12: Chart showing the RMSE metric values for DM dataset

0 1 2 3 4 5 6

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

126

Table 4.14: RMSE metric for SSS Result dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.04 0.05 0.42 0.34 0.04 0.32 0.42 0.35 0.36 0.06 0.34 0.40 0.35 0.37

Decision Tree 0.07 0.06 0.41 0.31 0.07 0.29 0.41 0.32 0.32 0.07 0.30 0.38 0.30 0.37

Random Forest 0.03 0.03 0.43 0.31 0.04 0.29 0.43 0.32 0.32 0.04 0.30 0.39 0.30 0.38

Random Tree 0.04 0.03 0.44 0.32 0.04 0.29 0.44 0.32 0.32 0.04 0.30 0.40 0.30 0.38

REPTree 0.05 0.04 0.43 0.31 0.04 0.29 0.40 0.32 0.32 0.05 0.30 0.39 0.30 0.37

MLP 0.19 0.19 0.40 0.32 0.17 0.32 0.40 0.34 0.34 0.18 0.33 0.39 0.34 0.40

SVM 0.32 0.32 0.41 0.36 0.32 0.36 0.40 0.37 0.37 0.32 0.36 0.39 0.37 0.39

1B3 0.04 0.06 0.43 0.31 0.04 0.29 0.44 0.32 0.32 0.04 0.30 0.39 0.30 0.38

Boosting 0.04 0.05 0.42 0.34 0.04 0.31 0.42 0.35 0.34 0.05 0.32 0.41 0.32 0.40

Bagging 0.07 0.07 0.41 0.31 0.07 0.29 0.40 0.32 0.32 0.08 0.30 0.38 0.30 0.37

MulticlassClassifier 0.35 0.35 0.42 0.39 0.35 0.39 0.42 0.39 0.40 0.35 0.39 0.41 0.39 0.41

RandomCommittee 0.04 0.05 0.43 0.31 0.04 0.29 0.44 0.32 0.32 0.03 0.30 0.39 0.30 0.38

Decision Forest 0.15 0.15 0.40 0.31 0.14 0.30 0.40 0.32 0.32 0.15 0.31 0.38 0.31 0.37

Stacking 0.06 0.05 0.42 0.33 0.05 0.30 0.42 0.33 0.33 0.06 0.31 0.40 0.31 0.39

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

127

Figure 4.13: Chart showing the RMSE metric values for SSS Result dataset

0 1 2 3 4 5 6

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

128

Table 4.15: RMSE metric values for CM dataset

 Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.34 0.34 0.38 0.37 0.37 0.38 0.46 0.36 0.35 0.36 0.38 0.44 0.36 0.43

Decision Tree 0.34 0.34 0.38 0.36 0.35 0.37 0.43 0.36 0.34 0.35 0.36 0.41 0.36 0.42

Random Forest 0.33 0.32 0.36 0.34 0.34 0.35 0.40 0.34 0.32 0.33 0.35 0.38 0.34 0.36

Random Tree 0.36 0.35 0.41 0.38 0.37 0.38 0.44 0.39 0.36 0.36 0.38 0.41 0.38 0.40

REPTree 0.36 0.37 0.41 0.38 0.34 0.36 0.43 0.35 0.36 0.35 0.36 0.41 0.38 0.42

MLP 0.35 0.33 0.36 0.35 0.34 0.36 0.40 0.35 0.34 0.35 0.36 0.38 0.35 0.36

SVM 0.35 0.35 0.37 0.36 0.36 0.36 0.40 0.36 0.36 0.35 0.36 0.39 0.36 0.38

1B3 0.36 0.34 0.43 0.38 0.37 0.39 0.50 0.38 0.36 0.36 0.39 0.45 0.38 0.41

Boosting 0.35 0.37 0.38 0.38 0.36 0.37 0.41 0.37 0.36 0.37 0.37 0.39 0.37 0.40

Bagging 0.35 0.35 0.37 0.37 0.36 0.37 0.40 0.36 0.34 0.35 0.37 0.38 0.36 0.37

MulticlassClassifier 0.39 0.39 0.39 0.39 0.39 0.39 0.40 0.39 0.39 0.39 0.39 0.40 0.39 0.39

RandomCommittee 0.33 0.33 0.38 0.35 0.34 0.35 0.40 0.35 0.33 0.34 0.35 0.38 0.34 0.37

Decision Forest 0.35 0.35 0.37 0.36 0.36 0.37 0.40 0.36 0.34 0.35 0.36 0.38 0.36 0.37

Stacking 0.36 0.35 0.39 0.39 0.37 0.39 0.42 0.38 0.36 0.36 0.39 0.40 0.37 0.38

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

129

Figure 4.14: Chart showing the RMSE metric values for CM dataset

0 1 2 3 4 5 6

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

130

4.1.4.4 Analysis of RECALL of minority class metrics

RECALL of minority class (GDM) metric results obtained for DM datasets are presented

in Table 4.16 and plotted in Figure 4.15 on all data sampling schemes. It was observed that

SMOTE300ENN, one of the enhanced data sampling schemes consistently had the best

performance from all classifiers trained on the dataset while SMOTEENN had a

comparable performance to SMOTE300ENN. MLP and SVM classifiers did not detect

any of the minority class for 5ENN, CNN, RAW DATA, ENN and NCL data sampling

schemes respectively.

The result of the RECALL of the minority class (PASSWAEC) metric for the SSS Result

dataset is presented in Table 4.17 and charted in Figure 4.16. It was observed that

SMOTE300ENN, one of the enhanced data sampling schemes had all the best

performance. Classifiers trained on 5ENN, CNN, RAW DATA and ENN data sampling

schemes failed to detect the minority class.

The result of the RECALL of the minority class (NONE) metric for CM dataset is

presented in Table 4.18 and plotted in Figure 4.17. SMOTE300ENN, one of the enhanced

data sampling schemes had the best performance for all classifiers. CNN and NCL data

sampling did not detect any instance of the minority class for the dataset.

REP Tree and MLP classifier did not detect any instance of the minority class on 5ENN,

CNN, RAW DATA, ENN and NCL data sampling schemes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

131

Tables 4.16: RECALL of minority class (GDM) metric values for DM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.88 0.25 0.33 0.12 0.25 0.53 0.71 0.50 0.68 0.76 0.71 0.71 0.72 0.81

Decision Tree 0.85 0.50 0.33 0.29 0.25 0.65 0.71 0.65 0.68 0.86 0.77 0.77 0.75 0.79

Random Forest 0.90 0.00 0.07 0.18 0.00 0.35 0.65 0.65 0.71 0.95 0.77 0.79 0.77 0.81

Random Tree 0.78 0.50 0.33 0.12 0.25 0.41 0.59 0.53 0.66 0.68 0.65 0.68 0.69 0.79

REPTree 0.81 0.25 0.13 0.29 0.25 0.53 0.35 0.74 0.75 0.95 0.82 0.85 0.78 0.73

MLP 0.91 0.00 0.00 0.00 0.00 0.00 0.65 0.21 0.82 0.52 0.32 0.65 0.87 0.82

SVM 0.86 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.01 0.00 0.27 0.79 0.74 0.82

1B3 0.81 0.00 0.00 0.24 0.00 0.24 0.53 0.38 0.69 0.57 0.50 0.65 0.75 0.74

Boosting 0.95 0.25 0.40 0.16 0.25 0.71 0.77 0.59 0.72 0.86 0.74 0.77 0.78 0.79

Bagging 0.91 0.00 0.20 0.24 0.00 0.71 0.65 0.68 0.74 0.91 0.79 0.79 0.78 0.79

MulticlassClassifier 0.86 0.00 0.40 0.18 0.00 0.65 0.65 0.71 0.75 0.91 0.77 0.82 0.81 0.84

RandomCommittee 0.91 0.25 0.07 0.18 0.00 0.47 0.59 0.59 0.69 0.95 0.71 0.71 0.75 0.79

Decision Forest 0.52 0.00 0.07 0.00 0.00 0.01 0.65 0.24 0.24 0.38 0.62 0.80 0.59 0.77

Stacking 0.90 0.00 0.27 0.06 0.00 0.59 0.15 0.53 0.68 0.86 0.74 0.74 0.81 0.73

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

132

Figure 4.15: Chart showing the RECALL of the minority class (GDM) metric

values for DM dataset

0 1 2 3 4 5 6 7 8 9 10

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

133

Table 4.17: RECALL of the minority class (PASSWAEC) metric values for SSS Result dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.99 0.00 0.00 0.00 0.00 0.00 0.40 0.16 0.33 0.50 0.21 0.56 0.35 0.70

Decision Tree 0.97 0.00 0.00 0.00 0.00 0.04 0.44 0.22 0.54 0.60 0.24 0.54 0.54 0.62

Random Forest 0.99 0.00 0.04 0.00 0.00 0.04 0.58 0.22 0.54 0.90 031 0.58 0.55 0.63

Random Tree 0.98 0.00 0.00 0.00 0.00 0.04 0.42 0.23 0.51 0.90 0.28 0.60 0.53 0.63

REPTree 0.97 0.00 0.00 0.00 0.00 0.02 0.44 0.18 0.49 0.50 0.14 0.44 0.52 0.59

MLP 0.99 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.66 0.00 0.00 0.61 0.46 0.60

SVM 0.99 0.00 0.00 0.00 0.00 0.02 0.56 0.26 0.56 0.70 0.27 0.67 0.50 0.73

1B3 0.99 0.00 0.00 0.00 0.00 0.07 0.42 0.23 0.51 0.90 0.07 0.58 0.53 0.58

Boosting 0.99 0.00 0.11 0.04 0.00 0.07 0.51 0.24 0.53 0.80 0.07 0.51 0.58 0.71

Bagging 0.97 0.00 0.04 0.00 0.00 0.04 0.53 0.22 0.52 0.70 0.28 0.58 0.52 0.63

MulticlassClassifier 0.97 0.00 0.00 0.00 0.00 0.02 0.51 0.26 0.50 0.60 0.23 0.54 0.48 0.63

RandomCommittee 0.99 0.00 0.00 0.00 0.00 0.04 0.44 0.23 0.51 0.90 0.29 0.59 0.53 0.63

Decision Forest 0.99 0.00 0.00 0.00 0.00 0.00 0.53 0.23 0.58 0.60 0.19 0.66 0.58 0.68

Stacking 0.99 0.00 0.13 0.00 0.00 0.11 0.47 0.21 0.56 0.90 0.30 0.54 0.52 0.72

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

134

Figure 4.16: Chart showing the RECALL of the minority class

(PASSWAEC) metric values for SSS Result dataset

0 5 10 15 20 25 30 35 40

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

135

Table 4.18: RECALL of the minority class (NONE) metric values for CM dataset

Scheme

Learner

SMOTE

300ENN
5ENN CNN

RAW

DATA
ENN NCL RUS SMOTE

SMOTE

300

SMOTE

ENN

SMOTE

NCL

SMOTE

RUS

SMOTE

300NCL

SMOTE

300RUS

RIPPER 0.81 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.77 0.56 0.50 0.53 0.75 0.86

Decision Tree 0.88 0.11 0.00 0.13 0.07 0.06 0.19 0.53 0.77 0.67 0.50 0.53 0.81 0.82

Random Forest 0.86 0.22 0.00 0.13 0.07 0.00 0.19 0.53 0.77 0.67 0.53 0.59 0.78 0.82

Random Tree 0.85 0.22 0.00 0.13 0.14 0.00 0.19 0.45 0.75 0.56 0.53 0.63 0.73 0.82

REPTree 0.83 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.75 0.00 0.06 0.56 0.75 0.82

MLP 0.22 0.00 0.00 0.00 0.00 0.00 0.19 0.06 0.50 0.00 0.00 0.59 0.50 0.82

SVM 0.86 0.33 0.00 0.13 0.14 0.00 0.31 0.56 0.78 0.67 0.56 0.66 0.78 0.82

1B3 0.86 0.33 0.07 0.19 0.14 0.00 0.31 0.59 0.80 0.67 0.56 0.69 0.78 0.82

Boosting 0.86 0.22 0.00 0.13 0.14 0.00 0.25 0.53 0.01 0.67 0.56 0.56 0.78 0.82

Bagging 0.86 0.22 0.00 0.00 0.07 0.00 0.25 0.53 0.77 0.63 0.53 0.63 0.77 0.82

MulticlassClassifier 0.83 0.00 0.07 0.00 0.00 0.00 0.31 0.47 0.75 0.59 0.47 0.66 0.80 0.82

RandomCommittee 0.86 0.22 0.00 0.13 0.14 0.00 0.19 0.56 0.78 0.67 0.56 0.56 0.78 0.82

Decision Forest 0.86 0.11 0.00 0.13 0.14 0.00 0.25 0.53 0.77 0.67 0.50 0.66 0.78 0.84

Stacking 0.85 0.00 0.00 0.63 0.14 0.00 0.38 0.56 0.77 0.63 0.50 0.63 0.78 0.80

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

136

Figure 4.17: Chart showing the RECALL of the minority class (NONE) metric

values for CM dataset

0 1 2 3 4 5 6 7 8

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN

RAW DATA ENN NCL

RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS

SMOTE 300NCL SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

137

4.1.4.5 Analysis of Performance Loss/gain metrics

A low Performance loss/gain value indicates improvement in performance. The result of

the performance loss/gain metric on all the data sampling schemes on DM dataset are

presented in Table 4.19 and plotted in Figure 4.18. SMOTE300ENN, one the enhanced

data sampling schemes had the lowest values hence it had the best improvement in

performance.

The performance loss/gain result for SSS Result dataset is presented in Table 4.20 and

charted in Figure 4.19. It can be observed that datasets created from SMOTE300ENN, one

of the enhanced data sampling schemes had the best performance over the RAW DATA

when trained on all the 14 classifiers. 5ENN, ENN and SMOTEENN data sampling

schemes also showed great improvement in the performance of the classification result.

The result of performance loss/gain for CM dataset is presented in Table 4.21 and plotted

in Figure 4.20. It was observed that SMOTE300RUS showed the greatest improvement on

classification performance and closely followed by SMOTE300ENN.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

138

Table 4.19: Performance Loss/gain values for on DM dataset against RAW DATA using ROC_AUC metric

 SMOTE 5ENN CNN ENN NCL RUS SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE

 300ENN 300 ENN NCL RUS 300NCL 300RUS

RIPPER -0.43 0.03 -0.14 -0.03 -0.33 -0.27 -0.21 -0.25 -0.40 -0.27 -0.30 -0.25 -0.25

Decision Tree -0.16 -0.06 0.18 -0.06 -0.05 0.02 -0.05 -0.06 -0.18 -0.07 -0.09 -0.11 -0.05

Random Forest -0.18 -0.04 0.16 -0.02 -0.06 0.07 -0.06 -0.05 -0.17 -0.08 -0.01 -0.11 -0.05

Random Tree -0.40 -0.08 0.05 -0.16 -0.27 -0.10 -0.14 -0.19 -0.32 -0.29 -0.10 -0.29 -0.22

REPTree -0.30 -0.08 0.04 -0.15 -0.27 -0.12 0.01 -0.09 -0.31 -0.09 -0.18 -0.18 -0.14

MLP -0.17 0.10 0.18 0.22 -0.05 0.26 -0.04 -0.07 -0.15 -0.10 0.11 -0.09 0.09

SVM -0.72 0.00 0.00 0.00 -0.08 -0.18 -0.02 -0.38 -0.02 -0.20 -0.52 -0.48 -0.60

1B3 -0.27 -0.08 0.69 -0.04 -0.04 0.20 -0.07 -0.11 -0.19 -0.03 -0.03 -0.15 -0.12

Boosting -0.19 0.00 0.22 -0.07 0.06 0.06 -0.01 -0.05 -0.12 -0.06 -0.01 -0.08 -0.04

Bagging -0.15 -0.04 0.21 -0.05 -0.02 0.05 -0.04 -0.05 -0.14 -0.05 -0.04 -0.07 -0.02

MulticlassClassifier -0.16 -0.05 0.16 -0.04 -0.04 0.04 -0.04 -0.06 -0.17 -0.06 -0.05 -0.05 -0.01

RandomCommittee -0.20 -0.07 0.19 -0.07 -0.08 0.05 -0.04 -0.05 -0.14 -0.10 -0.04 -0.11 -0.06

Decision Forest -0.17 -0.06 0.17 -0.11 -0.06 0.05 -0.04 -0.04 -0.17 -0.07 -0.02 -0.07 -0.02

Stacking -0.30 -0.12 -0.04 -0.13 -0.09 0.09 -0.08 -0.13 -0.23 -0.14 -0.06 -0.14 -0.12

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

139

Figure 4.18: Chart showing the Performance Loss/gain values for on DM dataset

against RAW DATA using ROC_AUC metric

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN ENN

NCL RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS SMOTE 300NCL

SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

140

Table 4.20: Performance Loss/gain values for SSS Result dataset against RAW DATA using ROC_AUC metric

 Scheme SMOTE 5ENN CNN ENN NCL RUS SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE

Learner 300ENN 300 ENN NCL RUS 300NCL 300RUS

RIPPER -0.68 -0.68 0.14 -0.68 -0.20 -0.17 -0.03 -0.08 -0.66 -0.15 -0.24 -0.19 -0.36

Decision Tree -0.23 -0.23 0.31 -0.23 -0.06 0.14 -0.01 -0.04 -0.23 -0.06 0.05 -0.09 0.00

Random Forest -0.23 -0.23 0.35 -0.23 -0.06 0.15 -0.01 -0.04 -0.23 -0.07 0.06 -0.09 0.01

Random Tree -0.23 -0.23 0.36 -0.23 -0.06 0.16 -0.01 -0.02 -0.23 -0.07 0.07 -0.09 0.01

REPTree -0.23 -0.23 0.33 -0.23 -0.06 0.10 -0.01 -0.04 -0.23 -0.07 0.06 -0.09 0.01

MLP -0.25 -0.06 0.18 -0.23 -0.04 0.05 0.00 -0.03 -0.23 -0.06 0.04 -0.05 0.04

SVM -0.40 -0.26 0.15 -0.38 -0.10 -0.10 -0.01 -0.06 -0.37 -0.09 -0.12 -0.13 -0.13

1B3 -0.23 -0.23 0.35 -0.23 -0.06 0.15 -0.01 -0.04 -0.23 -0.07 0.06 -0.09 0.01

Boosting -0.27 -0.27 0.30 -0.27 -0.09 0.14 -0.04 -0.05 -0.27 -0.10 0.09 -0.11 0.05

Bagging -0.22 -0.22 0.32 -0.22 -0.06 0.12 0.00 -0.02 -0.22 -0.06 0.06 -0.07 0.01

MulticlassClassifier -0.23 -0.23 0.30 -0.23 -0.06 0.11 -0.01 -0.02 -0.23 -0.06 0.06 -0.07 0.02

RandomCommittee -0.23 -0.23 0.36 -0.23 -0.06 0.16 -0.01 -0.02 -0.23 -0.07 0.07 -0.09 0.02

Decision Forest -0.21 -0.21 0.27 -0.21 -0.06 0.10 0.00 -0.02 -0.21 -0.06 0.06 -0.06 0.01

Stacking -0.27 -0.27 0.23 -0.27 -0.08 0.09 -0.03 -0.05 -0.27 -0.08 0.05 -0.12 0.00

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

141

Figure 4.19: Chart showing the Performance Loss/gain values for on SSS Result

dataset against RAW DATA using ROC_AUC metric

-5 -4 -3 -2 -1 0 1

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN ENN

NCL RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS SMOTE 300NCL

SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

142

Table 4.21: Performance Loss/gain values for CM dataset against RAW DATA using ROC_AUC metric

 Scheme SMOTE 5ENN CNN ENN NCL RUS SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE

Learner 300ENN 300 ENN NCL RUS 300NCL 300RUS

RIPPER -0.13 -0.08 0.04 -0.04 0.04 -0.13 -0.02 -0.12 -0.08 -0.04 -0.25 -0.13 -0.23

Decision Tree -0.23 -0.02 0.09 -0.07 0.00 0.16 -0.02 -0.07 -0.04 -0.04 -0.09 -0.12 -0.18

Random Forest -0.15 -0.10 0.15 -0.05 -0.05 0.13 -0.02 -0.07 -0.08 -0.02 -0.05 -0.11 -0.16

Random Tree -0.16 -0.05 0.14 -0.02 -0.04 0.07 0.04 -0.09 -0.09 -0.11 -0.11 -0.13 -0.25

REPTree -0.17 0.00 0.11 0.08 0.06 0.19 0.08 -0.15 0.06 0.06 -0.17 -0.13 -0.21

MLP -0.06 -0.13 0.02 -0.13 -0.04 0.08 -0.06 -0.08 -0.13 -0.08 -0.21 -0.10 -0.29

SVM -0.17 -0.10 0.09 -0.09 -0.07 -0.10 -0.03 -0.10 -0.12 -0.07 -0.16 -0.14 -0.22

1B3 -0.16 -0.16 0.28 -0.05 -0.02 -0.02 0.00 -0.09 -0.10 -0.05 -0.12 -0.10 -0.24

Boosting -0.21 -0.07 0.07 -0.12 -0.07 0.12 -0.05 -0.09 -0.09 -0.07 -0.19 -0.14 -0.14

Bagging -0.23 -0.04 0.02 -0.06 -0.06 0.06 -0.06 -0.12 -0.12 -0.08 -0.25 -0.19 -0.33

MulticlassClassifier -0.20 0.00 0.05 -0.02 0.00 0.09 -0.02 -0.11 -0.05 -0.04 -0.15 -0.15 -0.18

RandomCommittee -0.19 -0.10 0.17 -0.05 -0.09 -0.03 -0.05 -0.09 -0.10 -0.05 -0.16 -0.16 -0.17

Decision Forest -0.16 -0.02 0.07 -0.05 -0.05 0.09 -0.02 -0.13 -0.07 -0.09 -0.18 -0.18 -0.23

Stacking -0.27 -0.23 -0.13 -0.13 -0.08 -0.04 -0.12 -0.17 -0.17 -0.10 -0.19 -0.23 -0.31

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

143

Figure 4.20: Chart showing the Performance Loss/gain values for on CM dataset

against RAW DATA using ROC_AUC metric

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

RIPPER

Decision Tree

Random Forest

Random Tree

REPTree

MLP

SVM

1B3

Boosting

Bagging

MulticlassClassifier

RandomCommittee

Decision Forest

Stacking

SMOTE 300ENN 5ENN CNN ENN

NCL RUS SMOTE SMOTE 300

SMOTE ENN SMOTE NCL SMOTE RUS SMOTE 300NCL

SMOTE 300RUS

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

144

4.1.4.6 Analysis of all metrics on Tuberculosis (TB) dataset

The analysis of all performing metrics on TB dataset is presented in Table 4.22 and also

plotted in Figure 4.21. It was observed that there was no sub optimal classification

performance on all classifiers, so there was no need to apply data sampling scheme to the

dataset.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

145

Table 4.22: All metrics values for Tuberculosis dataset

 Scheme ROC_AUC Kappa RMSE RECALL

Learner Statistics

RIPPER 1.00 1.00 0.03 1.00

Decision Tree 1.00 1.00 0.03 1.00

Random Forest 1.00 1.00 0.04 1.00

Random Tree 1.00 1.00 0.03 1.00

REPTree 1.00 1.00 0.03 1.00

MLP 1.00 0.97 0.11 0.00

SVM 1.00 1.00 0.31 1.00

1B3 1.00 0.99 0.04 0.83

Boosting 1.00 0.99 0.04 0.83

Bagging 1.00 1.00 0.04 1.00

MulticlassClassifier 1.00 1.00 0.35 1.00

Random Committee 1.00 1.00 0.04 1.00

Decision Forest 1.00 0.74 0.17 0.00

Stacking 1.00 1.00 0.03 1.00

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

146

Figure 4.21: Chart showing all metrics values for Tuberculosis (TB) dataset

0

0.2

0.4

0.6

0.8

1

1.2

ROC_AUC Kappa Statistics RMSE RECALL

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

147

4.1.5 Statistical Analysis of classification results on performance metrics

This sub section presents the statistical analysis of the performance metrics obtained from

the classification results for the data sampling schemes on all datasets. The results of

performance metrics were subjected to Friedman’s Test, ANOVA with Tukey post hoc test

and Box and Whisker plots at statistical significance level of 0.05%.

4.1.5.1 Report of Friedman test on ROC_AUC metric for all dataset

The results obtained with Friedman’s test on ROC_AUC metric on all datasets with their

mean rank values is presented in Table 4.23 and plotted in Figure 4.22. The data sampling

schemes with the highest mean rank value is the best performing scheme.

SMOTE300ENN with mean rank values of 13.75 and 12.75 gave the best performance for

the DM and SSR Result dataset respectively while SMOTE300RUS with a mean rank

value of 13.54, gave the best classification performance for CM dataset.

CNN performed least on DM, SSS Result and CM datasets, with mean rank values of 1.61,

1.00 and 1.93 respectively

Therefore, Friedman analysis established that two of the enhanced data sampling schemes

(SMOTE300ENN and SMOTE300NCL) were ranked among the best seven data sampling

schemes across all datasets based on Friedman analysis.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

148

Table 4.23: Result of Friedman analysis on ROC_AUC metric for all datasets

S/N Data sampling schemes DM SSS Result CM

1 SMOTERUS 6.93 3.82 11.61

2 SMOTENCL 9.82 8.39 6.61

3 SMOTEENN 12.71 12.36 8.79

4 SMOTE300RUS 7.29 4.86 13.54

5 SMOTE300NCL 11.00 9.61 11.14

6 SMOTE300ENN 13.75 12.75 12.32

7 SMOTE300 8.46 6.57 8.89

8 SMOTE 6.04 5.46 4.46

9 RUS 3.39 2.61 2.82

10 RAW DATA 3.14 4.61 3.25

11 NCL 7.75 8.11 5.00

12 ENN 7.14 12.57 6.75

13 CNN 1.61 1.00 1.93

14 5ENN 5.96 12.29 7.89

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

149

Figure 4.22: Chart showing the Friedman analysis on ROC_AUC metric for all

datasets

0

2

4

6

8

10

12

14

16

DM SSS Result CM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

150

4.1.5.2 Report of Friedman test on Kappa statistics metric for all datasets

The results obtained with Friedman’s test using Kappa statistics metric on all dataset with

their mean rank value is presented in Table 4.24 and plotted in Figure 4.23.

