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General Introduction

Analysis of variance (ANOVA) represents a set ofdels that can be fit
to data, and also a set of methods that can be tesstimmarize an
existing fitted model.

Analysis of variance is particularly afifective tool for analyzing highly

structured experimental data (in agriculture, nplatitreatments applied to

different batches of animals or crops; in psychologyltifactorial

experiments manipulating several independent ex@ial conditions
and applied to groups of people; industrial experita in which multiple

factors can be altered afféirent times and in fferent locations).

At the end of this course, students should be table
1. design a simple layout for experimental data.
2. solve simple analysis of variance data.

3. conduct simple statistical tests and carry out rerfees on
experimental data.

4. carry out simple research problems involving experital data.



LECTURE ONE

Overview of Experimentation

Introduction

Analysis of variance (ANOVA) represents a set ofdels that can be fit
to data, and also a set of methods that can be tessdmmarize an
existing fitted model. We shall first consider AN@Vas it applies to

classical linear models (the context for which asaoriginally devised;

Fisher, 1925) and then discuss how ANOVA has beeended to

generalized linear models and multilevel modelsalgsis of variance is
particularly effective tool for analyzing highlyrsttured experimental
data (in agriculture, multiple treatments applieddifferent batches of
animals or crops; in psychology, multi-factoriapeximents manipulating
several independent experimental conditions andiezppo groups of

people; industrial experiments in which multiplettars can be altered at
different times and in different locations).

Objectives
At the end of this lecture, you should be able to
1. have a knowledge of experimentation.
2. learn about the basic principles of experimentation

3. understand what the completely randomized desid®D(Cis all
about.

Pre Test
1. What is experimentation?
2. What are the principles of experimentation?



CONTENT

In statistics, analysis of variance (ANOVA) is alection of statistical
models, and their associated procedures, in whielobserved variance in
a particular variable is partitioned into composeattributable to different
sources of variation. In its simplest form ANOVAoprdes a statistical
test of whether or not the means of several grangsall equal, and
therefore generalizdastest to more than two groups. Doing multiple two-
sample t-tests would result in an increased chahcemmitting a type |
error. For this reason, ANOVAs are useful in compartwo, three or
more means.

Basic Principles

The basic principles of experimental designs aredoaization,
replication and local control. These principles mak valid test of
significance possible. Each of them is describddvine

1. Randomization: The first principle of an experimental design is
randomization, which is a random process of assggtieatments
of the experimental units. The random process esplhat every
possible allotment of treatment has the same pilityabAn
experimental unit is the smallest division of theperimental
condition whose effect is to be measured and coadpafhe
purpose of randomization is to remove bias andratbearces of
extraneous variation or external factors, whichrarecontrollable.
Another advantage of randomization (accompanieteplication)
is that it forms the basis of any valid statistitast. Hence the
treatment. Must be assigned at random to the expetal units.
Randomization is usually done by drawing numbegad< from a
well-shuffled pack of cards; or by drawing numbebadls from a
well-shaken container or by using tables of rancombers.

2. Replication: The second principle of an experimental design is
replication; which is a repetition of the basic exment. In other
words, it is a complete run for all the treatmenotbe tested in the
experiment. In all experiments, some variation mraduced
because of the fact that the experimental unith sscindividuals
or plots of land in agricultural experiments canbet physically
identical. This type of variation can be removedusing a number



of experimental units. We therefore perform theesipent more

than once, i.e. we have repeated the basic exparimén

individual repetition is called a replicate. Thenmer of the shape

and the size of replicates depend upon the natdrehe

experimental material. A replication is used

i. To secure more accurate estimate of the experiinenta, a
term which represents the difference that woulalbeerved if
the same treatments were applied several timdgeteame

ii. To decrease the experimental error and therebyndoease
precision which is a measure of the variability tife
experimental error and;

iii. To obtain more precise estimate of the mean eftdca
treatment.

Local control: It has been observed that all experiments soofrce
variation are not removed by randomization andicapbn. These
necessities a refinement in the experimental tegkiln other
words, we need to choose a design in such a mahagerall
extraneous sources of variation are brought undetral. For this
purpose, we make use of local control, a term meigrto the
amount of balancing, blocking and grouping of tlx@eximental
unit in such a way that the result is a balancedngement of the
treatments. Blocking means that similar experinmemtits shows
be collected together to form a relatively homogersegroup. A
block is also a replicate. The main purpose ofptfieciple of local
control is to increase the efficiency of an expermal design by
decreasing the experimental error. The point toereber here is
that the term “local control” should not be confdiseth the word
“control”. The word “control” in an experimental sign is used
for a treatment.

Completely Randomised Design (CRD)

A completely randomized (CR) design, which is timapdest type of the
basic designs, may be defined as a design in wthiehtreatments are
assigned to the experimental units completely adeoen, that is the
randomization is done without any restrictions. Tesign is completely
flexible. Any number of treatments may be usedrédwer, the number



of units per treatment needs to be equal. A comlyleandomized design
is considered to be more useful in situations where

i. The experimental units are homogeneous

ii. The experiments are small such as laboratory eqnjsrand

iii. Some experimental units are likely to be destrogedo fail to
respond.

Experimental layout

The layout of an experiment is the actual placenoéribhe treatments of
the experimental units, which may pertain to tinspace or type of
material. Suppose we have k treatments and therimyg@@al material is
divided into n-experimental units. We shall therigs the k-treatments at
random to the n-experimental units in such a waat the treatment
. ZTJ' =n
T;(G=123,..K js applied”; times, with . When each
treatment is applied the same number of times, then
Zr}-. =rE=n
Ty=Tz=""=7T=7 and . Usually, each treatment is
applied (or replicated) and equal number of times.

An example of the experimental layout for a cortgllerandomized

design (CRD) using four treatmenis, 5 , €  andD , each replicated 3
times, is shown below:

Table 1.1 Table 1.2

c | A B D D | D A c

C |B c

L
™y

B D B

A |D D B c | B A A

The result or response of a treatment, which neg lbeal yield, the
gain in weight, the gain in weight, the ability,daso on, is generally

called yield and is represented by the letter

In a completely randomized design, there is omlg primary factor
under consideration in the experiment. The tesjestd are assigned to
treatment levels of the primary factor at random.
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Advantages of a CRD

1.

2.
3.

Very flexible design (i.e. number of treatments amglicates is
only limited by the number of experimental units)

Statistical analysis is simple compared to othaigies

Loss of information due to the large number of éegrof freedom
for the error source of variation.

Disadvantages of a CRD

1.

if experimental units are not homogeneous and yail tb
minimize this variation using blocking, there mag b loss of
precision.

Usually the least efficient design unless experit@ennits are
homogeneous

Not suited for a large number of treatments

Mathematical Model for a CRD
Vii=u4T; +5;

&J

Wherelij is the/ th observation of thé th treatment,

M is the population/grand mean

T is the treatment effect of thieth treatment
and¥ij jis the random errgrNID(0, o%)

Example 1.1
Given the following data

REPLICATE TREATMENTS

1 A B c

2 23 42 a7
3 31 47 43
4 33 34 39

Test for the significance of the treatment effett® = 5%



Solution
The steps to follow are

Write hypotheses to be tested
Calculate correction factor

Complete the ANOVA table

ON ok WNE

ANOVA TABLE (SKETCH) FOR CRD

Calculate total sum of squar&sT)
Calculate treatment sum of squatggt)
Calculate error sum of squaré=e)

Look up to thef -table or use th# -value
Calculate coefficient of variation

Source of variation df Ss MS F

Treatment t—1 S5t Sst A
t—1 B

SSt

Error Hr e SSe tr —1)

Total tr —1 SST

Solution

Hypothesis

Ho : treatment effects are not significant qf th = b = |3
H, : treatment effects are significant on: l; # o # U3

or H: w # pfor at least one i.



Replicate A B [ Y;

1 23 42 47 112
36 26 43 105
31 a7 43 121
33 34 39 106
123 149 172 144

=k wN

Y2 442*
CF =N =712 =16428

S5T =x3xvv* CF
=23% 427 47% 36% 26% 437 317 477 437 337 347  39%_ 15408
=17108 — 16428 = 680

Yi?
sst =15 CF

1237 + 149 + 1722
= ry CF

=16278.5 16428
=300.5
55e = 55T _ 55t

= 680 - 300.5
=379.5




ANOVA TABLE (CRD) for the problem

Source of variation | df Ss MS F
Treatment 2 300.5 150.25 3.563
Error 9 379.5 42.167

Total 11 680.0

Frap = F(vi, Vo, @ ) = F(2, 9, 5%) = 4.26
Decision rule: Reject §f Feq > Rapn, Otherwise acceptH

Conclusion: H cannot be rejected at 5% level of significanceabise kp
> F.a.In other words, the treatment performs the same way

Example 1.2

Given the following data

REPLICATE TREATMENT

1 2.0 1.7 2.0 2.1
2 2.2 1.9 2.4 2.2
3 1.8 15 2.7 2.2
4 2.3 2.5 1.9
5 1.7 2.4

Test for the significance of the treatment

2.
3.

Summary
In this lecture, you have been able to
1.

understand the concept of experimentation.

learn about the basic principles of experimeéntat
learn about the concept of the completely randedndesign

(CRD).

learn how to develop a simple CRD layout.
solve some simple problems involving a CRD.




Post Test

1.

arMwn

What is experimentation?

Discuss the basic principles of experimentation.

What is a completely randomized design (CRD)?

What are the advantages and disadvantages GRbB&

In a study, subjects are randomly assigned &abrihree groups:

control, experiment 4 | or experiment B .  After treatment,
achievement test scores for the three groups anmpae@d. What
is the appropriate statistical test for this corgmar?

Dr. Martha Bergen studied attitudes toward caepenhanced
learning for seminary education among full-time fpssors at
Southwestern Baptist Theological Seminary in 198®he of her
hypotheses was that there would be a “significafierénce [in
attitude toward computer-enhanced learning] betweite
professors in the religious education, theology ehurch music
schools.” Scores were generated from an attitudke $ar. Bergen
developed for the study. The mean attitude scaveghie three
schools were 118 (highest) in the Religious Edocataculty, 117
in the church music faculty, and 114 (lowest) ir ttiheology
faculty. But were these differences in attitudengigant? Here is
the ANOVA table she generated:

SOURCE OF SUM OF
VARIATION SQUARES df M5 F P
Between 323.387 2 161.694 .472 .626
Within 25018.652 73 342.721

Total 25342.039 75

Using the problem and printout above, answer thhesstions:
a. Isthef -ratio significant? Explain why you say this.

b. Explain thisF -ratio in terms of the three group means: 114,
117, 118.

c. How do you explain the differences in the schoochmscores?



d. Dr. Bergen did not apply multiple comparisons tdetsee if
any single mean was significantly different frome ththers.
Why? Was she correct in doing so?

7. A report on an investigation includes the folilogv information
related to the influence of several mouth washdsrigth of time
that breath remains "great".

Analysis of Variance

Source df 55 MS
Treatments 3 500 166.67
Error 196 19,600 100
Total 199 20,100

Means (hours that breath remained "great")
Whiskey 12

Brand X 11

Water 9

Brand L 8

F(critical) (.05) = 3.92 with 196 df

You are to develop plans for a follow-up study. phrticular, you
are to re-examine the difference between Brand KBunand L. In
looking at methods for estimating number of refiésaneeded you
find that you need values for -

1. the size of the difference to be detected
2. the anticipated standard deviation
3. the anticipated variance

On the basis of the above report what values will yse for each
of the above 3 items? Why?

8. An investigator randomly assigns 30 college stisl into three
equal size study groups (early morning, afterndatg night) to
determine if the period of the day at which peogtiedy has an

10



effect on their retention. The students live in antoolled
environment for one week, on the third day of whitie
experimental treatment (study of predetermined tena) is
administered. The seventh day the investiga&is tlr retention,
and in computing his analysis he sees that his Mi@mgroups is
larger than his MS among groups. What is the indinaof this
result?

a. An error in calculation was made.

b. There was more than the expected variability betvggeups.

c. There was more variability between subjects witiie same
group than there was between groups.

d. That there should have been additional controls the
experiment.

References
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LECTURE TWO

The Basic Principles of Analysis of Variance

Introduction

The aim of this lecture is to look at an exampleome detail. This will be
done by actually working through the numerical nagbs, and relating it
to the output. Once the origin of the output hasnbderived from first
principles, it will not be necessary to do thisiagd his section will also
provide you with your first introduction to modekhaulae.

Objectives

At the end of this lecture, you should be able to
1. explain the concept @nalysis of variance (ANOVA).
2. understanding the concepts of partitioning thealality.
3. design a simple ANOVA table.
4. solve simple problems.

Pre Test
1. What do you understand lapalysis of variance (ANOVA)?
2. What sort of problems does ANOVA solve?
3. What is the meaning of the terdegree of freedom?

CONTENT
One-way within-subject ANOVA

In this model we hav& measurement per subject. The treatment effects
for subjectn=1..N are measured relative to the average response made

12



by subject n on all treatments. Tk response from theth subject is
modeled as

ynk = Tk + nn + enk (21)
Where 7, are the treatment effects (within-subject effec)s 71, are the
subject effectand e, are the residual errors. We are not normally

interested in7z,, but its explicit modeling allows us to remove iahility

due to differences in average responsiveness d¢f sabject. It is also
possible to express the full model in terms of edféhces between
treatments.

To test whether the experimental factor is sigaifit we compare the
full model in equation 11 with the reduced model.

ynk = nn + enk (22)

A Simple Example

If we have three fertilizers, and we wish to coneptreir efficacy, this

could be done by a field experiment in which eachlifesr is applied to

10 plots, and then the 30 plots are later harvesteth the crop yield

being calculated for each plot. We now have thmeeigs of ten figures,
and we wish to know if there are any differencesviben these groups.
The data were recorded in the fertilizers datasshawn in Table 2.1.

When these data are plotted on a graph, it applearshe fertilizers
do differ in the amount of yield produced, but thas also a lot of
variation between plots given the same fertiliz&hilst it appears that
fertilizer 1 produces the highest yield on averagenumber of plots
treated with fertilizer 1 did actually yield leskah some of the plots
treated with fertilizers 2 or 3.

