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Foreword 
 
This book on probability and distribution theory is written in a 
language that is intelligible and has examples that have ready 
appeal. The worked examples serve to illustrate the procedures and 
reinforce definitions and rules. 

In some textbooks on this subject, certain parts of probability 
suffer from lack of coherence because the usual grouping and 
treatment of problems depend largely on accidents of its historical 
development. 

A salient feature of this book however is to distinguish 
“definition” of probability from the “method” of its calculation. 
The presentation style of the book is lucid; the topics are arranged 
in increasing level of difficulty and they cover essential 
constituents of probability and distribution theory. The subject 
matter is not new but a major attraction of the book is enough 
exercises of all types and these exercises, which have been 
specially constructed to illustrate the theory are so designed that 
after doing them, the student should not only have a better grasp of 
the theory, but should also know the motivation for the various 
steps. Undergraduate students in statistics will find the book 
useful. Statisticians and non-major students in statistics will find 
the book a reliable guide. 
 
 
Professor G.N. Amahia 
Statistics Department 
University of Ibadan 
Ibadan 
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General Introduction and Course Objectives 
 
Students must have encountered a number of problems relating to 
probability distributions that are sufficiently important to warrant 
identification by name and a more systematic study to ascertain 
their properties and applications. Their significance lies in their 
utility as workable models for many important practical 
applications. It provides an introduction to probability and a 
detailed illustrations of many distributions used in statistics. It is 
important, that one be familiar with the concepts of distribution 
theory since the knowledge of the behaviour of these probability 
distributions is very useful in statistical inference. The subject 
matter of statistics is very broad extending from the planning and 
design of experiments, surveys and other studies which generate 
data to the collection, analysis, presentation and interpretation of 
the data. Hence, numerical data constitute the raw material of this 
subject.  

The first chapter discusses useful concepts of set theory, 
combination, and permutations, independent and conditional 
events. Probability theory provides a rational basis for inference 
and decision making about population or a larger group from 
which samples are taken. Chapter three introduces functions and 
random variables (both discrete and continuous) and some 
descriptions of the probability distributions for random variables. 
The rest of the chapters address problems regarding probability 
distributions ranging from one dimensional case to two 
dimensional situations. 
 
Objectives  
At the end of this book, you should be able to: 

(1) Discuss several methods of measuring probabilities. 
(2) Discuss the theory of discrete and continuous random 

variables with their corresponding properties. 
(3) Discuss the concept of distribution functions and their 

properties. 
(4) Appreciate the theory of frequently occurring probability 

distributions, and obtain expressions for the expected 
values and variances. 
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(5) Discuss the importance of generating functions and its 
usefulness in connection with sums of independent 
random variables. 

(6) Discuss the significance of some basic limit theorems in 
finding approximations to distributions of statistics and/ 
or statistics themselves. 

(7) Handle cases involving two-dimensional random 
variables since in almost all applications random variables 
do not occur singly and 

(8) Appreciate the usefulness of the t and the F distributions 
and the extensive use in tests concerning normal 
populations. 
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1 
Basic Concepts of Probability 

 
 
 
Introduction  
It will be useful to begin this book by defining some basic concepts 
of probability. One of the fundamental tools of statistics is 
probability, which had its formal origin in the games of chance in 
the seventeenth century. Probability theory is a fascinating subject 
which can be studied at a variety of intellectual and mathematical 
levels. Probability lies at the foundation of statistical theory and 
application. 
 
Objectives  
At the end of this chapter, you should be able to: 

(1) Explain some basic terms used in probability theory; 
(2) Differentiate between the different approaches to the 

definition of probability; and 
(3) Solve problems involving combinations and permutations. 

 
Pre-Test 

(1) What do you understand by the term ‗probability‘? 
(2) Define a statistical experiment with simple relevant 

examples. 
(3) What do you understand by the word permutation? 
(4) Define the word combination? 
(5) What is a conditional probability? 

 

Content 
Basic Set Theory 
Random Experiment: A random experiment is an experiment in 
which, 

(a) All the outcomes of the experiment are known in advance; 
(b) Any performance of the experiment results in an outcome 

that is not known in advance; and 
(c) The experiment can be repeated in an identical condition. 
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2     Basic Concepts of Probability 
 
 

Simply put, any experiment that can have more than one possible 
outcomes/results that are known in advance is called a random 
experiment. 
 
Examples  

(i) A coin is tossed once; the result of the experiment is either 
head or tail. 

(ii) A die is rolled once, the possible outcomes are 1, 2, 3, 4, 5, 
or 6. 

 

Set:  A set can be defined as any well-defined collection of objects. 
Individual objects that belong to a set are called members or 
elements of the set. Examples are: 

 A set of vowels is  , , , ,a e i o u  

 A set of animals  ,  ,  dog tiger elephant  

 
A SET is denoted by upper case letter and an element, a lower 
case. 

(i) A unit set is a set composed of only one element. 
(ii) A set that contains no elements is called the empty set, or 

null set, and is designated by the symbol  . 

 
Sample Space: A set S which consists of all possible outcomes of 

a random experiment is called a sample space. 

 e.g.   ,  S H T  and  1,  2,  3,  4, 5,  6S   

 
Events: An ―event‖ is a subset of the sample space. 

(i) An elementary event is a single possible outcome of an 
experimental trial. It is thus an event which cannot be 
further subdivided into a combination of other events.  

e.g.    1A   or   5B   
 

(ii) Compound or composite event is an event that can be 
subdivided into small events.   

 e.g.    1,  3,  5A   or   2,  4,  6A   
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Probability and Distribution Theory      3 
 
 

Subset: A collection made up of some of the objects in a set is 
called a subset. 

 e.g.   If   = 2,4,6,8A is a set, then a subset of A  can be  
  

        = 2 , or 2,6,8 , or 4,6 ,  etcB  

 
Basic Concepts of Probability 
Since probability originated from games of chance, actions such as 
the following are familiar in the theory of probability; tossing a 
coin, throwing a die, spinning a roulette wheel, drawing a card etc. 
Here, the outcome of a trial is uncertain, however, it is recognized 
that even though, the outcome of a trial is uncertain; there is a 
predictable long-term outcome (relative frequency). It is known, 
for example, that in many throws of an ideal (balanced 
symmetrical) coin about half of the trials will result in heads. This 
concept of probability may be defined and interpreted in several 
different ways, the chief ones arising from the following:  
 

Classical (A Priori) Approach to Probability 
In this approach, the total number of all possible outcomes is fixed 
and known prior to the performance of any experiment. Similarly, 
the number of outcomes that have the particular characteristic 
associated with the event in question is fixed and known 
beforehand. All the outcomes are mutually exclusive and equally 
likely. 
 
In this situation, the probability that an event occurs is defined as 
the ratio of:  
 
The number of outcomes (results) in an experiment that have the 
characteristic associated with the event to the total number of 
possible outcomes of the experiment. 
 
Therefore, the probability of a given event can be determined 
without necessarily performing the experiment. 
That is, for event E  in the sample space S . 
 

 No. of results in E ( )
( )

No. of results in S ( )

n E
P E

n S
   
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4     Basic Concepts of Probability 
 
 

That is, if there are E  possible outcomes favourable to the 
occurrence of an event A  and F  possible outcomes unfavorable to 
the occurrence of this event, then the probability that A  will occur 
is 
 

 
outcomes possible of No. Total

A  tofavorable outcomes of No.
)( 




EF

E
AP  

 
Example 1.1 

(1) If a fair 6-sided die is rolled, the probability that 1 will be 

observed is equal to 1 6  and is the same for other five 

sides. 
(2) If a card is picked at random from a well shuffled deck of 

ordinary playing cards, the probability of picking a heart is 
13

52 . 
 

Relative Frequency (A Posteriori) Approach to Probability 
This is when the probability ratio associated with a given event is 
not known before experiments are performed. Rather, the 
probability ratio is determined only after a relatively large number 
of trials of the experiments under identical conditions. In this type 
of situation, the probability that an event may occur is defined as 
the ratio of: 
 
The number of trials in which the specified event occurred to the 
total number of trials performed. 
 
The two basic assumptions underlying this definition are that; 

(a) A relatively large number of trials is performed under 
identical conditions. 

(b) As the total number of trials is increased, the probability 
ratio approaches the true value. 

 
Consider an experiment in which there are independently repeated 
trials. 
 