SMOTE300ENN, one of the enhanced data sampling schemes with mean rank value of

13.86 and 13.21 gave the best performance of all other data sampling schemes on DM and

SSS Result dataset respectively while SMOTE300RUS, also one of the enhanced data

sampling schemes with a mean rank value of 13.14, outperformed all other data sampling

schemes on CM dataset.

CNN, the least performing data sampling scheme on DM, SSS Result and CM dataset had

its mean rank values of 2.43, 1.00 and 1.43 respectively.

Similarly, the Friedman analysis revealed that three of the enhanced data sampling

schemes (SMOTE300ENN, SMOTE300NCL and SMOTENCL) were ranked amongst the

best seven data sampling schemes across all datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

151

Table 4.24: Result of Friedman analysis on Kappa Statistics metric for all datasets

S/N
Data sampling

schemes
DM

SSS Result CM

1 SMOTERUS 9.18 5.50 10.32

2 SMOTENCL 10.54 8.18 7.04

3 SMOTEENN 11.39 12.29 8.64

4 SMOTE300RUS 8.50 6.68 13.14

5 SMOTE300NCL 11.82 8.93 11.96

6 SMOTE300ENN 13.86 13.21 12.93

7 SMOTE300 8.57 5.79 10.61

8 SMOTE 5.25 3.39 5.21

9 RUS 5.68 2.79 2.79

10 RAW DATA 3.32 3.50 2.93

11 NCL 8.61 9.25 5.93

12 ENN 2.89 12.75 5.61

13 CNN 2.43 1.00 1.43

14 5ENN 2.96 11.75 6.46

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

152

Figure 4.23: Chart showing the Friedman analysis on Kappa Statistics metric for all

datasets

0

2

4

6

8

10

12

14

16

DM SSS Result CM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

153

4.1.5.3 Report of Friedman’s test on RMSE metric for all datasets

The results obtained with Friedman’s test using RMSE metric with all the dataset used

with their mean rank value is presented in Table 4.25 and plotted in Figure 4.24. The lower

the mean rank value, the better the data sampling scheme.

ENN scheme, with the least mean value of 1.86 and 2.07 performed best of all data

sampling schemes on DM and SSS Result dataset rspectively while 5ENN with the least

mean rank value of 2.57 was the best performing data sampling scheme on CM dataset.

RUS data sampling scheme performed poorly on DM and CM datasets with mean rank

values of 13.71 and 13.96 respectively. CNN data sampling scheme gave the least

performance on SSS Result dataset with a mean rank value of 13.50.

Hence, the Friedman’s analysis indicated that two of the enhanced data sampling schemes

(SMOTE300ENN and SMOTE300NCL) were ranked amongst the best seven data

sampling schemes across all datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

154

Table 4.25: Result of Friedman analysis on RMSE metric for all datasets

S/N
Data sampling

schemes
DM SSS Result CM

1 SMOTERUS 12.11 11.86 12.64

2 SMOTENCL 6.18 6.57 8.11

3 SMOTEENN 2.36 2.93 3.5

4 SMOTE300RUS 11.89 11.21 10.93

5 SMOTE300NCL 8.04 7.07 6.25

6 SMOTE300ENN 3.36 2.54 2.79

7 SMOTE300 9.14 9.36 5.71

8 SMOTE 8.14 9.14 6.43

9 RUS 13.71 13.43 13.96

10 RAW DATA 7.82 7.61 7.75

11 NCL 5.68 5.25 8.64

12 ENN 1.86 2.07 4.68

13 CNN 12.29 13.50 11.04

14 5ENN 2.43 2.46 2.57

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

155

Figure 4.24: Chart showing the Friedman analysis on RMSE metric for all datasets

0

2

4

6

8

10

12

14

16

DM SSS Result CM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

156

4.1.5.4 Report of Friedman test on RECALL of the minority class metric for all datasets

The results obtained with Friedman’s test using RECALL of the minority class metric on

all dataset with their mean rank values is presented in Table 4.26 and plotted in Figure

4.25.

The analysis of result generated from the RECALL of the minority class had

SMOTE300ENN with a mean rank values of 13.04, 14.00 and 13.64 performed best on

DM, SSS Result and CM dataset respectively.

ENN, 5ENN and NCL with mean rank values of 2.04, 2.54 and 2.11 had zero detection of

the minority class on DM, SSS Result and CM datasets respectively.

Thus, Friedman analysis of the RECALL of the minority class established that

SMOTE300ENN, one of the enhanced data sampling schemes gave the best RECALL/

detection of the minority class across all datasets.

Four of the enhanced data sampling schemes (SMOTE300ENN, SMOTE300RUS,

SMOTE300NCL and SMOTERUS) were amongst the best seven ranked out of all data

sampling schemes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

157

Table 4.26: Report of Friedman analysis on RECALL of Minority class metric for

all datasets

S/N
Data sampling

schemes
DM SSS Result CM

1 SMOTERUS 10.79 10.71 9.54

2 SMOTENCL 9.36 6.32 7.29

3 SMOTEENN 11.5 11.75 8.89

4 SMOTE300RUS 11.68 12.32 13.14

5 SMOTE300NCL 10.82 9.57 11.61

6 SMOTE300ENN 13.04 14.00 13.64

7 SMOTE300 8.29 9.54 10.82

8 SMOTE 6.00 6.25 7.43

9 RUS 7.54 8.86 6.07

10 RAW DATA 2.82 2.64 3.89

11 NCL 5.18 4.54 2.11

12 ENN 2.04 2.54 3.75

13 CNN 3.29 3.43 2.29

14 5ENN 2.68 2.54 4.54

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

158

Figure 4.25: Chart showing the Friedman analysis on RECALL of minority class

metric for all datasets

0

2

4

6

8

10

12

14

16

DM SSS Result CM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

159

4.1.5.6 Report of Friedman’s test on ROC_AUC metric for all classifiers

The results obtained with Friedman’s test using ROC_AUC metric on 14 different

classifier for the datasets with their mean rank values is presented in Table 4.27 and

plotted in Figure 4.26. The analysis revealed that:

BAGGING, with a mean rank value of 11.64 and 10.93 respectively outperformed all

other classifiers on DM and SSS Result dataset while RANDOM FOREST, with a mean

rank value of 12.54 outperformed all other classifiers on CM dataset.

Considering base classifiers, Decision Tree gave the best classification performance on

all data sampling schemes on DM and SSS Result dataset while SVM surpassed the

other data sampling schemes with best classification ability on CM dataset.

For ensemble classifiers, BAGGING (homogeneous ensemble) with Decision Tree as

the base classifier gave the best classification performance on DM and SSS Result

dataset while RANDOM FOREST (homogeneous ensemble) gave the best

classification ability with CM dataset. BOOSTING (homogeneous ensemble) with

Decision Tree as the base classifier performed least on DM dataset, STACKING (a

heterogeneous ensemble) performed least on SSS Result dataset while BAGGING

performed least on CM dataset. SVM, RIPPER and REPTREE classifiers performed

least across all three dataset respectively.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

160

Table 4.27: Report of Friedman’s analysis of on ROC_AUC metric for all

classifiers

S/N Classifiers DM SSS Result CM

1 1B3 3.68 9.07 9.89

2 BAGGING 11.64 10.93 4.50

3 BOOSTING 7.86 7.32 10.00

4 DECISION FOREST 11.29 9.39 8.39

5 DECISIONTREE 9.25 9.71 7.25

6 MLP 6.25 3.93 4.04

7 MULTICLASSCLASSIFIER 9.21 8.43 5.39

8 RANDOM COMMITTEE 11.00 7.86 10.86

9 RANDOM FOREST 10.07 9.07 12.54

10 RANDOMTREE 2.79 8.11 6.75

11 REPTREE 7.82 9.64 2.18

12 RIPPER 4.54 2.71 3.54

13 STACKING 8.11 4.96 7.50

14 SVM 1.50 3.86 12.18

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

161

Figure 4.26: Chart showing the Report of Friedman analysis of on ROC_AUC

metric for all classifiers

0 2 4 6 8 10 12 14

1B3

BAGGING

BOOSTING

DECISION FOREST

DECISIONTREE

MLP

MULTICLASSCLASSIFIER

RANDOM COMMITTEE

RANDOM FOREST

RANDOMTREE

REPTREE

RIPPER

STACKING

SVM

CM SSS Result DM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

162

4.1.5.6 Report of Friedman test on Performance Loss/gain metric for on all datasets

The results obtained with Friedman’s test on performance loss/gain metric on all three

dataset with their mean rank value is presented in Table 4.28 and plotted in Figure 4.27.

The lower the mean rank value of the data sampling scheme, the better.

SMOTE300ENN with a mean rank value of 1.25 and 2.25 gave the best performance on

DM and SSS Result datasets respectively.

The CM dataset had SMOTE300RUS with a mean rank value of 1.46; one of enhanced

data sampling schemes outperformed all other data sampling schemes.

Thus, Friedman analysis on performance loss/gain metric on all dataset revealed

consistently that two of the enhanced data sampling schemes (SMOTE300ENN and

SMOTE300NCL) were highly ranked out the best seven of the fourteen data sampling

schemes across all datasets. CNN scheme incurred the greatest loss of performance across

all datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

163

Table 4.28: Result of Friedman analysis on performance loss/gain metric for all

datasets

S/N
Data sampling

schemes
DM SSS Result CM

1 SMOTERUS 8.00 10.32 3.39

2 SMOTENCL 5.18 6.61 8.32

3 SMOTEENN 2.29 2.64 6.14

4 SMOTE300RUS 7.64 9.36 1.46

5 SMOTE300NCL 4.00 5.39 3.86

6 SMOTE300ENN 1.25 2.25 2.68

7 SMOTE300 6.54 8.43 6.11

8 SMOTE 8.89 9.43 10.36

9 RUS 10.89 11.54 11.54

10 NCL 7.18 6.89 9.79

11 5ENN 8.82 2.71 7.04

12 ENN 7.75 2.43 8.18

13 CNN 12.57 13.00 12.14

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

164

Figure 4.27: Chart showing the Result of Friedman analysis on Performance

Loss/gain metric for all datasets

0 2 4 6 8 10 12 14

SMOTERUS

SMOTENCL

SMOTEENN

SMOTE300RUS

SMOTE300NCL

SMOTE300ENN

SMOTE300

SMOTE

RUS

NCL

5ENN

ENN

CNN

CM SSS Result DM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

165

4.1.6 Result of Analysis of Variance (ANOVA)

This section presents the result from a two-way ANOVA test on all datasets in this study.

The hypothesis used is that if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05, then the null hypothesis 𝐻0 is rejected

else the alternative hypothesis 𝐻1 is accepted. If the null hypothesis is rejected, then there

is enough evidence to conclude that at least one of the 14 data sampling schemes differ.

So, a post hoc analysis using Tukey-Kramer (Tukey’s W) multiple comparison analysis

was be performed to determine which data sampling schemes were similar and by how

much. Hence, homogeneous subsets was created by averaging the means of all data

sampling schemes and displayed how data sampling schemes were grouped. The null

hypothesis were all rejected in all the cases considered. The data sampling schemes in the

same subset had the same block letter. They are statistically similar in characteristics and

not significantly different from each other but from data sampling schemes with a different

block letter. Data sampling schemes appearing in more than one subset have characteristics

across all the data sampling schemes in those subsets.

4.1.6.1 ANOVA test on ROC_AUC metric on all datasets.

The result of ANOVA test result on ROC_AUC metric on all three datasets is presented

in Table 4.29. Eight subsets were created where all the data sampling schemes were

grouped separately for DM dataset. One of the enhanced data sampling schemes,

SMOTE300ENN gave the best performance. It is in the same subset ‘A’ as SMOTENN,

one of the existing data sampling schemes. CNN data sampling scheme performed least

and was the only data sampling scheme in its subset ‘G’

Similarly, SSS Result dataset had seven subsets created. One of the enhanced data

sampling schemes, SMOTE300ENN outperformed all other data sampling schemes. It is

in the same subset ‘A’ as three of existing data sampling schemes namely ENN,

SMOTEENN and 5ENN data sampling schemes. CNN data sampling scheme performed

least and was alone in its subset ‘F’.

Also, nine subsets were created from the multiple comparisons of all data sampling

schemes with the CM dataset. SMOTE300RUS, one of the enhanced data sampling

schemes performed best of all data sampling schemes and in the same subset ‘A’ with

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

166

SMOTE300ENN and SMOTERUS. CNN data sampling scheme was the least performing

scheme and alone in its subset ‘I’.

Hence, the results from ANOVA test as confirmed by Friedman test bared that two of the

enhanced data sampling schemes (SMOTE300ENN and SMOTE300NCL) were ranked

among the best seven data sampling schemes across all three datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

167

Table 4.29: ANOVA on all datasets with all data sampling schemes using ROC_AUC metric

 DM SSS Result CM

S/N Data sampling schemes Mean Subset Mean Subset Mean Subset

1 SMOTERUS 0.8207 C,D,E 0.7529 D 0.6436 B,C

2 SMOTENCL 0.8429 B,C,D 0.8400 B 0.5850 E,F,G

3 SMOTEENN 0.9071 A,B 0.9886 A 0.6021 D,EF

4 SMOTE300RUS 0.8343 B,C,D,E 0.7893 C,D 0.6786 A

5 SMOTE300NCL 0.8686 B,C 0.8521 B 0.6343 B,C,D

6 SMOTE300ENN 0.9529 A 0.9914 A 0.6536 A

7 SMOTE300 0.8379 B,C,D 0.8093 B,C 0.6121 C,D,E

8 SMOTE 0.8029 C,D,E,F 0.7907 C,D 0.5686 F,G

9 RUS 0.7400 F 0.7079 E 0.5286 H,I

10 RAW DATA 0.7614 E,F 0.7800 C,D 0.5550 G,H

11 NCL 0.8307 C,D,E 0.8371 B 0.5736 F,G

12 ENN 0.7993 C,D,E,F 0.9900 A 0.5871 E,F,G

13 CNN 0.6421 G 0.5571 F 0.5071 I

14 5ENN 0.7914 D,E,F 0.9750 A 0.5986 E,F

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

168

4.1.6.2 ANOVA test on all datasets using Kappa statistics metric

The result of ANOVA on Kappa statistics metric on all the three datasets presented in

Table 4.30.

From the analysis of the DM dataset, the six homogeneous subset were created.

SMOTE300ENN, one of the enhanced data sampling schemes having the highest mean

value is alone in its subset ‘A’. The next subset ‘B’ had the remaining of the enhanced

data sampling schemes: SMOTE300NCL, SMOTENCL, SMOTERUS and

SMOTE300RUS alongside with SMOTEENN and SMOTE300, two of the existing

data sampling schemes in the same subset. The least performing scheme, CNN was in

the same subset ‘F’ as ENN, 5ENN and RAW DATA with similar characteristics of

low mean value and poor performance.

The homogeneous subset created for SSS Result dataset were seven in number. The

first subset ‘A’ had four components namely SMOTE300ENN, the best performing

data sampling schemes and ENN, SMOTEENN and 5ENN. The least performing

scheme, CNN is alone in its subset ‘G’.

Similarly, for CM dataset, eight homogenous subsets were created. Three of the

enhanced data sampling schemes namely SMOTE300RUS, SMOTE300ENN and

SMOTE300NCL are components of the leading subset ‘A’. Again, CNN performed

least of all the data sampling schemes is alone in its subset ‘H’.

The results from ANOVA test as validated by Friedman test revealed that three of the

enhanced data sampling schemes (SMOTE300ENN, SMOTE300NCL and

SMOTENCL) were ranked amongst the best seven data sampling schemes across all

datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

169

Table 4.30: ANOVA on all datasets with all data sampling schemes using Kappa Statistics metric

 DM SSS Result CM

S/N Data sampling

schemes

Mean Subset Mean Subset Mean Subset

1 SMOTERUS 0.5536 B,C 0.3979 D,E 0.1650 B,C

2 SMOTENCL 0.5900 B,C 0.4843 B,C,D 0.1057 D,E

3 SMOTEENN 0.6150 B,C 0.9400 A 0.1371 C,D

4 SMOTE300RUS 0.5471 B,C 0.4293 B,C,D,E 0.2264 A

5 SMOTE300NCL 0.6393 B 0.4907 B,C 0.1971 A,B

6 SMOTE300ENN 0.8000 A 0.9514 A 0.2200 A

7 SMOTE300 0.5386 B,C,D 0.4157 C,D,E 0.1750 B,C

8 SMOTE 0.4007 E 0.3536 E,F 0.0836 H

9 RUS 0.4171 D,E 0.2857 F 0.0329 G

10 RAW DATA 0.2564 F 0.3521 E,F 0.0421 F,G

11 NCL 0.5071 C,D,E 0.5150 B 0.0907 E

12 ENN 0.2171 F 0.9464 A 0.0814 E,F

13 CNN 0.2107 F -0.0936 G -0.0150 H

14 5ENN 0.2307 F 0.9279 A 0.0986 D,E

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

170

4.1.6.3 ANOVA test on RMSE metric all datasets

The report of the ANOVA test on RMSE metric on all three datasets in this study is

presented in Table 4.31.

Four subsets were created for DM dataset. 5ENN, ENN, SMOTEENN, all existing data

sampling schemes and SMOTE300ENN, one of the enhanced data sampling schemes

are in the same subset ‘D’. The RUS data sampling scheme performed least and is alone

in its subset ‘A’.

Five homogeneous subsets were created on SSS Result dataset. Subset ‘E’ with

components ENN, 5ENN, SMOTEENN and SMOTE300ENN performed best. The

least performing data sampling scheme, CNN, is in the same subset ‘A’ with RUS data

sampling scheme.

Five homogeneous subsets were created for CM dataset. 5ENN, SMOTEENN, ENN,

SMOTE300, SMOTE, SMOTE300ENN and SMOTE300NCL, are all in the same

subset ‘E’ with low RMSE value. The least performing data sampling scheme, RUS is

alone in its subset ‘A’.

Also, results from ANOVA test as confirmed by Friedman test showed that ENN data

sampling scheme performed best on DM and SSS Result dataset while 5ENN gave the

best performance on the CM dataset. Two of the enhanced data sampling schemes

(SMOTE300ENN and SMOTE300NCL) were ranked amongst the best seven data

sampling schemes across all datasets.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

171

Table 4.31: ANOVA on all datasets with all data sampling schemes using RMSE metric

 DM SSS Result CM

S/N Data sampling

Schemes

Mean Subset Mean Subset Mean Subset

1 SMOTERUS 0.3979 B 0.3929 B 0.4000 B

2 SMOTENCL 0.2243 C 0.3186 D 0.3693 D

3 SMOTEENN 0.1407 D 0.1086 E 0.3507 E

4 SMOTE300RUS 0.385 B 0.3829 A,B,C 0.3900 B

5 SMOTE300NCL 0.2414 C 0.3207 D 0.3643 D,E

6 SMOTE300ENN 0.1521 D 0.1064 E 0.3514 E

7 SMOTE300 0.2500 C 0.3357 B,C,D 0.3621 D,E

8 SMOTE 0.2436 C 0.335 B,C,D 0.3643 D,E

9 RUS 0.4443 A 0.4171 A 0.4207 A

10 RAW DATA 0.2421 C 0.3264 C,D 0.3686 D

11 NCL 0.2179 C 0.3093 D 0.3707 C,D

12 ENN 0.1336 D 0.1036 E 0.3586 D,E

13 CNN 0.3979 B 0.4193 A 0.3864 B,C

14 5ENN 0.1329 D 0.1071 E 0.3486 E

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

172

4.1.6.4 ANOVA test on RECALL of minority class metric on all datasets

The report of the ANOVA test on RECALL of the minority class metric on all three

datasets is presented in Table 4.32.

From the report of the analysis on DM dataset, six homogeneous subsets were created.

SMOTE300ENN, one of the enhanced data sampling schemes gave the best RECALL

of the minority class (GDM). The components of the first subset ‘A’ are

SMOTE300ENN, SMOTE300RUS, SMOTE300NCL, SMOTERUS and

SMOTEENN. The least performing data sampling scheme, ENN and 5ENN, CNN,

RAW DATA are all in the same subset ‘F’. They gave zero RECALL of the minority

class.

Analysis on SSS Result dataset had six homogeneous subsets created. SMOTE300ENN

gave the best RECALL of the minority class, PASSWAEC and also alone in its subset

‘A’. Again, the least performing data sampling scheme, ENN and 5ENN, CNN, NCL

and the RAW DATA are all in the same subset ‘F’. They gave very low RECALL of

the minority class, PASSWAEC.

The result of ANOVA test which were also confirmed by Friedman’s test on the

RECALL of the minority class established that four of the enhanced data sampling

schemes namely SMOTE300ENN, SMOTE300RUS, SMOTE300NCL and

SMOTERUS were amongst the seven best ranked of all data sampling schemes.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

173

Table 4.32: ANOVA on all datasets with all data sampling schemes using RECALL of minority class metric

 DM SSS Result CM

S/N Data sampling

schemes

Mean Subset Mean Subset Mean Subset

1 SMOTERUS 0.7514 A,B,C 0.5714 C,D 0.6057 B,C

2 SMOTENCL 0.6557 B,C,D 0.2057 E 0.4543 D

3 SMOTEENN 0.7257 A,B,C 0.6786 B 0.5471 C,D

4 SMOTE300RUS 0.7871 A,B 0.6486 B,C 0.8229 A

5 SMOTE300NCL 0.7564 A,B,C 0.5136 D 0.7550 A

6 SMOTE300ENN 0.8464 A 0.9836 A 0.8064 A

7 SMOTE300 0.6300 B,C,D 0.5243 D 0.6957 A,B

8 SMOTE 0.5000 D,E 0.2064 E 0.4571 D

9 RUS 0.5886 C,D,E 0.4779 D 0.2421 E

10 RAW DATA 0.1471 F 0.0029 F 0.1236 E,F

11 NCL 0.4179 E 0.0364 F 0.0043 F

12 ENN 0.0893 F 0.0000 F 0.0850 F

13 CNN 0.1857 F 0.0229 F 0.0100 F

14 5ENN 0.1429 F 0.0000 F 0.1414 E,F

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

174

4.1.6.5 ANOVA test on all classifiers

Analysis of the performance of classifiers used in the study on all the datasets was

carried out using the ROC_AUC metric. The results are presented in Table 4.33.

It can be observed from Table 4.33 that SVM was the least performing classifier on the

DM dataset and was alone in its subset out of the four subsets created. DECISION

FOREST gave the best performance of all the classifiers and it shared similar

classification characteristics with BAGGING, RANDOM COMMITTEE, RANDOM

FOREST, DECISION TREE, MULTICLASS CLASSIFIER, STACKING,

BOOSTING, REP TREE, MLP and RIPPER in the same subset ‘A’ respectively.

The p–value = Sig. (Significance) ≈ 0.675 > 0.05, so both the null and alternative

hypothesis were retained for SSS Result dataset. The mean values do not differ

amongst the 14 classifiers so there was no need to perform a post hoc test. However,

the post hoc Tukey-Kramer (Tukey’s W) multiple comparison analysis was still carried

out. One homogeneous subset table was created as shown in the result displayed in

Table 4.33. All the 14 classifiers were grouped together in one subset ‘A’. DECISION

FOREST classifier gave the best performance while RIPPER classifier gave the least

performance.

Four homogeneous subsets were created for the CM dataset. RANDOM FOREST

classifier gave the best performance out of all classifiers and is in the same subset ‘A’

with SVM, RANDOM COMMITTEE, 1B3, BOOSTING, STACKING, DECION

FOREST, DECISION TREE, RANDOM TREE, MULTICLASSCLASSIFIER and

BAGGING classifiers. REPTREE gave the least performance of all the classifiers and

is in the same subset ‘D’ as RIPPER, MLP, BAGGING, MULTICLASS CLASSIFIER,

RANDOM TREE, DECISION TREE and STACKING.

Therefore, the ANOVA test result which was also validated by Friedman’s test showed

that all the classifiers behaved similarly on all the 14 different data sampling schemes

with SSS Result dataset. Any of the classifiers can be used for classification of this

dataset.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

175

Considering base classifiers, Decision Tree classifier gave the best performance on DM

and SSS Result dataset. The SVM classifier surpassed other classifiers on CM dataset.