We now need to compare these three groups to \disdd this
apparent difference is statistically significant. &/hcomparing two
samples, the first step was to compute the differdretween the two
sample means. However, because we have moreviasamples, we do
not compute the differences between the group meiaectly. Instead, we
focus on the variability in the data. At first trisems slightly counter-
intuitive: we are going to ask questions aboutrtteans of three groups by
analyzing the variation in the data. How does wuask?

13



Table 2.1 Raw data from the fertilizers dataset

Fertiliser | Yields (in tonnes) from the 10 plots dbcated to that fertiliser
1 6.27, 5.36, 6.39, 4.85, 5.99, 7.14, 5.08, 4035, 4.95
2 3.07, 3.29, 4.04, 4.19, 3.41, 3.75, 4.87, 359243, 3.15
3 4.04, 3.79, 4.56, 4.55, 4.53, 3.53, 3.71, 74081, 4.55

What happens when we calculate a variance?

The variability in a set of data quantifies the waof the data points
around the mean. To calculate a variance, firstriéan is calculated, then
the deviation of each point from the mean. Devigiovill be both
positive and negative; and the sum will be zerdiigTollows directly
from how the mean was calculated in the first placéhis will be true
regardless of the size of the dataset, or amountadgability within a
dataset, and so the raw deviations are not usefulh ameasure of
variability. If the deviations are squared befauengnation then this sum is
a useful measure of variability, which will increathe greater the scatter
of the data points around the mean. This quarditeferred to as a sum of
squared55), and is central to our analysis.

The S5 however cannot be used as a comparative meastwedre
groups, because clearly it will be influenced by nioenber of data points
in the group; the more data points, the greater %he Instead, this

quantity is converted to a variance by dividing’y 1 , where” equals
the number of data points in the group. A variaisciherefore a measure
of variability, taking account of the size of thataset.

Why use™ — 1 rather than 7 ?

If we wish to calculate the average squared denaftiom the mean (i.e.
the variance) why not divide By ? The reason is that we do not actually
have™ independent pieces of information about the vagaThe first

step was to calculate a mean (from fheindependent pieces of data
collected). The second step is to calculate a neeavith reference to that

mean. Ifm—1 deviations are calculated, it is known what thealfin
deviation must be, for they must all add up to Zeyadefinition. So we

have only™ —1 independent pieces of information on the varigbili

14



about the mean. Consequently, you can see thaakesnmore sense to

divide the3S bym—1 than™ to obtain an average squared deviation
around the mean. The number of independent pietaaformation
contributing to a statistic is referred to as tegreées of freedom.

PARTITIONING
Partitioning the variability

In an ANOVA, it is useful to keep the measure ofiafaility in its two
components; that is, a sum of squares, and theeeggof freedom
associated with the sum of squares. Returning eootfiginal question:
what is causing the variation in yield between @@ plots of the
experiment? Numerous factors are likely to be imgdl e.g. differences in
soil nutrients between the plots, differences inistume content, many
other biotic and abiotic factors, and also theilfeer applied to the plot. It
is only the last of these that we are interestedsanwe will divide the
variability between plots into two parts: that diee applying different
fertilizers, and that due to all the other factdrs. illustrate the principle
behind partitioning the variability, first considero extreme datasets. The
first step would be to calculate a grand mean, aedetis considerable
variation around this mean. The second step isltulate the three group
means that we wish to compare: that is, the meanshe plots given

fertilizers® , 5 andC . It can be seen that once these means are fitted,
little variation is left around the group mean$ other words, fitting the
group means has removed or explained nearly alivémability in the
data. This has happened because the three meatistaret.

Now consider the other extreme, in which the tHez#lizers are, in
fact, identical. Once again, the first step is toafigrand mean and
calculates the sum of squares. Second, three gnegms are fitted, only
to find that there is almost as much variabilitypbafore. Little variability
has been explained. This has happened becausthrdee means are
relatively close to each other (compared to thétescaf the data).

The amount of variability that has been explaicad be quantified
directly by measuring the scatter of the treatrmeeéns around the grand
mean. In the first of the two examples, the devetiof the group means
around the grand mean are considerable, wherethe isecond example
these deviations are relatively small. The datageén in Table 2.1
represents an intermediate situation in which ntasimmediately obvious

15



if the fertilizers have had an influence on yieldhé&N the three group
means are fitted, there is an obvious reductionamaility around the
three means (compared to the one mean). But at pdiat do we decide
that the amount of variation explained by fittinge tthree means is
significant? The word significant, in this contexttually has a technical
meaning. It means ‘When is the variability betwabe group means
greater than that we would expect by chance alone?’

At this point it is useful to define the three meas of variability that
have been referred to. These are:
55T = Total sum of squares.
Sum of squares of the deviations of the data artbagrand mean.
This is a measure of the total variability in tretaket.

55e = Error sum of squares.

Sum of squares of the deviations of the data ardbedthree separate
group means. This is a measure of the variatiowdsst plots that have
been given the same fertiliser.

55t = Fertiliser sum of squares.

Sum of squares of the deviations of the group mdéam the grand
mean.

This is a measure of the variation between plot®rg different
fertilisers.

Variability is measured in terms of sums of squaetker than variances
because these three quantities have the simpterelhip:

55T = 55t + 55¢

So the total variability has been divided into ta@mponents; that
due to differences between plots given differesitments, and that due to
differences between plots given the same treatmériability must be

due to one or other of these two causes. Separdttptal>S into its
components is referred to as partitioning the sums of squares
A comparison of5f andS3e is going to indicate whether fitting the

three fertilizers means accounts for a significanbant of variability in
the data. The greater the number of means fitteetaata, the greater

55t would be, because more variance would have begliaised. Taken
to the limit, if our aim was merely to maximi2€t , we should fit a mean

16



for every data point, because in that way we coedglain all the

variability. For a valid comparison between theseo tsources of

variability, we need to compare the variability gegree of freedom, that
is, the variances.

Partitioning the degrees of freedom

Every 55 was calculated using a number of independent piexfes

information. The first step in any analysis of vada is to calculatéST .
It has already been discussed that when lookirteatleviations of data

around a central grand mean, therearel independent deviations: that

is, in this cas@ — 1 = 29 degrees of freedoif@f). The second step is to
calculate the three treatment means. When thatievs of two of these
treatment means from the grand mean have beenlatalduthe third is

predetermined, as again by definition, the thredatiems must sum to

zero. Therefore S5t | which measures the extent to which the group
means deviate from the grand mean, has &fo associated with it.

Finally, 55¢ measures variation around the three group meaithirWv
each of these groups, the ten deviations must sumeto. Given nine

deviations within the group, the last is predeteedi Thus®S¢ has 3 x 9
=n -3 =274df associated with it. Just as the are additive, so are tis .

Mean squares

Combining the information o5 and€f , we can arrive at a measure of

variability perdf . This is equivalent to a variance, and in the exinof
ANOVA is called a mean squat¥5). In summary:

Fertiliser Mean Squaf¥5t) = 33t

The variation (pef/ ) between plots given different fertilizers.
Error Mean Squar&52) = >5€yy

The variation (peff ) between plots given the same fertilizer.

— 55T
Total Mean Squa\r@"’jr ST) = /9
The total variance of the dataset.

Unlike the35 | theMS are not additive.

17



So now the variability per?/ due to differences between the
fertilizers has been partitioned from the variabiwe would expect due to
all other factors. Now we are in the position tek:aby fitting the
treatment means, have we explained a significantiatrad variance?

F _ratios

If none of the fertilizers influenced yield, therethariation between plots
treated with the same fertilizer would be much shene as the variation
between plots given different fertilizers. This damexpressed in terms of
mean squares: the mean square for fertilizer wbeldhe same as the

mean square for error: i.e. the ratio of these mean squares is tHe -
ratio, and is the end result of the ANOVA. Eventht fertilizers are
identical, it is unlikely to equal exactly 1, itwd by chance take a whole

range of values. ThE distribution represents the range and likelthoo

of all possible F -ratios under the null hypothesis (i.e. whia t
fertilizers are identical).

If the three fertilizers were very different, theéme M5t would be

greater than théf5e | and thef -ratio would be greater than f. -ratio
can be quite large even when there are no treatdigatences. At what
point do we decide that the size of the F-ratiodige to treatment
differences rather than chance?

Just as with other test statistics, thediti@al threshold
probability of making a mistake is 0.05. In oterds, we accept that the
F _ratio is significantly greater than 1 if it will ibat large or larger under

the null hypothesis only 5% of the time. If we hadide knowledge that
the null hypothesis was in fact true, then 5% eftime we would still get

anf -ratio that large. When we conduct an experimenwever, we have
no such inside knowledge, and we are trying toegagividence against it.
Our p-value is a measure of the strength of evidemgainst the null
hypothesis. Only when it is less than 0.05 do wesaer the evidence
great enough to accept.

It should be mentioned that the ex&ctdistribution will depend upon
the df with which theF -ratio was constructed. In this case, @ie are 2

and 27, associated with the numerator and the dievaton of thef -ratio
respectively. The general shape will vary fromegrdasing curve to a

18



humped distribution, skew to the right. When doamgANOVA table in
most packages thé& -ratio, degrees of freedom and tie-value are

provided in the output, or occasionally you aré teflook up the’ -ratio
in statistical tables.

Summary
In this lecture, you have been able to
1.

2.

learn about the concept aialysis of variance (ANOVA).

know what happens when variance is calculatedydnd™ — 1
is used rather thalfs .

understand the concept of partitioning of shen of squares.
learn how to compute degrees of freedom, mean saresr and
thef ratio.

Post Test

1. What is analysis of variance?

2. What happens when variance is computed?

3. Why do we use™ —1 rather than”™ in the computation of
variance?

4. If ¥ has arf distribution withdf = 4.5  what is the value of
whereP (X < c) =095 7

5. In a simple analysis of variance problem, whichhaf following is
an estimate of the variance of individual measuréméafter the
various effects have been accounted for)? (MS m&8isf so
each of answers is a Mean Square.)
a. MS(between)
b. MS(within)
c. MS(total)
d. none of the above

6. Given the following observed number of pigs ®iitters, the

numerator of the formula for s**2 is called the mmted sum of
squares as illustrated.
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s**2 = (Sum of Squares)/(n-1). Fineé sum of squares.

X(1)= 9 X(5)=10
X@2)=6 X(@6)=7
X(3)=14 X(7)= 8
X@4)=9 X@®)=9
a) 5 b) SQRT(5) «c) 40 &0

An experiment was conducted as a oneway randd®\AA

design yielding K sample means, each based on rescdf the
between and within mean squares are represent&gnboy*2 and
S(p)**2, respectively, what is the number of degre¢ freedom

for S(m)**2?

a n-—1

k-1

n—k
n—1)k—1)
none of the above

®a oo

In reading a scientific article you encountex tbllowing table:

Analysis of Varze

Source 55 df M5 F
Between samples 722.7 4 0.8 15.3**
Within samples 473.3 40 1.88

Total 1196.0 44
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iv.

Further reading indicates that all sample sizesguml. Then we
know that the experimenter used

a. 4 samples of size 10.
5 samples of size 10.
4 samples of size 9.
5 samples of size 9.
None of these

® o0 o

I. What is meant by randomization?

An undesirable effect of some antihistaminedravsiness, which
is a consequence of the effect of the drugs orcéméral nervous
system. These data come from an experiment of Hedd#s,
Maclay, Newman-Taylor and Turner (1971) to compghee effect
on the central nervous system of a placebo andatwibistamines.
This was done by measuring the flicker frequencgofe time
after drug administration in four volunteers whovéaaken the
three treatments. The data presented here aredsoa@sures
based on the flicker frequency.

Subject

Number Meclastine Promethazine &tebo
1 112 112 131
2 48 37 61
3 106 93 112
4 51 46 70

Plot these data in a meaningful way and contmen

Carry out an appropriate analysis to examiveether there is a
difference between the effects of the differenigdiistating clearly
your hypotheses, conclusions and any assumptiods.ma

State two precautions which should have lakan in running this
experiment.

Give two benefits which would have resultedmbre than one
measurement for each drug for each subject haddig#amed.
(3:4,7:3;3)
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[The numbers in the bottom right hand cornethef question are
as they appear in the Oxford Prelims exam paperiragidate to
the candidate how many marks each part of the iguess

potentially worth if answered correctly.]
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LECTURE THREE

Practical Steps in Solving An Analysis of
Variance Problem

Introduction

Having explained the principles behind an analysfisvariance, this
lecture will provide an example of a one-way ANOVAhe student is
advised to note carefully this procedure.

Objective
At the end of this lecture, you should be able ndarstand the practical
steps employed in solving problems in analysisasfance.

Pre-Test
List the stepwise procedure in solving problemanalysis of variance.

CONTENT

Step 1: The data

The first point is to represent the two variables iform that a statistical
program will understand. To do this, the data stidaé¢ converted from
Table 2.1 to the ‘samples and subscripts’ form showTable 3.1. It can
be seen here that FERTIL is represented by thecaptss1, 2 and 3 which
correspond to the three different fertilizers. STkariable is categorical,
and in this sense the values 1, 2 and 3 are aspifracontrast, YIELD is

continuous, the values representing true measutsmen
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Table 3.1 Data presented as samples and subscripts
FERTIL YIELD (tonnes)
1 6.27
5.36
6.39
4.85
5.99
7.14
5.08
4.07
4.35
4,95
3.07
3.29
4.04
4.19
3.41
3.75
4.87
3.94
6.28
3.15
4.04
3.79
4.56
4,55
4,55
4,53
3.53
3.71
7.00
4.61

W WWWWWWWWWININDNDNDNNDNNNDNRPRRP R RPRP R
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Step 2: The question

This is the first use of model formulae—a form afdaage that will prove
to be extremely useful. The question we wish to iaskDoes fertilizer
affect yield?'.

This can be converted to the word equation

YIELD = FERTIL.

This equation contains two variables: YIELD, theéadae wish to explain

and FERTIL, the variable we hypothesise might aoedkplaining.

YIELD is therefore the response (or dependent)abdel and FERTIL the

explanatory (or independent) variable. It is impattthat the data variable
is on the left hand side of the formula, and thel&xatory variable on the
right hand side. It is the right hand side of tlggiaion that will become

more complicated as we seek progressively moreigtmaited explanations
of our data.