The number of outcomes ― f ‖ of an event A  in which we are 

interested is recorded in n trials of the experiment. Then, the 
relative frequency of occurrence of A  is  
 

   f
nP A  . 
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Example 1.2  
In an experiment, a box contains N balls, where N is a large but 
unknown number. Some of the balls may be red. The experimenter 
defines the event E as ―obtain a red ball‖ and wishes to assign a 
probability p to this event. 
 
Note: Since the number of results is not known and the number of 
favourable results is unknown, the experimenter cannot apply the 
classical definition of probability. He therefore decides to draw a 
sample with replacement of balls from the box, making sure that 
every ball has an equal chance of being selected. 
 

 He draws a total of 10 balls from the box and 4 are red, so 

  1 4 0.4
10

f
P

n
    

 
 He draws 100 balls, 38 are red, 

  2 38 0.38
100

f
P

n
    

 
 He draws 1000 balls and 388 are red, 

  3 388 0.388
1000

f
n
   

 
 10,000, 3840 are red,   

  4 3840 0.3840
10000

f
n
   

 
  Draws 100,000 and 38500 are red, 

  5 38500 0.385
100000

f
P

n
    

 
In many cases, it is found that these relative frequencies differ 
from one another by small amounts, provided n  is large. Thus in 
such cases, there is a tendency in the relative frequencies to 
accumulate in the neighbourhood of some fixed value. This 

limiting value of  as 
f

n
n

  is regarded as the probability of E  

in the experiment.  
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6     Basic Concepts of Probability 
 
 

That is, 

   limit  
n

f
P E p

n
   

 
where f is the observed frequency and n is the sample size 

 

 
 

Fig. 1.1: Relative frequency of red balls in Example 1.2 

 
Mathematical (Axiomatic) Definition of Probability 
The basis of this approach is embodied in three properties from 
which the whole system of probability theory is constructed 
through the use of mathematical logic. The mathematical definition 
of probability is given as follows: 
 
Let S be the sample space of an experiment. Then the probability is 
a function P that assigns real numbers to events in such a way that: 
 

(i)  0 1P E   for any event E 

(ii)      1 2 1 2P E E P E P E     for any collection of 

mutually exclusive events  1 2,E E  

(iii)   1P S   

 
Counting Techniques – Permutations and Combinations 
These techniques are helpful in computing the probability of an 
event when the total number of possible events is large. 
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Multiplication Principle 

If one operation can be performed in 
1n  ways and a second 

operation can be performed in 
2n  ways, then there are 1 2n n  ways 

in which both operations can be carried out. 
 
Example 1.3 
Suppose a coin is tossed once and then a marble is selected at 
random from a box containing one black, one red, and one green 
marble. The possible outcomes are HB, HR, HG, TB, TR, and TG. 
For each of the two possible outcomes of the coin, there are three 
marbles that may be selected, giving a total of 2 3 6   possible 
outcomes. 
 

 
    
Note that the multiplication principle can be extended to more than 
two operations. In particular, if the i

th
 of r  successive operations 

can be performed in in  ways, the total number of ways to carry out 

all r  operations is the product. 
 

 



r

i

ri nnnn
1

21 .....  

 
Permutations: A permutation is an ordered arrangement of 
objects. The number of permutations of n  distinct objects taken r  
at a time is 
 

 
)!(

!

rn

n
nPr


  

 
Proof: In order to fill r  positions from n  objects, the first position 
may be filled in n  ways using n  objects, the second position may 

be filled in 1n  ways, and so on until there are  1n r  objects 
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8     Basic Concepts of Probability 
 
 

left to fill in the r
th

 position. Thus, the total number of ways of 
carrying out this operation is given by, 
  

)!(

!
))1()......(2).(1.(

rn

n
rnnnn


  

 
The possible permutations of 4 objects taken 4 at a time is = 4P4 
 
Ways to fill    Ways to fill    Ways to fill     Ways to fill    Counting the number  
1

st
 Position    2

nd
 Position    3

rd
 Position   4

th
 Position    of arrangements 

 

                               

                                 
Fig. 1.2: A tree diagram showing the permutations of 4 objects 
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Suppose we have only two positions available on the shelf. In how 
many ways can we fill these two positions using four objects? 
 
First determine the number of possible permutations of 4 objects 
taken two at a time; let the 4 objects be A, B, C, D.  
 
There are four objects with which to fill the 1

st
 position. Once that 

has been filled, we have 3 objects only, and using the tree diagram 
(fig. 1.3), we have, 
 
    Ways to fill the                 Ways to fill the          Counting the number 
      1

st
 Position     2

nd
 Positions             of permutations 

 

                                    
Fig. 1.3: A tree diagram of permutations of 4 objects taken 2 at a time 

 
From figure 1.3, there are 4 x 3 = 12 possible permutations of 4 
taken 2 at a time. 
 
Designate the number of distinct objects by n  from which the 
ordered arrangement is to be derived and by r  the number of 
objects in the arrangement.   
 
The number of possible such ordered arrangements is referred to as 
the number of permutations of n  items taken r  at a time, and is 

written as n rP . 

 
In general, 
 
 Pr ( 1)( 2) ( 1)n n n n n r      
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10     Basic Concepts of Probability 
 
 

n rP  can be evaluated by means of a fraction involving factorials as 

follows: 
 

 
)!(

!
Pr

rn

n
n


  

 
Example 1.4 
In a County health department, there are five adjacent offices to be 
occupied by five nurses, A, B, C, D and E. In how many ways can 
the five nurses be assigned to the offices? 
 

 
)!55(

!5
55


P   = 5 x 4 x 3 x 2 x 1   =   120. 

 
Suppose that there were six nurses to whom adjacent offices are to 
be assigned, out of only four offices available. 
 
We need to determine the number of permutations of six items 
taken four at a time which is 
 

 360
!2

2 x 3 x 4 x 5 x 6

)!46(

!6
6 4 


P  

 
Permutation: Indistinguishable objects; objects that are not all 
different. 
 

  
1 2 1 2! , ,....., ! !..... !n k kn nP n n n n n  

 
Combinations: A combination is an arrangement of objects 
without regard to order. The number of combinations of n  distinct 
objects chosen r  at a time is 
 

 
)!(!

!

rnr

n

r

n











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Proof:  n rP  may be interpreted as the number of ways of choosing 

r objects from n objects and then permuting the r objects r! ways. 
 

 
)(

!
!

rn

n
r

r

n
nPr











  

 
Permutations of 4 objects taken two at a time consist of 
 
 AB AC AD BC BD CD 
 
 BA CA DA CB DB DC 
 
whereas, there are only six combinations i.e. there are 2 permuta-
tions of each combination. 
 
In certain cases we may not want to make distinction between 
arrangements AB and BA for example, we may want to consider 
them as the same subset, we say that order does not count, and 
refer to the arrangements as combinations. 
 
In general, we have !r  permutations for each combination of n  
objects taken r  at a time. 
 

 

)!(!

!
      

!

!

rnr

n

r

nP

r

n

r

n
rnP

r

r























 

 

6
2!  2!

2! x 3 x 4
      

!2  !2

!4

2

4











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12     Basic Concepts of Probability 
 
 

Example: 1.5 
Suppose a group therapy leader in a mental health clinic has 10 
patients from which to form a group of six. How many 
combinations of patients are possible? 
  

210
4!  6!

!10

6

10









 

 
Example 1.6    
(Combination): A steering committee of 7 is to be chosen at 
random from a club with 40 members.  How many committees can 
be formed? 
 

 560,643,18
!7  !33

!40
40 7 C  

 
Properties of Probability 

(1) If A is an event and A is its complement, then 

     APAP 1  
 
Proof:  since S A A A A      ,  and A A  are 

mutually exclusive 
   

So, 

         1 P S P A A P A P A       

 

(2) For any event A ,   1P A  . 

Proof:     1P A P A  ,  we know that   0P A   

      1P A  . 

 
(3) For any two events A  and B  
 

         P A B P A P B P A B       

Proof:    A B A B B     

      A A B A B     
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A B

 
 

i.e.    A B B B     

 A B S A B      

     A B A B A B B A S          

   A A B A B     

Then it follows that    and A B B are mutually exclusive 

Since      A B B A B B B          

Since,   A B    

 B B    

Then,       P A B P A B P B     

Similarly,   and A B A B  are mutually exclusive,  

So,      P A P A B P A B     

       P A B P A P A B     

         P A B P A P B P A B      

 
For any three events, ,   and A B C  

               P A B C P A P B P C P A B P A C P B C P A B C               

Conditional Probability 
In this section, we introduce one of the most important concepts in 
all of probability theory—that of conditional probability. Its 
importance is twofold. In the first place, we are often interested in 
calculating probabilities when some partial information concerning 
the result of the experiment is available, or in recalculating them in 
light of additional information. In such situations, the desired 
probabilities are conditional ones. Second, as a kind of a bonus, it 
often turns out that the easiest way to compute the probability of an 
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14     Basic Concepts of Probability 
 
 

event is to first ―condition‖ it on the occurrence or nonoccurrence 
of a secondary event.  
 