For ensembles, BAGGING, a homogeneous ensemble with Decision Tree classifier as

the base classifier gave the best performance on DM and SSS Result dataset while

RANDOM FOREST, also a homogeneous ensemble gave the best performance CM

dataset. BOOSTING, a homogeneous ensemble with Decision Tree classifier as the

base classifier gave the least performance on DM dataset. STACKING, a heterogeneous

ensemble had the least performance on SSS Result dataset while BAGGING had the

least performance on CM dataset. SVM, RIPPER and REPTREE classifiers had the

poorest performance on all three dataset respectively.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

176

Table 4.33: ANOVA on all classifiers with all data sampling schemes using ROC_AUC metric

 DM SSS Result CM

S/N Classifiers Mean Subset Mean Subset Mean Subset

1 DECISION FOREST 0.8764 A 0.8550 A 0.6007 A,B,C,D

2 BAGGING 0.8743 A 0.8543 A 0.5736 A,B,C,D

3 RANDOM COMMITTEE 0.8729 A 0.8436 A 0.6243 A,B,C

4 RANDOM FOREST 0.8657 A,B 0.8471 A 0.6350 A

5 DECISION TREE 0.8629 A,B 0.8507 A 0.5950 A,B,C,D

6 MULTICLASSCLASSIFIER 0.8607 A,B,C 0.8493 A 0.5800 A,B,C,D

7 STACKING 0.8521 A,B,C 0.8386 A 0.6007 A,B,C,D

8 BOOSTING 0.8479 A,B,C 0.8393 A 0.6129 A,B,C

9 REP TREE 0.8379 A,B,C 0.8507 A 0.5379 D

10 MLP 0.8029 A,B,C 0.8057 A 0.5650 B,C,D

11 RIPPER 0.7700 A,B,C 0.7579 A 0.5636 C,D

12 1B3 0.7521 B,C 0.8471 A 0.6143 A,B,C

13 RANDOM TREE 0.7421 C 0.8443 A 0.5914 A,B,C,D

14 SVM 0.6143 D 0.7779 A 0.6336 A,B

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

177

4.1.6.6 ANOVA on all datasets with all data sampling schemes using performance

loss/gain metric

The result of ANOVA test on performance loss/gain on both enhanced and existing

data sampling schemes is presented in Table 4.34.

Five homogenous subsets were created for the DM dataset. One of the enhanced data

sampling schemes, SMOTE300ENN performed best. This established an improvement

(gain) on performance with respect to the RAW DATA. SMOTE300ENN,

SMOTEENN and SMOTE300NCL are all members of the same subset ‘E’. The CNN

data sampling performed least and is alone in its subset ‘A’.

Similarly, six homogeneous subsets were created for SSS Result dataset.

SMOTE300ENN gave the best improvement and in the same subset ‘E’ as ENN,

SMOTEENN, 5ENN, SMOTE300NCL and SMOTENCL data sampling schemes.

CNN data sampling scheme performed least and alone in its subset ‘E’.

Seven homogeneous subsets were created for CM dataset. SMOTE300RUS and

SMOTE300ENN are in the same subset ‘G’ and gave good performance. The data

sampling schemes with the least performance were are CNN and RUS respectively and

are both in the same subset ‘A’.

Therefore, ANOVA test result as confirmed by Friedman test on performance loss/gain

metric on all dataset revealed that two (SMOTE300ENN and SMOTE300NCL) of the

enhanced data sampling schemes were ranked out of the best seven of the fourteen data

sampling schemes across all datasets. CNN data sampling scheme gave the worst

performance across all dataset.

The average performance loss/gain metric on all the data sampling schemes across the

three datasets is presented in Table 4.35. The results in the table also corroborates the

result of analysis.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

178

Table 4.34: ANOVA on all datasets with all data sampling schemes using performance loss/gain metric

 DM SSS Result CM

S/N Data sampling

schemes

Mean Subset Mean Subset Mean Subset

1 SMOTERUS -0.0948 B,C,D 0.0279 B,C -0.1618 E,F

2 SMOTENCL -0.1150 C,D -0.0785 C,D,E -0.0542 B,C

3 SMOTEENN -0.1934 D,E -0.2762 E -0.0851 B,C,D

4 SMOTE300RUS -0.1155 C,D -0.0197 C,D -0.2245 G

5 SMOTE300NCL -0.1552 C,D,E -0.0948 C,D,E -0.1435 D,E,F

6 SMOTE300ENN -0.2711 E -0.2804 E -0.1776 F,G

7 SMOTE300 -0.1128 C,D -0.0387 C,D,E -0.1039 C,D,E

8 SMOTE -0.0573 B,C -0.0142 C,D -0.0248 B

9 RUS 0.0156 B 0.0851 B 0.0470 A

10 NCL -0.0990 B,C,D -0.0761 C,D,E -0.0328 B

11 ENN -0.0507 B,C -0.2784 E -0.0580 B,C

12 CNN 0.1473 A 0.2807 A 0.0836 A

13 5ENN -0.0387 B,C -0.2580 E -0.0786 B,C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

179

Table 4.35: Summary of performance gain/loss on performance of the scheme compared to the RAW DATA in percentage

 SCHEMES SMOTE 5ENN CNN ENN NCL RUS SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE

DATASETS 300ENN 300 ENN NCL RUS 300NCL 300RUS

DM 27 4 -15 5 10 -2 6 11 19 12 9 16 12

SSS Result 28 26 -28 28 8 -9 1 4 28 8 -3 9 2

CM 18 8 -8 6 3 5 2 10 9 5 16 14 22

AVERAGE 24 13 -17 13 7 -2 3 8 19 8 7 13 12

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

180

Figure 4.28: Chart showing the summary of performance gain/loss on

performance of the scheme compared to the RAW DATA in percentage

-40

-30

-20

-10

0

10

20

30

40

DM SSS Result CM AVERAGE

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

181

4.1.7 Box and whisker Plot

The box and whisker plots were plotted from values of all the metrics used in the study.

The values of metric under consideration were plotted on the Y-axis while the data

sampling schemes and classifiers were plotted on the X-axis.

Each box in the plots represents a data sampling scheme. It allows for easy comparison

of data sampling schemes at various points in the distribution. The whiskers at the end

of the box plots show the minimum and maximum values, while the bar shows the

median. If the median bar is above zero or higher, the data sampling scheme represented

by the box plot is doing better on average than the data sampling scheme is being

compared with. And if the complete box, including the whiskers, is above zero, then

that scheme is consistently better than the other data sampling schemes. The findings

from the box and whisker plots also conform to that of Friedman and ANOVA’s test.

Figure 4.29 to Figure 4.46 presents the box and whisker plots analysis for this study.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

182

Figure 4.29: Box and whisker plots for ROC_AUC metric for DM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.20

0.40

0.60

0.80

1.00
R

O
C

_
A

U
C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

183

Figure 4.30: Box and whisker plots for ROC_AUC metric for SSS Result dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.50

0.60

0.70

0.80

0.90

1.00
R

O
C

_
A

U
C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

184

Figure 4.31: Box and whisker plots for ROC_AUC metric for CM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.50

0.60

0.70

R
O

C
_

A
U

C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

185

Figure 4.32: Box and whisker plots for Kappa Statistics metric for DM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.00

0.20

0.40

0.60

0.80

K
a
p

p
a

 S
ta

ti
s
ti

c
s

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

186

Figure 4.33: Box and whisker plots for Kappa Statistics metric for SSS Result

dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.00

0.50

1.00
K

a
p

p
a

 S
ta

ti
s

ti
c
s

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

187

Figure 4.34: Box and whisker plots for Kappa statistics metric for CM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

-0.10

0.00

0.10

0.20

0.30

K
a
p

p
a

 S
ta

ti
s
ti

c
s

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

188

Figure 4.35: Box and whisker plots for RMSE metric for DM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.10

0.20

0.30

0.40

0.50

0.60

R
M

S
E

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

189

Figure 4.36: Box and whisker plots for RMSE metric for SSS Result dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.10

0.20

0.30

0.40

R
M

S
E

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

190

Figure 4.37: Box and whisker plots for RMSE metric for CM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.35

0.40

0.45

0.50
R

M
S

E

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

191

Figure 4.38: Box and whisker plots for RECALL metric for DM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.00

0.20

0.40

0.60

0.80

R
E

C
A

L
L

BOOSTING

DECISIONFOREST

MLP

SVM

MLP

SVM

REPTREE

STACKING

SVM

DECISIONFOREST

DECISIONFOREST

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

192

Figure 4.39: Box and whisker plots for RECALL metric for SSS Result dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.00

0.25

0.50

0.75

1.00

R
E

C
A

L
L

BOOSTING
STACKING

RIPPER

MLP

MLP

REPTREE

STACKING

BOOSTING

MLP

RIPPER
RIPPER

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

193

Figure 4.40: Box and whisker plots for RECALL metric for CM dataset

5ENN
CNN

ENN
NCL

RAW DATA
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

0.00

0.20

0.40

0.60

0.80

R
E

C
A

L
L

1B3MULTICLASSCLASSIFIERDECISIONTREE

STACKING

REPTREE

MLP

MLP

BOOSTING

MLP

MLP

RIPPER
DECISIONFOREST

STACKING

REPTREEMLP

REPTREE

MLP

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

194

Figure 4.41: Box and whisker plots for classifiers on DM dataset

RIPPER
DECISION TREE

RANDOM FOREST

RANDOM TREE
REP TREE

MLP

SVM
1B3

BOOSTING

BAGGING
MULTICLASSIFIER

RANDOM COMMITEE

DECISION FOREST
STACKING

CLASSIFIERS

0.20

0.40

0.60

0.80

1.00

R
O

C
_

A
U

C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

195

Figure 4.42: Box and whisker plots for classifiers on SSS Result dataset

RIPPER
DECISION TREE

RANDOM FOREST

RANDOM TREE
REP TREE

MLP

SVM
1B3

BOOSTING

BAGGING
MULTICLASSIFIER

RANDOM COMMITEE

DECISION FOREST
STACKING

CLASSIFIERS

0.50

0.60

0.70

0.80

0.90

1.00

R
O

C
_

A
U

C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

196

Figure 4.43: Box and whisker plots for classifiers on CM dataset

RIPPER
DECISION TREE

RANDOM FOREST

RANDOM TREE
REP TREE

MLP

SVM
1B3

BOOSTING

BAGGING
MULTICLASSIFIER

RANDOM COMMITEE

DECISION FOREST
STACKING

CLASSIFIERS

0.50

0.60

0.70

R
O

C
_

A
U

C

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

197

Figure 4.44: Box and whisker plots on Performance Loss/Gain on DM dataset

5ENN
CNN

ENN
FENN

NCL
RUS

SMOTE
SMOTE300

SMOTE300ENN
SMOTE300NCL

SMOTE300RUS
SMOTEENN

SMOTENCL
SMOTERUS

SCHEMES

-0.50

0.00

0.50

R
O

C
_

A
U

C

BOOSTING

RANDOMTREE

REPTREE

RIPPER

RIPPER

RIPPER

MLP

1B3

MLP

MLP

RIPPER

RIPPER

SVM

SVM

SVM

SVM

SVM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

198

Figure 4.45: Box and whisker plots on Performance Loss/Gain on SSS Result

dataset

5ENN
CNN

ENN
NCL

RUS
SMOTE

SMOTE300
SMOTE300ENN

SMOTE300NCL
SMOTE300RUS

SMOTEENN
SMOTENCL

SMOTERUS

SCHEMES

-0.60

-0.40

-0.20

0.00

0.20

R
O

C
_

A
U

C

SVM

RIPPER

BOOSTING

BOOSTING

RIPPER

MLP

RIPPER

SVM

RIPPER

RIPPER

SVM

RIPPER

MLP

BOOSTING

BAGGINGDECISIONFOREST
STACKING

RIPPER

SVM

RIPPER

SVM

RIPPER

SVM

RIPPER

RIPPER

SVM

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

199

Figure 4.46: Box and whisker plots on Performance Loss/Gain on CM dataset

5ENN
CNN

ENN
NCL

RUS
SMOTE

SMOTE300
SMOTE300ENN

SMOTE300NCL
SMOTE300RUS

SMOTEENN
SMOTENCL

SMOTERUS

SCHEMES

-0.30

-0.20

-0.10

0.00

0.10

0.20

R
O

C
_

A
U

C

STACKING

REPTREE REPTREE

STACKING

STACKING

MLP

STACKING

REPTREEREPTREE

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

200

4.2 Remarks

In this study, five enhanced data sampling schemes were developed namely

SMOTERUS, SMOTENCL, SMOTE300ENN, SMOTE300RUS and

SMOTE300NCL. Eight existing data sampling schemes were also studied and

implemented namely CNN, ENN, RUS, NCL, 5ENN, SMOTE, SMOTE300 and

SMOTEENN. These data sampling schemes were applied to the imbalanced datasets

for improved classification ability, prevention of data loss, over fitting of dataset and to

allow for better detection of minority classes that are also difficult to identify. The effect

of data reduction/increment on the classification ability of the RAW DATA were also

studied with 14 different classifiers namely SVM, MLP, C4.4, JRIP, 1B3, REPTree,

RandonTree, AdaBoost.M1, BAGGING, Stacking, Decision forest, RandomForest,

RandomCommittee and MultiClass classifier. Classification results were obtained from

the 13 sampled and RAW DATA datasets. These datasets were trained on 14 classifiers

and were evaluated using ROC_AUC, Kappa Statistics, RECALL of the minority class,

RMSE and performance loss/gain metrics. Further statistical test using both parametric

and non-parametric methods such as ANOVA and Friedman Test were carried out.

4.2.1 Analysis of performance of datasets generated from existing data sampling

schemes

The results presented in Tables 4.22, 4.23, 4.24 and 4.25 showed that on ROC_AUC,

Kappa Statistics, RMSE and performance loss/gain metrics:

CNN: This data sampling scheme performed least across all the three datasets. One of

the reasons for this could be that the scheme does not guarantee a minimal subset as an

under sampling scheme (Wilson and Martinez, 2000). The reduction capability of

condensation methods is normally high due to the fact that there are fewer border points

than internal points but can often result in marginally poorer classification/recognition

performance. From the result obtained, CNN data sampling scheme dropped over 50%

of the data. This could lead to loss of information for a classifier to work with.

Moreover, it is especially sensitive to noise as this data sampling scheme only removes

redundant examples that are far from the decision border from the dataset thereby

retaining noisy instances. This corroborates the report of Dasarathy et al., (2000).

Hence, this data sampling scheme is good when memory requirement (Bhatia and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

201

Vandana, 2010) and computational advantage (Dasarathy et al., 2000) is the main

concern.

5ENN and ENN: The performances of ENN and 5ENN (5-Nearest Neighbour) data

sampling schemes were observed to be similar. This suggests that the additional

complexity required to use a larger number of neigbhours than three is not warranted.

This is due to the small decrease in the error rate when more than three nearest

neighbour are used. This could also be due to the fact that few pre-classified samples

were required to approach the asymptotic performance quite closely for ENN, many

fewer samples than were required to approach the asymptotic performance for using

five or more nearest neighbour (Wilson, 1972).

Since ROC_AUC, RMSE and Kappa statistics were good measure of performance for

classifier and are insensitive to the imbalance distribution of the classes in datasets, the

resulting ‘cleaned’ dataset gave higher values for the metrics. This could be attributed

to the fact that 5ENN and ENN data sampling schemes eliminates erroneously labelled,

common outliers. It also ‘clean’ the possible overlapping (border) region of the different

classes, leaving smoother decision boundaries (Vazquez et al., 2005). However, the

minority class will still be ignored and not detected.

RUS: This data sampling scheme often performed better than CNN across all three

dataset using these metrics: ROC, RMSE and Kappa statistics. The reason could be that

an average of 85% and above of the majority class was removed from the total instances

across all three dataset. This will affect the classifiers as they had so little information

to work with. Though instances were removed randomly from the dataset to give a

balanced distribution i.e. the size of all the classes were the same, the scheme gave a

better recognition or increases the class bias of the minority class.

NCL: This is a variant of ENN. Its good performance could be due to the fact that it

also ‘cleans’ the dataset before classification like its predecessor (ENN) but only the

majority class. It was able to detect the minority class because it removed 10-12% of

only the majority class in the dataset not touching the minority class. This advantage

gave the minority class chances to be detected. Another reason is that NCL attempted

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

202

to avoid the problems caused by noise by applying the ENN algorithm that is designed

for noise filtering. NCL data sampling scheme also ‘cleaned’ neighbourhood that

misclassifies examples belonging to the minority class which is the class of interest

(Laurikala, 2001).

SMOTE: This data sampling scheme increases the size of the minority class. So also

will the class sub-clusters and boundary points. This scheme synthetically increases the

number of the minority class which is also the class of interest. But the detection of the

minority class increased and also their decision boundary as supported by (Blagus and

Lusa, 2012; Dittman et al., 2014).

4.2.2 Analysis of performance datasets generated from the enhanced data sampling

schemes.

Among the five enhanced data sampling schemes developed, SMOTE300ENN

consistently gave the best performance than the other four enhanced data sampling

schemes. These enhanced data sampling schemes were based on advanced sampling.

Though over sampling the minority class examples can treat the imbalance class

distribution, but some other problems usually present in datasets with skewed class

distributions will not be solved. Frequently, class clusters were not well defined since

some majority class examples might be invading the minority class space. The opposite

can also be true, since interpolating minority class examples can expand the minority

class clusters, introducing artificial minority class examples too deeply in the majority

class space. Inducing a classifier under such a situation can lead to over fitting. Thus,

the development of the enhanced data sampling schemes.

SMOTE300ENN: SMOTE300 increased the size of the minority by 300% for better

recognition. But this will not solve the problem of clusters. In order to create better-

defined class clusters, ENN scheme was applied to dataset created from SMOTE300 to

remove noisy, erroneous and mis-classified instances from both classes. Hence, this

enhanced data sampling scheme provides a set of instances organised in relatively

compact and homogeneous subgroup for better detection of both majority and minority

classes and optimal classification. This data sampling scheme also solved the problem

of class overlapping and sub- class clusters. The new dataset created from this scheme

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

203

will be free from noise, errors and class overlapping. The average performance gained

by the use of SMOTE300ENN data sampling scheme was 24.33%. SVM and RIPPER

classifiers offered the best improvement but MLP did not perform well with this scheme

across all datasets.

SMOTE300RUS: This data sampling scheme performed second best on all the

datasets. SMOTE300 increased the size of the minority by 300% for better recognition.

RUS scheme was applied to randomly remove majority class instances to give a

balanced distribution. This reduction was not ‘intelligently’ carried out as all majority

class samples had equal chances of being removed from the dataset. The advantage of

SMOTE300RUS data sampling scheme was that all class probability and the sizes of

the classes were the same. This data sampling scheme further enhanced the decision

region of the minority class and better detection. But the noise level is still as in RAW

DATA. This scheme may not be recommended for a dataset with highly overlapped

classes. The average performance gained by the use of SMOTE300RUS scheme was

12%. Also SVM and RIPPER classifier performed excellently with this data sampling

scheme but did poorly with Stacking classifier across datasets.

SMOTE300NCL: SMOTE300 increased the size of the minority by 300% for better

recognition. The NCL data sampling scheme was applied to remove noisy, erroneous

and mis-classified instances from only the majority class instances while the size of the

minority class remain the same. With the reduced dataset, it was difficult to maintain

the original classification accuracy. The new dataset created from SMOTE300NCL

data sampling scheme was free from noise from the majority but not from the minority

class. The average performance gained by the use of this scheme was 13%. RIPPER

and SVM performed excellently by improving performance with this scheme.

SMOTERUS: This scheme is similar to SMOTE300RUS. SMOTE increased the size

of the minority by 100% and not 300% for better recognition than the RAW DATA.

The RUS data sampling scheme was applied to SMOTE to randomly remove majority

class instances to give a balanced distribution. This reduction was also not

‘intelligently’ carried out as all the majority class samples have equal chances of being

removed from the dataset. The advantage of this data sampling scheme was that all

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

204

class probability and the sizes of the classes are the same. This data sampling scheme

further enhanced the decision region of the minority class and better detection. But the

noise level is still as in original. This scheme may not be recommended for a dataset

with highly overlapped classes. The average performance gained by the use of this

scheme was 7.3%. RIPPER, SVM and Boosting classifier offered very good

improvement on performance on this data sampling scheme.

SMOTENCL: This scheme is also similar to SMOTE300NCL. SMOTE increased the

size of the minority by 100% and not 300% for better recognition than the RAW DATA.

The NCL data sampling scheme was applied to SMOTE to remove noisy, erroneous

and mis-classified instances from only the majority class. The size of the minority class

remained the same. With the reduced dataset, it was difficult to maintain the original

classification accuracy. The new dataset created from the application of SMOTENCL

will be free from noise from the majority but not from the minority class. The average

performance gained by the use of this scheme was 8.3%. RIPPER, Random Tree and

Boosting classifier greatly improved performance but REPTree performed extremely

worse on this scheme across all datasets.

It was remarkable to mention that consistently, four out of the enhanced data sampling

schemes were generally ranked amongst the best seven out all the data sampling

schemes. SMOTE300ENN gave the best performance in all metrics used.

4.2.3 Analysis of performance of the Tuberculosis dataset

There were no errors recorded for both majority and minority class of this dataset as

depicted by Table 4.1 and 4.2. The explanation for this is that there were no overlap of

class region and no small disjunct of the minority class. The results obtained on all

metrics in this study conformed with results obtained previously by (Prati et al., 2004;

Batista et al., 2004; Laurikala, 2001; Japkowicz, 2003 and Weiss and Provost, 2003),

where they all concluded that class imbalance alone does not seem to be the problem

but when allied with overlapped classes, class disjucts (Weiss, 2003) and concept

complexity (Japkowicz, 2003). This happened with the Tuberculosis dataset used in

this study where although the classes were highly skewed, they were not overlapped.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

205

The class clusters are well defined and their decision boundaries suffered no overlap.

The classification performance was not suboptimal.

4.2.4 Analysis of classifiers

ROC_AUC metric was used as it measures the general ability of a classifier. Since the

Area Under Curve (AUC) of ROC graph was a portion of the unit square, its value will

always be between 0 and 1. Any classifier with ROC_AUC value greater than 0.5, did

not make a random guess (prediction) of choosing a positive instance higher than a

negative instance. So, no realistic classifier should have AUC less than 0.5 (Fawcett,

2006). For all the classifiers considered in this study, their ROC_AUC values were

greater than 0.5. Though, least performances was recorded for SVM and MLP across

all datasets, they were still far from random guessing. Japkowicz and Stephen, (2002)

and Carvajal et al., (2004) reported that the reason for deficient performance of MLP

was due to the fact that minority class was inadequately weighted in networks.

Bhatnagar et al., (2010) and Batuwita and Palade, (2012) agreed that though SVM can

handle class imbalance problem but get overwhelmed when faced with more severe

class imbalance problem.

Akbani et al., (2003) and Wu and Chang (2003) also indicated that SVM can be

ineffective at determining class boundary when faced with class imbalance problem.

The underlining reason was that as the training data gets more imbalanced, the support

vector ratio between the majority class and the minority class also becomes more

imbalanced. The small amount of cumulative error on the minority class instances count

for very little in the trade-off between maximizing the width of the margin and

minimizing the training error. SVMs simply learn to classify all instances as the

majority class in order to make the margin the largest and the error the minimum.

Summarily, homogeneous ensemble performed well across all datasets. When the

sample size of the minority class is extremely small, MLP will not be able to detect

them for lack of information as in the case of Tuberculosis dataset.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

206

CHAPTER FIVE

Summary, Conclusion and Recommendations

5.1 Summary

This study explored domains of imbalanced dataset. It explored datasets from different

domains where the imbalanced distribution of classes gave both optimal and sub-

optimal performances in classification. It also reviewed solutions both at the data and

algorithm level to alleviate the class imbalance problem. It explored the various

decomposition methods for transforming a multiple class problem (more than two

classes) into several binary problems. The enhanced data sampling schemes were

implemented to improve classification performance, removal of loss of data, overfitting

of dataset and increase the RECALL of the minority class. The minority class which is

also the class of interest for this study were Gestational Diabetes Mellitus (GDM) for

DM dataset, PASSWAEC for SSS Result dataset, REPTB for TB dataset and NONE

for CM dataset. Datasets created from both the enhanced and existing data sampling

schemes were trained on 14 different types of base and ensembles classifiers. The study

established that the highest percentage of errors came from the minority class.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

207

5.2 Contribution to the study

The study established enhanced data sampling schemes that can improve classification

performance, increase detection of the minority class, remove the problem of

information loss and over fitting of dataset during classification on a dataset.

These enhanced data sampling schemes, particularly SMOTE300ENN were general

strategies to handle class imbalance problem. The empirical evaluation on variety of

imbalanced datasets were carried out to established the superiority of the enhanced data

sampling schemes with better results compared to state-of-the-earth baselines.

There was also development of a theoretical taxonomy of the relationship between

under-sampling schemes in class imbalance learning and their underlying data

reduction techniques. The study gave a robust, statistically valid and dependable

experimental work to understand the comparative strengths and weaknesses of different

data sampling schemes in real world dataset.

Treatment for countering imbalances in dataset as a pre-processing stage before

classification was performed. This gave room for dataset portability and classifiers re-

usability.

5.3 Conclusion

From the results obtained in this study and corroborated by previous studies, the natural

class distribution is often not the best distribution for training a classifier. The study

revealed that the highest percentage of prediction errors came from the minority class.

Experimental results on the DM, SSS Result and CM datasets showed that enhanced

data sampling schemes: SMOTE300ENN, SMOTERUS, SMOTENCL,

SMOTE300NCL and SMOTE300RUS increased the RECALL of the minority class

across all datasets compared with the RAW DATA. The enhanced data sampling

schemes provided a new approach where the combination of SMOTE + 300% and ENN

in particular for datasets with few minority class examples, provided very good results

in practice. SMOTE300ENN gave the best performance based its on domination on

ROC_AUC, KAPPA Statistics, and RECALL of the minority class, RMSE and

performance loss/gain metric across all dataset. SMOTE300ENN forces focused

learning and introduced a bias towards the minority class. The reason why synthetic

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

208

minority oversampling gave improved performance was its effect on the decision

regions in feature space when minority oversampling was introduced. This caused the

classifier to build a larger decision region that contain nearby minority points. The data

sampling scheme provided more related minority samples to learn from, to the tune of

300%, thus allowing the classifier to carve broader decision regions, leading to more

coverage of the minority class. SMOTE300ENN allowed for improved identification

of difficult minority classes while keeping the classification ability.

ENN and 5ENN schemes do not work well on their own for the detection of the minority

class but they ‘clean’ datasets for optimal performance on classifiers. These two data

sampling schemes had similar performances but they gave better performance when

combined with SMOTE.