Having entered the data into a worksheet in theecb format, and
decided on the appropriate model formula and aiwglybe specific
command required to execute the analysis will dépgron your package.
A typical output is presented here in a generalipechat.

Analysis of variance with one explanatory variable
Word equation: YIELD = FERTIL
FERTIL is categorical

One-way analysis of variance for YIELD

Source df 55 M5 F P
FERTIL 2 10.8227| 5.41145.70 | 0.009
Error 27 25.6221| 0.9490

Total 29 36.4449

Output
The primary piece of output is the ANOVA table, iwhich the
partitioning of 55 anddf has taken place. This will either be displayed

directly, or can be constructed by you with thepotigiven. The tota$s
have been partitioned between treatment (FERTIL] arror, with a
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parallel partitioning of degrees of freedom. Eatkhe columns ends with
the total of the preceding terms.

The calculation of théS is displayed in Table 3.2. Columis, £

andY give the grand mean, the fertiliser mean and tbeygeld for each
plot in turn.

Table 3.2 Calculating the SS and the DF

Datapoint | FERTIL | M F 14 MY |MF |FY

1 1 464/ 5.45|6.27|1.63 | 0.80 | 0.82
2 1 4.64/5.45/5.36/ 0.72 | 0.80 | -0.09
3 1 4.64/5.45/6.39/1.75 | 0.80 | 0.94
4 1 4.64/5.45/4.85/0.21 | 0.80 | -0.60
5 1 464/ 5451599135 | 0.80 | 0.54
6 1 4.64/5.45|/7.141 250 | 0.80 | 1.69
7 1 4.64/5.45/5.08| 0.44 | 0.80 | -0.37
8 1 4.64| 5.45| 4.07| -0.57|0.80 | -1.38
9 1 4.64/ 5.45|4.35| -0.29(/ 0.80 | -1.10
10 1 4.64/5.45|4.95/0.31 | 0.80 | -0.50
11 2 4.64] 4.00| 3.07| -1.57| -0.64| -0.93
12 2 4.64/ 4.00| 3.29| -1.35| -0.64| -0.71
13 2 4.64 4.00| 4.04| -0.60| —-0.64| 0.04

14 2 4.641 4.00| 4.19| -0.45| -0.64| 0.19

15 2 4.641 4.00| 3.41| -1.23| -0.64| -0.59
16 2 4.64 4.00| 3.75| -0.89| -0.64| -0.25
17 2 4.64 4.00| 4.87| 0.23 | -0.64 0.87

18 2 4.64 4.00| 3.94| -0.70| —0.64| —0.06
19 2 4.64/ 4.00| 6.28| 1.64 | -0.64 2.28

20 2 4.64 4.00| 3.15| -1.49| -0.64| -0.85
21 3 4.64 4.49| 4.04| -0.60| -0.16| —-0.45
22 3 4.64 4.49| 3.79| -0.85| -0.16| -0.70
23 3 4.64 4.49| 4.56| -0.08| -0.16| 0.07
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24 3 4.64 4.49] 4.55] —0.09] -0.16] 0.06
25 3 4.64 4.49| 455 —0.09] —0.16| 0.06
26 3 4.64 4.49] 453 -0.11| -0.16/ 0.04
27 3 4.64 4.49| 3.53| -1.11| -0.16| -0.96
28 3 4.64] 4.49] 3.71| -0.93 -0.16| -0.78
29 3 4.64 4.49]7.00| 2.36 | -0.16 2.51
30 3 4.64 4.49] 4.61| -0.03| -0.16/ 0.12

df 1 |3 [30 |29 | 2 27

sS 36.44] 10.82| 25.62

ColumnMY then represents the deviations from the grand rferagach
plot. If these values are squared and summed,ttieeresult is the total

55 of 36.44. FY then represents the deviations from the group rf@an
each plot; these values squared and summed givarire’s |

Finally, MF represents the deviations of the fertilizer meams the
grand mean; squaring and summing giving the treaitine. Dividing by
the corresponding?/ gives the mean square. Comparison of the two

mean squares gives the-ratio of 5.70. The probability of getting dn-
ratio as large as 5.70 or larger, if the null hyyasis is true, is the p-value
of 0.009. That is sufficiently small to concludeaththese fertilizers
probably do differ in efficacy.

Presenting the results

Having concluded that there is a significant diffee between the
fertilizers, it would be interesting to know whetes difference lies. One
useful way of displaying the results would be tbulate the means for
each group, and their 95% confidence intervals. ioatve mean by a
confidence interval, and how are they constructed?

A confidence interval is an expression of how carfidve are in our
estimates (in this case, the three group means).eBoh confidence
interval, we would expect the true mean for thatugrto lie within that
range 95% of the time.
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To construct a confidence interval, both the patamestimate, and
the variability in that estimate are required. histcase, the parameters
estimated are means—we wish to know the true mesdah tp be expected
when we apply fertilizer 1, 2 or 3—which we willmtgte pA, uB, and uC
respectively. These represent true population sjeand as such we
cannot know their exact values—but our three treatnrmeans represent
estimates of these three parameters. The reasorthekg estimates are
not exact is because of the unexplained variatiothe experiment, as
guantified by the error variance which we previousligt as the error
mean square, and will refer to gs.

Table 3.3 Constructing confidence intervals

Fertiliser | B Lerir With 27 df for Confidence
95% confidence interval

1 5.445| 2.0518 0.3081 (4.81, 6.08)

2 3.999| 2.0518 0.3081 (3.37, 4.63)

3 4.487| 2.0518 0.3081 (3.85, 5.12)

The 95% confidence interval for a population mean is
B i t.:‘r::'

The key point is where our value for s comes frdnve had only the one
fertilizer, then all information on population vance would come from
that one group, and s would be the standard dewidtr that group. In
this instance however there are three groups,@ndriexplained variation
has been partitioned as the error mean squareisTassng all information
from all three groups to provide an estimate ofxpteined variation—and
the degrees of freedom associated with this estiua 27—much greater
than the 9 which would be associated with the stahdeviation of any

one treatment. So the value of s use¥iMs$e = v0.949 = 0.974  This is
also called the pooled standard deviation. Henee 36% confidence
intervals are as shown in Table 3.3.

These intervals, combined with the group meares,aarinformative
way of presenting the results of this analysis,abee they give an
indication of how accurate the estimates are likelpe.
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It is worth noting that we have assumed it isd/&di take one estimate
of s and apply it to all fertilizer groups. Howeyeonsider the following
scenario. Fertilizer 1 adds nitrate, while Feriti2 adds phosphate (and
Fertilizer 3 something else altogether). The phodsy considerably in
nitrate levels, and Fertilizer 1 is sufficientlyatg to bring all plots up to
a level where nitrate is no longer limiting. So tifzer 1 reduces plot-to-
plot variation due to nitrate levels. The phospredeed by Fertilizer 2
combines multiplicatively with nitrate levels, sacreasing the variability
arising from nitrate levels. The mean vyields frofotp allocated to
Fertilizer 2 would be very much more variable, whihose allocated to
Fertilizer 1 would have reduced variability, and @ssumption of equal
variability between plots within treatments would imcorrect. The 95%
confidence interval for Fertilizer 2 will have beemderestimated.

Fortunately in this case the group standdeViations do not
look very different (Table 3.4), so it is unlikelyat we have a problem.

Table 3.4
Descriptive Statistics for YIELD by FERTIL

FERTIL | N | Mean | Standard Deviation
1 10| 5.445 | 0.976
2 10| 3.999 | 0.972
3 10| 4.487 | 0.975

Summary
In this lecture, you have been able to learn ablmistepwise procedure
in solving analysis of variance problems.

Post Test

1. Discuss the steps to be taken in solving an arsalysivariance
problem.

2. How do you set up a confidence interval in an agialgf variance
problem?
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3. Samples of size 11 are taken from each of 5 padpukt
Complete the following analysis of variance table:

Source 55 df M5 F
Between means 1000 a c e
Within samples 5000 b d

Total 6000

a=4 b=44 ¢c=250 d=113.6 e=2.2

a=4 b=44 ¢c=250 d=113.6 e=0.2

a=5b=55¢c=200 d= 909 e=0.2

a=5b=50 c=200 d=100 e=20
e. a=4 b=50¢c=250 d=100 e=25

4. In a single factor experiment with four levaefsthe mean square
(between)=25, mean square(within)=10, n(1)=n(B¥B and
n(4)=10, what is the value of (corrected) total swhsquares?

a. 435

786

1221

Insufficient information

Sufficient information but correct value is not giv

5. In the ANOVA for a single factor experiment wibur levels all
n's equal 5 and: = 22,¥; =24,¥; =20  and¥. = 18 . What
is the sum of squares for between groups?
a. 25.00
b. 33.33
c. 100.00
d. Cannot be determined without more data

Qo oW

®ooo
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LECTURE FOUR

The Geometrical Approach for Analysis of
Variance

Introduction

The analysis that has just been conducted canfdresented as a simple
geometrical picture. One advantage of doing thithas such pictures can
be used to illustrate certain concepts. In thisstlation, geometry can be
used to represent the partitioning and additivftshe sum of square&5).

Objective

At the end of this lecture, you should be able s& the geometrical
approach in solving an analysis of variance problem

Pre Test

Explain the meaning of the following terms:
1. 2D plane
2. 3D plane

CONTENT

The geometrical approach is actually a two-dimeraioepresentation of
multidimensional space. One dimension is repregdoyehe position of a
point on a line—one coordinate can be used to défiaeposition. Two
dimensions may be pictured as a graph, with a po#émg specified by
two coordinates. This can be extended to three mBioas, in which the
position of a point in a cube is specified by theeerdinates. Beyond
three dimensions it is no longer possible visualise a geometrical
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picture to represent all dimensions simultaneouslis possible however
to take a slice through multidimensional space esptesent it in two

dimensions. For example, if a cube has a&e¥ , and< , the position of

three points can be specified by th&ir ¥ , andZ coordinates. A plane
could then be drawn through those three pointsllewing them to be
represented on a piece of paper. There are &tiet coordinates
associated with each point (and so defining thahtpobut for visual
purposes, the three dimensions have been reductslotoln fact, it is
possible to do this for any three points, howevanydimensions they are
plotted in. This trick is employed by the geomettiapproach.

In this case, there are as many dimensions as #rerdata points in
the dataset (30). Each point is therefore represehy 30 coordinates.

The three points themselves are the columns 3d&&¥ , £ and! ) of
Table 3.2.

Point ¥
This point represents the data, so the 30 coombndéscribing this point
are the 30 measurements of yield.

Point M

This point represents the grand mean. Because &eealing with 30-

dimensional space (as dictated by the size of #tasét), this point also
has 30 coordinates specifying its position in naitiensional space.
However, the values of these 30 coordinates aréhalsame (the grand

mean). /

Representing 3D in 2D



Point F

This point represents the treatment means. Whille3§t elements long,
the first ten elements are the mean for treatmegiand are therefore the
same value), the second ten the mean for treattwenetc. Therefore the

first part of the geometrical approach is that three variablesM | F

andY | are represented as points. These three pointsb@ggined to
form a triangle in two dimensional space as follows
¥

Total variation Error
in data

Effect of fertilizer
Variables represented as points, sources as vectors

The triangle has been drawn with at a right angle. The lines joining the
points are vectors, and these represent sourcesriability. For example,
the vectorMY represents the variability of the def#@ around the grand
mean (M), In the same way that a vector can be decompogediwo

components, so can the variability be partitionetb i(i) F¥Y —the

variability of the data around their group meansd i) MF —the

variability of the group means around the grand md&ée implication
here is that sources of variability are additivehiMy this assumption is
crucial in our approach, it is not necessarily true

¥

dy d,

ds
The Pythagoras theorem
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The third part of the geometrical approach reliestioe fact that the
triangle is right-angled. The squared length of heaector is then
equivalent to the SS for that source.

Pythagoras states that:

di = di + di

This is equivalent to:
55T = 55t 4 55e

This illustrates geometrically the partitioning sims of squares. It is
precisely because the sums of squares can be suimriesi way that they
are central to the analysis of variance. Other wHy®easuring variation
(e.g. using variances) would not allow this, beeatiee variances of the
components would not add up to the variance ofthele.

The shape of the triangle can then provide infolonabn the relative sizes
of these different components.

v
Error ¥
Error
M F
M F
Fertil Fertil
(a) (b)
Impact of fertilizer on yield is weak Impactfeftilizer on yield is strong
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Values

[30]
Y
29df for
total5S 27 df for
error
M F
Values 24df for fertile Values

[11 [3]
Partitioning the degrees of freedom

It is also possible to represent the parallel paring of degrees of
freedom in a similar manner. At each apex, arentimabers of values in
each variable (30 different data points, 3 treatmmeaans, and 1 grand
mean). The difference between these values gheesumber of degrees
of freedom associated with moving from one point aoeother. For

example, calculating a grand mean is equivalendauing from¥ toM |
and in doing so, twenty nine degrees of freedomaate Moving fromM
to F is equivalent to exchanging one grand mean fogethtreatment
means, the difference being two degrees of freediimese degrees of

freedom are associated with the corresponding x&etod therefore with
thesources represented by these vectors.

Nonsphericity

Due to the nature of the level in an experimennaty be the case that if a
subject responds strongly to levehe may respond strongly to levgl In
other words there may be a correlation betweenoresgs. These show
that for some pairs of conditions there does netrs& be a correlation.
This correlation can be characterized graphicaylfitting a Gaussian to
each 2D data cloud and then plotting probabilitgtoars. If these contour
form a sphere (a circle, in two dimensions) them dlata is Independent
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and Identically Distributed (1ID), i.e, same varanin all dimensions and
there is no correlation. The more these contouok like ellipses, the
more ‘nonsphericity’ there is in the data.

The possible nonsphericity can be taken into agcouthe analysis
using a correction to degree of freedom. In thevabexample, a
Greenhouse GeissdEG) correction estimateg®=.7, giving DFs of

[2.1,23.9 and a p-value (witl¥G we use the sanfé -statistics i.ef =

6.89) of P =0.004. Assuming sphericity, as before, we compuked=
0.001. Thus the presence of nonsphericity in the dataesaks less
confident of the significance of the effect.