In such a case, we use ―Conditional Probability of A  given B ‖ 

and write as  P A B . 

 
Definition: The Conditional Probability of an event A , given the 

event B  denoted as  P A B , is defined by 
 

  
)(

)(

BP

BAP
BAP


  

 

      If   0P B   

 
This definition can be understood in a special case in which all 
outcomes of a random experiment are equally likely. If there are n 
total outcomes, 
 

       P A number of outcomes in A n   

 
Also, 
 

       P A B number of outcomes in A B n    

 
Consequently, 
 

 

 
    

    

P A B number of outcomes in A B

P A number of outcomes in A

 
  

 
Example 1.7 
A common test for AIDS is called the ELISA test. Among 
1,000,000 people who are given ELISA test, results similar to 
those given in the table below can be expected.   
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 B1                                      B2 
Carry AIDS       Do Not Carry         
Virus                  AIDS Virus                     

 

A1:Test positive    4,885                 73,630     78,515 

A2: Test Negative       115                921,370   921,485 

    5,000                995,000 1,000,000 

 
If one of these 1,000,000 people is selected randomly, find the 
following probabilities: 
 

(i) 1( )P B  

(ii) 1( )P A  

(iii) 1 2( )P A B  

(iv) 1 1( )P B A  

 
Solution  
 

(i) 
1

5,000
( ) 0.005

1,000,000
P B    

(ii) 
1

78,515
( ) 0.07852

1,000,000
P A    

(iii)  

 
1 2

1 2

2

73,630
( ) 0.074

995,000

P A B
P A B

P B


    

(iv)  

 
1 1

1 1

1

4,885
( ) 0.0622

78,515

P A B
P B A

P A


    

 
Example 1.8 
A day‘s production of 850 manufactured parts contains 50 parts 
that do not meet customer requirements. Two parts are selected 
randomly without replacement from the batch. What is the 
probability that the second part is defective given that the first part 
is defective? 
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Solution  
Let A denote the event that the first part selected is defective, and 
let B denote the event that the second part selected is defective. 

The probability needed can be expressed as  P B A . If the first 

part is defective, prior to selecting the second part, the batch 
contains 849 parts, of which 49 are defective, therefore 
 

 
49

849
P B A   

 
Example 1.9 
Continuing the previous example, if three parts are selected at 
random, what is the probability that the first two are defective and 
the third is not defective?  
 
Solution  
This event can be described in shorthand notation as simply 

 P ddn .  
 

 
50 49 800

0.0032
850 849 848

P ddn      

 
Note that the third term is obtained as follows: After the first two 
parts are selected, there are 848 remaining. Of the remaining parts, 
800 are not defective. In this example, it is easy to obtain the 
solution with a conditional probability for each selection. 
 
Independent Events 
The calculation of certain probabilities is greatly facilitated by the 
knowledge of any relationships, or lack thereof, between the events 
under consideration. In this section we want to examine the latter 
case, that is, the case in which the occurrence of one event has no 
influence on the probability of the other‘s occurrence. Such events 
are said to be independent of each other, and we want to see how 
this is reflected in the probabilities. 
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In some situations, knowledge that an event A  which has occurred 
will not affect the probability that an event B  will occur is 

   P B A P B  

 

That is            P A B P A P B A P A P B     

 
Definition: (Independence of Two Events). Two events A and B 
are called independent events if 
 

      P A B P A P B    

 
Otherwise, A  and B  are called dependent events. 
 
Dependent events occur in connection with repeated sampling 
without replacement from a finite collection. 
 
Example 1.10 
Suppose a day‘s production of 850 manufactured parts contains 50 
parts that do not meet customer requirements. Suppose two parts 
are selected from the batch, but the first part is replaced before the 
second part is selected. What is the probability that the second part 
is defective (denoted as B) given that the first part is defective 
(denoted as A)?  
 
Solution  

The probability needed can be expressed as  P B A . 

 
Because the first part is replaced prior to selecting the second part, 
the batch still contains 850 parts, of which 50 are defective. 
Therefore, the probability of B does not depend on whether or not 
the first part was defective. That is, 
 

 
50

850
P B A   
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Also, the probability that both parts are defective is 
 

     
50 50

0.0035
850 850

P A B P B A P A
   

       
   

 

 
Example 1.11 

Let   A and B be independent events, with   1 4P A   and 

  2 3P B  . Compute: 
 

(i) ( )P A B  

(ii) ( )P A B  

(iii) ( )P A B   

(iv)  ( )P A B   

(v) ( )P A B  

 
Solution  

(i)    
1 2 1

( )
4 3 6

P A B P A P B       

(ii)    
1 1 1

( )
4 3 12

P A B P A P B       ;  since 

   1P B P B    

(iii)    
3 1 1

( )
4 3 4

P A B P A P B         ;  since 

   1P A P A    

(iv)        
3 1 5 1

( )
4 3 6 4

P A B P A P B P A B             

(v)    
3 2 1

( )
4 3 2

P A B P A P B        
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Summary 
This chapter discussed definitions of terms, basic concepts of set 
theory and some probabilistic concepts. Recall that it discussed 
the following: 

(1) Random experiment, set, sample space, events etc. 
(2) Different approaches to the definition of probability. 
(3) Counting techniques – Permutations and Combinations.  
(4) Conditional and independent events. 

 

Post-Test  
(1) A box contains 4 white balls, two red, and two green balls.  

Use the classical definition of probability to find the 
probability of  

(i) drawing a red ball on one draw from the box  
(ii) drawing a black ball on one draw from the box 
 

(2) If two fair dice are rolled once, what is the probability that 
the probability that the total number of spots shown is  

(i) Equal to 5?   
(ii) Divisible by 3?  
 

(3) Twenty balls numbered from 1 to 20 are mixed in an urn 
and two balls are drawn successively and without 

replacement. If 1x  and 2x  are the numbers written on the 

first and second ball drawn, respectively, what is the 
probability that: 

(i) 821  xx ?    

(ii) 521  xx ? 

 

(4) If    APBAP / , then show that    BPABP / . 

(5) Show that: 

(i)    BAPBAP /1/   

(ii)        CBAPCBPCAPCBAP ////   

 
(6) Define the following terms with relevant examples: 

(i) An experiment 
(ii) A sample space 
(iii) An event 
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2 
Conditional Probability and 

Independence 
 

 
 
Introduction 
The concepts of conditional probability and independent events 
have been introduced in the last chapter. In this chapter, we shall 
attempt to discuss these concepts in detail. 
 
Objectives  
After a careful study of this chapter you should be able to do the 
following: 

1. Interpret and calculate conditional probabilities of events; 
2. Determine the independence of events and use 

independence to calculate probabilities; 
3. Use Multiplication rule to express total probabilities; 
4. Use Bayes‘ theorem to calculate conditional probabilities; 
5. Use a tree diagram to organize and compute probabilities, 

 
Pre-Test 

(1) Distinguish between independent and dependent events. 
(2) Define the term ―conditional probability. 
(3) Establish a relationship between conditional probability 

and independent events. 
(4) State the condition for which ―the conditional probability 

of an event A  given event B ‖ can exist. 
 

Content  
Conditional Probability 
Conditional probability provides us with a way to reason about the 
outcome of an experiment, based on partial information. Here are 
some examples of situations we have in mind: 
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(a) In an experiment involving two successive rolls of a die, 
you are told that the sum of the two rolls is 9. How likely 
is it that the first roll was a 6?  

 
(b) In a word guessing game, the first letter of the word is a 

―t‖. What is the likelihood that the second letter is an ―h‖? 
 

(c) How likely is it that a person has a disease given that a 
medical test was negative? 

 
(d) A spot shows up on a radar screen. How likely is it that it 

corresponds to an aircraft? 
 
In more precise terms, given an experiment, a corresponding 
sample space and a probability law, suppose we know that the 
outcome is within some given event B. We wish to quantify the 
likelihood that the outcome also belongs to some other given event 
A. We thus seek to construct a new probability law, which takes 
into account this knowledge and which, for any event A, gives us 
the conditional probability of A given B, denoted by  BAP . 