The TB dataset was imbalanced in nature but all the learning schemes did not have a

problem classifying the dataset. The reason for this was due to the fact that all the

classes were linearly separable and the regions of the classes were well defined.

Therefore, in this case, applying class imbalance data sampling schemes could lead to

performance degradation.

5.4 Recommendations

The enhanced data sampling schemes can be applied to highly slewed datasets with a

very small number of minority classes as they perform well in the detection of the

minority class.

The complete experimental set up depict that the enhanced data sampling schemes can

be practically applied to real time dataset.

There are several areas to be considered for further study. These includes:

a. To add Cost Sensitive Learning (CSL) to the enhanced schemes

b. To compare data reduction technique such as Principal Components Analysis

(PCA) to data sampling schemes such as RUS, ENN, and NCL.

c. This study used Decision tree as base learners for both homogeneous and

heterogeneous ensembles. However, future work could explore the use of bsse

learners such as ANN, SVM and RIPPER to create ensembles and application of

Repeated ENN (RENN) to datasets which can then be compared with ENN and

5ENN.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

209

References

Agboola, L. A. (2010). Development of A Decision Tree Based Model For Analysing Student

Performance in Two National Certificate Examinations (WAEC and NECO). A

dissertation submitted for Master’s degree in Computer Science in the University of

Ibadan, Ibadan, Nigeria.

Aha, D. W., Kibler, D. and Albert, M. K. (1991). Instance-Based Learning Algorithms.

Machine Learning. Vol. 6, pp. 37-66.

Akbani, R., Kwek, S. and Japkowicz, N. (2003). Applying support vector machines to

imbalanced datasets. In the proceedings of European conference on Machine Learning.

Pp. 39-50.

Asha, T., Natarajan, S. and Murthy, K. N. B. (2011). A Study of Associative Classifiers with

Different Rule Evaluation Measures for Tuberculosis Prediction. International Journal

on Computer science and its Applications (IJCA) Special Issue on “Artificial

Intelligence Techniques - Novel Approaches and Practical Applications” AIT.

Asha, T., Natarajan, S. and Murthy, K. N. B. (2012). Data Mining Techniques in the

Diagnosis of Tuberculosis, Understanding Tuberculosis - Global Experiences and

Innovative Approaches to the Diagnosis, Dr. Pere-Joan Cardona (Ed.) Chapter 16.

Retrieved from http://www.intechopen.com/books/understanding-tuberculosis-

global-experiences-and-innovative-approaches-to-the-iagnosis/data-mining-

techniques-in-the-diagnosis-of-tuberculosis downloaded in February, 2014

http://www.intechopen.com/books/understanding-tuberculosis-global-experiences-and-innovative-approaches-
http://www.intechopen.com/books/understanding-tuberculosis-global-experiences-and-innovative-approaches-

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

210

Awad, M., Khan, L., Thuraisingham, B. and Wang, L. (2009). Design and Implementation of

Data Mining Tools. Auerbach Publications, Taylor and Francis Group, 6000 Broken

Sound Parkway NW, Suite 300. Boca Raton. pp. 25-26

Awokola, E. O. (2010). Rapid Diagnosis and Treatment of Diabetes Mellitus Using Artificial

Neural Networks. Dissertation submitted for Master’s degree to the Department of

Computer Science, University of Ibadan, Ibadan Oyo State, Nigeria.

Barandela, R, Sanchez, J. S. and Valdovinos, R. M. (2003a). New Application of Ensembles

of Classifiers. Pattern Analytical Application. Vol. 6, pp. 245–256.

Barandela, R., Sanchez, J. S., Garcia, V. and Rangel, E. (2003b). Strategies for learning in

class imbalance problem. The Journal of the Pattern Recognition society, Elsevier. Vol.

36, pp., 849- 851.

Bathia, N and Vandana. A. (2010). Survey of Nearest Neighbour Techniques. International

Journal of Computer Science and Information Security, (IJCSIS). Vol. 8 No. 2, pp. 302-

305.

Banaco, P. C. (2011). Box and Whisker Plots for Local climate Datasets: Interpretation and

Creation using Excel 2007/2010. Eastern Region Technical Attachment. No. 2011-01

Batista, G.E.A.P.A., Prati, R. C. and Ronard, M. C. (2004). A study of the Behaviour of

Several Methods for Balancing Machine Learning Training Data, SIGKDD

Explorations, Vol. 6, No. 1, pp. 20- 29.

Bekkar, M. and Alitouche, T. A. (2013): Imbalanced data learning approaches review.

International Journal of Data Mining & Knowledge Management Process (IJDKP).

Vol. 3, No. 4, pp. 15-33.

Bhatnagar, V., Bhardwaj, M. and Mahabal, A. (2010). Comparing SVM Ensembles for

Imbalanced Datasets. In the proceedings of 10th IEEE International conference on

Intelligent Systems Design and Applications (ISDA). Pp. 651-657.

Blagus, R. and Lusa, L. (2012). Evaluation of SMOTE for high- dimensional class imbalance

micro- array data. In proceedings of the 11th Conference in Machine Learning and

Applications (ICMLA, 2012). Vol. 2, pp. 89-94

Blake, C. L., and Merz, C. J. (1998). UCI repository of machine learning databases,

Department of Information and Computer sciences, University of California, Irvine,

CA. www.ics.uci.edu/_mlearn/MLRepository.html.

Boontarika, L. and Maythapolnun, A. (2011). An Empirical Study of Multiclass with Class

Imbalance Problems, Proceedigs of Business And Information (BAI), Vol. 8, No. 1.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5681599

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

211

Bouckaert, R. R., Frank, E., Hall, M. A., Holmes, G., Pfahringer, B., Reutemann, P. and

Witten, I. A. (2010). WEKA — Experiences with a Java Open-Source Project. Journal

of Machine Learning Research, Vol. 11, Pp. 2533-2541.

Breinman, L. (2001). Random Forests. Machine Learning. Vol. 45, No. 1, pp. 5-32.

Breinman, L. (1996). Bagging Predictors. Machine Learning. Vol. 24, No. 2, pp. 123–140.

Carletta, Jean. (1996). Assessing agreement on classification tasks: The kappa statistic.

Computational Linguistics. Vol. 22, No. 2, pp. 249–254.

Carvajal, K., Chacon, M., Mery, D. and Acuna, G. (2004). Neural Network method for failure

detection with skewed class distribution. Journal of the British Institute of

Non-Destructive Testing. Vol. 46, No. 7, pp 399-402

Chandrahasan, R. K., Angeline, C. Y. and Usha, R. S. (2011). An Empirical Comparison of

Boosting and Bagging Algorithms. In the Proceedings of International Journal of

Computer Science and Information Security. Vol. 9, No. 11, pp. 147-152

Chawla, N. and Sylvester, J. (2007). Exploiting Diversity in Ensembles: Improving the

Performance on Unbalanced Datasets. In the proceedings of 7th International Workshop

Multiple Classifier Systems (MCS). Pp. 397-406

Chawla, N. V., Bowyer, K. W., Hall, L.O. and Kegelmeyer, P.W. (2002). SMOTE: Synthetic

Minority Over- sampling Technique, Journal of Artificial Intelligence research, Vol.

16, pp. 321- 357.

Chawla, N.V., Japkowicz, N. and Kolcz, A. (2004). Editorial: Special Issue on Learning from

Imbalance Data Sets, SIGKDD Explorations. Vol. 6, No. 1, pp. 1- 6.

Chawla, N. V., Lazarevic, A., Hall, L. O. and Bowyer, K. W. (2003). SMOTEBoost: Improving

Prediction of the Minority Class in Boosting. In the proceedings of the 7th European on

Principles and Practice of Knowledge Discovery in Databases (PKDD). pp. 107-119

Chawla, N. V. (2003). C4.5 and Imbalanced Data sets: Investigating the effects of sampling

method, probabilistic estimate, and decision tree structure. Workshop on Learning from

Imbalanced Datasets II, ICML.

Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview. The Data mining

and knowledge discovery handbook. Chapter 40, pp. 853-867.

Chen, Y., Zhou, X. and Huang, T. (2001). One class SVM for learning in Image Retrieval. In

the Proceedings of IEEE International Conference on Image Processing (ICIP’ 01

oral).

http://acl.ldc.upenn.edu/J/J96/J96-2004.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

212

Cohen, W. C. (1995). Fast Effective Rule Induction. In the Proceedings of the 12th

International Conference on Machine Learning. Pp. 115-123.

Cover, T. M and Hart, P. E. (1967). Nearest Neighbour Pattern Classification. IEEE

Transaction on Information Theory. Vol. 13, pp. 21-27.

Dasarathy, B. V., Sanchez, J. S. and Townsend, S. (2000). Nearest Neighbour Editing and

Condensing Tools–Synergy Exploitation. Pattern Analysis and Applications. Vol. 3,

pp. 19 – 30.

Davis, J. and Goadric, M. (2006). The relationship between Precision –Recall and ROC curves,

Proc. 23rd International Conference on Machine learning, Pittsburgh, PA. pp. 233-

240.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Proceedings of 1st

International Workshop Multiple Classifier Systems (LNCS) Vol. 1857. Pp. 1-15

Dietteric, T. G. and Bakiri, G. (1995). Solving multiclass learning problem via error- correcting

output codes. Journal of Artificial Intelligence Research. Vol. 2, pp. 263-286

Ding, Z. (2011). Diversified Ensemble Classifier for Highly imbalanced Data Learning and

their application in Bioinformatics, Ph. D thesis, College of Arts and science,

Department of Computer Science, Georgia State University, 2011. Retrieved from

Http://digitalarchive.gsu.edu/cs_diss/60 in February 2012.

Domigos, P. (1999). MetaCost; A general method for making classifier cost- sensitive. In the

proceedings of the 5th ACM SIGKDD International Conference on Artificial

Intelligence. pp. 155-164.

Dittman, D.J., Taghi, M. K., Randall, W. and Amri, N. (2014). In the proceedings of the 27th

International Florida Artificial Intelligence Research Society Conference. Pp. 268-271.

www.aaai.org

Elkan, C. (2001). The Foundations of Cost-Sensitive Learning. In the Proceedings of the 17th

International Conference on Artificial Intelligence. pp. 973–978.

Estabrooks A., Jo, T. and Japkowicz, N. (2004). A Multiple Resampling Method for Learning

from Imbalanced Data Sets. Computational Intelligence. Vol. 20, No. 1, pp. 18-36.

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Researchers.

Technical Report HPL- 2003- 4, HP Labs.

Fawcett, T. (2006). An Introduction to ROC analysis. Pattern Recognition Letters. Vol. 27, pp.

861- 874.

http://digitalarchive.gsu.edu/cs_diss/60

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

213

Fattahi, S., Othman, Z. and Othman, A. Z. (2015). New approach with ensemble method to

address class imbalance problem. Journal of theoretical and applied information

technology. Vol. 72, No. 1, pp. 23-33. Retrieved from www.iatit.org on 21st July, 2015

Fernandez, A., Garcial, S. and Hererra, F. (2011). Addressing the Classification with

Imbalanced Data: Open Problems and New Challenges on Class Distribution. E.

Corchado, M. Kurzy´nski, M. Wo´zniak (Eds.): HAIS, Part I, LNAI 6678. Pp. 1–10.

Freund, Y. and Schapire, R. E. (1995). A decision- theoretic generalisation of on- line learning

and an application to boosting. Technical Report, AT and T Bell Laboratories, Murray

Hill, NJ.

Freund, Y. and Schapire, R. E. (1996). Experiment with a new boosting algorithm. In

Proceeding of the 13th International Conference on Machine Learning. Pp. 148-146.

Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence. Vol. 14, No. 5, pp. 771-780.

Galar M., Fernandez A., Barrenechea E., Bustince H. and Herrera F. (2012). A Review on

Ensembles for the Class Imbalance Problem: Bagging-, Boosting and Hybrid

Approaches. IEEE Transactions on Systems, Man and Cybernetics - Part C:

Applications and Reviews. Vol. 42, N0. 4, pp. 463-484.

Garcia S., Joacquin, J., Cano, J. R and Herrera, F. (2012). Prototype Selection for Nearest

Neigbhor Classification: Taxonomy and Empirical Study. IEEE Transactions on

Pattern Analysis and Machine intelligence. Vol. 34, No. 3, pp. 417–435.

Gates, G. W. (1972). Reduced Nearest Neighbour Rule. IEEE Trans Information Theory, Vol.

18, No. 3, pp. 431-433.

Georgescu, R., Berger, C. R., Willet, P., Azam, M. and Ghoshal S. (2010). Comparison of Data

Reduction Techniques Based on the Performance of SVM- type Classifiers. Aerospace

Conference, IEEE. Big Sky, MT. Pp. 1–9

Ghanem, A., Venkatesh. S. and West, G. (2010). Multi-Class Pattern Classification in

Imbalanced Data, International Conference on Pattern Recognition. Pp. 2881- 2884

Gilpin, S. A. and Dunlavy, D. M. (2009). Relationships between Accuracy and Diversity in

Heterogeneous Ensemble Classifiers. Technical Report SAND-2009-6940C, Sandia

National Laboratories, Albuquerque, NM and Livermore, CA.

Gu, J. (2007). Random Forest Based Imbalance Data Cleaning and Classification.

 PAKDD’07. Retrieved from

Http://lamda.nju.edu.cn/conf/pakdd07/dmc07/reports/P251.pdf in March, 2011.

http://www.iatit.org/
http://lamda.nju.edu.cn/conf/pakdd07/dmc07/reports/P251.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

214

Guo, X., Yin, Y., Dong, C., Yang, G. and Zhou, G. (2008). On the Class Imbalance Problem,

Fourth International Conference on Natural Computation, IEEE Computer Society.

pp.192 – 201

Habibi, S., Ahmadi, M. and Alizadeh, S. (2015). TYPE 2 Diabetes Mellitus screening and Risk

Factors using Decision tree: Results of Data Mining. Global Journal of Health Sciences.

Vol. 7, No. 5. Pp. 304-310. Retrieved from www.ccsenet.org/gjhs in June, 2015

Han, H., Wang, W. Y., and Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling

method in imbalanced data sets learning. In International Conference on Intelligent

Computing (ICIC’05). (LNCS) Vol. 3644, pp. 878–887.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers. ISBN: 1-55860-489-8.

Hart, P. E. (1968). The Condensed Nearest Neighbour Rule, IEEE Transformation Information

Theory. Vol. 16, pp. 515-516.

Hastie, T. and Tibshirani, R. (1998). Classification by Pairwise Coupling. In: Advances in

Neural Information Processing Systems.

He, H., Bai, Y., Garcia, E. A. and Li, S. (2008). ADASYN: Adaptive Synthetic Sampling

Approach for Imbalanced Learning. In the Proceedings of International Joint

Conference on Neural Networks (IJCNN 2008). pp. 1322- 1328.

Hido, S. and Kashima, H. (2008). Roughly Balanced Bagging for Imbalanced Data. In

Proceedings of SIAM Conference on Data Mining (SDM2008), Atlanta, Georgia, USA,

April, 2008.

Ho, T. K. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 832 -

844.

Hoens, R. T. and Nitesh V. C. 2010. Generating Diverse Ensembles to counter the problem of

Class Imbalance. Advances in Knowledge Discovery and Data Mining. 14th Pacific-

Asia conference, PAKDD, Part II, LNA Vol. 6119, Ch. 46, pp. 488- 199.

Hoens, R. T. (2012). Living in an unbalanced world. Ph. D Thesis, University of Notre Dame,

Indiana.

Hoens, T. R. and Chawla, N. V. (2010). Generating Diverse Ensembles to Counter the Problem

of Class Imbalance. PAKDD Vol. 2, No. 10, pp.488 – 499.

Hoens, T. R., Qian, Q., Chawla, N. V. and Zhou, Z. (2012). Building Decision Trees for the

Multi-class Imbalance Problem. PAKDD Vol. 1, pp. 122–134.

http://www.ccsenet.org/gjhs

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

215

Hulse, J. V., Khoshgoftaar, T. M. and Napolitano, A. (2007). Experimental Perspectives on

Learning from Imbalanced Data. In the Proceeding of the 24th International Conference

on Machine Learning (ICML), ACM. pp. 935-942.

Jankowski, N. and Grochowski, M. (2004). Comparison of Instances Selection Algorithms I.

Algorithm survey. L. Rutkowski et al. (Eds.), In the Proceedings of International

Conference of Artificial Intelligence and Soft Computing (ICAISC). Pp. 598 - 603.

Japkowicz, N., Myers, C. and Gluck, M. (1995). A Novelty detection approach to

classification. In the Proceedings of the 14th International Joint Conference on

Artificial Intelligence (IJCAI – ’95). Pp.518 – 523.

Japkowicz, N. (2003). Class Imbalances: Are we focusing on the right issue? In the Proceeding

of ICML workshop: Learning with Imbalanced Data Sets II, pp. 17–23

Japkowicz, N. and Stephen, S. (2002). The Class Imbalance problem: A Systemic Study IDA

Journal 6(5). Pp. 429 – 449.

Jo, T., and Japkowicz, N. (2004). Class imbalances versus small disjuncts. SIGKDD

Explorations. Vol. 6, pp. 40–49.

Johnson, R. A., Chawla, N. V. and Hellman, J. J. (2012). Species Distribution Modelling and

Prediction: A Class Imbalance Problem. NASA Conference on Intelligent Data

Understanding (CIDU), Boulder, CO.

Juszczak, P. and Duin, R. P. W. (2003). Uncertainty sampling methods for one- class

classifiers. Workshop on Learning from Imbalanced Datasets II, ICML, Washington

DC.

Karakoulas, G. and Taylor, J. S. (1999). Optimizing classifiers for imbalanced training sets. In

Advances in Neural Information Processing Systems. pp.253 - 259

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C. and Murthy, K. R. K. (2001). Improvements

to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation. Vol. 13,

No. 3, pp. 637-649.

Kolcz, A., Chowdhury, A. and Alspector, J. (2003). Data duplication: an imbalance problem?

Workshop on Learning from Imbalanced Datasets II, ICML, Washington DC.

Kubat, M. and Matwin, S. (1997). Addressing the Curse Imbalanced Training Sets: One- Sided

Selection. In the proceedings of the fourteenth conference on machine learning. Pp.

179- 186.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

216

Kuncheva, L. I. and Whitaker C. J. (2003). Measure of Diversity in Classifier Ensembles and

Their Relationship with the Ensemble Accuracy. Machine Learning. Vol. 51, pp. 181-

207.

Landis, J.R. and Koch, G.G. (1977). "The measurement of observer agreement for categorical

data". Biometrics. Vol. 33, No. 1, pp. 159–174.

Lawson, L., Zhang J., Gomgnimbou M. K., Abdurrahman ST, Le Moullec S, Mohamed F,

Uzoewulu GN, Sogaolu OM, Goh K. S, Emenyonu N, Refregier G, Cuevas L. E and

Sola C. (2012). A Molecular Epidemiological and Genetic Diversity Study of

Tuberculosis in Ibadan, Nnewi and Abuja, Nigeria. PLos ONE. Vol. 7, No. 6. e38409.

Mukrousov Igor (Ed).

Laurikala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class

Distribution. In the Proceedings of the International Conference on artificial

intelligence in medicine in Europe. Vol. 2101, No. 8, pp. 63-66.

Lessmann, S. (2004). Solving imbalanced classification problems with support vector

machines. In International Conference on Artificial Intelligence. pp. 214–220.

Lewis, D. and Gale, W. (1994). Training Text Classifiers by Uncertainty Sampling. In the

Proceedings of the 17th ACM SIGIR Conference on Research and Development in

Information Retrieval. Pp. 3-12

Lin, Y., Lee, Y., and Wahba, G. (2002). Support vector machines for classification in

nonstandard situations. Machine Learning. Vol. 46, 191–202.

Ling, X. C. and Sheng, V. S. (2008). Cost-Sensitive Learning and the Class Imbalance

Problem. Encyclopedia of Machine Learning. C. Sammut (Ed.). Springer.

Liu, X. and Zhou, Z. (2006). The Influence of Class Imbalance on Cost-Sensitive Learning:

An Empirical Study. The 6th International Conference on Data Mining (ICDM’06). pp.

970 – 974.

Liu, X., Wu, J. and Zhou, Z. (2008). Exploratory Under- Sampling for Class-Imbalance

Learning. IEEE Transaction on Systems, Man and Cybernetics –Part B.

Liu, Y., Chawla, N. V., Harper, M. P., Shriberg, E. and Stolcke, A. (2006). A study in machine

learning from imbalanced data for sentence boundary detection in speech. Elsevier

Journal of Computer Speech and Language. Vol. 20, pp. 468–494.

Lopez, V., Fernandez, A., Garcia, Palade, V. and Herrera, F. (2013). An insight into

classification with imbalanced data: Empirical results and current trends on using data

intrinsic characteristics. Information Sciences. Vol. 250, pp. 113-141.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

217

Manevitz, L. M. and Yousef, M. (2001). One–Class SVMs for Document Classification.

Journal of Machine Learning Research. Vol. 2, pp. 139-154.

McCarthy, K., Zabar, B. and Weiss, G. (2005). Does Cost–Sensitive learning Beat Sampling

for Classifying Rare Classes? UBDM ’05. Pp. 69-77.

Miloud-Aouidate, A. and Baba-Ali, A. R. (2011). Survey of Nearest Neighbour Condensing

Techniques. International Journal of Advanced Computer Science and Applications.

Vol. 2, No. 11, pp. 59 – 63.

Nagabhushanam D, Naresh N, Raghunath A, and Praveen K. K. (2013). Prediction of

Tuberculosis Using Data Mining Techniques on Indian Patient’s Data. In International

Journal of Computer Science and Technology (IJCST). Vol. 4, No. 4, pp. 262-265.

Nguyen, H. G. (2011). Machine Learning with Informative Samples for Large and Imbalanced

Datasets, Ph. D Thesis, University of Wollongong, Australia.

Nguyen, H. G., Bouzerdoum, A. and Phung, S. L. (2009). Learning Pattern Classification tasks

with imbalanced data sets. Pattern Recognition. Chapter 10, pp. 193-208.

Ou, G., Murphy, Y. L., Foldcamp, L. (2004). MultiClass Pattern Classification Using Neural

Networks. Proc. of the 17th International Conference on pattern Recognition. Vol. 4,

pp. 585- 588.

Olatayo, T. O., Amusa, N. A., Aladesida, A. A. and Odunbaku, O. A. (2011). Understanding

Biometrics: A manual of statistics methods for biostatistics and agricultural sciences.

Chapter 8. Bisibest prints and publishing. ISBN: 978-978-80248-82. pp. 140-161

Paramanto, B., Munro, P. W. and Doyle, H. R. (1996). Improving Committee diagnosis with

resampling techniques. In Touretzky et al., (Eds.) Advances in Neural Information

Processing Systems. Vol. 8, pp. 882–888.

Pearson, R. K., Gonye, G. E. and Schwaber, J. S. (2003). Imbalance Clustering of Microarray

Time-Series. Workshop on Learning from Imbalanced Datasets II, ICML, Washington

DC.

Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal

Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in

Kernel Methods - Support Vector Learning.

Prati, R. C., Batista, G. E. A. P. A., and Monard, M. C. (2004). Class Imbalance versus Class

Overlapping: an Analysis of a Learning System Behavior. In MICAI, (LNAI). Vol.

2972, pp. 312-321.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

218

Quinonero C. J., Sugiyama, M., Schwaighofer, A. and Lawrence, N.D. (2009). Dataset Shift

in Machine Learning. The MIT Press, Cambridge.

Rahman, M. M. and Davis, D. N. (2013). Addressing the class imbalance problem in medical

datasets. International Journal of Machine Learning and Computing. Vol. 3, No 2, pp.

224-228

Rahman, S. Z. and Raju, S. V. P. (2014). Enhanced Classification to Counter the Problem of

Cluster Disjuncts. International Journal of Computer Trends and Technology (IJCTT).

Vol. 18, No 5, pp. 217-223. ISSN: 2231-5381. Retrieved from

http://www.ijcttjournal.org on in February 2015

Raskutti, B. and Kowalczyk, A. (2004). Extreme Re- balancing for SVMs: A case study. In the

proceedings of European Conference on Machine learning, ACM SIGKDD

Explorations Newsletter. Vol. 6, No. 1, Pp. 60-69.

Ritters, G. L., Wooddruff, H. B., Lowry, S. R. and Isenhour, T. L. (1975). An Algorithm for a

Selective Nearest Neigbhor Decision Rule. IEEE Transactions on Information Theory.

Vol. 21, No. 6, pp. 665 – 669.

Rodriguez, J. J., Kuncheva, L. I. and Alonso, C. J. (2006). Rotation Forest: A New Classifier

Ensemble Method. IEEE Transaction on Pattern Analysis and Machine Intelligence.

Vol. 28, No. 10, pp. 1619–1630.

Batuwita, R. and Palade, V. (2012). Class imbalance learning methods for support vector

machines. In the book titled ‘In Imbalanced Learning: Foundations, Algorithms and

Applications’. Chapter 6. Haibo H. and Yunqian, M. (Eds) Publisher: John Wiley and

Sons, Inc.

Salzberg, C. (1991). A Nearest Hyperrectangle Learning Method. Machine Learning. Vol. 6,

pp. 277–309.

Sanchez, J. S. (2004). High training set size reduction by space partitioning and prototype

abstraction. Pattern Recognition. Vol. 37, pp. 1561-1564.

Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor

DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A,

Sattar N, White IR, Ray KK, Danesh J. (2010). Diabetes mellitus, fasting blood glucose

concentration, and risk of vascular disease: a collaborative meta‐analysis of 102

prospective studies. Lancet. Vol. 375, pp. 2215-2222.