An alternative representation of the within-sulgemodel is given in

the appendix. This shows how one can take intowcnonsphericity.
Various other relevant terminologies is also defiimethe appendix.

Summary
In this lecture, you have been able to solve arlyaisaof variance
problem using a geometric approach.

Post Test
Use the geometric approach to solve problems iies 1, 2 and 3.
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LECTURE FIVE

Two-Way Analysis of Variance (1)

Introduction

Sometimes a researcher might want to simultane@xsynine the effects
of two treatments (where both treatments have nakrhavel
measurement). This lecture, thus, introduces thecept of two-way
analysis of variance.

Objectives
At the end of this lecture, you should be able to
1. understand the concept ofveo-way analysis of variance.

2. know how to solve problems involving two-way an#yf
variance.

3. understand and solve problems involvintgractions.

Pre Test
1. What do you understand by a two-way analysis obwae?
2. What is interaction?

CONTENT
Examples:
The effect of sex and race on wages

The effects of the level of pollution and the leeélcity services on
housing prices

The effects of religion and region on income
To elaborate: with sex and race, we might wonder if
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There are differences because of sex alone
There are differences because of race alone

There are differences attributable to particulambmations of sex and
race - that is, are there interaction effects? &mmple, white males,
white females, and black males may all have simitages, but black
females could have much lower wages. We’'ll disdngsraction effects
more shortly.

Two-Way Anova with a Balanced Design and the ClassiExperimental
Approach

We can use Analysis of Variance techniques for ¢hesd more
complicated problems. These techniques can gely fawwolved and
employ several different options, each of which hasous strengths and
weaknesses. In a balanced desajhcell frequencies are equai.e. the
number of observations in each combination of ineats is the same. So,
for example, there would be 5 white males, 5 blatkles, 5 white
females, and 5 black females. Balanced designaumikely in survey
research but they are quite common (and often eaged) in
experimental studies. Equal cell frequencies maleasier to disentangle
the effects of the row and column variables (eex and race) and also
minimizes the effect of non-homogenous populati@miances if they
exist.

In addition, note that several programs give wioptions for the
“Method” to use for Anova. If the design is baladcé& does not matter
what method you use. But, if you choose what SP&B the Classic
Experimental Approachmany of the formulas that follow will be valid
even when the design is not balanced. Riegression Approacand the
Hierarchical Approachare other options (and several other options, with
varying names, are also listed in different procedu The SPSS manual
and other sources have more information if you fypodrself needing to
know about these.

As noted below, these assumptions are not reqtoreglverything we
will be talking about. These assumptions will affeow computations are
done with the raw data but, once that is done, jygothesis testing
procedures will be largely the same. Ergo, the noasical parts of our
discussion will apply even when designs are narzd.
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The Model
When we have 2 treatments, the model can be waen

Yii =m 4T A+ @A) + &

wherep = the grand meanj, is the treatment effect for the jth category of

the row variablexk is the treatment effect for thi th category of the
column variable,t(k)jk is the interaction effect for the combination oé th

J th row category and the th column category.

Example: Suppose the overall average income is N20,009€,atrerage
black income is N15,000, the average female inciani¢17,000, and the
average black woman’s income is N10,000. This méaais. = N20,000,

T -N5,000,7»W: -N3,000, (X)BW: -N2,000.

As before, we want to partition the variance. Nt

_IXEy,,-0)* TotalSS  TSS

Sy V1 =—w-1 “wvo1- M5 Total
Further, note that
Component Description
Yije— O = Deviation of the individual score from the
overall mean
Vijk — Vjk) = Deviation of the individual score from the

group mean, i.€ ik

+¥Vi—0O) Deviation of the jth row’s mean from the
overall mean, i.e?
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+v, - & Deviation of the kth column’s mean from the
overall mean, i.ef"«

Yik =¥j =Yk 4y | Deviation of “combination” mean from row
and column means; the interaction,
e (T4

Note that we are using the same trick we did befdradding and then
subtracting the same terms.

Hence, £ £ £« — 007 can be broken out as follows (any seemingly
omitted terms conveniently work out to be zero):

- 3
3 EJ":'_;I']{ — [_‘L':;{) =XELE E-::'_;I'k =55 ET'T'GT.
df =n-—jk

This is analogous to SS Within from 1-way ANOVA.imepresents the
deviation of individuals from the means of othereowhave the same
value on the row and column variables (e.g. ath®fsame sex and race);
that is, this represents the component of the scéhat cannot be

accounted for by group membership. Tfe arise from the fact that there
areN cases, andl* £ means have to be estimated.

Also,

IXXy;—0) =LIXt1] =S55Rows,

df = j—1
Yr — () =IIXA2=S5SColumns,
df = k—1
LEIX Ve —¥ —Vx +¥)'2= ZII(1A)yk'2 =SS Interaction,
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df =(j—1)k—-1)
Other useful partitioning include

55 Main = 55 Total | 55 Interaction | 55 Re sidual
df = j +k—2

Note also thatwhen all cell frequencies are equale. the number of
observations in each combination of treatmentsasame,

SS Main = SS Columns + SS Rows.

This will not necessarily be true otherwise. The fact that ttus in a
balanced design is one of its main advantages.

Another useful partitioning is

SS Cells = SS Explained = SS Main + SS Interactid®S Total — SS
Error

df = jk—1

When all cell frequencies are equal,

SS Cells = SS Columns + SS Rows + SS Interaction.

Finally, note that,
Total SS = SS Main + SS InteractienSS Error = SS Explained + SS
Error

df =j—1+k—1+jk+1—-j—k4+n—jk=n—1
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Again,when all cell frequencies are equal
Total SS = SS Columns + SS Rows + SS InteractiS® Error.

When doing statistical inference, we assume float 2each treatment

combination JK, the random error terfsix are - N(0,c ); the variance
2

o is the same for each treatment combination. Thea@nerror terms are

independent

I. Tests OF Interest

A. HO: (rk)jk= 0 forallj, k
HA: (rk)jk <>0 foratleast1j, k

This is a test of whether there are any interac#ffects the appropriate
test statistigs

F _SS Interaction(/ — 1)(k — 1) _ MS Interaction
[J-1)-10N-jk — SS Error(N — jk) a MS Error

If the null hypothesis is tru¢z: < Feas

B. H:t=t=.=t=0
01 2 J

HA: At least 1rj <>0
This tests whether there are any row effe€tse appropriate test statistic
is

F ~_ SSRows (/—1) _ MS Rows
J=N=Jk ™SS Error(N — jk) MSError
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If the null hypothesis is tru€,ca: < Fras

C. H:X =X =...=A =0
0 1 2 K
HA: At least nk <>0

This tests whether there are any column effethe appropriate
test statistigs
F - _ SSColumns (k— 1)  MS Columns

K-alN-jk ™ Tgg Error(N — jk) ~ MSError

If the null hypothesis is truéca: < Fras

Note: The last two tests are primarily of interest duyconclude that
interaction effects are naignificant. If, on the other hand, you conclude
that the interaction effects do not equal zeronthy@u know both
treatments (i.e. the row and column effects) agriicant.

D. HO: All T'sand\X’s =0

HA: At least one or A does not equal 0

This tests whether any of the main effets. row or column effects; or,
non-interaction effects) are nonzero. The appropitist statistics

SSMain (j + k —2) MS Main
F jx-2.v-jk= SSError(N —jk)  MSError

If the null hypothesis is tru€,ca: < Fras

HO: All T’s,A’s, and ¢A)'s =0

HA: At least one, A, or (tA) does not equal O

44



This tests whether there are any effects at athdfnull hypothesis is true,
then every cell in the table will have the same tmean. The appropriate
test statistigs

SS Cells (jk —1)  MSCells
F jk-1.n-jx =SS Error(N — jk)  MS Error
If the null hypothesis is true, AH[JK - 1], N - JK).

lll. Row, Column, and Interaction Effects — Examples
What are interaction effects? Here are some suibgtaaxamples:

Medicines A and B may have no effect when eithéaken alone. But, the
two together may have an effect. “The whole isedtdht from the sum of
the parts.”

Another example: we might find that greater incdewds to greater
fertility for those who want children, and lowerrtikty for those who do
not want children. We say that the effect of incormedependent on
desires, or that desires and income interact iargehing fertility.

Good teachers and small classrooms might bothueage learning.
A good teacher in a small classroom might be eapigaeffective. The
whole is greater than the sum of the parts.

Following are hypothetical 2-way ANOVA examplesieldependent
variable is income (in thousands of dollars), thes wvariable is gender
(Male or Female), the column variable is type ofugmation (A, B, or C).
Unless otherwise stated, assume that frequen@esgaial for all cells.

1. Row (Gender) effects only.

Occ A Occ B Occ C
Male Hya = 18 Hyg = 18 Hye = 18 Hy = 18
TXMA:O TXMB:O T}\'MCZO TM:2
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Female n, =14 =14 |p =14 jp =14
., =0 Thg=0 =0 |1.=-2
Hy = 16 g = 16 H= 16 |p=16
A,=0 Ay=0 rA.=0

The 2 rows differ, but the three columns are all game. Within each
occupation, men make4\DO0 more on average than do women; each of

the three occupations pays equally well.

2. Column (Occupation) effects only.

Occ A Occ B Occ C
Male Hya = 12 g = 16 My =20 w, =16
gp = g = e = Ty=
Female Hea =12 Heg =16 Hee= 20 ne=16
™, =0 =0 =0 .=0
n, =12 ng =16 n.=20 u=16
Ay=-4 Ag= =4

The three columns differ, but the two rows are shene. Occupation C
pays better than B and B pays better than A. Witrach occupation,

however, men and women make the same.
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3. Row and column effects.

Occ A Occ B Occ C
Male H, =14 Hyg = 18 Hye = 22 Hy = 18
TKMAZO TKMBZO TKMCZO ’EM:2
Female e, =10 Hp=14 n.=18 n=14
rXFA= rXFB= 0 rXFC= 0 T.= -2
Hy = 12 g = 16 Ho= 20 p=16
XA= -4 XB= 0 7‘c= 4

Both the rows and columns differ. Within each oatign, men make
N4,000 more on average than women do. Within eacidege those in
occupation C averageA\DO0 more than those in B, and those in B
average=M,000 more than those in A.

4. Interaction effects I.

Occ A Occ B Occ C
Male Hop = 15 [T 15 [T 21 My = 17
TKMA =-1 ’E)\,MB =-1 TKMC = T, =
Female Ho, =15 Hp=15 H.=15 n=15
rXFA= rXFB= rXFC= -2 T = -1
Hy= 15 Hg= 15 M= 18 p=16
’EA:-l ’EB:-l 1:022
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Five of the six cells have the same mean. Howdweersome reason, the
combination of males and occupation C results gh fmale earnings.

5. Interaction effects Il - differing magnitudefsaffects.

Occ A Occ B Occ C
Male Hyp = 12 Mg = 16 My = 26 My = 18
T)\.MA =-1 ’E)\,MB =-1 TXMC =2 Ty =
Female ue, =10 Hep=14 Heo=18 ne=14
‘L')\,FA_ 1 rXFB— 1 rXFC— -2 = -2
p,=11 ng=15 ne=22 u= 16
XA =-5 XB =-1 7‘c=

Men make more than women, and the advantage iciefipegreat in
occupation C. Or, those in occupation C make mbas those in other
occupations, and the advantage is especially peaten.

6 Interaction effects Ill - differing directions offects.

Occ A Occ B Occ C
Male Hy, =18 Hp=16 |n, =14 n,=16
T)\.MA =+2 ’E)\,MB = T)\.MC =-2 T,
Female no, =14 =16 | p =18 n-=16
Thep =2 g™ = T~
n,=16 n, =16 n.=16 p=16
Ap= hg = A=
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In this example, the effect of gender depends ecomation. Males do
better than women in Occupation A but worse in pation C; in
Occupation B there is no difference. Or, occupa@ois better paying
for women but not for men, whereas for occupatiothé opposite is
true. Note that, if you only looked at the maineetf, you would
erroneously conclude that gender and occupatioe haveffects on
income, when in reality they do have effects bt ¢ffects work in
opposing directions.

Computational Procedures - Two-Way ANOVA — Balancedesigns

Let A = row variable, B = column variable, J = nuenlof categories for
A, K = number of categories for B’A,-T: the sum of the scores in group

Aj, TBk= the sum of the scores in group, EFAjBk is the sum of the scores
for the observations which fall in both groupjsaAd Els( (there are J*K of
these totals), Arl] = number of observations in groupj), mBk = number of

observations in groupanAjBk is the number of observations which fall in
both groups ,JAand Ef( [NOTE: While I will show you how to do the raw

data calculations, in practice they are tediousughothat | generally
would not expect you to do them by hand, at leastroexam. You should
know how to do the other formulas, however, as tebgw how the
different parts of the ANOVA table are related &xle other.]

Note that many (albeit not all) of the formulas foaw data
calculations and Sums of Squares assurbalanced designi.e. all

cell frequencies are equal for each possible coatioim of values for
the row and column variables. Computations are sdrae more

complicated when designs are not balancéde Mean Square
formulas and the F tests are accurate regardlessiadther the design
is balanced or not.
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Formula

| Explanation

Raw Data

Calculations (Balanced Design)

(1) = x5y, ) In =N

Sum all the observations. Square the res
Divide by the total number of observations.

2) = zzzy“_k2

Square each observation. Sum the squ
observations.

2
(3)=xT, ',

Add up the values for the observations for gr¢

sult.

ared

bup

Al. Square the result. Divide by the numben of
observations in group lA Repeat for each
category of A. Add the results for each of the J
groups together.
@) ==T Z/n Add up the values for the_ (_)bservations for group
Bk Bk Bl. Square the result. Divide by the number of
observations in group lB Repeat for each
category of B. Add the results for each of the K
groups together.
(5)==2 T 2/n A Add_ up the values for the observatipns which
AjBK  AjBK fall in both group Al\and Bl Square this value,
and divide by Doy Repeat for each of the J*K
combinations, and sum the results.
Sums of Squares Calculations (Balanced Design)
SS Total = (2) - (1) Total sum of squares
SS Rows =(3) - (1) Row sum of squares. This & aometimes
called SSA.
SS Columns = (4) - (1) Column sum of squares. Afdted S%.
SS Interaction = Interaction sum of squares. Also caIIedABSSt
G)+@D-03)-4= may be easier to use the second formula.
SS Total - SS Rows - SS
Columns - SS Error = S5
Total — SS Main — SS Error
SS Error = (2) - (5) = SSError sum of squares. It is analogous to |SS

Total - SS Cells

Within in one-way ANOVA. Also called S

Residual.
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SS Main = (3) + (4) — [2 1
V=
SS Columns + SS Rows =

SS Total — SS Error — S
Interaction

Main effects Sum of Squares. Also calledA+SBS

S

SS Cells=(5)-(1) =
SS Main + SS interaction 3
SS Total - SS Error.