 
We would like the conditional probabilities  BAP of different 

events A to constitute a legitimate probability law that satisfies the 
probability axioms. The laws should also be consistent with our 
intuition in important special cases, e.g., when all possible 
outcomes of the experiment are equally likely. For example, 
suppose all six possible outcomes of a fair die roll are equally 
likely. If we are told that the outcome is even, we are left with only 
three possible outcomes, namely, 2, 4, and 6. These three outcomes 
were equally likely to start with, and so they should remain equally 
likely given the additional knowledge that the outcome was even.  
 
A major objective of probability modelling is to determine how 
likely it is that an event A will occur when a certain experiment is 
performed. However, there are numerous cases in which the 
probability assigned to A will be affected by the knowledge of the 
occurrence or non-occurrence of another event B . In such a case, 
we use ―Conditional Probability of A given B ‖ and write as 

 BAP . 
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Definition 2.1: The Conditional Probability of an event A, given 
the event B, is defined by 
 

  
)(

)(

BP

BAP
BAP


 , if   0BP  

 
Example 2.1  
We toss a fair coin three successive times. We wish to find the 

conditional probability  BAP when A and B are the events 
 

  A= {more heads than tails come up}, B= {1
st
 toss is a head} 

 
The sample space consists of eight sequences, 
 
          TTTTTHTHTTHHHTTHTHHHTHHHS ,,,,,,,  

 
which we assume to be equally likely. The event B consists of the 
four elements HHH, HHT, HTH, HTT, so its probability is 
 

  
8

4
BP  

 
The event BA consists of the three elements outcomes HHH, 
HHT, HTH, so its probability is 
  

 
8

3
 BAP     

 

Thus, the conditional probability  BAP is 
 

  
 
  4

3

84

83
/ 




BP

BAP
BAP  

 
Because all possible outcomes are equally likely here, we can also 

compute  BAP using a shortcut. We can bypass the calculation 

of  BP and  BAP  , and simply divide the number of elements 

shared by A and B (which is 3) with the number of elements of B 
(which is 4), to obtain the same result 3/4. 
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Example 2.2 
Two cards are drawn without replacement from a deck of cards.   
 

Let A1 denote the event of getting ―an ace on the first draw‖  
 
and 

  
A2 denote the event of getting ―an ace on the second draw‖ 

 
The number of ways in which different outcomes can occur can be 
enumerated as follows.  (Multiplicative principle is used). 
 

  A1                       1A   

A2 

2A  

4  x  3                  48  x  4 
4  x  48                48  x  47 

4  x  51 
48  x  51 

 4 x  51                 48  x  51 52  x  51 
 

(i) The probability of getting ―an ace on the first draw and an 
ace on the second draw‖ is given by 

 

51  x  52

3  x  4
)( 21  AAP  

 
(ii) What is the probability that an ace is drawn on the second 

draw given that an ace was obtained on the first draw? 
 

       
 

51

3

51)  x  52(51)  x  (4

51)  x  52(3)  x  (4

)( 1

21
12 




AP

AAP
AAP  

 
Conditional Probabilities Specify a Probability Law 
For a fixed event B, it can be verified that the conditional 

probabilities  BAP  form a legitimate probability law that 

satisfies the three axioms. Indeed, nonnegativity is clear. 
Furthermore, 
 

  1
)(

)(

)(

)(





BP

BP

BP

BSP
BSP  
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and the normalization axiom is also satisfied. In fact, since we 

have       1 BPBPBBP , all of the conditional probability is 

concentrated on B. Thus, we might as well discard all possible 
outcomes outside B and treat the conditional probabilities as a 
probability law defined on the new sample space (universe) B. 
 
To verify the additivity axiom, we write for any two events A1 and 
A2, 
 

  
 

)(

)( 21
21

BP

BAAP
BAAP




  

   
   

)(

)( 21

BP

BABAP 


  

   
   

)(

)( 21

BP

BABAP 


  

   
   

 BP

BA

BP

BAP 



 21

)(   
      BAPBAP 21   

 

where for the second equality, we used the fact that BA 1
 and 

BA 2
 are disjoint sets, and for the third equality we used the 

additivity axiom for the (unconditional) probability law. The 
argument for a countable collection of disjoint sets is similar. Since 
conditional probabilities constitute a legitimate probability law, all 
general properties of probability laws remain valid. For example, a 
fact such as 

 
     CPAPCAP   translates to the new fact 

 

     BCPBAPBCAP  . 

 
Let us summarize the conclusions reached so far. 
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Properties of Conditional Probability 
 
 The conditional probability of an event A, given an event B 

with   0BP , is defined by 
 

           
 

)(

)(

BP

BAP
BAP


 , 

 
and specifies a new (conditional) probability law on the same 
sample space S. In particular, all known properties of 
probability laws remain valid for conditional probability laws. 
 

 Conditional probabilities can also be viewed as a probability 
law on a new universe B, because all of the conditional 
probability is concentrated on B. 

 
 In the case where the possible outcomes are finitely many and 

equally likely, we have 
 

         
Bofelementsofnumber

BAofelementsofnumber
BAP


  

 
Independence 

We have introduced the conditional probability  BAP /  to capture 

the partial information that event B provides about event A. An 
interesting and important special case arises when the occurrence 
of B provides no information and does not alter the probability that 
A has occurred, i.e., 
 

   APBAP / . 

 
Hence, knowledge that an event A has occurred will not affect the 

probability that an event B will occur is    BPABP /   
 

That is,              BPAPABPAPBAP  /  

  
In general, when this happens the two events are said to be 
independent or stochastically independent. 
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Definition 2.2:  Two events A and B are called independent events 
if 
 
      BPAPBAP   

 
Otherwise, A and B are called dependent events 
We adopt this latter relation as the definition of independence 
because it can be used even if   0BP , in which case  BAP / is 

undefined. The symmetry of this relation also implies that 
independence is a symmetric property; that is, if A is independent 
of B, then B is independent of A, and we can unambiguously say 
that A and B are independent events. 
 
Independence is often easy to grasp intuitively. For example, if the 
occurrence of two events is governed by distinct and 
noninteracting physical processes, such events will turn out to be 
independent. On the other hand, independence is not easily 
visualized in terms of the sample space. A common first thought is 
that two events are independent if they are disjoint, but in fact the 
opposite is true: two disjoint events A and B with   0AP and 

  0BP are never independent, since their intersection BA is 

empty and has probability 0. 
 
Example 2.3  
Consider an experiment involving two successive rolls of a 4-sided 
die in which all 16 possible outcomes are equally likely and have 
probability 1/16. 
 
(a) Are the events  

Ai = {1st roll results in i},  Bj = {2nd roll results in j}, 
       
      independent? We have, 

 
    

16

1
,  jiisrollstwotheofresultsthePBAP , 

 
16

4


outcomespossibleofnumbertotal

Aofelementsofnumber
AP i

i
, 

 

 
16

4


outcomespossibleofnumbertotal

Bofelementsofnumber
BP

j

i
. 
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We observe that      
jiji BPAPBAP  , and the independence of 

Ai and Bj is verified.  
 
(b) Are the events  

A = {1st roll is a 1},  B= {sum of the two rolls is a 5}, 
       
      independent? The answer here is not quite obvious. We have, 

 

    
16

1
4,1  isrollstwotheofresultsthePBAP  

and also, 
 
  

16

4


outcomespossibleofnumbertotal

Aofelementsofnumber
AP

 

 
The event B consists of the outcomes (1,4), (2,3), (3,2), and (4,1), 
and 
 

 
16

4


outcomespossibleofnumbertotal

Bofelementsofnumber
BP . 

 
Thus, we see that      BPAPBAP  , and the events A and B 

are independent  
 
(c) Are the events 

A = {maximum of the two rolls is 2},  B= {minimum of the 
two rolls is 2}, 
 

independent? Intuitively, the answer is ―no‖ because the 
minimum of the two rolls tells us something about the 
maximum. For example, if the minimum is 2, the maximum 
cannot be 1. 

 
More precisely, to verify that A and B are not independent, we 
calculate 
 

    
16

1
2,2  isrollstwotheofresultsthePBAP  
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and also 
   

 
16

3


outcomespossibleofnumbertotal

Aofelementsofnumber
AP

  

 
16

5


outcomespossibleofnumbertotal

Bofelementsofnumber
BP

. 