Schapire, R. E. (1997). Using output codes to boost multi class learning problems. In the

Proceeding of the 14th International Conference on Machine Learning. Pp. 313-321.

http://www.ijcttjournal.org/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

219

Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V. and Napolitano, A. (2010). RUSBoost: A Hybrid

Approach to Alleviating Class Imbalance. IEEE Transactions on Systems, Man, and

Cybernetics—Part A: Systems and Humans. Vol. 40, No. 1, pp. 185–197.

Stefanowski, J. and Wilk, S. (2008). Selective pre-processing of imbalanced data for improving

classification performance. 10th International Conference in Data Warehousing and

Knowledge Discovery (DaWaK2008) (LNCS). Vol. 5182, pp. 283-292.

Stanfill, C. and Waltz, D. (1986). Toward memory–based reasoning. Communication of the

ACM. Vol. 29, pp. 1213 – 1228.

Singhi, S. K. and Liu, H. (2005). Error–Sensitive Grading for Model Combination. In

Proceedings of 16th European Conference on Machine Learning. Pp. 724 735.

SPSS Inc. Released 2007. SPSS for Windows, Version 16.0. Chicago, SPSS Inc

Sun Y. (2007). Cost- Sensitive Boosting for Classification of Imbalanced Data. Ph. D

Dissertation, Dept. of Electrical and Computer Engineering, University of Waterloo,

Waterloo, Ontario, Canada.

Sun, Y. Kamel, M. S. and Wang, Y. (2006). Boosting for Learning Multiple Classes with

Imbalanced Class Distribution, IEEE Proc. of the Sixth International Conference on

Data Mining (ICDM’). Vol. 9, pp. 7695-2701.

Thai-Nghe, N., Andre, B., Lars, S. (2009). Improving Academic Performance Prediction by

Dealing with Class Imbalance, Proc. 9th IEEE International Conference on Intelligent

Systems Design and Applications IEEE Computer Society, (ISDA). Pp. 878-883

Thai- Nghe, N., Thanh- Nghi, D. and Lars, T. (2010). Learning Optimal Threshold on

Resampling Data to Deal with Class Imbalance. In the Proceedings Of the 8th IEEE

International conference on Computing and Communication Technologies: Research,

Innovation and Vision for future RIFV. Pp.71-76

Thai- Nghe, N., Gantner, Z. and Schmidt- Thieme, L. (2011). A New Evaluation Measure for

Learning from Imbalanced Data. In the Proceeding of the IEEE International Journal

Conference on Neural Networks (IJCNN).pp. 537-542

Tomek I. (1976). Two modification of CNN. IEEE Transactions on Systems, Man and

Communications, SMC. Vol. 6, pp. 769- 772.

Vapnik, V. and Lerner, A. (1963). Pattern recognition using generalised portrait method.

Automation and Remote Control. Vol. 24, pp. 774-780.

Vazquez, F., Sanchez, J. S. and Pla, F. (2005). Pattern Recognition and Image Analysis,” 2nd

Iberian Conference ibPRIA ’05, Part II. LNCS 3523, Pp. 35–42.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

220

Vegard, E. (2010). Machine Learning for Network Based Intrusion Detection. Ph. D thesis,

Bounemouth University, 2010.

Veropoulos, K., Campbell, C., and Cristianini, N. (1999). Controlling the sensitivity of support

vector machines. Proceedings of the International Joint Conference on Artificial

Intelligence. Pp. 55–60.

Visa, S. and Ralescu, A. (2005). Issues in Mining Imbalanced Data Sets - A Review Paper. In

the proceedings of the 16th Midwest Artificial Intelligence and Cognitive Science

Conference, Dayton. Pp 67 - 73

Wang, S. (2011). Ensemble Diversity for Class Imbalance Learning. Ph. D thesis, School of

Computer Science, College of Engineering and Physical Sciences, The University of

Birmingham.

Wang, S., Tang, K. and Yao, X. (2009). Diversity Exploration and Negative Correlation

Learning on Imbalanced Data Sets. In the Proceedings of International Joint

Conference on Neural Networks (IJCNN). Pp. 3259 – 3266.

Wasikowski, M., Chen, X.W. (2010). Combating the small sample class imbalance problem

using feature selection. IEEE Transactions on Knowledge and Data Engineering. Vol.

22, No. 10, pp. 1388–1400.

Weiss, G.M. and Provost, F.J. (2003). Learning when training data are costly: The effect of

class distribution on tree induction. Journal of Artificial Intelligence Research. Vol. 19,

pp. 315–354.

Weiss, G. M. (2003). The effect of small disjuncts and class distribution on decision tree

learning, Ph. D. Dissertation, Deprtment of Computer Science, Rutgers University,

New Jersey.

Wilson, D. L. (1972). Asymptotic Properties of Nearest Neighbour Rules Using Edited Data.

IEEE Transactions on Systems, Man, and Cybernetics. Vol. 2, No. 3, pp. 408–421.

Wilson, D. R. and Martinez, T. R. (1997). Improved Heterogeneous Distance Functions.

Journal of Artificial Intelligence Research. Vol. 6, pp. 1-34.

Wilson, D. R. and Martinez, T. R. (1997b). Bias and the probability of generalisation. In the

proceedings of the International Conference on Intelligent Information Systems

(IIS’97). Pp. 108-114.

Wilson, D. R. and Martinez, T. R. (1997c). Instance Prunning Techniques. In Fisher ed.

Machine Learning, Proceedings of the fourteenth International Conference. Pp. 404–

411.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

221

Wilson, D. R. and Martinez, T. R. (2000). An Integrated Instance–Based Learning Algorithm.

Computational Intelligence. Vol. 16, No. 1, pp. 1-28.

Wilson, D. R. and Martinez, T. R. (2000b). Reduction Techniques for Instance–Based Learning

Algorithms. Machine Learning, Vol. 38, No. 3, pp. 257–286.

Witten, I. H., Frank E. and Hall M. A. (2011). Data Mining: Practical Machine Learning Tools

and Techniques. San Franscisco, California: Morgan Kaufmann. 3rd Edition.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks. Vol. 5, No. 2, pp. 241-259.

Wu, G. and Chang, E. Y. (2003). Class-Boundary Alignment for Imbalanced Dataset Learning.

In the proceedings of ICML Workshop on Learning from Imbalanced Datasets II,

Washington DC.

www.ctec.ufal.br/professor/crfj/.../Model%20evaluation%20methods.doc. Retrieved

in September, 2015.

Xu-Ying, T., Jianxin, W. and Zhi-Hua, Z. (2009). Exploratory Under-sampling for Class

Imbalance Learning. IEEE Transactions on Systems, Man and Cybernetics. Vol. 39,

No. 2, pp. 539–550.

Yang, Y. and Ma, G. (2010). Ensemble- based Active Learning for Classification Problem. J.

Biomedical and Engineering. Vol. 3, pp. 1021- 1028. Retrieved from Http:/www.

Scrip.org/journal/jbise in July 2013.

Yang, Q. and Wu, X. (2005). 10 Challenging Problems in Data mining, International Journal

of Information Technology and Decision making. Vol. 5, No. 4, pp. 597-604.

Yen, S. J. and Lee, Y. S. (2009). Cluster-based under-sampling approaches for imbalanced data

distributions. Expert Systems with Applications. Vol. 36, No. 3, pp. 5718-5727.

Zadrozny, B., and Elkan, C. (2001). Learning and Making Decisions When Costs and

Probabilities are Both Unknown. In proceedings of the 7th International Conference on

Knowledge discovery and data mining, ACM SIGKDD. pp. 204–213.

Zhang, J. and Mani, I. (2003). KNN approach to Unbalanced Data Distribution: A case study

involving Information Extraction. In the proceedings of the ICML Workshop on

Learning from Imbalanced Datasets II, Washington DC.

Zhou, X. and Tuck, D. P. (2007). MSVM-RFE: Extension of SVM-RFE for multiclass gene

selection on DNA microarray data, Ed. David Rocke, Oxford journals,

BIOINFORAMTICS. Vol. 23, No. 9, pp. 1106-1114.

http://www.ctec.ufal.br/professor/crfj/.../Model%20evaluation%20methods.doc

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

222

APPENDIX A

The screenshots of the predictions of datasets on classification algorithm

Screenshot of prediction of RAW DATA of Diabetes Mellitus dataset trained on

Decision Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

223

Screenshot of predictions of SMOTE300ENN when used to treat RAW DATA of

Diabetes Mellitus dataset trained on Decision Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

224

Screenshot of predictions of RAW DATA of SSS Result dataset trained on Decision

Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

225

Screenshot of predictions of SMOTE300ENN when used to treat the RAW DATA of

SSS Result dataset trained on Decision Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

226

Screenshot of predictions of RAW DATA of CM dataset trained on Decision Tree

Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

227

Screenshot of predictions of SMOTE300ENN when used to treat the RAW DATA of

CM dataset trained on Decision Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

228

Screenshot of predictions of RAW DATA of Tuberculosis dataset trained on Decision

Tree Algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

229

APPENDIX B

The class boundary diagram for DM dataset

Figure (a) and (b): Class boundary diagram of Diabetes Mellitus disease with the

RAW DATA and CNN scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

230

Figure (c) and (d): Class boundary diagram of Diabetes Mellitus disease with the

ENN and RUS scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

231

Figure (e) and (f): Class boundary diagram of Diabetes Mellitus disease with the

NCL and 5ENN scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

232

Figure (g) and (h): Class boundary diagram of Diabetes Mellitus disease with the

SMOTE and SMOTE300 scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

233

Figure (i) and (j): Class boundary diagram of Diabetes Mellitus disease with the

SMOTEENN and SMOTENCL scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

234

Figure (k) and (l): Class boundary diagram of Diabetes Mellitus disease with the

SMOTERUS and SMOTE300ENN scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

235

Figure (m) and (n): Class boundary diagram of Diabetes Mellitus disease with

the SMOTE300NCL and SMOTE300RUS scheme.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

236

Appendix C

 Java Codes for SMOTE Class

/*

 * SMOTE.java

 *

 */

package weka.filters.supervised.instance;

import weka.core.Attribute;

import weka.core.Capabilities;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.Option;

import weka.core.OptionHandler;

import weka.core.RevisionUtils;

import weka.core.TechnicalInformation;

import weka.core.TechnicalInformationHandler;

import weka.core.Utils;

import weka.core.Capabilities.Capability;

import weka.core.TechnicalInformation.Field;

import weka.core.TechnicalInformation.Type;

import weka.filters.Filter;

import weka.filters.SupervisedFilter;

import java.util.Collections;

import java.util.Comparator;

import java.util.Enumeration;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Random;

import java.util.Set;

import java.util.Vector;

<!-- technical-bibtex-end -->

 *

 <!-- options-start -->

 * Valid options are: <p/>

 *

 * <pre> -S <num>

 * Specifies the random number seed

 * (default 1)</pre>

 *

 * <pre> -P <percentage>

 * Specifies percentage of SMOTE instances to create.

 * (default 100.0)

 * </pre>

 *

 * <pre> -K <nearest-neighbors>

 * Specifies the number of nearest neighbors to use.

 * (default 5)

 * </pre>

 *

 * <pre> -C <value-index>

 * Specifies the index of the nominal class value to SMOTE

 * (default 0: auto-detect non-empty minority class))

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

237

 * </pre>

 *

 <!-- options-end -->

 */

public class SMOTE

 extends Filter

 implements SupervisedFilter, OptionHandler,

TechnicalInformationHandler {

 /** for serialization. */

 static final long serialVersionUID = -1653880819059250364L;

 /** the number of neighbors to use. */

 protected int m_NearestNeighbors = 5;

 /** the random seed to use. */

 protected int m_RandomSeed = 1;

 /** the percentage of SMOTE instances to create. */

 protected double m_Percentage = 100.0;

 /** the index of the class value. */

 protected String m_ClassValueIndex = "0";

 /** whether to detect the minority class automatically. */

 protected boolean m_DetectMinorityClass = true;

 /**

 * Returns a string describing this classifier.

 *

 * @return a description of the classifier suitable for

 * displaying in the explorer/experimenter gui

 */

 public String globalInfo() {

 return "Resamples a dataset by applying the Synthetic Minority

Oversampling TEchnique (SMOTE)." +

 " The original dataset must fit entirely in memory." +

 " The amount of SMOTE and number of nearest neighbors may be

specified." +

 " For more information, see \n\n"

 + getTechnicalInformation().toString();

 }

 /**

 public String getRevision() {

 return RevisionUtils.extract("$Revision: 5542 $");

 }

 /**

 * Returns the Capabilities of this filter.

 *

 * @return the capabilities of this object

 * @see Capabilities

 */

 public Capabilities getCapabilities() {

 Capabilities result = super.getCapabilities();

 result.disableAll();

 // attributes

 result.enableAllAttributes();

 result.enable(Capability.MISSING_VALUES);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

238

 // class

 result.enable(Capability.NOMINAL_CLASS);

 result.enable(Capability.MISSING_CLASS_VALUES);

 return result;

 }

 /**

 * Returns an enumeration describing the available options.

 *

 * @return an enumeration of all the available options.

 */

 public Enumeration listOptions() {

 Vector newVector = new Vector();

 newVector.addElement(new Option(

 "\tSpecifies the random number seed\n"

 + "\t(default 1)",

 "S", 1, "-S <num>"));

 newVector.addElement(new Option(

 "\tSpecifies percentage of SMOTE instances to create.\n"

 + "\t(default 100.0)\n",

 "P", 1, "-P <percentage>"));

 newVector.addElement(new Option(

 "\tSpecifies the number of nearest neighbors to use.\n"

 + "\t(default 5)\n",

 "K", 1, "-K <nearest-neighbors>"));

 newVector.addElement(new Option(

 "\tSpecifies the index of the nominal class value to SMOTE\n"

 +"\t(default 0: auto-detect non-empty minority class))\n",

 "C", 1, "-C <value-index>"));

 return newVector.elements();

 }

 /**

 * Parses a given list of options.

 *

 <!-- options-start -->

 * Valid options are: <p/>

 *

 * <pre> -S <num>

 * Specifies the random number seed

 * (default 1)</pre>

 *

 * <pre> -P <percentage>

 * Specifies percentage of SMOTE instances to create.

 * (default 100.0)

 * </pre>

 *

 * <pre> -K <nearest-neighbors>

 * Specifies the number of nearest neighbors to use.

 * (default 5)

 * </pre>

 *

 * <pre> -C <value-index>

 * Specifies the index of the nominal class value to SMOTE

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

239

 * (default 0: auto-detect non-empty minority class))

 * </pre>

 *

 <!-- options-end -->

 *

 * @param options the list of options as an array of strings

 * @throws Exception if an option is not supported

 */

 public void setOptions(String[] options) throws Exception {

 String seedStr = Utils.getOption('S', options);

 if (seedStr.length() != 0) {

 setRandomSeed(Integer.parseInt(seedStr));

 } else {

 setRandomSeed(1);

 }

 String percentageStr = Utils.getOption('P', options);

 if (percentageStr.length() != 0) {

 setPercentage(new Double(percentageStr).doubleValue());

 } else {

 setPercentage(100.0);

 }

 String nnStr = Utils.getOption('K', options);

 if (nnStr.length() != 0) {

 setNearestNeighbors(Integer.parseInt(nnStr));

 } else {

 setNearestNeighbors(5);

 }

 String classValueIndexStr = Utils.getOption('C', options);

 if (classValueIndexStr.length() != 0) {

 setClassValue(classValueIndexStr);

 } else {

 m_DetectMinorityClass = true;

 }

 }

 /**

 * Gets the current settings of the filter.

 *

 * @return an array of strings suitable for passing to setOptions

 */

 public String[] getOptions() {

 Vector<String> result;

 result = new Vector<String>();

 result.add("-C");

 result.add(getClassValue());

 result.add("-K");

 result.add("" + getNearestNeighbors());

 result.add("-P");

 result.add("" + getPercentage());

 result.add("-S");

 result.add("" + getRandomSeed());

 return result.toArray(new String[result.size()]);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

240

 }

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String randomSeedTipText() {

 return "The seed used for random sampling.";

 }

 /**

 * Gets the random number seed.

 *

 * @return the random number seed.

 */

 public int getRandomSeed() {

 return m_RandomSeed;

 }

 /**

 * Sets the random number seed.

 *

 * @param value the new random number seed.

 */

 public void setRandomSeed(int value) {

 m_RandomSeed = value;

 }

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String percentageTipText() {

 return "The percentage of SMOTE instances to create.";

 }

 /**

 * Sets the percentage of SMOTE instances to create.

 *

 * @param value the percentage to use

 */

 public void setPercentage(double value) {

 if (value >= 0)

 m_Percentage = value;

 else

 System.err.println("Percentage must be >= 0!");

 }

 /**

 * Gets the percentage of SMOTE instances to create.

 *

 * @return the percentage of SMOTE instances to create

 */

 public double getPercentage() {

 return m_Percentage;

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

241

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String nearestNeighborsTipText() {

 return "The number of nearest neighbors to use.";

 }

 /**

 * Sets the number of nearest neighbors to use.

 *

 * @param value the number of nearest neighbors to use

 */

 public void setNearestNeighbors(int value) {

 if (value >= 1)

 m_NearestNeighbors = value;

 else

 System.err.println("At least 1 neighbor necessary!");

 }

 /**

 * Gets the number of nearest neighbors to use.

 *

 * @return the number of nearest neighbors to use

 */

 public int getNearestNeighbors() {

 return m_NearestNeighbors;

 }

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String classValueTipText() {

 return "The index of the class value to which SMOTE should be

applied. " +

 "Use a value of 0 to auto-detect the non-empty minority class.";

 }

 /**

 * Sets the index of the class value to which SMOTE should be

applied.

 *

 * @param value the class value index

 */

 public void setClassValue(String value) {

 m_ClassValueIndex = value;

 if (m_ClassValueIndex.equals("0")) {

 m_DetectMinorityClass = true;

 } else {

 m_DetectMinorityClass = false;

 }

 }

 /**

 * Gets the index of the class value to which SMOTE should be

applied.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

242

 *

 * @return the index of the clas value to which SMOTE

should be applied

 */

 public String getClassValue() {

 return m_ClassValueIndex;

 }

 /**

 * Sets the format of the input instances.

 *

 * @param instanceInfo an Instances object containing the

input

 * instance structure (any instances contained

in

 * the object are ignored - only the structure

is required).

 * @return true if the outputFormat may be

collected immediately

 * @throws Exception if the input format can't be set

successfully

 */

 public boolean setInputFormat(Instances instanceInfo) throws

Exception {

 super.setInputFormat(instanceInfo);

 super.setOutputFormat(instanceInfo);

 return true;

 }

 /**

 * Input an instance for filtering. Filter requires all

 * training instances be read before producing output.

 *

 * @param instance the input instance

 * @return true if the filtered instance may now

be

 * collected with output().

 * @throws IllegalStateException if no input structure has been

defined

 */

 public boolean input(Instance instance) {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

 if (m_NewBatch) {

 resetQueue();

 m_NewBatch = false;

 }

 if (m_FirstBatchDone) {

 push(instance);

 return true;

 } else {

 bufferInput(instance);

 return false;

 }

 }

 /**

 * Signify that this batch of input to the filter is finished.

 * If the filter requires all instances prior to filtering,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

243

 * output() may now be called to retrieve the filtered instances.

 *

 * @return true if there are instances pending output

 * @throws IllegalStateException if no input structure has been

defined

 * @throws Exception if provided options cannot be executed

 * on input instances

 */

 public boolean batchFinished() throws Exception {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

 if (!m_FirstBatchDone) {

 // Do SMOTE, and clear the input instances.

 doSMOTE();

 }

 flushInput();

 m_NewBatch = true;

 m_FirstBatchDone = true;

 return (numPendingOutput() != 0);

 }

 /**

 * The procedure implementing the SMOTE algorithm. The output

 * instances are pushed onto the output queue for collection.

 *

 * @throws Exception if provided options cannot be executed

 * on input instances

 */

 protected void doSMOTE() throws Exception {

 int minIndex = 0;

 int min = Integer.MAX_VALUE;

 if (m_DetectMinorityClass) {

 // find minority class

 int[] classCounts =

getInputFormat().attributeStats(getInputFormat().classIndex()).nomina

lCounts;

 for (int i = 0; i < classCounts.length; i++) {

 if (classCounts[i] != 0 && classCounts[i] < min) {

 min = classCounts[i];

 minIndex = i;

 }

 }

 } else {

 String classVal = getClassValue();

 if (classVal.equalsIgnoreCase("first")) {

 minIndex = 1;

 } else if (classVal.equalsIgnoreCase("last")) {

 minIndex = getInputFormat().numClasses();

 } else {

 minIndex = Integer.parseInt(classVal);

 }

 if (minIndex > getInputFormat().numClasses()) {

 throw new Exception("value index must be <= the number of

classes");

 }

 minIndex--; // make it an index

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

244

 int nearestNeighbors;

 if (min <= getNearestNeighbors()) {

 nearestNeighbors = min - 1;

 } else {

 nearestNeighbors = getNearestNeighbors();

 }

 if (nearestNeighbors < 1)

 throw new Exception("Cannot use 0 neighbors!");

 // compose minority class dataset

 // also push all dataset instances

 Instances sample = getInputFormat().stringFreeStructure();

 Enumeration instanceEnum = getInputFormat().enumerateInstances();

 while(instanceEnum.hasMoreElements()) {

 Instance instance = (Instance) instanceEnum.nextElement();

 push((Instance) instance.copy());

 if ((int) instance.classValue() == minIndex) {

 sample.add(instance);

 }

 }

 // compute Value Distance Metric matrices for nominal features

 Map vdmMap = new HashMap();

 Enumeration attrEnum = getInputFormat().enumerateAttributes();

 while(attrEnum.hasMoreElements()) {

 Attribute attr = (Attribute) attrEnum.nextElement();

 if (!attr.equals(getInputFormat().classAttribute())) {

 if (attr.isNominal() || attr.isString()) {

 double[][] vdm = new

double[attr.numValues()][attr.numValues()];

 vdmMap.put(attr, vdm);

 int[] featureValueCounts = new int[attr.numValues()];

 int[][] featureValueCountsByClass = new

int[getInputFormat().classAttribute().numValues()][attr.numValues()];

 instanceEnum = getInputFormat().enumerateInstances();

 while(instanceEnum.hasMoreElements()) {

 Instance instance = (Instance) instanceEnum.nextElement();

 int value = (int) instance.value(attr);

 int classValue = (int) instance.classValue();

 featureValueCounts[value]++;

 featureValueCountsByClass[classValue][value]++;

 }

 for (int valueIndex1 = 0; valueIndex1 < attr.numValues();

valueIndex1++) {

 for (int valueIndex2 = 0; valueIndex2 < attr.numValues();

valueIndex2++) {

 double sum = 0;

 for (int classValueIndex = 0; classValueIndex <

getInputFormat().numClasses(); classValueIndex++) {

 double c1i = (double)

featureValueCountsByClass[classValueIndex][valueIndex1];

 double c2i = (double)

featureValueCountsByClass[classValueIndex][valueIndex2];

 double c1 = (double) featureValueCounts[valueIndex1];

 double c2 = (double) featureValueCounts[valueIndex2];

 double term1 = c1i / c1;

 double term2 = c2i / c2;

 sum += Math.abs(term1 - term2);

 }

 vdm[valueIndex1][valueIndex2] = sum;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

245

 }

 }

 }

 }

 }

 // use this random source for all required randomness

 Random rand = new Random(getRandomSeed());

 // find the set of extra indices to use if the percentage is not

evenly divisible by 100

 List extraIndices = new LinkedList();

 double percentageRemainder = (getPercentage() / 100) -

Math.floor(getPercentage() / 100.0);

 int extraIndicesCount = (int) (percentageRemainder *

sample.numInstances());

 if (extraIndicesCount >= 1) {

 for (int i = 0; i < sample.numInstances(); i++) {

 extraIndices.add(i);

 }

 }

 Collections.shuffle(extraIndices, rand);

 extraIndices = extraIndices.subList(0, extraIndicesCount);

 Set extraIndexSet = new HashSet(extraIndices);

 // the main loop to handle computing nearest neighbors and

generating SMOTE

 // examples from each instance in the original minority class

data

 Instance[] nnArray = new Instance[nearestNeighbors];

 for (int i = 0; i < sample.numInstances(); i++) {

 Instance instanceI = sample.instance(i);

 // find k nearest neighbors for each instance

 List distanceToInstance = new LinkedList();

 for (int j = 0; j < sample.numInstances(); j++) {

 Instance instanceJ = sample.instance(j);

 if (i != j) {

 double distance = 0;

 attrEnum = getInputFormat().enumerateAttributes();

 while(attrEnum.hasMoreElements()) {

 Attribute attr = (Attribute) attrEnum.nextElement();

 if (!attr.equals(getInputFormat().classAttribute())) {

 double iVal = instanceI.value(attr);

 double jVal = instanceJ.value(attr);

 if (attr.isNumeric()) {

 distance += Math.pow(iVal - jVal, 2);

 } else {

 distance += ((double[][]) vdmMap.get(attr))[(int)

iVal][(int) jVal];

 }

 }

 }

 distance = Math.pow(distance, .5);

 distanceToInstance.add(new Object[] {distance, instanceJ});

 }

 }

 // sort the neighbors according to distance

 Collections.sort(distanceToInstance, new Comparator() {

 public int compare(Object o1, Object o2) {

 double distance1 = (Double) ((Object[]) o1)[0];

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

246

 double distance2 = (Double) ((Object[]) o2)[0];

 return (int) Math.ceil(distance1 - distance2);

 }

 });

 // populate the actual nearest neighbor instance array

 Iterator entryIterator = distanceToInstance.iterator();

 int j = 0;

 while(entryIterator.hasNext() && j < nearestNeighbors) {

 nnArray[j] = (Instance) ((Object[])entryIterator.next())[1];

 j++;

 }

 // create synthetic examples

 int n = (int) Math.floor(getPercentage() / 100);

 while(n > 0 || extraIndexSet.remove(i)) {

 double[] values = new double[sample.numAttributes()];

 int nn = rand.nextInt(nearestNeighbors);

 attrEnum = getInputFormat().enumerateAttributes();

 while(attrEnum.hasMoreElements()) {

 Attribute attr = (Attribute) attrEnum.nextElement();

 if (!attr.equals(getInputFormat().classAttribute())) {

 if (attr.isNumeric()) {

 double dif = nnArray[nn].value(attr) -

instanceI.value(attr);

 double gap = rand.nextDouble();

 values[attr.index()] = (double) (instanceI.value(attr) +

gap * dif);

 } else if (attr.isDate()) {

 double dif = nnArray[nn].value(attr) -

instanceI.value(attr);

 double gap = rand.nextDouble();

 values[attr.index()] = (long) (instanceI.value(attr) +

gap * dif);

 } else {

 int[] valueCounts = new int[attr.numValues()];

 int iVal = (int) instanceI.value(attr);

 valueCounts[iVal]++;

 for (int nnEx = 0; nnEx < nearestNeighbors; nnEx++) {

 int val = (int) nnArray[nnEx].value(attr);

 valueCounts[val]++;

 }

 int maxIndex = 0;

 int max = Integer.MIN_VALUE;

 for (int index = 0; index < attr.numValues(); index++) {

 if (valueCounts[index] > max) {

 max = valueCounts[index];

 maxIndex = index;

 }

 }

 values[attr.index()] = maxIndex;

 }

 }

 }

 values[sample.classIndex()] = minIndex;

 Instance synthetic = new Instance(1.0, values);

 push(synthetic);

 n--;

 }

 }

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

247

 /**

 * Main method for running this filter.