This is analogous to SS Between in one-\
. ANOVA. Also called SS Explained.

vay

Mean Square Calculations (Balanced or unbalanced)

MS Total = éz Remember that MS Total =2 S
SS Total/(n-1)

MS Rows = Also called MSA.

SS Rows/(J-1)

MS Columns =

SS Columns/(K-1)

Also called MSB.

MS Interaction =
SS Interaction/((J-1)(K-1))

Also called MS
AB

MS Main = SS Main/(J + K
- 2)

Also called MS
A+B

MS Cells = Also called MS Explained.
SS Cells/((J*K)-1)
MS Error = Also called MS Residual.

SS Error/ (n - J*K)

Possible F Tests (Balanced or unbalanced):

MS Rows/MS Error

Do means differ across categoofshe row
variable, i.e. do tau’s differ? d.f. = J-1, n-J*K

MS Columns/MS Error

Do means differ across catiegosf the column
variable, i.e. do lambdas differ? d.f. = K-1,
J*K

MS Interaction/MS Error

Do any of the interactieffects differ from
zero? d.f. = (J-1)(K-1), n-J*K

MS Main/MS Error

Are any of the row or column effe nonzero?
df.=J+K-2, n-J*K

MS Cells/MS Error

Are there any differences anysheacrosg
groups? d.f. = (JK-1), N-JK.

n-

D
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An ANOVA table often looks something like this (Withe computed
values substituted).

Source SS D.F. Mean Square F
A + B (or Main | SS Main J+K-2 SS Main MS Main
Effects) (+K-2) MS Error
A (or main SS Rows J-1 SS Rows MS Rows
effect of A) J-1) MS Error
B (or main SS Columns K-1 SS Columns| MS Columns
effect of B) (K - 1) MS Error
AB (or 2-way | SS Interaction| (J-1)* SS Interaction| MS Interaction
interaction) (K-1) (J-1) (K-1) | MS Error
A+ B+ AB (or | SS Cells (J*K)-1| SS Cells MS Cells
explained) (J*K)-1 MS Error
Error (or SS Error N - (J * K)| SS Error
residual) (N-J*K)
Total SS Total N-1 SS Total
(N-1)
Examples

1. A researcher is interested in differences in incdimeRegion (North,
South, East, and West) and Religion (Catholic, é3taint, Other). She
draws a sample of ten people for each combinatioegion and religion.

She 1‘2inds thatS Rows = 20055 Columns = 17055 Interaction = 100,

and s = 16.81. Construct the Anova Table, and indicateclvieffects are
significant at the .05 level. (NOTE: Region is to& variable.)

Solution

Again the design is balanced. You don’t have t@dp work with the raw
data here; instead, you have to understand howvditfezent parts of the
ANOVA table are related to each other. Let us bemgith what we are
told:
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Source SS D.F. Mean Square| F
A + B (or Main | SS Main = J+K-2= SS Maimn MS Main=
Effects) (+K-2) MS Error
A (or main SSRows 200 | J-1= SS Rows MS Rows=
effect of A) J-1) MS Error
B (or main SS Columns 3§ K-1= SS Columns MS Columns=
effect of B) 170 (K-1) MS Error
AB (or 2-way | SS Intraction = (J-1)* SS Intrction= MS Intrction=
interaction) 100 (K-1)= J-1)(K-1) MS Error
A+B+AB (or | SSCells = J*K)-1= SS Cels MS Cells=
explained) @*K)-1 MS Error
Error (or SS Error = N-J*K)=| _SS Errer
residual) (N - J*K)
Total SS Total = N-1= SS Totall6.81

(N-1)

We are also told J = 4 (there are 4 regions), K(3 f&ligions).

We can deduce that N = J*K*10 = 120.
2
Recall that s= MS Total, and that MS Total = SS Total/(n-1)

==> SS Total :2'5* (N-1)=16.81*119 = 2000.
SS Main is obtained by adding SS Rows + SS Colun230 + 170 = 370.
SS Cells is obtained by adding up SS Columns + @8R SS Interactions

=200+ 170 + 100 = 470.
SS Error is obtained by computing SS Total - S$sGeR000 - 470 = 1530.

The remaining quantities in the table are obtaifgdfilling in the
appropriate values for the formulas. Hence, we(get significant at the

.05 level):
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Source SS D.F. Mean Square F
A+ B (or SS Main = 370 J+K-2=5 SS Mair74.00 MS Main= 5.22*
Main Effects) (+K-2) MS Error
A (or main SS Rows =200 J-1=3 SS Rows66.67 MS Rows= 4.71*
effect of A) (J-1) MS Error
B (or main SSColumns =170 K-1=2 SS Columns 85.00| MS Columns= 6.0*
effect of B) (K-1) MS Error
AB (or 2-way | SS Intraction = (J-1)* SS Intrctiorn= 16.67 | MS Intrction=1.18
interaction) 100 (K-1)=6 (J-1)(K - 1) MS Error
A+B+AB | SSCells=470 @*K)-1=11 SS Celld2.73 MS Cells= 3.02*
(or explained) (*K)-1 MS Error
Error (or SS Error = 1530 N - (J *K) =108SS Error=14.17
residual) (N - J *K)
Total SS Total = 2000 N-1=119 SS Totdl6.81

(N-1)

2. A consumer research firm wants to compare threadsraf radial
tires (X, Y, and Z) in terms of tread life overféifent road surfaces.
Random samples of four tires of each brand arectseldor each of
three surfaces (asphalt, concrete, gravel). A macthiat can simulate
road conditions for each of the road surfaces éslus find the tread
life (in thousands of miles) of each tire. Constran ANOVA table
and conduct F-tests for the presence of nonzenodbedfects, road
surface effects, and interaction effects.

Surface/ Brand | X Y Z

Asphalt 36, 39, 39, 38| 42,40,39,42 32,36, 35,34
Concrete 38,40, 41, 40| 42,45, 48,477 37,33, 33,34
Gravel 34, 32,34,35| 34,34,30,31 36, 35, 35,33

although on an exam I'd be more likely to give ysmmething like
problem 1 and/or give you finished results and wsk to interpret
them.
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Note that the design is balanced. Let A = Road surf8ce, Brand.
legitimate to subtract a constant froBVERY
observation. This will not affect any of the valuasthe ANOVA
table, and it often makes the calculations simglevill subtract 30
from each observation, yielding the following table

HINT:

It is

Slr'lar:]aace/ X AjBk Y AjBk z AjBk TAj
Asphalt 69 32 12 10 43| 26 17| 92
98 912 54
Concrete 810 39| 121518 62| 73 17| 118
11 10 17 34

Gravel 42 15 44 9| 65 19| 43
45 01 53

TBk 86 114 53 253

2 2
. =(zx3y,) In=253/36 = 1778.03

2 2 2 2 2
: =222yijk =6+9+12+..+3=2451

2 2 2 2
. =XT, /n, =86/12 +114/12 + 53/12 = 1933.42

1
2
2 2 2 2
3. =X TAj /nAj =92/12 + 118/12 + 43/12 = 2019.75
4
5

L =SST . =3214+39/4+ .. +18/4 = 2370.75

AjBk

SS Total = (2) - (1) = 2451 - 1778.03 = 672.97

AjBk

SS Rows = (3) - (1) = 2019.75 - 1778.03 = 241.72
SS Columns = (4) - (1) = 1933.42 - 1778.03 = 155.39
SS Interaction = (5) + (1) - (3) - (4) =

2370.75 + 1778.03 - 2019.75 - 1933.42 = 195.61

SS Main = SS Rows + SS Columns = 397.11
SS Cells = (5) - (1) =592.72
SS Error = (2) - (5) =80.25
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Anova Table:

Source Ss D.f. Mean F
square
A+B 397.11 4 99.28 33.43*
A 241.72 2 120.86 40.69*
B 155.39 2 77.70 26.16*
AB 195.61 4 48.90 16.46*
A+B+AB 592.72 8 74.09 24.95*
Error 80.25 27 2.97
Total 672.97 35 19.23
* = significant at the .05 level
Note:
» « To test for the presence of nonzero road effebtsdegrees
of freedom = 2,27 and we accepotif-F # 3.34.
» « To test for the presence of nonzero brand effetts= 2,27
and we accepté—if F# 3.34.
» < To test for the presence of nonzero interactibects, d.f. =
4,27 and we acceptOIH F#2.72.
* « To test for the presence of any nonzero effetfs,= 8, 27
and we accept Hf F # 2.21.
Summary

In this lecture, you have been able to

1. learn about the concept of a two-way analysisaofance.
2. learn about interactions.

3. solve problems relating to two-way analysis afiance.
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Post Test

1.

Investigators studying the biology of cell deathrieal out an
experiment in rats that explored neuroprotectiosoeisted with
varying doses of troglitazone and varying ion forifise outcome
measured was percent cell death relative to gluar(@LUT).

Higher values of GLUT indicate greater cell deailne study
design utilized a fully factorial 2 way analysis \@riance model.
Factor | is dose troglitazone at 3 levels: 1.3,ah8 13.5. Factor Il
is ion form at two levels: O=negative and 1l=positiWsing the
data below,

a. State an appropriate ANOVA model, defining all terrstate
appropriate null and alternative hypotheses.

b. Test the assumption of equality of variances.
Construct the ANOVA model analysis of variance ¢abl

d. Carry out the analysis of variance. Report youdifigs in a
sentence or two that summarizes your conclusiogpoR any

o

limitations.
glut dose ion
73.61 1.3 0
130.69 1.3 0
118.01 1.3 0
140.2 1.3 0
97.11 1.3 1
114.26 1.3 1
120.26 1.3 1
92.39 1.3 1
26.95 4.5 0
53.23 4.5 0
59.57 4.5 0
53.23 4.5 0
28.51 4.5 1
30.65 4.5 1
44.37 4.5 1
36.23 4.5 1
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-8.83 13.5 0
25.14 13.5 0
20.16 13.5 0
34.65 13.5 0
-35.8 13.5 1
-7.93 13.5 1
-19.08 13.5 1
5.36 13.5 1
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LECTURE SIX

Two-Way Analysis of Variance (2)

Introduction

This lecture looks at the two factor classificatfmoblem. For two factor
classification, we have two different types of treants. In table form,
one set of treatment will be list in the top rowdathe second set of
treatments will be listed on the first column.

Objectives
At the end of this lecture, you should be able to

1. understand the concept déctor classification in a two-way
analysis of variance

2. solve problems relating to factor classification.

Pre Test
1. What is afactor?

2. What is factor classification?

CONTENT
The following is an example of a two-factor clagsifion of analysis of
variance

Assume the track coach of a local high school essto test, among
three brands of running shoes, the best performhmes for freshmen,
sophomore, and senior students. The numbers intdb& below,
represent the average running times for the 100 gash.
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Freshmen
Sophomore
Senior

Brand A (seconds)

Brand B (seconds)

Brand C (secosid

10.80
11.66

10.71

10.27
11.84
12.06

10.63
11.11
12.06

Since we have two different
hypothesis tests:

H él) . There is no difference between brands of runrtiogs (between columns).

types of treatments, lvewe two null

H? : There is no difference between class of runnessn@en rows)

1 2
In deciding to reject HoorH , we first must learn how to compute four

types of variations:

2
1. Total variation(ST)
2. Variation between row$S?)
3. Variation between columiis?)
4

. Variation due to chand&;)

The equation for the relationship between these fauiations
St=si-s-Si.

Solved problem 6.1
a. total variation.
b. variation between rows.
b. variation between columns.
a. random variation.

Solutions:

(a)
Step 1: From the table above compute the row totals, coltwtels, row
means, column means, table total and mean of ke ta
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Brand A | Brand B | Brand C Row Mean

(seconds)| (seconds)| (seconds)| Total Total
Freshmen 10.80 10.27 10.63 317 10.57
Sophomore 11.66 11.84 11.11 34.61 11.54
Senior 10.71 12.06 12.06 34.83 11.61
Column Total | 33.17 34.17 33.80 Table Table
Column Mean | 11.06 11.39 11.27 | Total Mean
101.14 11.24

Step 2: Compute the following table by subtracting the gramean from
each value of the table and squaring these difteen

Brand A (seconds)

Brand B (seconds)

Brand C (secosid

Freshmen
Sophomore
Senior

(1080-1124)* = 019
(1166-1124)* = 018
(1071-1124)° = 028

(1027-1124)’ = 094
(1184-1124)° = 036
(1206-1124)* = 067

(1063-1124)° = 037
(1111- 1124)* = 002
(1206-1124)* = 068

Step 3:Total variation is the total of all these numbers:

S? = 369

b.

The formula for the variation between rows is bynsuing the values in

the following

table:

Row Mean- TableMean)’

(
(
(
(

1057-1124)* = 045
1154-1124)° = 019
1161- 1124)° = 014

Sum= 0.68

S =cSunr 3(0689 = 204
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C.

The formula for the variation between columns isshynming the values
in the following table:

(ColumnMean- TableMean)*

(1106- 1124)° = 0032
(1139-1124)* = 0023
(1127-1124)* = 000

Sum = 0.055
Sé =rSum= 3(0055) = 0165

d.
To compute the random variatig¢®) , we use the formula:
S?=52-52-S2 = 369- 204- 0165~ 149

Solved Problems

Solved Problem 6.2 A large petroleum company wishes to test five new
gasoline additives for increased fuel efficientigeir research department
purchased 15 new model sedans and drove each @amilés, over the
same track. Each additive was mixed with threerectgasolines: regular ,
premium and super. The following table is the ngkea@ecorded for each
car in this test. Here, mileage is measured foh €ac as to the number of
gallons consumed to travel 100 miles.