 

We have      21615BPAP , so that      BPAPBAP  , and A 

and B are not independent. 
 
Independence of Several Events 
The discussion that has just been given for two events can be 

extended to any number of events. If k  events 1 2,   , ,  kA A A  are 

independent in the sense that they are physically unrelated to each 
other, then it is natural to assume that the probability 

 1 2   kP A A A    that all k  events will occur is the product 

     1 2 kP A P A P A . Furthemore, since the events 1 2,   , ,  kA A A  

are unrelated, this product rule should hold not only for the 
intersection of all k  events, but also for the intersection of any two 
of them, any three of them or any other number of them. These 
consideration lead to the following definition: 
 

Definition 2.3: the k  events 1 2,   , ,  kA A A  are independent if, for 

every subset 
1 2
,   , ,  

ji i iA A A of j  of these events  2,3, ,j k . 

        
1 2 1 2

   
j ji i i i i iP A A A P A P A P A     

 
In particular, in order for three events A, B, and C to be 
independent, the following four relations must be satisfied: 
 

     P AB P A P B , 

     P AC P A P C ,     (2.1) 

     P BC P B P C , 
 
and 
  

       P ABC P A P B P C     (2.2) 
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Note that it is possible that Eq. (2.2) will be satisfied but one or 
more of the three relations in Eq. (2.1) will not be satisfied. On the 
other hand, it is also possible that each of the three relations In 
(2.1) will be satisfied but Eq. (2.2) will not be satisfied. 
 

 
Independence 

 Two events A and B are said to independent if 

              BPAPBAP  . 
 
 If in addition,   0BP , independence is equivalent to the 

condition 

            APBAP / . 
 
 If A and B are independent, so are A and B

c
. 

 
Example 2.4    
If two cards are drawn in succession from a deck, what is the 
probability of ace on the 1

st
 draw and ace on the 2

nd
 draw? 

 
 P(A2)   =   4/52 P(A2/A1)   =   3/51 
the events are dependent. 
 
But if the sampling is with replacement; then the draws are 
independent trials. 
 
 P(A1  A2)   =   P(A1) P(A2) 

    i.e. 
 

52
4

)(
)(     524)(

1

12
122 




AP

AAP
AAPAP  

 
Example 2.5 
In a certain high school class, consisting of 60 girls and 40 boys, it 
is observed that 24 girls and 16 boys wear eye glasses. If a student 
is picked at random from the class, what is the probability that the 
student wears eye glasses? 
 

 4.0
100

40)( EP  
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What is the probability that a student picked at random wears eye 
glasses, given that the student is a boy? 
 

  
100

40
100

16

)(

)(





BP

BEP
BEP

  

   i.e 4.0

100
40

100
40  x  

40
16

             

 
Thus, the additional information that the student is a boy does not 
alter the probability that the student wears eyeglasses. 
 

 : .     P E P E B  

 
The events being a boy and wearing glasses for this example are 
independent.  Show that the events of wearing eyeglasses, E1 and 

not being a boy B  are also independent. 
 

   4.0
60

24

10060

10024

)(

)(





BP

BEP
BEP  

 
For mutually exclusive events, 
 
      2121 EEPEandEP  

and       2121 EPEPorEEP   

 
Multiplication Rule 
Assuming that all of the conditioning events have positive 
probability, we have 
 

         






  
n

i in

n

i i AAPAAAPAAPAPAP
12131211

//  

 
The multiplication rule can be verified by writing 
 

    
 
 

 
 

 
 


 
1

1

1

21

321

1

12
11 





 




n

i i

n

i in

i i

AP

AP

AAP

AAAP

AP

AAP
APAP  
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and using the definition of conditional probability to rewrite the 
right-hand side of the equation above as 

       









1

1213121 //
n

i in AAPAAAPAAPAP
  

  
Fig. 2.1: Visualization of the total probability theorem. 

 

The intersection event nAAAA  21 is associated with a 

path on the tree of a sequential description of the experiment. We 

associate the branches of this path with the events nAAA 21, , and 

we record next to the branches the corresponding conditional 
probabilities. 
 
The final node of the path corresponds to the intersection event A, 
and its probability is obtained by multiplying the conditional 
probabilities recorded along the branches of the path 
 
       12112121  nnn AAAAPAAPAPAAAP 

 
 
Note that any intermediate node along the path also corresponds to 
some intersection event and its probability is obtained by 
multiplying the corresponding conditional probabilities up to that 

node. For example, the event 321 AAA  corresponds to the node 

shown in the figure, and its probability is 
 

        213121321 AAAPAAPAPAAAP   

For the case of just two events, 1A  and 2A , the multiplication rule 

is simply the definition of conditional probability. 
 
Example 2.6  
If an aircraft is present in a certain area, radar correctly registers its 
presence with probability 0.99. If it is not present, the radar falsely 
registers an aircraft presence with probability 0.10. We assume that 
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an aircraft is present with probability 0.05. What is the probability 
of false alarm (a false indication of aircraft presence), and the 
probability of missed detection (nothing registers, even though an 
aircraft is present)? 
 
A sequential representation of the sample space is appropriate here, 
as shown in figure 2.2. Let A and B be the events 

 
A = {an aircraft is present}, 
B = {the radar registers an aircraft‘s presence}, 

 
and consider also their complements 
 

A
c
 = {an aircraft is not present}, 

B
c
 = {the radar does not register an aircraft‘s presence}. 

 
The given probabilities are recorded along the corresponding 
branches of the tree describing the sample space, as shown in 
figure 2.2. Each event of interest corresponds to a leaf of the tree 
and its probability is equal to the product of the probabilities 
associated with the branches in a path from the root to the 
corresponding leaf. The desired probabilities of false alarm and 
missed detection are 
 
        095.010.095.0  ccc ABPAPBAPalarmfalseP  

   

        0005.001.005.0det  ABPAPBAPectionmissedP cc
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Fig. 2.2: Sequential description of the sample space for the radar detection 

problem in Example 2.6 
 

Extending the preceding example, we have a general rule for 
calculating various probabilities in conjunction with a tree-based 
sequential description of an experiment. In particular: 
 

(a) We set up the tree so that an event of interest is associated 
with a leaf. We view the occurrence of the event as a 
sequence of steps, namely, the traversals of the branches 
along the path from the root to the leaf. 

(b) We record the conditional probabilities associated with the 
branches of the tree. 

(c) We obtain the probability of a leaf by multiplying the 
probabilities recorded along the corresponding path of the 
tree. 

 
Example 2.7 
Three cards are drawn from an ordinary 52-card deck without 
replacement (drawn cards are not placed back in the deck). We 
wish to find the probability that none of the three cards is a heart. 
We assume that at each step, each one of the remaining cards is 
equally likely to be picked. By symmetry, this implies that every 
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triplet of cards is equally likely to be drawn. A cumbersome 
approach, that we will not use, is to count the number of all card 
triplets that do not include a heart, and divide it with the number of 
all possible card triplets.  
 
Instead, we will use a sequential description of the sample space in 
conjunction with the multiplication rule (fig. 2.3). 
 
Define the events 
 

Ai = {the i
th

 card is not a heart}, i= 1, 2, 3. 
 

We will calculate  321 AAAP  , the probability that none of the 

three cards is a heart, using the multiplication rule, 
  

        213121321 AAAPAAPAPAAAP   

 
We have, 
 

  
52

39
1 AP  

 
since there are 39 cards that are not hearts in the 52-card deck. 
Given that the first card is not a heart, we are left with 51 cards, 38 
of which are not hearts, and 
 

  
51

38
12 AAP  

 
Finally, given that the first two cards drawn are not hearts, there 
are 37 cards which are not hearts in the remaining 50-card deck, 
and 
 

  
50

37
113  AAAP  

 
These probabilities are recorded along the corresponding branches 
of the tree describing the sample space, as shown in figure 2.3. The 
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desired probability is now obtained by multiplying the probabilities 
recorded along the corresponding path of the tree: 
 

  
50

37

51

38

52

39
311  AAAP  

 
Note that once the probabilities are recorded along the tree, the 
probability of several other events can be similarly calculated. For 
example, 
 

  
51

13

52

39
21 heartaisndandheartanotisstP  

    

 
50

13

51

38

52

39
31 heartaisrdandheartsnotaretwostP

 
 

 
Fig. 2.3: Sequential description of the sample space of the 3-card selection 

problem in Example 2.7. 