 *

 * @param args should contain arguments to the filter:

 * use -h for help

 */

 public static void main(String[] args) {

 runFilter(new SMOTE(), args);

 }

}

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

248

Appendix D

Java codes for Wilson’s Edited Nearest Neigbhour (ENN) Class

/**

 * Class EditedNN

 *

**/

package weka.filters.supervised.instance;

import java.io.Serializable;

import java.util.*;

import weka.filters.*;

import weka.core.*;

import weka.core.Capabilities.Capability;

public class EditedNN extends Filter implements SupervisedFilter,

OptionHandler {

 /**

 * Genereated by Eclipse.

 */

 private static final long serialVersionUID = -

7206839648986893545L;

 /** Returns the revision string. **/

 public String getRevision() {

 return RevisionUtils.extract("$Revision: 1.0 $");

 }

 /** Returns default capabilities of the classifier. **/

 public Capabilities getCapabilities() {

 Capabilities result = super.getCapabilities();

 // attributes

 result.enable(Capability.NOMINAL_ATTRIBUTES);

 result.enable(Capability.NUMERIC_ATTRIBUTES);

 result.enable(Capability.DATE_ATTRIBUTES);

 result.enable(Capability.MISSING_VALUES);

 // class

 result.enable(Capability.NOMINAL_CLASS);

 // instances

 result.setMinimumNumberInstances(0);

 return result;

 }

 /** Description of the classifier in Weka's graphical mode. **/

 public String globalInfo() {

 return "";

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

249

 /** Class constructors. **/

 public EditedNN(int k) {

 setKnn(k);

 m_Distance = DIST_HEOM;

 m_Weighting = WEIGHT_INV;

 }

 public EditedNN() {

 setKnn(3);

 m_Distance = DIST_HEOM;

 m_Weighting = WEIGHT_INV;

 }

 /**

 * Stores the maximum and minimum values and standard deviation

 * of each attribute (depending on the metric used).

 **/

 private double[] m_Min, m_Max, m_StdDev;

 /** Structures to store data to calculate the VDM metric. **/

 Vector < double[] > m_VetVDM = new Vector<double[]>();

 Vector < double[][] > m_MatVDM = new Vector<double[][]>();

 /** Auxiliary variable **/

 double m_Bigger;

 /** Number of nearest neighbor (k). **/

 private int m_Knn = 3;

 public void setKnn(int m_Knn) { this.m_Knn = m_Knn; }

 public int getKnn() { return this.m_Knn; }

 /** Distance function to be used in the algorithm. **/

 private int m_Distance = DIST_HEOM;

 public void setDistance(SelectedTag newMethod) {

 if (newMethod.getTags() == TAGS_DISTANCE) {

 this.m_Distance = newMethod.getSelectedTag().getID();

 }

 }

 public SelectedTag getDistance() {

 return new SelectedTag(this.m_Distance, TAGS_DISTANCE);

 }

 public static final int DIST_HEOM = 1;

 public static final int DIST_HVDM = 2;

 public static final int DIST_MANHATTAN = 3;

 public static final Tag [] TAGS_DISTANCE = {

 new Tag(DIST_HEOM, "Heterogeneous Euclidean-Overlap

Metric"),

 new Tag(DIST_MANHATTAN, "Heterogeneous Manhattan-Overlap

Metric"),

 new Tag(DIST_HVDM, "Heterogeneous Value Distance Function")

 };

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

250

 /** Distance weighting. **/

 private int m_Weighting;

 public void setWeighting(SelectedTag newMethod) {

 if (newMethod.getTags() == TAGS_WEIGHTING) {

 this.m_Weighting = newMethod.getSelectedTag().getID();

 }

 }

 public SelectedTag getWeighting() {

 return new SelectedTag(this.m_Weighting, TAGS_WEIGHTING);

 }

 public static final int WEIGHT_NONE = 1;

 public static final int WEIGHT_INV = 2;

 public static final int WEIGHT_SIM = 3;

 public static final Tag [] TAGS_WEIGHTING = {

 new Tag(WEIGHT_NONE, "No weight"),

 new Tag(WEIGHT_INV, "1/(distance^2)"),

 new Tag(WEIGHT_SIM, "1-distance")

 };

 /** Method (cleanness or undersampling) to be used in the

algorithm. **/

 private int m_Method = METH_CLEAN;

 public void setMethod(SelectedTag newMethod) {

 if (newMethod.getTags() == TAGS_METHOD) {

 this.m_Method = newMethod.getSelectedTag().getID();

 }

 }

 public SelectedTag getMethod() {

 return new SelectedTag(this.m_Method, TAGS_METHOD);

 }

 public static final int METH_CLEAN = 1;

 public static final int METH_UNDER = 2;

 public static final Tag [] TAGS_METHOD = {

 new Tag(METH_CLEAN, "Cleanness"),

 new Tag(METH_UNDER, "Undersampling"),

 };

 /** Definitions and structures to use in this filter. **/

 private Instances m_Input;

 private double m_MajorityClassValue;

 private Vector<Integer> m_InstancesToRemove = new

Vector<Integer>();

 /** Description of parameters **/

 public String knnTipText() {

 return "Number of nearest neighbors (k).";

 }

 public String distanceTipText() {

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

251

 return "Distance function.";

 }

 public String weightingTipText() {

 return "Distance weighting.";

 }

 public String methodTipText() {

 return "Method (cleanness or undersampling) to be used in

the algorithm.";

 }

 /** Parses a given list of options. **/

 public void setOptions(String[] options) throws Exception {

 String knnString = Utils.getOption('K', options);

 if (knnString.length() != 0) {

 setKnn(Integer.parseInt(knnString));

 } else {

 setKnn(1);

 }

 if (Utils.getFlag('V', options)) {

 setDistance(new SelectedTag(DIST_HVDM, TAGS_DISTANCE));

 } else if (Utils.getFlag('M', options)) {

 setDistance(new SelectedTag(DIST_MANHATTAN,

TAGS_DISTANCE));

 } else {

 setDistance(new SelectedTag(DIST_HEOM, TAGS_DISTANCE));

 }

 if (Utils.getFlag('I', options)) {

 setWeighting(new SelectedTag(WEIGHT_INV,

TAGS_WEIGHTING));

 } else if (Utils.getFlag('S', options)) {

 setWeighting(new SelectedTag(WEIGHT_SIM,

TAGS_WEIGHTING));

 } else {

 setWeighting(new SelectedTag(WEIGHT_NONE,

TAGS_WEIGHTING));

 }

 if (Utils.getFlag('U', options)) {

 setMethod(new SelectedTag(METH_UNDER,

TAGS_METHOD));

 } else {

 setMethod(new SelectedTag(METH_CLEAN,

TAGS_METHOD));

 }

 Utils.checkForRemainingOptions(options);

 }

 /** Gets the current settings of KnnImputation. */

 public String [] getOptions() {

 String [] options = new String [7];

 int current = 0;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

252

 options[current++] = "-K"; options[current++] = "" +

getKnn();

 if (m_Distance == DIST_HVDM) {

 options[current++] = "-V";

 }

 if (m_Distance == DIST_MANHATTAN) {

 options[current++] = "-M";

 }

 if (m_Weighting == WEIGHT_INV) {

 options[current++] = "-I";

 }

 if (m_Weighting == WEIGHT_SIM) {

 options[current++] = "-S";

 }

 if (m_Method == METH_UNDER) {

 options[current++] = "-U";

 }

 while (current < options.length) {

 options[current++] = "";

 }

 return options;

 }

 /** Returns an enumeration describing the available options.

**/

 public Enumeration<Option> listOptions() {

 Vector<Option> newVector = new Vector<Option>(6);

 newVector.addElement(new Option(

 "\tNumber of nearest neighbors (k).\n"

 +"\t(Default = 3)",

 "K", 1,"-K <number of neighbors>"));

 newVector.addElement(new Option(

 "\tHeterogeneous Euclidean-Value Distance

Metric.\n",

 "V", 0, "-V"));

 newVector.addElement(new Option(

 "\tHeterogeneous Manhattan-Overlap

Metric.\n",

 "M", 0, "-M"));

 newVector.addElement(new Option(

 "\tWeight neighbors by inverse of their

squared distance.\n",

 "I", 0, "-I"));

 newVector.addElement(new Option(

 "\tWeight neighbors by similarity.\n",

 "S", 0, "-S"));

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

253

 newVector.addElement(new Option(

 "\tUses the method to undersampling.\n",

 "U", 0, "-U"));

 return newVector.elements();

 }

 /** Vector used to store the neighbors according their

proximity **/

 private Vector<Neighbor> neighbors = new Vector<Neighbor>();

 /** Class that defines a neighbor **/

 private class Neighbor implements Serializable {

 /**

 * Generated by Eclipse

 */

 private static final long serialVersionUID = -

3536862725297518804L;

 double dist;

 Instance inst;

 int index;

 Neighbor(double dist, Instance inst, int index) {

 this.dist = dist;

 this.inst = inst;

 this.index = index;

 }

 public double getDist() { return dist; }

 public Instance getInst() { return inst; }

 public int getIndex() { return index; }

 }

 /** Initializes the input and output formats. **/

 public boolean setInputFormat(Instances instanceInfo) throws

Exception {

 super.setInputFormat(instanceInfo);

 setOutputFormat(instanceInfo);

 m_Input = instanceInfo;

 return true;

 }

 /** Input an instance for filtering. **/

 public boolean input(Instance instance) {

 if (m_Input == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

254

 if (m_NewBatch) {

 resetQueue();

 m_NewBatch = false;

 }

 if (isFirstBatchDone()) {

 push(instance);

 return true;

 } else {

 bufferInput(instance);

 return false;

 }

 }

 /** Signify that this batch of input to the filter is finished.

**/

 public boolean batchFinished() throws Exception {

 if (m_Input == null) {

 throw new IllegalStateException("No input instance

format defined");

 }

 if (!isFirstBatchDone()) {

 //Initializes the vectors and determines the

initial values to calculate the HVDM function

 if (m_Distance == DIST_HVDM) {

 m_StdDev = new double [m_Input.numAttributes()];

 for (int i = 0; i < m_Input.numAttributes(); i++) {

 if (m_Input.attribute(i).isNominal()) {

 m_VetVDM.add(new

double[m_Input.attribute(i).numValues()]);

 m_MatVDM.add(new

double[m_Input.attribute(i).numValues()][m_Input.numClasses()]);

 } else {

 //Calculates the standard deviation for

each attribute

 AttributeStats as =

m_Input.attributeStats(i);

 m_StdDev[i] =

as.numericStats.stdDev;

 m_VetVDM.add(new double[0]);

 m_MatVDM.add(new double[0][0]);

 }

 }

 } else {

 m_Min = new double [m_Input.numAttributes()];

 m_Max = new double [m_Input.numAttributes()];

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

255

 for (int i=0; i < m_Input.numAttributes(); i++)

{

 m_Min[i] = Double.MAX_VALUE;

 m_Max[i] = Double.MIN_VALUE;

 }

 }

 evaluateData();

 if (m_Method == METH_UNDER)

 majorityClass();

 for(int i = 0; i < m_Input.numInstances(); i++) {

 evaluateInstance(m_Input.instance(i), i);

 }

 for (int i = m_InstancesToRemove.size()-1; i >= 0;

i--) {

 m_Input.delete(m_InstancesToRemove.elementAt(i));

 }

 //Push pending input instances

 for(int i = 0; i < m_Input.numInstances(); i++) {

 push(m_Input.instance(i));

 }

 }

 //Free memory

 flushInput();

 m_NewBatch = true;

 m_FirstBatchDone = true;

 return (numPendingOutput() != 0);

 }

 /** Verify the majority class. **/

 private int majorityClass() {

 int[] classes = new int[m_Input.numClasses()];

 int counter = 0;

 m_MajorityClassValue = -1.0;

 for(int i = 0; i < m_Input.numInstances(); i++) {

 classes[(int)m_Input.instance(i).classValue()]++;

 if (classes[(int)m_Input.instance(i).classValue()]

> counter) {

 m_MajorityClassValue =

m_Input.instance(i).classValue();

 counter++;

 }

 }

 return counter;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

256

 }

 /** Evaluate an instance to mark instances to remove. **/

 private void evaluateInstance(Instance instance, int index)

throws Exception {

 if (m_Method==METH_UNDER &&

instance.classValue()!=m_MajorityClassValue) {

 return;

 }

 double classification = estimate(instance);

 if (classification != instance.classValue()) {

 m_InstancesToRemove.add(index);

 }

 }

 /** Estimate values. **/

 public double estimate(Instance instance) throws Exception {

 double dist;

 int i;

 int att = instance.classIndex();

 neighbors.clear();

 m_Bigger = Double.NaN;

 for (int index = 0; index < m_Input.numInstances();

index++) {

 //Current instance

 Instance actualInstance =

(Instance)m_Input.instance(index);

 if (actualInstance.isMissing(att))

 continue;

 dist = distance(instance, actualInstance, att);

 //If the calculated distance is greater than K-th

neighbor yet calculated, returns -1

 if (dist>0) {

 Neighbor v = new Neighbor(dist,

actualInstance, index);

 if (neighbors.size()==0)

 neighbors.add(v);

 else {

 if ((neighbors.size()>=m_Knn))

 i = search(0,m_Knn-1,dist);

 else

 i = search(0,neighbors.size()-

1,dist);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

257

 neighbors.add(i, v);

 }

 if((neighbors.size()>=m_Knn))

 m_Bigger = neighbors.elementAt(m_Knn-

1).getDist();

 }

 }

 return mode(att);

 }

 /** Function that seeks the position where a neighbor should be

inserted into the

 * vector, based on binary search. **/

 public int search(int begin, int end, double value) {

 int center=(int)(begin+end)/2;

 while (begin<=end) {

 center=(int)(begin+end)/2;

 if (neighbors.elementAt(center).getDist() < value)

{

 if (center<neighbors.size()-1 &&

 neighbors.elementAt(center+1).getDist()

>= value){

 return center+1;

 }

 begin = center+1;

 } else if (neighbors.elementAt(center).getDist() >

value) {

 if (center>0 &&

 neighbors.elementAt(center-1).getDist()

<= value) {

 return center;

 }

 end = center-1;

 } else {

 return center;

 }

 }

 if (neighbors.elementAt(center).getDist() < value) {

 return center+1;

 } else {

 return center;

 }

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

258

 /** Searches the training data to find the maximum and minimum

values

 * or the values used in VDM function. **/

 public void evaluateData() {

 //Enumerate instances

 Enumeration<?> enu = m_Input.enumerateInstances();

 while (enu.hasMoreElements()) {

 //Current instances

 Instance trainInstance = (Instance)

enu.nextElement();

 //Searches attributes of the current instance

 for (int i = 0; i < m_Input.numAttributes(); i++) {

 //If the attribute is numeric, evaluates the

min and max

 if ((m_Distance != DIST_HVDM)

 &&

(m_Input.attribute(i).isNumeric())

 && (!trainInstance.isMissing(i)))

{

 if (trainInstance.value(i) < m_Min[i])

 m_Min[i] =

trainInstance.value(i);

 if (trainInstance.value(i) > m_Max[i])

 m_Max[i] =

trainInstance.value(i);

 }

 //If the attribute is nominal and the

distance function is HVDM, counts the number of occurences

 else if ((m_Distance == DIST_HVDM)

 &&

(m_Input.attribute(i).isNominal())

 && (!trainInstance.isMissing(i))

) {

 (m_VetVDM.elementAt(i))[(int)trainInstance.value(i)]++;

 (m_MatVDM.elementAt(i))[(int)trainInstance.value(i)][(int)train

Instance.classValue()]++;

 }

 }

 }

 }

 /** Calculates the distance between two instances. **/

 public double distance(Instance inst1, Instance inst2, int att)

{

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

259

 double dist = 0;

 //Searches attributes of the instance

 for(int i = 0; i < m_Input.numAttributes(); i++) {

 //Do not calculate distance of the attribute att

 if (i == att) {

 continue;

 }

 //If one or both value are missing, sum the maximum

distance

 if (inst1.isMissing(i) || inst2.isMissing(i)) {

 dist += 1;

 } else {

 //Nominal attribute

 if (m_Input.attribute(i).isNominal()) {

 if (m_Distance == DIST_HVDM) {

 if ((int)inst1.value(i) !=

(int)inst2.value(i))

 dist += norm_vdm(inst1,

inst2, i);

 } else {

 if ((int)inst1.value(i) !=

(int)inst2.value(i))

 dist += 1;

 }

 //Numeric attribute

 } else {

 if (m_Distance==DIST_HVDM)

 dist+=norm_diff(inst1, inst2, i);

 else {

 if (!(Double.isNaN(m_Min[i])) &&

!(Utils.eq(m_Max[i], m_Min[i]))) {

 dist+=range_norm_diff(inst1, inst2, i);

 } else {

 dist+=1;

 }

 }

 }

 }

 if (!Double.isNaN(m_Bigger) && dist > m_Bigger)

 return -1;

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

260

 return dist;

 }

 /** Calculates the normalized difference between two numeric

values. **/

 public double norm_diff(Instance inst1, Instance inst2, int

att) {

 if (m_StdDev[att]==0) return 1;

 return Math.pow((inst2.value(att) - inst1.value(att)) /

 (4*m_StdDev[att]),2);

 }

 /** Calculates the range normalized difference between two

numeric values. **/

 public double range_norm_diff(Instance inst1, Instance inst2,

int att) {

 double d;

 if (m_Max[att]==m_Min[att]) return 1;

 if (m_Distance == DIST_MANHATTAN) {

 d = Math.abs((inst2.value(att) - inst1.value(att))

/

 (m_Max[att]-m_Min[att]));

 return d;

 } else {

 d = (inst2.value(att) - inst1.value(att)) /

 (m_Max[att]-m_Min[att]);

 return d*d;

 }

 }

 /** Calculates the distance between two nominal values using

the VDM function **/

 public double norm_vdm(Instance inst1, Instance inst2, int att)

{

 int i;

 int ncl =

m_Input.numDistinctValues(m_Input.classIndex());

 double d=0, nx1, nx2;

 double nx1C[] = new double[ncl];

 double nx2C[] = new double[ncl];

 nx1 = m_VetVDM.elementAt(att)[(int)inst1.value(att)];

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

261

 nx2 = m_VetVDM.elementAt(att)[(int)inst2.value(att)];

 nx1C = m_MatVDM.elementAt(att)[(int)inst1.value(att)];

 nx2C = m_MatVDM.elementAt(att)[(int)inst2.value(att)];

 for (i=0;i<ncl;i++) {

 if (nx1>0 && nx2>0) {

 d += Math.pow(((nx1C[i]/nx1) -

 (nx2C[i]/nx2)) , 2.0);

 } else {

 return 1.0;

 }

 }

 //(sqrt(d))^2==d

 return d;

 }

 /** Calculates mode of k-nearest neighbors

 * considering the distance weighting. **/

 public double mode(int att) {

 int i, aux, k=getKnn();

 int n = m_Input.numAttributes();

 double dist=0,mode=0,maior=0;

 boolean out = false;

 boolean zero = false;

 int t =

m_Input.numDistinctValues(m_Input.attribute(att));

 double vet[] = new double[t];

 for (i=0;!out;i++) {

 if (i>=neighbors.size()) {

 out=true;

 continue;

 }

 Neighbor v = neighbors.elementAt(i);

 if (i>=k && (v.getDist()-dist>0.0001)) {

 out = true;

 continue;

 }

 dist = v.getDist();

 Instance inst = v.getInst();

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

262

 aux = (int)inst.value(inst.attribute(att));

 //In this case, if exists neighbors with distance

0, calculates

 //the mode only among them

 if (m_Weighting == WEIGHT_INV) {

 if (!zero && dist==0)

 zero = true;

 if (!zero) {

 vet[aux] += (1/(dist*dist));

 } else if (m_Weighting == WEIGHT_SIM) {

 vet[aux]++;

 } else {

 out = true;

 }

 } else if (m_Weighting == WEIGHT_SIM) {

 vet[aux] += (n-dist);

 } else {

 vet[aux]++;

 }

 if (vet[aux] > maior) {

 maior = vet[aux];

 mode = aux;

 }

 }

 return mode;

 }

 public static void main(String [] argv) {

 try {

 if (Utils.getFlag('b', argv)) {

 Filter.batchFilterFile(new EditedNN(), argv);

 } else {

 Filter.filterFile(new EditedNN(), argv);

 }

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

}

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

263

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

264

Appendix E

Java codes for Neigbhourhood Cleaning Rule (NCL) Class

/**

 * Class Neighbourhood Cleaning Rule (NCL)

 *

**/

package weka.filters.supervised.instance;

import java.io.Serializable;

import java.util.*;

import weka.filters.*;

import weka.core.*;

import weka.core.Capabilities.Capability;

public class NeighborhoodCleaning extends Filter implements

SupervisedFilter, OptionHandler {

 /**

 * Generated by Eclipse.

 */

 private static final long serialVersionUID =

8333537819558930169L;

 /** Returns the revision string. **/

 public String getRevision() {

 return RevisionUtils.extract("$Revision: 1.0 $");

 }

 /** Returns default capabilities of the classifier. **/

 public Capabilities getCapabilities() {

 Capabilities result = super.getCapabilities();

 // attributes

 result.enable(Capability.NOMINAL_ATTRIBUTES);

 result.enable(Capability.NUMERIC_ATTRIBUTES);

 result.enable(Capability.DATE_ATTRIBUTES);

 result.enable(Capability.MISSING_VALUES);

 // class

 result.enable(Capability.NOMINAL_CLASS);

 // instances

 result.setMinimumNumberInstances(0);

 return result;

 }

 /** Description of the classifier in Weka's graphical mode. **/

 public String globalInfo() {

 return "";

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

265

 /** Class constructors. **/

 public NeighborhoodCleaning(int k) {

 setKnn(k);

 m_Distance = DIST_HEOM;

 m_Weighting = WEIGHT_INV;

 }

 public NeighborhoodCleaning() {

 setKnn(3);

 m_Distance = DIST_HEOM;

 m_Weighting = WEIGHT_INV;

 }

 /**

 * Stores the maximum and minimum values and standard deviation

 * of each attribute (depending on the metric used).