Additve A |b C D E
octane

Regular 5.11| 5.23| 6.13| 5.00 | 6.18
Premium |4.76|5.00|4.02|5.11 | 4.87
Super 4.01|4.50| 3.98|4.98 | 5.00
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From this table, compute:

a. total variation

. variation between rows.

b
c. variation between columns.
d

. random variation.

Solutions:

(@)

Step 1:From the table above, compute the row totals, coltmtals, row
means, column means, grand total and mean of #reldotal:

Additive octane | A b C D E Row Total Row Mean
Regular 5.11 |5.23 |6.13 |5.00 |6.18 | 27.65 5.53
Premium 476 |5.00 | 4.02 |5.11 |4.87 |23.76 4.75

Super 401 | 450 |3.98 |4.98 |5.00 | 2247 4.49
Column Total 13.88| 14.73 14.13 15.09 16.05Table Total | Table Mean
ColumnMean |4.63 | 491 | 4.71| 5.03| 5.35 73.88 4.93

Step 2 Compute the following table by subtracting theléamean value

of the and squaring these differences:

Total variation is the total of all these numbers:

S? =597

b.

The formula for variation between rows is by sumgnihe values in the

following table:

(Row Means — Table Means)

(553- 493)° = 036
(475- 493)° = 003
(449- 4937 = 019

Sunmk= 058

S2 =c(sum)= 5(0.58)= 2.90
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C.

The formula for variation between column is summihg values in the
following table:

Additive | A B C D E
octane
Regular | (511-493f | (523-493) | (613-493) | (500-493) | (618- 493)
=0.03 =0.09 =1.44 =0.01 =1.57
Premium | (476- 493)° | (500- 493" | (402- 493 | (511- 493) | (487- 493)
=0.03 =0.01 =0.82 = 0.03 =0.00
Super (401~ 493)?| (445- 493 | (398- 493 | (498- 493 | (500- 493
~0.84 =0.18 =0.89 =0.0C =0.01
(Column Means — Table Means}
(463- 493)* = 009
(491- 493)* = 000
(471- 493) = 005
(503- 493f° = 001
(535- 493)* = 018
Sum= 033
S¢ =c(sum)= 3(0.33)= 0.99
d.

To compute the random variatig®’), we use the formula
=S?-S2 -SZ =579- 290- 099= 208

Unsolved Problems with answers

Problem 1 A medical research laboratory wishes to teghére is a
different drug that promote weight loss for womerd anen over 200
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pounds. The following table is the resulting weilghets ( in pounds ) after
60 days.

Drug/Gender | A B C

MALE 22.45] 20.65 | 24.11
FEMALE 27.22] 28.00 | 28.11

From this table, compute
a. total variation.
b. variation between rows.
c. Vvariation between columns.
d. random variation.

Answers:

a. 49.77
b. 43.44
c. 3.37
d. 2.96

Testing Hypothesis between rows and between colummsing the F
Distribution

We need to test two hypothesis:
H® :There is no statistical difference between the rooist

H® :There is no statistical difference between the rows

To testH?, we use the F distribution where

_(r-9sf
With d, =c-1andd, =(r —1)(c—1) degrees of freedom.

o c-1)S’
To testH ?, we use the F distribution where %

With d, =r -1 andd, =(r —1)(c-1) degrees of freedom.
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Example 1:For 6.2
a. Find F.

Using the level of significance of 0.05 and 0.0&tedmine if there is
a statistical difference between brands of runsinges.

b. Using the level of significance of 0.05 and10,@etermine if there is
a statistical difference between class year.

Solutions:
a.
Here , we are testing across the columns.
Step 1:To find F we use the formula:
- (DS
St
Where
r = the number of rows

Step 2:From example 3.1, we computed:
S2 =015 S =156
Sincer =3,

—_— 2 —
o (TS (-2015_ g
s? 156

Step 3:We haved, = c-1 = 3-1 =2 degrees of freedom and
d,=(r-1)(c-1) = ( 3-1)(3-1) = 4 degrees of freedom.

Step 4:Using the F distribution table far=0.05, F,; = 6.94.

Step 5: Since F = 0.019 < 6.94, we conclude there is naoifgignt
difference between running shoes.
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Step 6:Using the F distribution table for= 0.01,F,,,=18

Step 7: Since F = 0.019 < 18, we conclude there is no Bogmit
difference between the shoes.

b.
Step 1:To find F we use the formula:

_(c-D)S;
e
Where
c= the number of columns

Step 2:From example 3.1, we computed:
S:=198 S =156
Since c =3,
— 2 —
F= (c 12)8C _ (3-10198 _ 254,
S 1.56

Step 3:We haved,=r-1 = 3-1 =2 degrees of freedom and
d,=(r-1)(c-1) = (3-1)(3-1) = 4 degrees of freedom.

Step 4:Using the F distribution table far=0.05, F . = 6.94.

Step 5: Since F = 2.54 < 6.94, we conclude there is no ifsogmt
difference between class years.

Step 6:Using the F distribution table far= 0.01, F,,,=18

Step 7: Since F = 0.019 < 18, we conclude there is no Bogmt
difference between the shoes.
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Solved Problems
Problem 1: For Solved Problem 6.2,

a. Find F. Using the level of significance of 0.05 @h@1l, determine
if there is a statistical difference between gamohdditives.

b. Find F Using the level of significance of 0.05 &n@1, determine
if there is a statistical difference between ocsane

Solutions:
a.
Here, we are testing across the columns.

Step 1:To find F, we use the formula:
_ 2

Gl
SE

Where

r = the number of rows

Step 2:From 42.3 — solved problem 1, we computed:
S2 =099 Sf=208
Sincer =3,

—_— 2 —
Fo (DS B-2099_ g,
s? 2.08

Step 3:We haved, = c-1 = 5-1 =4 degrees of freedom and
d,=(r-1)(c-1) = ( 3-1)(5-1) = 8 degrees of freedom.

Step 4:Using the F distribution table far=0.05, F,,; = 3.84.

Step 5: Since F = 0.95 <3.84, we conclude there is no Bogmt
difference between gasoline additives.
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Step 6:Using the F distribution table fer=0.01, F,,;,=7.01

Step 7: Since F = 0.95 < 7.08, we conclude there is no ifscgmt
difference between gasoline additives.

b.
Here, we are testing down rows.

Step 1:To find F we use the formula:
_ 2
Fz@g%
Where
c= the number of columns

Step 2:
Sé =29 Sé = 208
Since ¢ =5,
_f\Q2 _
F= (c 12)5C _ ] 1)2902 557,

s 2.08

Step 3:We haved,=r-1 = 3-1 =2 degrees of freedom and
d,=(r-1)(c-1) = ( 3-1)(5-1) = 8 degrees of freedom.

Step 4:Using the F distribution table fer=0.05, F,, = 4.46.

Step 5: Since F = 5.57 < 4.46, we conclude there is a fogmit
difference between octane which affects mileage.

Step 6:Using the F distribution table fer= 0.01, F,,,=8.65

Step 7: Since F = 5,57 < 8.65, we conclude there is no ifsogmt
difference in octane.
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Unsolved Problems with answers
Problem 1: Problem 6.2
a. Find F. Using a level of significance of 0.05 an@1) determine if
there is a statistical difference between diet grug

b. Using a level of significance of 0.05 and 0.01 edetine if there is
a statistical difference between men and women.

Answers:
a. Since F = 1.14, using a level of significance @%and 0.01, we
conclude there is significant difference betweest drugs.
b. F=29.35. Since F = 29.35 > 19, we conclude tiegesignificant
difference in weight loss between men and women.

Summary
In this lecture, you have been able to

1. learn about factor classification in a two-wapalgsis of
variance.

2. solve problems relating to facto classification.

Post Test
1. On your own, solve the problems tackled in thisue=

2. A physiologist reports an investigation of potehtiplant
hormones. He reports the following averages fogtles of 20
stem segments treated.

Compound X  1.18
Compound Y  1.17
Compound Z  1.15
Control 1.14

The conclusion is that there are no treatment réiffees. Are you
satisfied with this conclusion? Why or why not?
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3. Ms. Romeo teaches three sections of beginntiigdéaa local high
school. The following table gives the average grader the past

five years.
Latin Section/ Average | Section1 | Section 2| Section3

grade

1991 78.20 76.50 79.20
1992 79.10 77.90 79.87
1993 79.60 77.60 78.66
1994 80.10 81.78 79.10
1995 81.10 80.10 85.78

Using one — factor classification to see if theseai significant
difference between sections, find:

a.

Qo

oo oo

Total variation &7).
Variation between treatmentSy).

Variation within treatment ;).

F.

Using a 0.05 level of significance, is there a eté#hce in
grades between the class sections. Applying twadorfac
classification to the above table data, find

Total variation.

Variation between rows

Variation between columns.

Random variation.

F. Using a 0.05 level of significance, is thereitietence in
grades between the class sections?

F. Using a 0.05 level of significance, is thereitietence in
grades between the five years?
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LECTURE SEVEN

Two-Way Analysis of Variance (3)

Introduction

This lecture is a continuation of the last two lees. Here, we split the
two-way model intgpooled andpartitioned errors. We also introduce the
concept ofcontrast.

Objectives

At the end of this lecture, you should be ablestrh more about two-way
analysis of variance with respect to factor clésaiion, interactions and
contrast.

Pre Test
What do you understand bycantrast?

CONTENT
The full model for a two wayK, -by- K, repeated measure ANOVA, with
P = K K, measurements taken from eaciNafubjects, can be written as

Yo =T 7T, €

Wherek = 1...K, andl = 1...K,index the levels of factor A and factor B
respectively. Here we can think of indicator fuontik = g, (i), = g, (i)
and n= g,(i)that return the levels of both factors and suhigentity for
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theith scan. Againjz, are subject effects argl,, are residual errors. This
equation can be written in matrix form
y=XB+ e

Where X =[1, 01,1, O1,] is the design matrix ang =[r,,, 77,]" are the

regression coefficients. This is identical to thee-@vay within-subject
design but with P instead of K treatment effects.

Model and Null Hypotheses

The difference between pooled and partitioned emmdels can be
expressed by specifying the relevant models andypbtheses

Pooled Errors
For the main effect of A we test the null hypotlsedi, : r(;* =0 for all g.

Similarly for the main effect of B. For an interaet we test the null
hypothesis

H,:75° =0forall g, r.

For example, for the 3-by-3 design there qre 1...2 differential effects
for factor A andr = 1...2 for factor B. the pooled error model therefor
has regression coefficients

B=r) 1,10, 15 T 15 15 T m ] (7.1)
For the main effect of A we test the null hypotkedi, : 7,* =72 = 0. For

the interaction we test the null hypothebis: 7,;® =77 = 7,7 =7,7 =0.

Partitioned Errors

Partitioned error model can be implemented by apglgontrasts to the

data, and then creating a separate model (thaepgrate GLM analysis)
to test each effect. In other words, a two-stageaach can be taken. The
first stage is to create contrasts of the condifmneach subject, and the
second stage is to put these contrasts or ‘sumstatigtics’ into a model

with a block-diagonal design matrix.

74



For partitioned errors we first transform our ds¢ay,,, into a set of

differential effects for each subject and then nhdldese as a GLM. This
set of differential effect for each subject is teehusing appropriate
contrast at the ‘first level'. The models that wesdribe below then
correspond to a ‘second-level’ analysis. The d#fere between first and
second level analyses is described in the prevahapter on random
effects analysis.

To test for the main effect of A, we first credbe new data points
Pnq Which are the differential effects between theelsvin A for each

subject n (see e.g. section). We then compare the full model
pnq = TqA + enq
to the reduced model
Prg =€
We are therefore testing the null hypothesis;,: rqA =0 for all g.
Similarly for the main effect of B. To test for aneraction we first create
the new data pointso,, which are the differences of differences of
differential effects for each subject. Folka and K, ANOVA there will
be (K, -1)(K, - 2) of these. We then compute the full model

— ~AB
pnq - Tq + enqr

To reduce modep, ., =e,,.. We are therefore testing the null hypothesis

nqr
H,:7;° =0 forallg,r.

For example, for a 3-by-3, there are q= 1..2 déffieial effects for factor
A and r=1..2 for factor B. We first create thefeliéntial p,,.To test for

the main effect of A we compare the full model
pnq = TlA + T:\ + enq
To the reduce modelp,, =€,. We are therefore testing the null

hypothesisH, : 7,y =7, =0 Similarly for the main effect of B.

To test for an interaction we first create thdaénces of differential
effects for each subject. There are2= 4 of these. We then compare the
full model
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— ~AB AB AB AB
pnqr - Tll + le + T21 + T22 + enqr

To the reduced modgl,, =e, . We are therefore testing the null

n
hypothesis, H,:7.° =15 =1,°=r,7 =0 ie. that all the ‘simple’
interactions are zero.
Note how

1. the degrees of freedom have been reduced, being esplally
among the three effects,

2. there is no need for a nonsphericity correctiorthils case(since
K, =K, =2), and

3. the p-value for some of the effects have decreasbitk those for
the other effects have increased.

Whether p-value increase or decrease dependseondtre of the
data (particularly correlation between conditiomsoas subjects), but in
many real dataset partitioned error comparisonsd yreore sensitive
inferences. This is why, for repeated-measuresyaes] the preferred over
using a pooled error [Howell 1992]. But the paotiied error approach
requires a new model to be specified for everyoeffiee want to test.

Numerical Example
Pooled Error
Consider a 2X2 ANOVA of the same data used in tte¥ipus example,
with K, =K, =2,P=KK,=4,N=12J= PN= 4{ Assuming that the
four columns/conditions are ordered;

1 2 3 4

AB AB AB AB (7.2)

Where A represents the first level of factor A, Bepresents the
second level of factor B e.t.c, and the row areemed; all subjects data for
cell AB;; all for AB, and so on.

Main effects are not really meaningful in the prese of a significant
interaction. In the presence of an interaction.the presence of an
interaction, one does not normally report the nediacts, but proceeds by
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testing the differences between the level of oweofefor each of the level
of the other factor in the interaction (so-callchple effecis In the case,
the presence of a significant interaction coulduksed to justify further
simple effect contrasts (see above), e.g. thetefet the first and second

levels of A are given by the contrasts [1,-1,0,0Jande=[0,0,1-1] .