 
Example 2.8 
A class consisting of 4 graduate and 12 undergraduate students is 
randomly divided into 4 groups of 4. What is the probability that 
each group includes a graduate student? We interpret randomly to 
mean that given the assignment of some students to certain slots, 
any of the remaining students is equally likely to be assigned to 
any of the remaining slots. We then calculate the desired 
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probability using the multiplication rule, based on the sequential 
description shown in figure 2.4. Let us denote the four graduate 
students by 1, 2, 3, 4, and consider the events 
 

A1 = {students 1 and 2 are in different groups}, 
A2 = {students 1, 2, and 3 are in different groups}, 
A3 = {students 1, 2, 3, and 4 are in different groups}. 

 

We will calculate  3AP  using the multiplication rule: 
 
          2131213213 AAAPAAPAPAAAPAP   

 
we have, 
 

  
15

12
1 AP  

 
since there are 12 student slots in groups other than the one of 
student 1, and there are 15 student slots overall, excluding student 
1. Similarly, 
 

  
14

8
12 AAP

 
 
since there are 8 student slots in groups other than the one of 
students 1 and 2, and there are 14 student slots, excluding students 
1 and 2. Also, 
 

  
13

4
213  AAAP , 

 
since there are 4 student slots in groups other than the one of 
students 1, 2, and 3, and there are 13 student slots, excluding 
students 1, 2, and 3. Thus, the desired probability is 
 

13

4

14

8

15

12
 , 
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and is obtained by multiplying the conditional probabilities along 
the corresponding path of the tree of figure 2.4. 
 

 
 

Fig. 2.4: Sequential description of the sample space of the student problem in 
Example 2.8. 

 
Total Probability Theorem and Bayes’ Rule 
In this section, we explore some applications of conditional 
probability. We start with the following theorem, which is often 
useful for computing the probabilities of various events, using a 
―divide-and-conquer‖ approach. 
 
Total Probability Theorem 

Let nAA ,,1   be disjoint events that form a partition of the sample 

space (each possible outcome is included in one and only one of 

the events nAA ,,1  ) and assume that   0iAP , for all ni ,,1 . 

Then, for any event B, we have 
 

     BAPBAPBP n  1  

                nn ABPAPABPAP  11  

 
The theorem is visualized and proved in figure 2.5. Intuitively, we 
are partitioning the sample space into a number of scenarios 
(events) Ai. Then, the probability that B occurs is a weighted 
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average of its conditional probability under each scenario, where 
each scenario is weighted according to its (unconditional) 
probability. One of the uses of the theorem is to compute the 
probability of various events B for which the conditional 

probabilities  iABP  are known or easy to derive. The key is to 

choose appropriately the partition nAA ,,1  , and this choice is 

often suggested by the problem structure.  
 

 
Fig. 2.5: Visualization and verification of the total probability theorem. 

 
Example 2.9  
We roll a fair four-sided die. If the result is 1 or 2, we roll once 
more but otherwise, we stop. What is the probability that the sum 
total of our rolls is at least 4? 
 
Let Ai be the event that the result of first roll is i, and note that 

  41iAP for each i. Let B be the event that the sum total is at 

least 4. Given the event A1, the sum total will be at least 4 if the 
second roll results in 3 or 4, which happens with probability 1/2. 
Similarly, given the event A2, the sum total will be at least 4 if the 
second roll results in 2, 3, or 4, which happens with probability 
3/4. Also, given the event A3, we stop and the sum total remains 
below 4. Therefore, 

 

  
2

1
1 ABP ,  

4

3
2 ABP ,   03 ABP ,   14 ABP  
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Using the total probability theorem, 
 

 
16

9
1

4

1
0

4

1

4

3

4

1

2

1

4

1
BP  

 
The total probability theorem can be applied repeatedly to 
calculate probabilities in experiments that have a sequential 
character. The total probability theorem is often used in 
conjunction with the following celebrated theorem, which relates 
conditional probabilities of the form  BAP  with conditional 

probabilities of the form  ABP , in which the order of the 

conditioning is reversed. 
 
Bayes’ Rule 

Let nAAA ,,, 21  be disjoint events that form a partition of the 

sample space, and assume that   0iAP , for all i. Then, for any 

event B such that   0BP , we have 
 
 

  
   

 BP

ABPAP
BAP

ii

i 

  

             
   

       nn

ii

ABPAPABPAP

ABPAP




11

 

 

To verify Bayes‘ rule, note that    ii ABPAP  and    BPBAP i are 

equal, because they are both equal to  BAP i  . This yields the 

first equality. The second equality follows from the first by using 

the total probability theorem to rewrite  BP . 

 
Bayes‘ rule is often used for inference. There are a number of 
―causes‖ that may result in a certain ―effect.‖ We observe the 

effect, and we wish to infer the cause. The events nAA ,,1  are 

associated with the causes and the event B represents the effect. 

The probability  iABP  that the effect will be observed when the 
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cause Ai is present amounts to a probabilistic model of the cause-
effect relationship (cf. figure 2.6). Given that the effect B has been 

observed, we wish to evaluate the (conditional) probability  BAP i  

that the cause Ai is present. 

 
 

Fig. 2.6: An example of the inference context that is implicit in Bayes‘ rule. 

 
An example of the inference context that is implicit in Bayes‘ rule. 
If we observe a shade in a person‘s X-ray (this is event B, the 
―effect‖) and we want to estimate the likelihood of three mutually 
exclusive and collectively exhaustive potential causes: cause 1 
(event A1) is that there is a malignant tumor, cause 2 (event A2) is 
that there is a non-malignant tumor and cause 3 (event A3) 
corresponds to reasons other than a tumor. We assume that we 

know the probabilities  iAP  and  iABP , 3,2,1i . Given that we 

see a shade (event B occurs); Bayes‘ rule gives the conditional 
probabilities of the various causes as 
 

 
   

           
,

332211 ABPAPABPAPABPAP

ABPAP
BAP

ii

i


 .3,2,1i  

 
For an alternative view, consider an equivalent sequential model, 

as shown on the right (fig. 2.6). The probability  BAP 1  of a 

malignant tumor is the probability of the first highlighted leaf, 
which is  BAP 1

, divided by the total probability of the 

highlighted leaves, which is  BP .  
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Example 2.10  
Let us return to the radar detection problem of Example 2.6 and 
figure 2.2. Let 
 

A = {an aircraft is present}, 
B = {the radar registers an aircraft‘s presence}. 

 
We were given that,  
 

   05.0AP ,   99.0ABP ,   1.0
c

ABP  

 
Applying Bayes‘ rule, with A1 = A and A2 = A

c
, we obtain 

 
 

    BAPregistersradarpresentaircraftP 
  

   
   

 BP

ABPAP


  
   

       cc ABPAPABPAP

ABPAP




  

1.095.099.005.0

99.005.0






  
3426.0  
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Summary  
This chapter discussed in detail the concepts of Conditional 
Probability and Independent events that were introduced in the 
previous chapter with relevant examples for easy comprehension. 
Other topics treated were: 
 

(1) Independence of two and several events. 
(2) Properties of conditional probability. 
(3) Demonstrating the multiplication rule as the rule for 

definning the conditional probability. 
(4) Stating and proving the Total probability theorem. 
(5) Using Bayes‘ theorem to calculate conditional 

probabilities. 

 
Post-Test  

(1) A box contains three cards, one is red on both sides, one 
card is green on both sides, and one card is red on one side 
and green on the other. One card is selected from the box 
at random, and the color on one side is observed. If this is 
green, what is the probability that the other side of the card 
is also green? 

(2) Two students A and B are both registered for a certain 
course. Student A attends class 80 percent of the time and 
student B attends class 60 percent of the time, and the 
absences of the two students are independent. If at least 
one of the two students is in class on a given day, what is 
the probability that A is in class that day? 

(3) If A and B are disjoint events and   0P B  , what is the 

value of  P A B ? 

(4) Two boxes contain long bolts and short bolts. Suppose that 
one box contains 60 long bolts and 40 short bolts and that 
the other box contains 10 long bolts and 20 short bolts. 
Suppose also that one box is selected at random and a bolt 
is then selected at random from that box. Determine the 
probability that this bolt is long. 

(5) In a game of cards, what is the probability of drawing, 
without replacement, two aces in succession? 
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(6) A simple binary communication channel carries messages 
by using only two signals, 0 and 1. For a given binary 
channel, 40% of the time a 1 is transmitted; the probability 
that a transmitted 0 is correctly received is 0.90, and the 
probability that a transmitted 1 is correctly received is 
0.95. Determine  

 
(i) the probability of a 1 being received, and 
(ii) given a 1 is received, the probability that 1 was 

transmitted.  
 