 **/

 private double[] m_Min, m_Max, m_StdDev;

 /** Structures to store data to calculate the VDM metric. **/

 Vector < double[] > m_VetVDM = new Vector<double[]>();

 Vector < double[][] > m_MatVDM = new Vector<double[][]>();

 /** Auxiliary variable **/

 double m_Bigger;

 /** Number of nearest neighbor (k). **/

 private int m_Knn = 3;

 public void setKnn(int m_Knn) { this.m_Knn = m_Knn; }

 public int getKnn() { return this.m_Knn; }

 /**

 * The degree of bias towards uniform (nominal) class

distribution. -1 means

 * apply algorithm with no regard to class distribution. 0

means apply the

 * algorithm, but return the selected majority class examples

plus all the

 * minority ones. >0 represent the proportion of minority-

majority class

 * example, n majority examples for one minority example

 */

 private double m_BiasToUniformClass = -1.0;

 public void setBiasToUniformClass(double m_BiasToUniformClass)

{

 this.m_BiasToUniformClass = m_BiasToUniformClass;

 }

 public double getBiasToUniformClass() {

 return this.m_BiasToUniformClass;

 }

 /** Distance function to be used in the algorithm. **/

 private int m_Distance = DIST_HEOM;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

266

 public void setDistance(SelectedTag newMethod) {

 if (newMethod.getTags() == TAGS_DISTANCE) {

 this.m_Distance = newMethod.getSelectedTag().getID();

 }

 }

 public SelectedTag getDistance() {

 return new SelectedTag(this.m_Distance, TAGS_DISTANCE);

 }

 public static final int DIST_HEOM = 1;

 public static final int DIST_HVDM = 2;

 public static final int DIST_MANHATTAN = 3;

 public static final Tag [] TAGS_DISTANCE = {

 new Tag(DIST_HEOM, "Heterogeneous Euclidean-Overlap

Metric"),

 new Tag(DIST_MANHATTAN, "Heterogeneous Manhattan-Overlap

Metric"),

 new Tag(DIST_HVDM, "Heterogeneous Value Distance Function")

 };

 /** Distance weighting. **/

 private int m_Weighting;

 public void setWeighting(SelectedTag newMethod) {

 if (newMethod.getTags() == TAGS_WEIGHTING) {

 this.m_Weighting = newMethod.getSelectedTag().getID();

 }

 }

 public SelectedTag getWeighting() {

 return new SelectedTag(this.m_Weighting, TAGS_WEIGHTING);

 }

 public static final int WEIGHT_NONE = 1;

 public static final int WEIGHT_INV = 2;

 public static final int WEIGHT_SIM = 3;

 public static final Tag [] TAGS_WEIGHTING = {

 new Tag(WEIGHT_NONE, "No weight"),

 new Tag(WEIGHT_INV, "1/(distance^2)"),

 new Tag(WEIGHT_SIM, "1-distance")

 };

 /** Definitions and structures to use in this filter. **/

 private Instances m_Input;

 private double m_MajorityClassValue, m_Proportion;

 private Vector<Integer> m_InstancesToRemove = new

Vector<Integer>();

 /** Description of parameters **/

 public String knnTipText() {

 return "Number of nearest neighbors (k).";

 }

 public String distanceTipText() {

 return "Distance function.";

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

267

 }

 public String weightingTipText() {

 return "Distance weighting.";

 }

 /** Parses a given list of options. **/

 public void setOptions(String[] options) throws Exception {

 String knnString = Utils.getOption('K', options);

 if (knnString.length() != 0) {

 setKnn(Integer.parseInt(knnString));

 } else {

 setKnn(1);

 }

 String biasString = Utils.getOption('B', options);

 if (biasString.length() != 0) {

 setBiasToUniformClass(Double.parseDouble(biasString));

 } else {

 setBiasToUniformClass(0);

 }

 if (Utils.getFlag('V', options)) {

 setDistance(new SelectedTag(DIST_HVDM, TAGS_DISTANCE));

 } else if (Utils.getFlag('M', options)) {

 setDistance(new SelectedTag(DIST_MANHATTAN,

TAGS_DISTANCE));

 } else {

 setDistance(new SelectedTag(DIST_HEOM, TAGS_DISTANCE));

 }

 if (Utils.getFlag('I', options)) {

 setWeighting(new SelectedTag(WEIGHT_INV,

TAGS_WEIGHTING));

 } else if (Utils.getFlag('S', options)) {

 setWeighting(new SelectedTag(WEIGHT_SIM,

TAGS_WEIGHTING));

 } else {

 setWeighting(new SelectedTag(WEIGHT_NONE,

TAGS_WEIGHTING));

 }

 Utils.checkForRemainingOptions(options);

 }

 /** Gets the current settings of NCL. */

 public String [] getOptions() {

 String [] options = new String [6];

 int current = 0;

 options[current++] = "-K"; options[current++] = "" +

getKnn();

 options[current++] = "-B"; options[current++] = "" +

getBiasToUniformClass();

 if (m_Distance == DIST_HVDM) {

 options[current++] = "-V";

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

268

 }

 if (m_Distance == DIST_MANHATTAN) {

 options[current++] = "-M";

 }

 if (m_Weighting == WEIGHT_INV) {

 options[current++] = "-I";

 }

 if (m_Weighting == WEIGHT_SIM) {

 options[current++] = "-S";

 }

 while (current < options.length) {

 options[current++] = "";

 }

 return options;

 }

 /** Returns an enumeration describing the available options.

**/

 public Enumeration<Option> listOptions() {

 Vector<Option> newVector = new Vector<Option>(6);

 newVector.addElement(new Option(

 "\tNumber of nearest neighbors (k).\n"

 +"\t(Default = 1)",

 "K", 1,"-K <number of neighbors>"));

 newVector.addElement(new Option(

 "\tThe degree of bias towards uniform (nominal)

class distribution.\n"

 +"\t(Default = 0)",

 "B", 1,"-B <number>"));

 newVector.addElement(new Option(

 "\tHeterogeneous Euclidean-Value Distance

Metric.\n",

 "V", 0, "-V"));

 newVector.addElement(new Option(

 "\tHeterogeneous Manhattan-Overlap

Metric.\n",

 "M", 0, "-M"));

 newVector.addElement(new Option(

 "\tWeight neighbors by inverse of their

squared distance.\n",

 "I", 0, "-I"));

 newVector.addElement(new Option(

 "\tWeight neighbors by similarity.\n",

 "S", 0, "-S"));

 return newVector.elements();

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

269

 /** Vector used to store the neighbors according their

proximity **/

 private Vector<Neighbor> neighbors = new Vector<Neighbor>();

 /** Class that defines a neighbor **/

 protected class Neighbor implements Serializable {

 /**

 * Generated by Eclipse

 */

 private static final long serialVersionUID = -

4185966236010333089L;

 double dist;

 Instance inst;

 int index;

 Neighbor(double dist, Instance inst, int index) {

 this.dist = dist;

 this.inst = inst;

 this.index = index;

 }

 public double getDist() { return dist; }

 public Instance getInst() { return inst; }

 public int getIndex() { return index; }

 }

 /** Initializes the input and output formats. **/

 public boolean setInputFormat(Instances instanceInfo) throws

Exception {

 super.setInputFormat(instanceInfo);

 setOutputFormat(instanceInfo);

 m_Input = instanceInfo;

 return true;

 }

 /** Input an instance for filtering. **/

 public boolean input(Instance instance) {

 if (m_Input == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

 if (m_NewBatch) {

 resetQueue();

 m_NewBatch = false;

 }

 if (isFirstBatchDone()) {

 push(instance);

 return true;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

270

 } else {

 bufferInput(instance);

 return false;

 }

 }

 /** Signify that this batch of input to the filter is finished.

**/

 public boolean batchFinished() throws Exception {

 if (m_Input == null) {

 throw new IllegalStateException("No input instance

format defined");

 }

 //Initializes the vectors and determines the initial

values to calculate the HVDM function

 if (m_Distance == DIST_HVDM) {

 m_StdDev = new double [m_Input.numAttributes()];

 for (int i = 0; i < m_Input.numAttributes(); i++) {

 if (m_Input.attribute(i).isNominal()) {

 m_VetVDM.add(new

double[m_Input.attribute(i).numValues()]);

 m_MatVDM.add(new

double[m_Input.attribute(i).numValues()][m_Input.numClasses()]);

 } else {

 //Calculates the standard deviation for each

attribute

 AttributeStats as =

m_Input.attributeStats(i);

 m_StdDev[i] = as.numericStats.stdDev;

 m_VetVDM.add(new double[0]);

 m_MatVDM.add(new double[0][0]);

 }

 }

 } else {

 m_Min = new double [m_Input.numAttributes()];

 m_Max = new double [m_Input.numAttributes()];

 for (int i=0; i < m_Input.numAttributes(); i++) {

 m_Min[i] = Double.MAX_VALUE;

 m_Max[i] = Double.MIN_VALUE;

 }

 }

 evaluateData();

 //Verify the majority class

 int[] classes = new int[m_Input.numClasses()];

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

271

 m_MajorityClassValue = 0.0;

 int counter = 0;

 for(int i = 0; i < m_Input.numInstances(); i++) {

 classes[(int)m_Input.instance(i).classValue()]++;

 if (classes[(int)m_Input.instance(i).classValue()]

> counter) {

 m_MajorityClassValue =

m_Input.instance(i).classValue();

 counter++;

 }

 }

 //System.out.println(m_MajorityClassValue + ":" +

m_Bigger);

 if (m_BiasToUniformClass > 0.0) {

 m_Proportion = (double)(m_Input.numInstances()-

counter) / counter;

 int aux=0;

 while (m_Proportion < 1/m_BiasToUniformClass

 && aux != m_Input.numInstances()) {

 //System.out.println(m_Input.numInstances() +

":" + counter);

 //System.out.println(m_Proportion + ":" +

1/m_BiasToUniformClass);

 aux = m_Input.numInstances();

 m_InstancesToRemove.clear();

 for(int i = 0; i < m_Input.numInstances();

i++) {

 evaluateInstance(m_Input.instance(i),

i);

 }

 Collections.sort(m_InstancesToRemove);

 for (int i = m_InstancesToRemove.size()-1; i

>= 0; i--) {

 //System.out.println(m_Input.instance(m_InstancesToRemove.eleme

ntAt(i)));

 m_Input.delete(m_InstancesToRemove.elementAt(i));

 }

 counter = 0;

 for(int i = 0; i < m_Input.numInstances();

i++) {

 if (m_Input.instance(i).classValue() ==

m_MajorityClassValue) {

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

272

 counter++;

 }

 }

 m_Proportion =

(double)(m_Input.numInstances()-counter) / counter;

 }

 } else {

 for(int i = 0; i < m_Input.numInstances(); i++) {

 evaluateInstance(m_Input.instance(i), i);

 }

 Collections.sort(m_InstancesToRemove);

 for (int i = m_InstancesToRemove.size()-1; i >= 0;

i--) {

 //System.out.println(m_Input.instance(m_InstancesToRemove.eleme

ntAt(i)));

 m_Input.delete(m_InstancesToRemove.elementAt(i));

 }

 }

 //Convert pending input instances

 for(int i = 0; i < m_Input.numInstances(); i++) {

 push(m_Input.instance(i));

 }

 //Free memory

 flushInput();

 m_NewBatch = true;

 return (numPendingOutput() != 0);

 }

 /** Evaluate a instance to mark instances to remove. **/

 private void evaluateInstance(Instance instance, int index)

throws Exception {

 double classification = estimate(instance);

 if (instance.classValue() == m_MajorityClassValue) {

 if (classification != instance.classValue()

 &&

!m_InstancesToRemove.contains(index)) {

 m_InstancesToRemove.add(index);

 }

 } else {

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

273

 if (classification != instance.classValue()) {

 for(int i=0; i<m_Knn; i++) {

 if

(neighbors.elementAt(i).getInst().classValue() ==

m_MajorityClassValue

 &&

!m_InstancesToRemove.contains(neighbors.elementAt(i).getIndex())) {

 m_InstancesToRemove.add(neighbors.elementAt(i).getIndex());

 }

 }

 }

 }

 }

 /** Estimate values. **/

 public double estimate(Instance instance) throws Exception {

 double dist;

 int i;

 int att = instance.classIndex();

 neighbors.clear();

 m_Bigger = Double.NaN;

 for (int index = 0; index < m_Input.numInstances();

index++) {

 //Current instance

 Instance actualInstance =

(Instance)m_Input.instance(index);

 if (actualInstance.isMissing(att))

 continue;

 dist = distance(instance, actualInstance, att);

 //If the calculated distance is greater than K-th

neighbor yet calculated, returns -1

 if (dist>0) {

 Neighbor v = new Neighbor(dist,

actualInstance, index);

 if (neighbors.size()==0)

 neighbors.add(v);

 else {

 if ((neighbors.size()>=m_Knn))

 i = search(0,m_Knn-1,dist);

 else

 i = search(0,neighbors.size()-

1,dist);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

274

 neighbors.add(i, v);

 }

 if((neighbors.size()>=m_Knn))

 m_Bigger = neighbors.elementAt(m_Knn-

1).getDist();

 }

 }

 return mode(att);

 }

 /** Function that seeks the position where a neighbor should be

inserted into the

 * vector, based on binary search. **/

 public int search(int begin, int end, double value) {

 int center=(int)(begin+end)/2;

 while (begin<=end) {

 center=(int)(begin+end)/2;

 if (neighbors.elementAt(center).getDist() < value)

{

 if (center<neighbors.size()-1 &&

 neighbors.elementAt(center+1).getDist()

>= value){

 return center+1;

 }

 begin = center+1;

 } else if (neighbors.elementAt(center).getDist() >

value) {

 if (center>0 &&

 neighbors.elementAt(center-1).getDist()

<= value) {

 return center;

 }

 end = center-1;

 } else {

 return center;

 }

 }

 if (neighbors.elementAt(center).getDist() < value) {

 return center+1;

 } else {

 return center;

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

275

 }

 /** Searches the training data to find the maximum and minimum

values

 * or the values used in VDM function. **/

 public void evaluateData() {

 //Enumerate instances

 Enumeration<?> enu = m_Input.enumerateInstances();

 while (enu.hasMoreElements()) {

 //Current instances

 Instance trainInstance = (Instance)

enu.nextElement();

 //Searches attributes of the current instance

 for (int i = 0; i < m_Input.numAttributes(); i++) {

 //If the attribute is numeric, evaluates the

min and max

 if ((m_Distance != DIST_HVDM)

 &&

(m_Input.attribute(i).isNumeric())

 && (!trainInstance.isMissing(i)))

{

 if (trainInstance.value(i) < m_Min[i])

 m_Min[i] =

trainInstance.value(i);

 if (trainInstance.value(i) > m_Max[i])

 m_Max[i] =

trainInstance.value(i);

 }

 //If the attribute is nominal and the

distance function is HVDM, counts the number of occurences

 else if ((m_Distance == DIST_HVDM)

 &&

(m_Input.attribute(i).isNominal())

 && (!trainInstance.isMissing(i))

) {

 (m_VetVDM.elementAt(i))[(int)trainInstance.value(i)]++;

 (m_MatVDM.elementAt(i))[(int)trainInstance.value(i)][(int)train

Instance.classValue()]++;

 }

 }

 }

 }

 /** Calculates the distance between two instances. **/

 public double distance(Instance inst1, Instance inst2, int att)

{

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

276

 double dist = 0;

 //Searches attributes of the instance

 for(int i = 0; i < m_Input.numAttributes(); i++) {

 //Do not calculate distance of the attribute att

 if (i == att) {

 continue;

 }

 //If one or both value are missing, sum the maximum

distance

 if (inst1.isMissing(i) || inst2.isMissing(i)) {

 dist += 1;

 } else {

 //Nominal attribute

 if (m_Input.attribute(i).isNominal()) {

 if (m_Distance == DIST_HVDM) {

 if ((int)inst1.value(i) !=

(int)inst2.value(i))

 dist += norm_vdm(inst1,

inst2, i);

 } else {

 if ((int)inst1.value(i) !=

(int)inst2.value(i))

 dist += 1;

 }

 //Numeric attribute

 } else {

 if (m_Distance==DIST_HVDM)

 dist+=norm_diff(inst1, inst2, i);

 else {

 if (!(Double.isNaN(m_Min[i])) &&

!(Utils.eq(m_Max[i], m_Min[i]))) {

 dist+=range_norm_diff(inst1, inst2, i);

 } else {

 dist+=1;

 }

 }

 }

 }

 if (!Double.isNaN(m_Bigger) && dist > m_Bigger)

 return -1;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

277

 }

 return dist;

 }

 /** Calculates the normalized difference between two numeric

values. **/

 public double norm_diff(Instance inst1, Instance inst2, int

att) {

 if (m_StdDev[att]==0) return 1;

 return Math.pow((inst2.value(att) - inst1.value(att)) /

 (4*m_StdDev[att]),2);

 }

 /** Calculates the range normalized difference between two

numeric values. **/

 public double range_norm_diff(Instance inst1, Instance inst2,

int att) {

 double d;

 if (m_Max[att]==m_Min[att]) return 1;

 if (m_Distance == DIST_MANHATTAN) {

 d = Math.abs((inst2.value(att) - inst1.value(att))

/

 (m_Max[att]-m_Min[att]));

 return d;

 } else {

 d = (inst2.value(att) - inst1.value(att)) /

 (m_Max[att]-m_Min[att]);

 return d*d;

 }

 }

 /** Calculates the distance between two nominal values using

the VDM function **/

 public double norm_vdm(Instance inst1, Instance inst2, int att)

{

 int i;

 int ncl =

m_Input.numDistinctValues(m_Input.classIndex());

 double d=0, nx1, nx2;

 double nx1C[] = new double[ncl];

 double nx2C[] = new double[ncl];

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

278

 nx1 = m_VetVDM.elementAt(att)[(int)inst1.value(att)];

 nx2 = m_VetVDM.elementAt(att)[(int)inst2.value(att)];

 nx1C = m_MatVDM.elementAt(att)[(int)inst1.value(att)];

 nx2C = m_MatVDM.elementAt(att)[(int)inst2.value(att)];

 for (i=0;i<ncl;i++) {

 if (nx1>0 && nx2>0) {

 d += Math.pow(((nx1C[i]/nx1) -

 (nx2C[i]/nx2)) , 2.0);

 } else {

 return 1.0;

 }

 }

 //(sqrt(d))^2==d

 return d;

 }

 /** Calculates mode of k-nearest neighbors

 * considering the distance weighting. **/

 public double mode(int att) {

 int i, aux, k=getKnn();

 int n = m_Input.numAttributes();

 double dist=0,mode=0,maior=0;

 boolean out = false;

 boolean zero = false;

 int t =

m_Input.numDistinctValues(m_Input.attribute(att));

 double vet[] = new double[t];

 for (i=0;!out;i++) {

 if (i>=neighbors.size()) {

 out=true;

 continue;

 }

 Neighbor v = neighbors.elementAt(i);

 if (i>=k && (v.getDist()-dist>0.0001)) {

 out = true;

 continue;

 }

 dist = v.getDist();

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

279

 Instance inst = v.getInst();

 aux = (int)inst.value(inst.attribute(att));

 //In this case, if exists neighbors with distance

0, calculates

 //the mode only among them

 if (m_Weighting == WEIGHT_INV) {

 if (!zero && dist==0)

 zero = true;

 if (!zero) {

 vet[aux] += (1/(dist*dist));

 } else if (m_Weighting == WEIGHT_SIM) {

 vet[aux]++;

 } else {

 out = true;

 }

 } else if (m_Weighting == WEIGHT_SIM) {

 vet[aux] += (n-dist);

 } else {

 vet[aux]++;

 }

 if (vet[aux] > maior) {

 maior = vet[aux];

 mode = aux;

 }

 }

 return mode;

 }

 public static void main(String [] argv) {

 try {

 if (Utils.getFlag('b', argv)) {

 Filter.batchFilterFile(new

NeighborhoodCleaning(), argv);

 } else {

 Filter.filterFile(new NeighborhoodCleaning(),

argv);

 }

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

}

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

280

Appendix F

Java codes for Condense Nearest Neighbour (CNN) Class

/**

 * Class Condense Nearest Neighbour (CNN)

 *

**/

package weka.filters.supervised.instance;

import weka.classifiers.Evaluation;

import weka.classifiers.lazy.IBk;

import weka.core.Capabilities;

import weka.core.DistanceFunction;

import weka.core.EuclideanDistance;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.Option;

import weka.core.OptionHandler;

import weka.core.RevisionUtils;

import weka.core.Utils;

import weka.core.Capabilities.Capability;

import weka.filters.Filter;

import weka.filters.SupervisedFilter;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Enumeration;

import java.util.Random;

import java.util.Vector;

public class CNN extends Filter implements SupervisedFilter,

OptionHandler {

 /** The subsample size, percent of original set, default 100%.

*/

 /*

 * protected double m_SampleSizePercent = 100;

 */

 /** The random number generator seed. */

 protected int m_RandomSeed = 1;

 /**

 * The degree of bias towards uniform (nominal) class

distribution. -1 means

 * apply algorithm with no regard to class distribution 0 means

apply the

 * algorithm, but return the selected majority class examples

plus all the

 * minority ones >0 represent the proportion of minority-

majority class

 * example, n majority examples for one minority example

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

281

 */

 protected double m_BiasToUniformClass = 0;

 /**

 * Whether to invert the selection (only if instances are drawn

WITHOUT

 * replacement).

 *

 * @see #m_NoReplacement

 */

 protected boolean m_InvertSelection = false;

 /**

 * Which variant of CNN algorithm is used. Basic means basic

algorithm as

 * presented in Hart67. Other options are tomek, corresponds to

method 2 in

 * Tomek 76.

 */

 protected double variant = -1;

 protected int max, min=0;

 /**

 * Returns a string describing this filter.

 *

 * @return a description of the filter suitable for displaying

in the

 * explorer/experimenter gui

 */

 public String globalInfo() {

 return "Produces a supervised subsample of a dataset

based on Cnn algotirthm "

 + "The original dataset must "

 + "fit entirely in memory. The number of

instances in the generated "

 + "dataset may be specified. The dataset must

have a nominal class "

 + "attribute.";

 }

 /**

 * Returns an enumeration describing the available options.

 *

 * @return an enumeration of all the available options.

 */

 public Enumeration listOptions() {

 Vector result = new Vector();

 result.addElement(new Option(

 "\tSpecify the random number seed (default

1)", "S", 1,

 "-S <num>"));

 result.addElement(new Option(

 "\tThe size of the output dataset, as a

percentage of\n"

 + "\tthe input dataset (default

100)", "Z", 1,

 "-Z <num>"));

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

282

 result

 .addElement(new Option(

 "\tBias factor towards uniform

class distribution.\n"

 + "\t-1 = Cnn will

act regardless class distribution --"

 + " n = indicate the

class distribution bias.\n"

 + "\t(default 0)",

"B", 1, "-B <num>"));

 result.addElement(new Option("\tDisables replacement of

instances\n"

 + "\t(default: with replacement)", "no-

replacement", 0,

 "-no-replacement"));

 result

 .addElement(new Option(

 "\tInverts the selection - only

available with '-no-replacement'.",

 "V", 0, "-V"));

 result.addElement(new Option("\tAlgorithm

modification.\n"

 + "\tbasic = Cnn basic algorithm--"

 + " tomek= tomek link modification.\n" +

"\t(default basic)",

 "M", 1, "-M <basic/tomek>"));

 return result.elements();

 }

 /**

 * Parses a given list of options.

 * <p/>

 *

 * <!-- options-start --> Valid options are:

 * <p/>

 *

 * <pre>

 * -S <num>

 * Specify the random number seed (default 1)

 * </pre>

 *

 * <pre>

 * -Z <num>

 * The size of the output dataset, as a percentage of

 * the input dataset (default 100)

 * </pre>

 *

 * <pre>

 * -B <num>

 * Bias factor towards uniform class distribution.

 * 0 = distribution in input data -- 1 = uniform distribution.

 * (default 0)

 * </pre>

 *

 * <pre>

 * -no-replacement

 * Disables replacement of instances

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

283

 * (default: with replacement)

 * </pre>

 *

 * <pre>

 * -V

 * Inverts the selection - only available with '-no-

replacement'.

 * </pre>

 *

 * <!-- options-end -->

 *

 * @param options

 * the list of options as an array of strings

 * @throws Exception

 * if an option is not supported

 */

 public void setOptions(String[] options) throws Exception {

 String tmpStr;

 tmpStr = Utils.getOption('S', options);

 if (tmpStr.length() != 0)

 setRandomSeed(Integer.parseInt(tmpStr));

 else

 setRandomSeed(1);

 tmpStr = Utils.getOption('B', options);

 if (tmpStr.length() != 0)

 setBiasToUniformClass(Double.parseDouble(tmpStr));

 else

 setBiasToUniformClass(0);

 tmpStr = Utils.getOption('V', options);

 if (tmpStr.length() != 0)

 setVariant(Double.parseDouble(tmpStr));

 else

 setVariant(-1);

 /*

 * tmpStr = Utils.getOption('Z', options); if

(tmpStr.length() != 0)

 * setSampleSizePercent(Double.parseDouble(tmpStr)); else

 * setSampleSizePercent(100);

 */

 /*

 * setNoReplacement(Utils.getFlag("no-replacement",

options));

 *

 * if (getNoReplacement())

setInvertSelection(Utils.getFlag('V',

 * options));

 */

 if (getInputFormat() != null) {

 setInputFormat(getInputFormat());

 }

 }

 /**

 * Gets the current settings of the filter.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

284

 *

 * @return an array of strings suitable for passing to

setOptions

 */

 public String[] getOptions() {

 Vector<String> result;

 result = new Vector<String>();

 result.add("-B");

 result.add("" + getBiasToUniformClass());

 result.add("-S");

 result.add("" + getRandomSeed());

 result.add("-V");

 result.add("" + getVariant());

 /*

 * result.add("-Z"); result.add("" +

getSampleSizePercent());

 */

 /*

 * if (getNoReplacement()) { result.add("-no-

replacement"); if

 * (getInvertSelection()) result.add("-V"); }

 */

 return result.toArray(new String[result.size()]);

 }

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for displaying

in the

 * explorer/experimenter gui

 */

 public String biasToUniformClassTipText() {

 return "Whether to use bias towards a uniform class. A

value of 0 leaves the class "

 + "distribution as-is, a value of 1 ensures

the class distribution is "

 + "uniform in the output data.";

 }

 /**

 * Gets the bias towards a uniform class. A value of 0 leaves

the class

 * distribution as-is, a value of 1 ensures the class

distributions are

 * uniform in the output data.

 *

 * @return the current bias

 */

 public double getBiasToUniformClass() {

 return m_BiasToUniformClass;

 }

 /**

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

285

 * Sets the bias towards a uniform class. A value of 0 leaves

the class

 * distribution as-is, a value of 1 ensures the class

distributions are

 * uniform in the output data.

 *

 * @param newBiasToUniformClass

 * the new bias value, between 0 and 1.

 */

 public void setBiasToUniformClass(double newBiasToUniformClass)

{

 m_BiasToUniformClass = newBiasToUniformClass;

 }

 /**

 * Gets variant value.

 *

 * @return variant.

 */

 public double getVariant() {

 return variant;

 }

 public void setVariant(double var) {

 variant = var;

 }

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for displaying

in the

 * explorer/experimenter gui

 */

 public String randomSeedTipText() {

 return "Sets the random number seed for subsampling.";

 }

 /**

 * Gets the random number seed.