Equivalent result would be obtained if the desiggirix were rotated
so that the first three columns reflect the expental effects plus a
constant term in the fourth column (only the figilumns would be
rotated). This is perhaps a better conception ef ANOVA approach,
reflecting the conception of factorial designsemnts of the experimental
effects rather than the individual conditions. Tiogation is achieved by
setting the new design matrix.

cC'" 0
X, = x[ 4*12} (7.3)
012,4 I 12
-1 -1 1 1
-1 1 -1 1
Where C'= (7.4)
1 -1 -1 1
1 1 1 1

Notice that the rows ofCT are identical to the contrasts for the main
effects and interactions plus a constant term. Tfiree experimental
effects can now be tested by the contrasts weight

[1,0,0,0] ,[0,1,0,0] ,[0,0,0,I(again, padded with zeros).

In this example, each factor only has two leveldctvhresults in one-
dimensional contrasts for testing main effects iaberactions.

Summary

In this lecture, you have been able to learn howolwe more two-way
analysis of variance problems involving factor slhsations,
interactions andontrast.
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Post Test

1. Discuss the differences and/or similarities leetw
a. factor classification, interactions and contrast.
b. pooled errors and partitioned errors

2. Write down the appropriate hypothesis to be uséesting
a. the main effect
b. the interaction effect
in the case of pooled errors.

3. Describe how you would implement a partitionedremodel.
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LECTURE EIGHT

Statistical Inference Theory

Introduction

Solving any statistical problem will involve camg out an inference.
This lecture introduces the concept of statisticErence in an analysis of
variance problem.

Objective
At the end of this lecture, you should be abledoduict simple inference
on problems in analysis of variance.

Pre Test
1. What is Statistical Inference?
2. True or False? If False, correct it.
In a one-way classification ANOVA, when the nullpoghesis is
false, the probability of obtaining an F-ratio esdmg that
reported in the F table at the .05 level of sigifice is greater
than .05.

CONTENT
Analysis of Variance (ANOVA) is a method of testitige hypothesis of
the difference between three or more populationnselm the case where

we are testing three population meahs, : 14 = 1, = U4,
H,:p # 1, # 14, or

Hy # Hg or

Hy # s
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To use ANOVA, we need to make the following assuomst

1. The populations are assumed to be (approximatetymally
distributed.

2. The populations have equal variances.

3. The samples from each population are independezadf other.

The following example is a typical problem to bé/ed by ANOVA:

Assume the track coach of a local high school vadbeest, among three
brands of running shoes, the best performing shdeslecides to select
15 track runners to run the 100 yard dash. Inrde, each brand is worn
by five runners. The following tables give the timioutcome of the race
of each brand:

Brand A (seconds)| Brand B (seconds) | Brand C (seconds)
11.30 12.17 11.43
12.06 12.14 10.11
11.78 11.66 11.66
12.11 10.99 10.28
10.98 10.89 11.55

One- factor classification

Problems of this type are called one-factor classibn because only one
variable (factor) is considered: the brand of ragnshoes. The variables
are called treatments. For the above example we tmee treatments, the
three brands of shoes. In this lesson we will stiayh one-factor
classification of ANOVA where the samples are oti@gsize for each
treatment.

In deciding to rejectH, or not, we first must learn to compute three

types of variations:
1. Total variation(S?)
2. Variation within treatmentgS? )

3. Variation between treatmer(tS;)
The equation for the relationship between totaliatem, within
variation and between variation (S}, = S? - S?)
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Example 8.1:For the example above, compute

a. total variation.

b. variation between treatments.
c. variation within treatments.

Solutions:

a.

Step 1:Compute the meanX for all the numbers in the table:

Brand A (seconds)| Brand B (seconds) | Brand C (seconds)
11.30 12.17 11.43
12.06 12.14 10.11
11.78 11.66 11.66
12.11 10.99 10.28
10.98 10.89 11.55
X =11.41

Step 2: a. SubtractX from each of the number in the table.
b. Square each of these.
c. The total variation of the sum of the values coredun the

table:

Brand A (seconds)

Brand B (seconds)

Brand C (seconds)

(1130-1142)* = 001
(1206-1141)* = 043
(1178-1141)* = 014
(1211- 1141)° = 049
(1098-1141)° = 018

(1217-1141)* = 058
(1214-1141)* = 054
(1166-1141)* = 006
(1099-1141)° = 017
(1211- 1141)° = 049

(1143-1141° = 00
(1011-1141)* = 168
(1166-1141)* = 006
(1028- 1141 = 127
(1155-1141)* = 002

Sum of Table Values: S?=5.92
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b.
Step 1:Compute the meaiX for each column

Brand A (seconds) Brand B (seconds)| Brand C (seconds)
11.30 12.17 11.43
12.06 12.14 10.11
11.78 11.66 11.66
12.11 10.99 10.28
10.98 10.89 11.55
X =11.65 X =11.57 X =11.00

Step 2: SubtractX (computed in step 1) from each of th& s’ in the
above table.

Square each of these differences.
The between variation is the sum of the values from
multiplied by the number of rows.

(1166-1141)* = 006
(1157-1141)* = 003
(1101- 1141 = 016

S’ = 5x(column sum)= 5(0.25)= 1.25

a.
To compute the within variation, we use the formula:

S =S2-S2=5.92-1.25=4.67

Solved Problems

Solved Problem 1: A large petroleum company wishes to test five new
gasoline additives for increase fuel efficiency. eifh researched
department purchased 35 new modern sedans and dewme car 100
miles, over the same track. Each additive was mxitd the gasoline of
seven sedans.
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The following table is the mileage recorded forteaar in the test. Here,
mileage is measured for each car as the numbeallaing consumed to
travel 100 miles

Additive A B C D E

Number of gallons 556 |497 |501 |4.11 |6.87
5.87 |6.00 |4.25 |5.11 |5.76
500 [6.77 |5.98 |512 |6.02
573 |6.09 |7.11 |6.11 |7.00
399 |478 |555 |6.00 |6.51
412 |5.00 |544 |551 |6.09
478 |511 |554 |[7.00 |7.11

Compute:

a. total variations.
b. variation between treatments.
c. variation within treatments.

Solutions:
a.

Step 1:Compute the meanX for all the numbers in the table:

A B C D E
556 |4.97 [501 |[4.11 6.87
587 |6.00 |425 |5.11 5.76
500 |6.77 |598 |5.12 6.02
573 |6.09 |711 |6.11 7.00
399 |478 |555 |6.00 6.51
412 |500 |544 |551 6.09
478 |511 |554 |7.00 7.11

X =5.63
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Step 2: a.SubtractX from each of the number in the table.
b. Square each of these.
c. The total variation of the sum of the values coraguin the

table:

A B C D E
(556-563)° =~ 000 | (497-563)° = 043 | (501-563)° = 038 | (411- 563 = 230 | (687-563) = 154
(587-563° = 006 | (600-563° = 014 | (425-563° =190 | (511-563° =027 | (576- 5637 = 001
(500-563° = 039 | (677-563)* =130 | (598-563° = (512-563*= 026 | (602-563° =015
(573-563° = 001 | (609-563° = 021 | (711-563) = (611-563° = 023 | (700- 563 = 188
(399- 563 =~ 268 | (478-563° = 072 | (555- 563 = 000 | (600-563° = 014 | (651- 563 = 078
(412-563° = 227 | (500-563° = 039 | (544-563° = (551- 563° = 001 | (609- 563 = 021
(478- 5637 = 072 | (511- 563 = 027 | (554-563° =001 | (700-563° =188 | (711- 563 = 220

Sum of the table values:S? = 26.15

b.

Step 1:Compute the meanX for each column:

A B C D E
5.56 4.97 5.01 4.11 6.87
5.87 6.00 4.25 5.11 5.76
5.00 6.77 5.98 5.12 6.02
5.73 6.09 7.11 6.11 7.00
3.99 4.78 5.55 6.00 6.51
4.12 5.00 5.44 5.51 6.09
4.78 5.11 5.54 7.00 7.11
X =5.01| X =553 | X X =557 | X =6.48
~5.55
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Step 2: SubtractX (computed in step 1) from each of th& s’ in the
above table.
Square each of these differences.
The between variation is the sum of the values frbom
multiplied by the number of rows.

(501- 563)* = 039
(553- 563)° = 001
(555-563)* = 001
(557-563)° = 000
(648-563)* = 073

S = 7x(column sum)= 7(1.13)= 7.91

C. To compute the within variation, we use the follan
S, =S?-Sf =26.15-7.91=18.24.

Summary
At the end of this lecture, you have been able daadact simple
inference on problems relating to analysis of varea

Post Test

1. A survey of 114 men and 126 women produced ¢kaltr that the
mean amount of chicken soup consumed by the mannionth's
time was .67 liters, compared with a mean of .5drdi for the
women. The variance of the chicken soup consumjitiothe men
was 25% greater than that for the women. A 95%fidence
interval for the difference between the means (snenkan -
women's) was found to be -.07 to +.33 liters. W t05 level, is
the difference in mean chicken soup consumptiowéah sexes
statistically significant?
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a. no

b. yes

c. Can't tell from the data given

2. A carefully designed experiment has just beemclcmled.

Execution of the experiment was flawless. Unfoatety use of

ALPHA (.05) indicated no significant differences amg

treatments.

What useful information can you supply future irigetors when

you report on this experiment?

Indicate agreement with yes or disagreement witlfonceach of

the following items.

a. No useful information. These are negative resatis there is
nothing useful to report.

b. The estimated variance (and its df) can be usefuluture
investigators.

c. A careful description of experimental conditions dan
treatments may be useful as an indication of cistanctes
where responses are about the same.

d. Significant differences can be reported by changiegType |
error rate from .05 to .10, .20 or whatever is meetb declare
significance.

3. Note Items i. thru iii. are based on a teaching expent
involving four elementary statistics classes. Bebre scores for

24 students who took the same final examination.

Statistics Statistics Statistics Statistics
Cookbook with Humor Mae Useful in Story Form
78 51 64 54

78 57 54 61

79 64 61 79

70 75 66 69

83 42 57 69

74 83 71 65
462 372 373 397
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Suppose further that calculations yield SS(total)880, and

SS(between) = 300.

i. What is the observed value of the statistic computes to test
H(0): MU(1) = MU(2) = MU(3) = MU(4) against H(1)not all
4 means are equal?
a. 25 b. 5.2 c. 4.0 d.111e. None of these

ii. If ALPHA = .01, then the criticablue of the statistic is
a. 310 b. 494 c. 8.66 d. 267 None of these
iii. Suppose that the observed value of the statis Item i. is 5.6
while the critical value in Item ii. is 7.21. Witbnly this
information, which of the following conclusions isost
logical?

a. The four populations do not all have the same mean.

b. The four populations have the same mean.

c. The four populations do not all have the same mean.
Statistics Cookbook and Statistics in Story Forradpice
higher means than the other two books.

d. Statistics Cookbook has the highest populatiean.

e. The four population means may be different hdse¢
samples fail to demonstrate any difference.

4. Solve the examples illustrated in this lecture.
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LECTURE NINE

Hypotheses Testing

Introduction

In analysis of variance, like other statistical ralsd it is important to test
assertions and claims. In this lecture, we aintesting some conjectures
put forward in an analysis of variance problem.

Objective
At the end of this lecture, you should be ableest simple hypothesis in
an analysis of variance problem.

Pre Test
1. What do you understand by the temmtical region?

2. Suppose the critical region for a certain tédtypothesis is of the
form F > 9.48773 and the computed value of F froendata is .86.
(F refers to an F statistic.) Then:

a. Ha should be rejected.
b. Ha is two-tailed.

c. The significance level is given by the area to tlght of
9.48773 under the appropriate F distribution.

d. None of these.

CONTENT
Unsolved problems with answers
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Problem 9.1 A medical student research laboratory t wishesets if
there is a difference between three different drilngd promote weight
loss for women over 200 pounds. The client randodiyde up fifteen
over- weight into three equal groups. Each grolp tanly one the drugs.
The following table is the resulting loss (in poshdfter 60 days:

Drug A Drug B Drug C
21.30 22.11 33.43
32.06 19.18 29.00
21.78 17.66 21.26
22.11 19.79 30.58
30.98 20.89 21.55

Compute:
a. total variation.
b. variation between treatments.
c. variation within treatments.

Answers:
a. S’ =394
b. S; =145
c. S =248

Testing Hypothesis on Means using the F Distributio
To test the null and alternative hypothesis:

Ho i by = 1y = = ... = 4y
Hyo i #

or

My # Uy

Or

Hy # U3, €16

We use F distribution
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Using the values from analysis of variance, we néedest the F
distribution for the value

F:SQC(r -1)
Sv(c-1)
¢ = the number of treatments (number of columnetable)
r = the sample size for each treatment (numbeows rof the tables)
d, = c-1 degrees of freedom

, where

d, =c(r-1) degrees of freedom

Example 1:For Problem 8.1
a. StateH, andH,.

b. Compute F.

c. Find Fy

Would you rejeclHO?
State your conclusions.

d. Find FOOl

Would you rejeclHO?
State your conclusions.

Solutions:
a.

Ho tla = g = U

H, :at least one of the p values is different fromdtteer two.
b. From Example 1.

S; =125
SZ = 467
C=3 and r=5

FoSsc(r-1) _ (2936-1)_ 15 .,
S (c-1) (467)(3-1) 9.34
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d,=c1=3-1=2
d, =r(c-1)=3(5-1) = 12
From the distribution table for 0.05, we firttl,s — 3 gg

Since F=1.61 < 3.89|_,|O is not rejected. For a level of significance of
0.05 we have not statistical basis to concludetti@imake of the running
shoes improve the performance of the runners.

d,=c1=3-1=2
d, =r(c-1)=3(5-1) = 12
From the F distribution table for 0.01, we fikg,, = 693
Since F=1.61 < 6.93",'0 is not rejected. For a level of significance of

0.01 we have not statistical basis to concludetti@mimake of the running
shoes improve the performance of the runners.