(7) Consider the following table; 
 

Table 2.1: Hypothetical probabilities for getting a 
flu shot and getting the flu 

 
Get a shot Get the flu  

Yes No 

Yes 0.25 0.20 0. 45 

No 0.28 0.27 0.55 

 0.53 0 .47 1.00 

 
(i) What is the probability of developing heart disease 

given that your cholesterol level is 250? 
(ii) What is the probability that someone does not get 

the flu, given that they get a flu shot? 
(iii) What is the probability of getting the flu, given that 

the person gets a shot? 
 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
 
 

3 
Functions and Random Variables 

 
 

 
Introduction  
If as we observe a characteristic, we find that it takes on different 
values in people, places or things, we label the characteristic a 
VARIABLE e.g. heights of adults, weights of children and ages of 
patients seen in a dental clinic. Whenever we determine the height, 
weight or age of an individual, the result is frequently referred to 
as a value of the respective variable. When the values obtained 
arise by chance the variable is called a random variable. 
 

Objectives  
After careful study of this chapter you should be able to do the 
following:  

(1) Define random variable; 
(2) Distinguish between discrete and continuous random 

variables; and 
(3) Discuss the properties of random variables, both discrete 

and continuous. 
 

Pre-Test 
(1) Have you heard of the term ‗function‘ before? 
(2) Describe the word ―variable‖. 
(3) Explain and give examples of sample space. 

 

Content 
Functions and Random Variables 
A function is simply a rule by which every member of one set is 
assigned to or paired with one member of another set. 
 
Let X  and Y  be sets.  If f is a rule that assigns to every element 

x  in the set X a unique element y in the set Y , then f is said to be 

a function that maps X into Y. 
  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
46     Functions and Random Variables 
 
 

 X         Y  
 

  11 yx       

                 

  22 yx   

 

 3

5

4

3

y

x

x

x










 

 
For example: supposing X  is the set of 5 students in a seminar and 
that Y is the set of term paper topics.  Let a rule be defined as 
―choose a topic for a term paper‖.  The rule ―Choose a topic …..‖ 
is called a function. A random variable is therefore a function 
which assigns numerical values to the different outcomes defined 
by the sample space. 
 

Definition 3.1: Given a random experiment with a sample space 
S . A function X  that assigns to each element c S one and only 
one real number   xcX   is called a Random Variable.  The space 

of X  is the set of real numbers 
 

   SccXxxA  ,:  

 
In a group of 10 people, a, b, c, d… j, a person is selected at 
random from this group (random selection can have 10 possible 
results). Suppose that the height of each person has been measured 
to the nearest inch, and the weight measured to the nearest 10 
pounds. 
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The arrow that connects a value in X  to every individual in S 
represents the operation ―measure the height of each person to the 
nearest inch‖.  A rule that assigns a numerical value to every result 
in the sample space of a random experiment is called a random 
variable, and the numbers that are assigned by this rule are called 
the value set of the random variable. 
 
Draw an individual at random; what are the chances that the height 
of the individual drawn is 68 inches? Ans. 

3
/10 

 

Example 3.1  
Suppose a coin is tossed twice so that the sample space is S. Let 
X  represents the number of heads which can come up. 

 
Elements of the  

sample space  

S  

No. of Heads 
(Random Variable) 

  

Probability 

 f x  

HH 
HT 
TH 
TT 

2 
1 
1 
0 

¼  
¼  
¼  
¼  
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The probability distribution (function) can be described as a 
function which assigns probabilities to these numerical values. 
 
If X  stands for the random variable ―number of heads‖ then x  is 
the value that the random variable can assume.  The probability 
that random variable X  takes on the value x  is written as: 

 

 P X x or  f x  is called the probability density function, p.d.f. 

     1
40 0P X f    

     2
111  fXP  

     4
122  fXP  

 
Random variables can be classified as discrete or continuous. 
 
Discrete Random Variable 
Let X  denote a random variable with space R, suppose we can 

compute  ;  P X A A  R. Let X denote a random variable with 

one-dimensional space R, a subset of the real numbers.  Suppose 
that the space R contains a countable number of points; that is, R 
contains either a finite number of points or the points of R can be 
put into a one-to-one correspondence with the positive integers.  
Such a set R is called a set of discrete points or simply a discrete 
sample space. The random variable X  is therefore called a random 
variable of the discrete type and X  is said to have a distribution of 
the discrete type. 
 
For a random variable X  of the discrete type, the probability 

function  P X x  is frequently denoted by  f x and this 

function  f x  is called the probability density function. Some 

authors refer to  f x as the probability function, the frequency 

function, or the probability mass function. 
 
Definition 3.2: If the set of all possible values of a random 

variable X , is a countable set, ,..., 21 xx  then X  is called a discrete 
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random variable. The function that assigns the probability to each 
possible value x  will be called the discrete probability density 
function (or probability mass function, p.m.f). 
 

    xXPxf  , ,..., 21 xxx   

 

A function  f x  is a discrete p.d.f if and only if it satisfies the 

following properties for at most a countably infinite set of real 

numbers 1 2, ,...x x  
 

(i)   0xf  x  (Non-negative) 

 

(ii)   1
  


xall

xf  

 

(iii) 



Ax

xfAXP )()(    where A R 

 
Example 3.2 

Let random variable X with pdf 
  ,   1,  2,  3

6

0, otherwise

xf x x  



 

         Find; 

(i)  1 or 2P X   

(ii)  2P X   

 

Solution:         1 or 2   = 1  or 2P X P X P X       

     


2

1

2

1
6

)( xxf
x

 

    = 
6

2
6

1   

    = 
6

3   if x   =   1,   611 f  

    = 
2

1       x  =   2,   622 f  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
50     Functions and Random Variables 
 
 

  

  

6
5                  

6
3

6
2                  

6
)(]2[

3

2

3

2





 


xxfXP
x

 

 
or  
 

 

6
5

6
1 -  1                  

f(1)   -  1                  

]2[1]2[





 XPXP

 

 
Example 3.3  
For each of the following, determine the constant c  so that 

 f x satisfies the conditions of being a p.d.f for a random 

variable X . 

(i) ( ) ,          1,  2,  3,  4xf x x
c

   

(ii) ( ) ,          1,  2,  3,  ,  10f x cx x   

(iii)  
2

( ) 1 ,          0,  1, 2,  3f x c x x    

(iv) ( ) ,    1,  2,   ,  xf x x n
c

   

 
Solution: 

(i)  ( ) ,          1,  2,  3,  4xf x x
c

   

 11)(
4

1

4

1

 
 xx

c
xxf  

 

10          110

1]4321[1 

11 
4

1








c
c

c

x
c

x
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(ii) ( ) ,          1,  2,  3,  ,  10f x cx x   

 
 

1

1

1 2 3 10 1

1
55

cx

c x

c

c





    






 

 

(iii)      
2

( ) 1 ,          0,  1, 2,  3f x c x x    

 

 

2

2

2 2 2 2

1 1

1 1

1 2 3 10 1

1
30

c x

c x

c

c

 

 

      







 

 

  14321 2222
c  

 

301c  

 

(iv)    ( ) ,    1,  2,   ,  xf x x n
c

   

   

2
)1(

1
2

)1(1

1
1

1

1

1











 













nn
c

nn

c

x
c

c
x

n

x

n

x

 

 
Note the following: 

(1) 
2

)1(

1






nn
i

n

i

 

(2) 
6

)12)(1(

1

2 




nnn
i

n

i

 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
52     Functions and Random Variables 
 
 

(3) 
2

1

3

2

)1(







 




nn
i

n

i

 

(4) 
30

)133)(12)(1( 2

1

4 




nnnnn
i

n

i

 

(5)  



















1
k

n
   i.e       )1(

0

n

k

kn t
k

n
t  

(6) n

0

b)    (a     











n

k

knkba
k

n
 

(7)  







 kkn t

k

n
t 1)()1(  

(8) 












n

k

n

k

n

0

2  

(9) 






 



















 n

ba

kn

b

k

an

k    

   

0

 

 
Continuous Random Variable 
Random variable whose spaces are not composed of a countable 
number of points but are intervals or a union of intervals are said to 
be of the continuous type. 
 