 *

 * @return the random number seed.

 */

 public int getRandomSeed() {

 return m_RandomSeed;

 }

 /**

 * Sets the random number seed.

 *

 * @param newSeed

 * the new random number seed.

 */

 public void setRandomSeed(int newSeed) {

 m_RandomSeed = newSeed;

 }

 /**

 * Returns the tip text for this property.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

286

 *

 * @return tip text for this property suitable for displaying

in the

 * explorer/experimenter gui

 */

 public String sampleSizePercentTipText() {

 return "The subsample size as a percentage of the

original set.";

 }

 /**

 * Gets the subsample size as a percentage of the original set.

 *

 * @return the subsample size

 */

 /*

 * public double getSampleSizePercent() { return

m_SampleSizePercent; }

 */

 /**

 * Sets the size of the subsample, as a percentage of the

original set.

 *

 * @param newSampleSizePercent

 * the subsample set size, between 0 and 100.

 */

 /*

 * public void setSampleSizePercent(double

newSampleSizePercent) {

 * m_SampleSizePercent = newSampleSizePercent; }

 */

 /**

 * Returns the tip text for this property.

 *

 * @return tip text for this property suitable for displaying

in the

 * explorer/experimenter gui

 */

 public String invertSelectionTipText() {

 return "Inverts the selection (only if instances are

drawn WITHOUT replacement).";

 }

 /**

 * Gets whether selection is inverted (only if instances are

drawn WIHTOUT

 * replacement).

 *

 * @return true if the replacement is disabled

 * @see #m_NoReplacement

 */

 public boolean getInvertSelection() {

 return m_InvertSelection;

 }

 /**

 * Sets whether the selection is inverted (only if instances

are drawn

 * WIHTOUT replacement).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

287

 *

 * @param value

 * if true then selection is inverted

 */

 public void setInvertSelection(boolean value) {

 m_InvertSelection = value;

 }

 /**

 * Returns the Capabilities of this filter.

 *

 * @return the capabilities of this object

 * @see Capabilities

 */

 public Capabilities getCapabilities() {

 Capabilities result = super.getCapabilities();

 // attributes

 result.enableAllAttributes();

 result.enable(Capability.MISSING_VALUES);

 // class

 result.enable(Capability.NOMINAL_CLASS);

 return result;

 }

 /**

 * Sets the format of the input instances.

 *

 * @param instanceInfo

 * an Instances object containing the input instance

structure

 * (any instances contained in the object are

ignored - only the

 * structure is required).

 * @return true if the outputFormat may be collected

immediately

 * @throws Exception

 * if the input format can't be set successfully

 */

 public boolean setInputFormat(Instances instanceInfo) throws

Exception {

 super.setInputFormat(instanceInfo);

 setOutputFormat(instanceInfo);

 return true;

 }

 /**

 * Input an instance for filtering. Filter requires all

training instances

 * be read before producing output.

 *

 * @param instance

 * the input instance

 * @return true if the filtered instance may now be collected

with output().

 * @throws IllegalStateException

 * if no input structure has been defined

 */

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

288

 public boolean input(Instance instance) {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance

format defined");

 }

 if (m_NewBatch) {

 resetQueue();

 m_NewBatch = false;

 }

 if (isFirstBatchDone()) {

 push(instance);

 return true;

 } else {

 bufferInput(instance);

 return false;

 }

 }

 /**

 * Signify that this batch of input to the filter is finished.

If the filter

 * requires all instances prior to filtering, output() may now

be called to

 * retrieve the filtered instances.

 *

 * @return true if there are instances pending output

 * @throws Exception

 * @throws IllegalStateException

 * if no input structure has been defined

 */

 public boolean batchFinished() throws Exception {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance

format defined");

 }

 if (!isFirstBatchDone()) {

 // Do the subsample, and clear the input instances.

 createSubsample();

 }

 flushInput();

 m_NewBatch = true;

 m_FirstBatchDone = true;

 return (numPendingOutput() != 0);

 }

 @SuppressWarnings("unchecked")

 protected void createSubsample() throws Exception {

 // Sort according to class attribute, instances with

missing values at the end.

 getInputFormat().sort(getInputFormat().classIndex());

 // Create an index of where each class value starts

 int[] classIndices = new

int[getInputFormat().numClasses() + 1];

 int currentClass = 0;

 classIndices[currentClass] = 0;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

289

 for (int i = 0; i < getInputFormat().numInstances(); i++)

{

 Instance current = getInputFormat().instance(i);

 if (current.classIsMissing()) {

 for (int j = currentClass + 1; j <

classIndices.length; j++) {

 classIndices[j] = i;

 }

 break;

 } else if (current.classValue() != currentClass) {

 for (int j = currentClass + 1; j <=

current.classValue(); j++) {

 classIndices[j] = i;

 }

 currentClass = (int) current.classValue();

 }

 }//end for

 if (currentClass <= getInputFormat().numClasses()) {

 for (int j = currentClass + 1; j <

classIndices.length; j++) {

 classIndices[j] =

getInputFormat().numInstances();

 }

 }

 Vector<Integer>[] indices = new

Vector[classIndices.length - 1];

 Vector<Integer>[] indicesNew = new

Vector[classIndices.length - 1];

 // generate list of all indices to draw from, indices[0]

list the indexes of first class,

 //indices[1]lists indexes of the second class. IndicesNew

is empty and has the same capacity of indeces

 for (int i = 0; i < classIndices.length - 1; i++) {

 indices[i] = new Vector<Integer>(classIndices[i +

1]

 - classIndices[i]);

 indicesNew[i] = new

Vector<Integer>(indices[i].capacity());

 for (int n = classIndices[i]; n < classIndices[i +

1]; n++) {

 indices[i].add(n);

 }

 }//end for

 cnn(indices, indicesNew);

 }

 //work for just two classes

 protected void cnn(Vector<Integer>[] indices, Vector<Integer>[]

indicesNew)

 throws Exception {

 double classMinority = 0;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

290

 int min = 0, max = 0;

 indices[0].trimToSize();

 indices[1].trimToSize();

 // indicate the index of maiority and minority class

 if (indices[0].size() > indices[1].size()) {

 min = 1;

 max = 0;

 } else {

 min = 0;

 max = 1;

 }

 //store the class value of minority class

 classMinority =

getInputFormat().instance(indices[min].get(1))

 .classValue();

 Instances original = new Instances(getInputFormat());

 Instances temp = new Instances(getInputFormat());

 temp.delete();

 Instances subsample = new Instances(getInputFormat());

 subsample.delete();

 ArrayList<Instance> majoritySample = new

ArrayList<Instance>();

 Instance in;

 int count;

 int random;

 boolean goon = true;

 while (goon) {

 random = new

Random().nextInt(original.numInstances());

 in = original.instance(random);

 original.delete(random);

 subsample.add(in);

 if (in.classValue() != classMinority)

 majoritySample.add(in);

 count = 0;

 while (original.numInstances() > 0) {

 random = new

Random().nextInt(original.numInstances());

 in = original.instance(random);

 IBk ibk = new IBk(1);

 ibk.buildClassifier(subsample);

 Evaluation eval = new Evaluation(subsample);

 double ev = eval.evaluateModelOnce(ibk, in);

 if (ev == in.classValue()) {

 temp.add(in);

 } else {

 subsample.add(in);

 count++;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

291

 if (in.classValue() != classMinority)

 majoritySample.add(in);

 }

 original.delete(random);

 } // end while

 if (count == 0)

 goon = false;

 else {

 original = new Instances(temp);

 temp.delete();

 }

 }// end external while

 // apply CNN with no regard to class distribution

 if (variant < 0) {

 for (int k = 0; k < subsample.numInstances(); k++)

{

 Instance out = new

Instance(subsample.instance(k));

 push((Instance) out.copy());

 }

 //apply CNN all minority from the original dataset plus all

majority after CNN

 } else if (variant == 0) {

 for (int k = 0; k < subsample.numInstances(); k++)

{

 Instance out = new

Instance(subsample.instance(k));

 out.setDataset(getInputFormat());

 if (out.classValue() != classMinority)

 push((Instance) out.copy());

 }

 for (int k = 0; k < indices[min].size(); k++) {

 Instance out = new

Instance(getInputFormat().instance(

 indices[min].get(k)));

 push((Instance) out.copy());

 }

 //apply CNN all minority from the original dataset plus

majority but following a proportion

 } else if (variant > 0) {

 int size = (int) (indices[min].size() *

m_BiasToUniformClass);

 if (majoritySample.size() >= size) {

 for (int k = majoritySample.size() - 1; k >

majoritySample

 .size()

 - size - 1; k--) {

 push((Instance)

majoritySample.get(k).copy());

 }

 for (int k = 0; k < indices[min].size(); k++)

{

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

292

 Instance out = new

Instance(getInputFormat().instance(

 indices[min].get(k)));

 push((Instance) out.copy());

 }

 } else {

 for (int k = 0; k < subsample.numInstances();

k++) {

 Instance out = new

Instance(subsample.instance(k));

 out.setDataset(getInputFormat());

 if (out.classValue() != classMinority)

 push((Instance) out.copy());

 }

 for (int k = 0; k < indices[min].size(); k++)

{

 Instance out = new

Instance(getInputFormat().instance(

 indices[min].get(k)));

 push((Instance) out.copy());

 }

 }

 }

 }

 public String getRevision() {

 // TODO Auto-generated method stub

 return null;

 }

 public static void main(String[] args) {

 CNN cnn = new CNN();

 //cnn.setBiasToUniformClass(1);

 //cnn.setVariant("tomek");

 try {

 cnn.setOptions(weka.core.Utils.splitOptions("-M

tomek -B 0"));

 } catch (Exception e3) {

 // TODO Auto-generated catch block

 e3.printStackTrace();

 }

 Instances data = null;

 Instances newData = null;

 try {

 data = new Instances(new BufferedReader(new

FileReader(new File(

 args[0]))));

 } catch (FileNotFoundException e2) {

 // TODO Auto-generated catch block

 e2.printStackTrace();

 } catch (IOException e2) {

 // TODO Auto-generated catch block

 e2.printStackTrace();

 }

 data.setClassIndex(data.numAttributes() - 1);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

293

 // System.out.println("data n instances " +

data.numInstances());

 try {

 cnn.setInputFormat(data);

 } catch (Exception e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 try {

 newData = Filter.useFilter(data, cnn);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 BufferedWriter br = null;

 try {

 br = new BufferedWriter(new

FileWriter("CnnOutput.arff"));

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 //System.out.println(data.numInstances());

 // System.out.println("dataset size after sampling:

"+newData.numInstances());

 try {

 br.write(newData.toString());

 br.close();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 // System.out.println(newData.attributeStats(100));

 }

}

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

294

Appendix G

Java codes for Random Under Sampling (RUS) Class

/*

 * Class Random Under-sampling

*

 */

package weka.filters.supervised.instance;

import weka.core.Capabilities;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.Option;

import weka.core.OptionHandler;

import weka.core.RevisionUtils;

import weka.core.UnassignedClassException;

import weka.core.UnsupportedClassTypeException;

import weka.core.Utils;

import weka.core.Capabilities.Capability;

import weka.filters.Filter;

import weka.filters.SupervisedFilter;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Random;

import java.util.Vector;

/**

 <!-- globalinfo-start -->

 * Produces a random subsample of a dataset. The original dataset

must fit entirely in memory. This filter allows you to specify the

maximum "spread" between the rarest and most common class. For

example, you may specify that there be at most a 2:1 difference in

class frequencies. When used in batch mode, subsequent batches are

NOT resampled.

 * <p/>

 <!-- globalinfo-end -->

 *

 <!-- options-start -->

 * Valid options are: <p/>

 *

 * <pre> -S <num>

 * Specify the random number seed (default 1)</pre>

 *

 * <pre> -M <num>

 * The maximum class distribution spread.

 * 0 = no maximum spread, 1 = uniform distribution, 10 = allow at

most

 * a 10:1 ratio between the classes (default 0)</pre>

 *

 * <pre> -W

 * Adjust weights so that total weight per class is maintained.

 * Individual instance weighting is not preserved. (default no

 * weights adjustment</pre>

 *

 * <pre> -X <num>

 * The maximum count for any class value (default 0 = unlimited).

 * </pre>

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

295

 *

 <!-- options-end -->

 **/

public class RUS

 extends Filter

 implements SupervisedFilter, OptionHandler {

 /** for serialization */

 static final long serialVersionUID = -3947033795243930016L;

 /** The random number generator seed */

 private int m_RandomSeed = 1;

 /** The maximum count of any class */

 private int m_MaxCount;

 /** True if the first batch has been done */

 private double m_DistributionSpread = 0;

 /**

 * True if instance weights will be adjusted to maintain

 * total weight per class.

 */

 private boolean m_AdjustWeights = false;

 /**

 * Returns a string describing this filter

 *

 * @return a description of the filter suitable for

 * displaying in the explorer/experimenter gui

 */

 public String globalInfo() {

 return "Produces a random subsample of a dataset. The original

dataset must "

 + "fit entirely in memory. This filter allows you to specify

the maximum "

 + "\"spread\" between the rarest and most common class. For

example, you may "

 + "specify that there be at most a 2:1 difference in class

frequencies. "

 + "When used in batch mode, subsequent batches are NOT

resampled.";

 }

 /**

 * Returns the tip text for this property

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String adjustWeightsTipText() {

 return "Wether instance weights will be adjusted to maintain

total weight per "

 + "class.";

 }

 /**

 * Returns true if instance weights will be adjusted to maintain

 * total weight per class.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

296

 *

 * @return true if instance weights will be adjusted to maintain

 * total weight per class.

 */

 public boolean getAdjustWeights() {

 return m_AdjustWeights;

 }

 /**

 * Sets whether the instance weights will be adjusted to maintain

 * total weight per class.

 *

 * @param newAdjustWeights whether to adjust weights

 */

 public void setAdjustWeights(boolean newAdjustWeights) {

 m_AdjustWeights = newAdjustWeights;

 }

 /**

 * Returns an enumeration describing the available options.

 *

 * @return an enumeration of all the available options.

 */

 public Enumeration listOptions() {

 Vector newVector = new Vector(4);

 newVector.addElement(new Option(

 "\tSpecify the random number seed (default 1)",

 "S", 1, "-S <num>"));

 newVector.addElement(new Option(

 "\tThe maximum class distribution spread.\n"

 +"\t0 = no maximum spread, 1 = uniform distribution, 10

= allow at most\n"

 +"\ta 10:1 ratio between the classes (default 0)",

 "M", 1, "-M <num>"));

 newVector.addElement(new Option(

 "\tAdjust weights so that total weight per class is

maintained.\n"

 +"\tIndividual instance weighting is not preserved.

(default no\n"

 +"\tweights adjustment",

 "W", 0, "-W"));

 newVector.addElement(new Option(

 "\tThe maximum count for any class value (default 0 =

unlimited).\n",

 "X", 0, "-X <num>"));

 return newVector.elements();

 }

 /**

 * Parses a given list of options. <p/>

 *

 <!-- options-start -->

 * Valid options are: <p/>

 *

 * <pre> -S <num>

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

297

 * Specify the random number seed (default 1)</pre>

 *

 * <pre> -M <num>

 * The maximum class distribution spread.

 * 0 = no maximum spread, 1 = uniform distribution, 10 = allow at

most

 * a 10:1 ratio between the classes (default 0)</pre>

 *

 * <pre> -W

 * Adjust weights so that total weight per class is maintained.

 * Individual instance weighting is not preserved. (default no

 * weights adjustment</pre>

 *

 * <pre> -X <num>

 * The maximum count for any class value (default 0 = unlimited).

 * </pre>

 *

 <!-- options-end -->

 *

 * @param options the list of options as an array of strings

 * @throws Exception if an option is not supported

 */

 public void setOptions(String[] options) throws Exception {

 String seedString = Utils.getOption('S', options);

 if (seedString.length() != 0) {

 setRandomSeed(Integer.parseInt(seedString));

 } else {

 setRandomSeed(1);

 }

 String maxString = Utils.getOption('M', options);

 if (maxString.length() != 0) {

 setDistributionSpread(Double.valueOf(maxString).doubleValue());

 } else {

 setDistributionSpread(0);

 }

 String maxCount = Utils.getOption('X', options);

 if (maxCount.length() != 0) {

 setMaxCount(Double.valueOf(maxCount).doubleValue());

 } else {

 setMaxCount(0);

 }

 setAdjustWeights(Utils.getFlag('W', options));

 if (getInputFormat() != null) {

 setInputFormat(getInputFormat());

 }

 }

 /**

 * Gets the current settings of the filter.

 *

 * @return an array of strings suitable for passing to setOptions

 */

 public String [] getOptions() {

 String [] options = new String [7];

 int current = 0;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

298

 options[current++] = "-M";

 options[current++] = "" + getDistributionSpread();

 options[current++] = "-X";

 options[current++] = "" + getMaxCount();

 options[current++] = "-S";

 options[current++] = "" + getRandomSeed();

 if (getAdjustWeights()) {

 options[current++] = "-W";

 }

 while (current < options.length) {

 options[current++] = "";

 }

 return options;

 }

 /**

 * Returns the tip text for this property

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String distributionSpreadTipText() {

 return "The maximum class distribution spread. "

 + "(0 = no maximum spread, 1 = uniform distribution, 10 = allow

at most a "

 + "10:1 ratio between the classes).";

 }

 /**

 * Sets the value for the distribution spread

 *

 * @param spread the new distribution spread

 */

 public void setDistributionSpread(double spread) {

 m_DistributionSpread = spread;

 }

 /**

 * Gets the value for the distribution spread

 *

 * @return the distribution spread

 */

 public double getDistributionSpread() {

 return m_DistributionSpread;

 }

 /**

 * Returns the tip text for this property

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String maxCountTipText() {

 return "The maximum count for any class value (0 = unlimited).";

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

299

 }

 /**

 * Sets the value for the max count

 *

 * @param maxcount the new max count

 */

 public void setMaxCount(double maxcount) {

 m_MaxCount = (int)maxcount;

 }

 /**

 * Gets the value for the max count

 *

 * @return the max count

 */

 public double getMaxCount() {

 return m_MaxCount;

 }

 /**

 * Returns the tip text for this property

 *

 * @return tip text for this property suitable for

 * displaying in the explorer/experimenter gui

 */

 public String randomSeedTipText() {

 return "Sets the random number seed for subsampling.";

 }

 /**

 * Gets the random number seed.

 *

 * @return the random number seed.

 */

 public int getRandomSeed() {

 return m_RandomSeed;

 }

 /**

 * Sets the random number seed.

 *

 * @param newSeed the new random number seed.

 */

 public void setRandomSeed(int newSeed) {

 m_RandomSeed = newSeed;

 }

 /**

 * Returns the Capabilities of this filter.

 *

 * @return the capabilities of this object

 * @see Capabilities

 */

 public Capabilities getCapabilities() {

 Capabilities result = super.getCapabilities();

 result.disableAll();

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

300

 // attributes

 result.enableAllAttributes();

 result.enable(Capability.MISSING_VALUES);

 // class

 result.enable(Capability.NOMINAL_CLASS);

 return result;

 }

 /**

 * Sets the format of the input instances.

 *

 * @param instanceInfo an Instances object containing the input

 * instance structure (any instances contained in the object are

 * ignored - only the structure is required).

 * @return true if the outputFormat may be collected immediately

 * @throws UnassignedClassException if no class attribute has been

set.

 * @throws UnsupportedClassTypeException if the class attribute

 * is not nominal.

 */

 public boolean setInputFormat(Instances instanceInfo)

 throws Exception {

 super.setInputFormat(instanceInfo);

 setOutputFormat(instanceInfo);

 return true;

 }

 /**

 * Input an instance for filtering. Filter requires all

 * training instances be read before producing output.

 *

 * @param instance the input instance

 * @return true if the filtered instance may now be

 * collected with output().

 * @throws IllegalStateException if no input structure has been

defined

 */

 public boolean input(Instance instance) {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

 if (m_NewBatch) {

 resetQueue();

 m_NewBatch = false;

 }

 if (isFirstBatchDone()) {

 push(instance);

 return true;

 } else {

 bufferInput(instance);

 return false;

 }

 }

 /**

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

301

 * Signify that this batch of input to the filter is finished.

 * If the filter requires all instances prior to filtering,

 * output() may now be called to retrieve the filtered instances.

 *

 * @return true if there are instances pending output

 * @throws IllegalStateException if no input structure has been

defined

 */

 public boolean batchFinished() {

 if (getInputFormat() == null) {

 throw new IllegalStateException("No input instance format

defined");

 }

 if (!isFirstBatchDone()) {

 // Do the subsample, and clear the input instances.

 createSubsample();

 }

 flushInput();

 m_NewBatch = true;

 m_FirstBatchDone = true;

 return (numPendingOutput() != 0);

 }

 /**

 * Creates a subsample of the current set of input instances. The

output

 * instances are pushed onto the output queue for collection.

 */

 private void createSubsample() {

 int classI = getInputFormat().classIndex();

 // Sort according to class attribute.

 getInputFormat().sort(classI);

 // Determine where each class starts in the sorted dataset

 int [] classIndices = getClassIndices();

 // Get the existing class distribution

 int [] counts = new int [getInputFormat().numClasses()];

 double [] weights = new double [getInputFormat().numClasses()];

 int min = -1;

 for (int i = 0; i < getInputFormat().numInstances(); i++) {

 Instance current = getInputFormat().instance(i);

 if (current.classIsMissing() == false) {

 counts[(int)current.classValue()]++;

 weights[(int)current.classValue()]+= current.weight();

 }

 }

 // Convert from total weight to average weight

 for (int i = 0; i < counts.length; i++) {

 if (counts[i] > 0) {

 weights[i] = weights[i] / counts[i];

 }

 /*

 System.err.println("Class:" + i + " " +

getInputFormat().classAttribute().value(i)

 + " Count:" + counts[i]

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

302

 + " Total:" + weights[i] * counts[i]

 + " Avg:" + weights[i]);

 */

 }

 // find the class with the minimum number of instances

 int minIndex = -1;

 for (int i = 0; i < counts.length; i++) {

 if ((min < 0) && (counts[i] > 0)) {

 min = counts[i];

 minIndex = i;

 } else if ((counts[i] < min) && (counts[i] > 0)) {

 min = counts[i];

 minIndex = i;

 }

 }

 if (min < 0) {

 System.err.println("SpreadSubsample: *warning* none of the

classes have any values in them.");

 return;

 }

 // determine the new distribution

 int [] new_counts = new int [getInputFormat().numClasses()];

 for (int i = 0; i < counts.length; i++) {

 new_counts[i] = (int)Math.abs(Math.min(counts[i],

 min *

m_DistributionSpread));

 if (i == minIndex) {

 if (m_DistributionSpread > 0 && m_DistributionSpread < 1.0) {

 // don't undersample the minority class!

 new_counts[i] = counts[i];

 }

 }

 if (m_DistributionSpread == 0) {

 new_counts[i] = counts[i];

 }

 if (m_MaxCount > 0) {

 new_counts[i] = Math.min(new_counts[i], m_MaxCount);

 }

 }

 // Sample without replacement

 Random random = new Random(m_RandomSeed);

 Hashtable t = new Hashtable();

 for (int j = 0; j < new_counts.length; j++) {

 double newWeight = 1.0;

 if (m_AdjustWeights && (new_counts[j] > 0)) {

 newWeight = weights[j] * counts[j] / new_counts[j];

 /*

 System.err.println("Class:" + j + " " +

getInputFormat().classAttribute().value(j)

 + " Count:" + counts[j]

 + " Total:" + weights[j] * counts[j]

 + " Avg:" + weights[j]

 + " NewCount:" + new_counts[j]

 + " NewAvg:" + newWeight);

 */

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

303

 for (int k = 0; k < new_counts[j]; k++) {

 boolean ok = false;

 do {

 int index = classIndices[j] + (Math.abs(random.nextInt())

 % (classIndices[j + 1] -

classIndices[j])) ;

 // Have we used this instance before?

 if (t.get("" + index) == null) {

 // if not, add it to the hashtable and use it

 t.put("" + index, "");

 ok = true;

 if(index >= 0) {

 Instance newInst =

(Instance)getInputFormat().instance(index).copy();

 if (m_AdjustWeights) {

 newInst.setWeight(newWeight);

 }

 push(newInst);

 }

 }

 } while (!ok);

 }

 }

 }

 /**

 * Creates an index containing the position where each class starts

in

 * the getInputFormat(). m_InputFormat must be sorted on the class

attribute.

 *

 * @return the positions

 */

 private int[] getClassIndices() {

 // Create an index of where each class value starts

 int [] classIndices = new int [getInputFormat().numClasses() +

1];

 int currentClass = 0;

 classIndices[currentClass] = 0;

 for (int i = 0; i < getInputFormat().numInstances(); i++) {

 Instance current = getInputFormat().instance(i);

 if (current.classIsMissing()) {

 for (int j = currentClass + 1; j < classIndices.length; j++)

{

 classIndices[j] = i;

 }

 break;

 } else if (current.classValue() != currentClass) {

 for (int j = currentClass + 1; j <= current.classValue();

j++) {

 classIndices[j] = i;

 }

 currentClass = (int) current.classValue();

 }

 }

 if (currentClass <= getInputFormat().numClasses()) {

 for (int j = currentClass + 1; j < classIndices.length; j++) {

 classIndices[j] = getInputFormat().numInstances();

 }

 }

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

304

 return classIndices;

 }

 /**

 * Returns the revision string.

 *

 * @return the revision

 */

 public String getRevision() {

 return RevisionUtils.extract("$Revision: 5542 $");

 }

 /**

 * Main method for testing this class.

 *

 * @param argv should contain arguments to the filter:

 * use -h for help

 */

 public static void main(String [] argv) {

 runFilter(new SpreadSubsample(), argv);

 }

}