Solved Problems
Solved Problem 9.1For Problem 9.1

a. StateH, andH,.
b. Compute F.

c. Find Fy

Would you rejeCIHO?
State your conclusions.

d. FindF,,

Would you rejeCIHO?
State your conclusions.
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Solutions:

a.

b.

Ho  la = Hg = He = Hp = He

H, : at least one of the p values is different fromdtieer two.
From Solved Problem 9.1.

St =791

S; = 1824

C=5and r=7,

e Sie(r-) _ (7993(7-1) _ 2373
S(c-1) (1824)(5-1) 72.96

325

d,=cl=5-1=4

d, =r (c-1)=5(7-1) = 30

From the F distribution table for 0.01, we fifkg,, = 402

Since F=3.25 < 4_02"!0 Is not rejected. For a level of significance of

0.01 we have no statistical basis to conclude thatmake of the
running shoes improve the performance of the runer

Unsolved problems with answers
Solved Problem 1:For unsolved Problem 9.1

a. StateH, andH,.

b. Compute F.

c. Find F

Would you rejeCIHO?
State your conclusions.

d. Find FOOl

Would you rejectHO?
State your conclusions.
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Answers:
a. HoiHa=Hg =M
H, :at least one of the u values is different fromdtreer two.

b. F=3.49
c. Foos =389

Since F=3.49 < 3.89 , we do nogject Ho. There is no statistical
basis for assuming among the three diet drugsefiuaing weight.

d. Foon= 693

Since F=3.49 < 6.93 , we do nogject Ho. There is statistical

basis for assuming among the three diet drugs éoluaing
weight.

Summary

In this lecture, you have been able to test sintpipothesis in an
analysis of variance problem.

Post Test

1. Consider the following ANOVA table:
Source SS df

Between 30.5 4
Within
Total 165.0 99

What decision would be made regardifig: population means
are equal?

a. RejectHq at the .05 level
b. Fail to rejectfs at the .01 level

c. Insufficient information is given to answer
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2. Samples of size 5 are taken from 3 populationsthe following
analysis of variance table found. Test the hypaththat the three
populations have the same means.

Source d.f. M.S. F
Between means 350
Within samples 010
Total

F = 3.5 so hypothesis is rejected at 5% level

F = 3.5 so hypothesis is not rejected at 5% level
F = 3.5 so hypothesis is not rejected at 10% level
F = 3.5 so hypothesis is rejected at 1% level

Do not have enough information to perform test.

® o o T

3. Afisheries researcher wishes to conclude tinetetis a difference
in mean weights of three species of fish caugla iarge lake near
Lincoln, Nebraska. The data are as follows: (BEBHA =.05.)

SPECIES
X Y Z
15 1.5 6.0
4.0 1.0 4.5
4.5 4.5 4.5
3.0 2.0 5.5

ANOVA Table (incomplete):
Source of Variation SS df MS F

Between Groups 17.04 2 852
Within Groups 14.19 9 1.58
TOTAL 31.23 11
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i. The null hypothesis is:
a. HO): BETA=0
b. H(O): MU=0
c. H(O): MU(X) = MU(Y) = MU(2)
d. H(O): BETA(X) = BETA(Y)= BETA(Z)
ii. The test statistic is:
a. t(calc) =2.52
b. t(calc) =3.09
c. F(calc) =1.20
d. F(calc) =5.40
iii. The critical value is:
a. 1(.05,9) =2.262
b. t(.10,9) =1.833
c. F(.05,2,9)=4.26
d. F(2.5,2.9)=5.71
iv. What is your conclusion?

a. Reject H(O) because F(calc) > F(crit), (at leagtair has
different means).

b. Reject H(O) because t(calc) > t(crit), (all mean® a
different).

c. Fail to reject H(O) because F(calc) < F(crit), (ificient
evidence that means are different).

d. Fail to reject H(O) because t(calc) < t(crit), (meaare
equal).

4. A one-way classification analysis of variancepisrformed on
experimental data for which there were 10 subjecesach of two
groups. The .95 confidence interval around the ediffice
YBAR(1) - YBAR(2) is -0.10 to 1.5. Which one ofeHollowing
statements is true?

a. The F ratio obtained in the analysis of variance ieas than 4.41

b. The F ratio obtained in the analysis of variance gi@ater than 8.28
c. The true difference MU(1) - MU(2) must lie betweénl0 and 1.50.
d

. The best estimate of MU(1) - MU(2) possible frone ttesults is
1.50.
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5. A researcher assigns each of his interviewdist af 7 families,
drawn randomly from a region, to be interviewedclEmterviewer
is instructed to administer a successful parensicgle (SPS) to
each parent in his sample. The SPS scores, Y6)dafined as
ranging from O (no parenting skills deemed succ#ssd 100
(successful parenting skills consistently and &kil} applied). An
interviewer returns with data for both parents.e tlss data to test,
using classical analysis of variance, at the 908l lef confidence,
the hypothesis that "mothers are more likely to doecessful
parents".

Mothers Fathers
Y (i) Y()
68 63
72 48
48 30
54 52
83 55
92 41
87 57

MBAR = 72.00

FBAR =49.43

ANOVA Table (incomplete):

Source of Variation SS df MS F(calc)
Between Groups 1783.1431

Within Groups 2391.71412 199.310

Total 4174.857 13

6. Use one-way analysis of variance, with an F, testtest the
hypothesis that "The wealthier a person, the mé&etyl he will be
relatively politically conservative," at the 90%é of confidence.
Note that, for purposes of research, the researocperationally
defined "wealthy" as those with an annual incom&®f000,000,
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while "poor" subjects received less thaB(0\D00/year. Note, too,
that the "political conservatism” scale used preduscores of 0
for "extremely liberal", and 100 for "extremely c@mvative".
Sample data:

Income Cateago
Wealthy Poor
90 05
80 06
70 04
60 05
90 03

ANOVA Table (incomplete):
Source of variation SS  df  MSF(calc.)

Between groups 2560 1
Within groups 1200 8
Corrected total 3760 9

. A sociologist conducted a study of assertiorhying one of her
top students, after appropriate training, note thember of

assertive acts performed in a day by each of 18araly selected

coeds, producing the following sample of data, ats ger day:

[5,3,10,6,4,9,5,5,7,5]. Another sociologist wondevkether the

male and female students at Bedrock indeed differssertiveness
and, by a similar procedure, gathers the followilaga for male

students, in acts per day: [8,3,5,8,12,10,7,7,90%e a one-way
analysis of variance to test the hypothesis thde reudents are
more assertive than female students at Bedrocke@allat the
90% level of confidence.

ANOVA table (incomplete):

Source of variation SS df  MS(calc.)
Between Groups 1445 1

Within Groups 99.30 18

Total 113.75 19
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8. Mr. Martin can drive to work along four differeroutes, and the
following are the number of minutes in which hedarhimself on
five different occasions for each route:

Route 1 Route2 RouteRoute 4

T.(J) =

22 25 26 26
26 27 29 28
25 28 33 27
25 26 30 30
31 29 33 30
129 135 151 141

ANOVA Table (incomplete)

Source df SS M.Sq F ratio
Routes 3 52.8

Error 16  100.4

Total 19 153.2

Complete the ANOVA Table and test if all routes ageially fast
(ALPHA = 5%).

9. An imaginary study has been conducted on thectsffof three
brands of laxatives on regularity of TV actresséerg each brand
was tested by one actress belonging to each ofgk0gaoups.
Results obtained included: F= (brand M.Sq.)/(Eivb8Bq.) = 2.1
with 2 and 18 df.

a. What hypothesis is tested using this F ratio?
b. Interpret these results using a significance le¥&%.
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LECTURE TEN

Generalisation to M-Way Analysis of Variance

Introduction
In this lecture, we introduce the generalizatioranfanalysis of variance
problem to ar -way ANOVA.

Objective

At the end of this lecture, you should be able to
1. generalize a two-way analysis of variance problem.
2. solve a generalized analysis of variance problem.

Pre Test

1. What is an™ -way analysis of variance?
2. Whatis

a. an effect?

b. a contrast?

CONTENT

The examples in lecture seven can be generalizéd-teay ANOVAS,
For aK,-by- K,-by- K,, design, there are

M
P=[]K,

m=;
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Conditions. An M-way ANOVA has" — 1 experimental effects in
total, consisting of M main effect plug!/(M —r)!r! interactions of order
r=2...M. A 3-way ANOVA for example has 3 main effe¢ts, B, C),
three second-order interactions (AxB, BxC, AxC) amue third-order
interaction (AxBxC). Or more generally, an Oth-ardeteraction is
equivalent to a main effect.

We consider model where every cell has its ownffiooent (like
Equation 13). We will assume these conditions adered in a GLM so
that the first factorotatesslowest, the second factor next slowest, etc, so
that for a 3-way ANOVA with factor A, B, C.

1 2 .. K, =
ABC, ABC, ..  ABC, . AB.C, (101

The data is ordered all subject for c@lB,C,, all subjects for cell
AB,C, etc.
The F-contrasts for testing main effects and adgons can be

constructed in an iterative fashion as follows. &ééne initial component
contrast

Cn=1, D, =-diff(l, )"

Where diff(A) is a matrix of column differences &f (as in the
Matlab function diff). So for a 2-by-a ANOVA

C,=C,=[L 1" D,=D,=[} -1’ (10.2)

The termC_, can be thought of as thommon effecfor the mth

factor and [ as the differential effect Then contrasts for each
experimental effect can be obtained by the Kronepkeduct of G's and
Dn's for each factom = 1...M. for a 2-by-2 ANOVA, for example, the
two main effects and interaction are respectively

D,OC,=[1 1 -1 -1
c,0D,=[1 -1 1 -1
D,OD,=[1 -1 -1 1
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This also illustrates why an interaction can beutht of as a
difference of differencesThe productC, 0 C, represents the constant
term.

For a 3-by-3 ANOVA

. 1 -1 o
C,=C,=[11]] D1:D2:o 0 -
(10.3)
And the two main effects and interaction are respely
1 11-1-1-1 0 0 Of
D,0C, = (10.4)
ooo0o 1 1 1 -1-1-

1 -1 0 1 -1 0 1 -1 o]
D,0C, = (10.5)

o

1 -1 0 1-1 0 1 -1
§ 1-1-1-1 0 0 o

0 1 1 1 -1 -1 -1
01 -1 0 -1 1 0
00 1-1 0-1 1

D,0C, = (10.6)

o O o k-
o O o -

The four rows of this interaction contrast cor@sp to four ‘simple

interactionsT, )", 7.y, 75 andrjy . This reflects the fact that an interaction

can arise from the presence of one or more simpdeactions.

Two-stage procedure for partitioned errors

Repeated measures M-way ANOVAs with partitionedorercan be
implemented using the following Summary, Statiséipproach.

1. Set up first level design matrices where each ilmodeled
separately as indicated in equation 6.2.
2. Fitfirst level models.
3. For the effect you wish to test the Kronecker padules outlined
in the previous section to see what F-contrastdoed to use to
test the effect at the first level. For example, tést for an
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No

interaction in a 3 x 3 ANOVA you'd use the F-comstran equation
30 (application of this contrast to subjects data you how
significant that effect is in that subject)

If the F-contrast in the previous step hasr&ws then for each
subject, create the correspondingc@ntrast image. For N subjects
this then gives a total of NRontrast images that will be modeled
at the second-level.

Set up a second-level design matrix, =1, U1,. The number

of conditions is R for example, in a 3 x 3 ANOVA,
X, =1, 01 as shown in figure 9.

Fit the second level model.
Test for the effect using the F-contraSt. =1 .

For each effect we wish to test we must get the@pate contrast
images from the first level (step 3) and implemeamew 2nd level
analysis (step 4 to 7). Because we are talKiffgrential effects to
the second level we don't need to include subjéfeices at the
second level.

Summary
In this lecture, you have been able to

understand the basics of a generalized anaf/s@riance.
solve a generalized analysis of variance problem

Post Test
Describe the procedure for setting up the partgtbarrors.
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Appendices

A: The Kronecker Product
If Ais my X m matrix and B is am; X n, matrix. Then the Knonecker
product of A and B is

(mny) X (mpng) matrix
a,B - a,B

B a B

amll mm,

Circularity
A covariance matrix) is circular if

Zii +ij _ZZij =2/

For alll, j.

Compound Symmetry
If all the variance are equal td and all the covariances are equal to

A, then we haveompound symmetry.

Nonsphericity
If X is K x K covariance matrix and the first K — 1 aigalues are
identically equal to

A= O'S(Zii +ij —ZZ” )

Then X is spherical Every other matrix is non-spherical or has
nonsphericity.

Greenhouse-Geisser correction
For a 1-way ANOVA between subjects with N subjeantsl K levels
the overall F statistics is approximately distrémifs

FI(K-2e (N -1D(K -1)e€]
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e (Z:l/]i )2

= _ K-1 2
Where (k 1)2:1 A

and A, are the eigenvalues of the normalized makix where
2, =M T Zij M

and M is a K by K — 1 matrix with orthogonal colusnfeg. The
columns are the first K — 1 eigenvalues)f ).

B: Within-subject models
The model in equation 11 can also be written as

yn :1Knn +T+en

Where y, is now K x 1 vector of measurements from title subject,

1« is a K x 1 vector of 1's, andis a K x 1 vector withkth entry
r.ande,is a K x 1 vector wittkth entry e, where

ne) =N@O2,)

We have choice as to whether to treat the subjéstts 71,as fixed-
effects or random-effects. If we choose randometdfénen
pe,) = N(u.0y)

and overall we have a mixed-effects model as thie&y response for
subjectn, 71, , is viewed as a random variable. The reduced hisde

yn zlknn +en

For the full model we can write
N

p(y) = |'| p(y,)
p(Y,) =N(m,2,)
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and
m, =1 +7
>, =1K(,’2711< +2.,
If the subject effects are random-effects, angd=>2.., otherwise.

If >, = 0’1, then 2., hascompound symmetrit.is also spherical
(see Appendix A) for K = 4 for example

2 2 2 2
0-77 + Ue 0-77' 0-77 0-77'
s - o’ o:+0? o’ o’
y © 2 2 2 2
0-77 0-77' 0-77 + Je 0-77'

o o g, 0.+0;
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