Definition 3.3: The probability density function, pdf, of a random 
variable X of the continuous type, with space R that is an interval 

or union of intervals, is an integrable function  f x  satisfying the 

following conditions. 
 

(i)   0,  f x x R 

(ii) 1)( 
R

dxxf  

(iii) The probability of the event  X A  is 

      
A

dxxfAXP )()(  
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Example 3.4 
A machine produced copper wire, and occasionally there was a 
flaw at some point along the wire. The length of wire (in meters) 
produced between successive flaws is a continuous random 
variable X with p.d.f of the form 
 

 











0                         0

0             )1(
)(

3

x

xxc
xf  

 
Obtain the value of c , where c  is a constant. 
 
Solution: 

 1)( 



dxxf  

 1)1(
0

3 


 dxxc  

 

Let    1  and U x du dx   apply power rule for integral 

 1
0

3 


 duUc  

 
Substituting for U gives 
 

 2

2
01

2

)1(
)()(

2










x
c  

 

  10 2
2
1 

c
c  

 
2c  

 

 1
2

0

2













U

c  

 

 1
2

1









c   

 
 2c   
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Example 3.5  
For each of the following functions, find the constant c so that 

 f x  is a p.d.f of a random variable X . 
 

(i)   4 ,  0 1cf x x x    

(ii)   ,  0 4f x c x x    

(iii) 3
4( ) ,  0 1cf x x

x
    

 
Solution: 

(i) cxxf 4)(   

    1)(
1

0
 dxxf  

    14
1

0
 dxxc

 

    14
1

0
 dxxc

 

     1
1

4

1

0

1














c

xc

 

     1
1

1
4 









c
 

 
      3c   

 

(ii) xcxf )(  

               1
4

0

2
1

 dxxc  

               1
1

4

02
1

12
1













x

c  

               1
4

2
3

2
3









c  

               
16

3c  
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(iii) 
4

3)(
x

cxf   

     1
1

0

4
3




xc  

     1
1

1

04
3

14
3













x

c  

     
4

1c  

 
Summary  
In this chapter, we discussed the following: 
 

(1) The definition of a function and random variable. 
(2) Discrete random variable and its properties. 
(3) Continuous random variable and its properties. 

 
Post-Test 

(1) Define the following terms; 
(i) discrete random variable 
(ii) continuous random variable 

 

(2) Let   ,
15

x
xf   5,4,3,2,1x , zero elsewhere be the p.d.f. 

of X . 
  Find;      

(i)  Pr 1 or 2  

(ii)  Pr 1 3X    

(iii) 51
2 2

Pr X     

 
(3) For each of the following functions, find the constant c so 

that  ,xf  satisfies the conditions of being a p.d.f. of a 

random variable X . 
 

(i)   3cxxf  , 1 xo  

(ii)  
4x

c
xf  ,  x0
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4 
Distribution Functions of a Random 

Variable 
 

 
 
Introduction 
Frequently, we are interested in the probability that a random 
variable is equal to or less than some specified value or greater 
than a given value. The cumulative distribution function is 
particularly useful in this regard. The probability function for a 
discrete random variable X gives the probability of occurrence of 
the elements in the range of X . It can then be used to compute the 
probability of occurrence for any event defined by the observed 
value of X . We shall consider distribution functions (also 
frequently called the cumulative distribution function or cdf) for a 
random variable X . It is simply an alternative function that can be 
used to evaluate probabilities of events defined by the observed 
value of random variable. 
 
Objectives  
At the end of this chapter, you should be able to: 

(1) Give a straightforward method for describing continuous 
random variables;  

(2) Learn and understand the properties of cdf; and 
(3) Evaluate distribution functions of random variables. 

 
Pre-Test 

(1) Define random variable.  
(2) Define probability density function. 
(3) What do you understand by cumulative distribution 

function? 
(4) What is the relationship between cdf and p.d.f.? 

 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
58     Distribution Functions of Random a Variable 
 
 

Contents 
Distribution Functions of Random Variable 
Definition 4.1: Given a random variable X , the value of the 

cumulative distribution function at x , denoted by  xF , is the 

probability that X  takes on values less than or equal to x . Hence, 
 
    xXPxF   
 
In the case of a discrete random variable, it is clear that 
 
    




cx

xfxF  

 

The symbol,  
cx

xf means ―sum the values of  xf for all values 

of x less than or equal to c ‖. 
 

The relationship between  xF and  xf for a discrete distribution is 

given by the following theorem; 
 
Theorem: Let X be a discrete random variable with p.d.f.  xf  and 

cdf  xF . If the possible values of X  are indexed in increasing 

order, ...,321  xxx  then    11 xFxf  , for any 1i , 
 
      1 iii xFxFxf  

 

Additionally, if 1xx   then   0xF , and for any other real x  
 
    




xx

i

i

fxxF  

where, the summation is taken over all indices i such that xxi  . 

 
Definition 4.2: The distribution function of a random variable X  
of the continuous type defined in terms of the p.d.f. of X  is given 
by 

  


x

dttfxXPxF )()()(  

 

Note that    F x f x 
dx

xdF )(
  
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Properties of a Distribution Function 

The following are the properties of a distribution function  xF  as 

a consequence of the fact that probability must be a value between 
0 and 1, inclusive. 
 

(i)   10  xF  since  xF  is a probability. 

(ii)  xF  is a non decreasing function of x . 

(iii)   1wF , where w  is any value greater than or equal to 

the largest value in R; and   0zF , where z is any 

value less than the smallest value in R. 
(iv) If X  is a random variable of the discrete type, then 

 xF is a step function, and the height of a step 

at x , Rx R, equal the probability  xXP  . 

 
Example 4.1  
Let the random variable X  of the discrete type have the p.d.f 

  ,
7

xxf   .4,2,1x  Find the distribution function of X . 

Note that     000  fXP  

But      
7

1
11  fXP , 

        
7

3

7

2

7

1
212  ffXP  

           1
7

4

7

2

7

1
4214  fffXP  

 

So let    xXPxF   be defined for each real number x . Then  

   























x

x

x

x

xF

4,1

42,

21,

1,0

7
3

7
1
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Note that  xF cumulates all the probability from points that are 

less than or equal to x . 
Example 4.2  
Let the random variable X  be the distance in feet between bad 
records on a used computer tape. Suppose that a reasonable 
probability model of X  is given by the p.d.f. 
 

 














     x    0  ,      

40

1

0    x     -                  0

)(
40xe

xf  

 
the distribution function of  X   is 
 

   0 for 0 and for 0F x x x    

  





x
t

x

dtedttfxF
0

40

40

1
)()(  

            =    
40

0

40 1 x
x

t ee    

 
Note that, 

  














     x    0  ,      

40

1

0    x     -                  0

)(
40xe

xF  

 
Example 4.3  
Let the random variable X  have the p.d.f 
 
    xxf  12 ,  10  x , zero otherwise. 

 
Determine the distribution function of X . 
 
Solution: 

  


xx

dttdttfxF
0

)1(2)()(  
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  = 
0

2

0

2
xx

tt   

  =  22 2x x x x    

 

















x

xxx

x

xF

1                1

10      )2(

0                0

)(  

 
Example 4.4  
For each of the following functions. 
 

(i) Find the constant c  so that  f x  is a p.d.f of a random  

 variable X . 

(ii) Find the distribution function,     F x P X x   

(a) 3          10        ,4)(  cxxxf c  

(b) 
16

3          40        ,)(  cxxcxf  

(c) 
4

1          10        ,)( 4
3

 cxxcxf  

 
Solution:   f(x)   =   4x

3 

 

 
4

0

4

0

34)()( xtdttdttfxF
x

xx

  
 

 

















x

xx

x

xF

1            1

10          

0            0

)( 4  
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Summary  
We discussed the following among other things in this chapter; 
 

(1) The description of cumulative distribution function. 
(2) The properties of distribution functions. 

(3) The relationship between  xF and  xf for a discrete 

distribution. 
(4) How to determine the distribution function of a random 

variable X , of the discrete and continuous type. 

 

Post-Test 

(1) Let  xf be the p.d.f. of a random variable X . Find the 

distribution function  xF of X . 
 

(i)   ,1xf  3x  

(ii)   ,
3

1
xf  .3,2,1x  

(iii)   ,
15

x
xf   .5,4,3,2,1x  

(iv)   ,
4

3

4

1
x

xf 















  ,....2,1,0x  

 
(2) For each of the followings, find the distribution function 

   F x P X x  . 
 

(i)   2
1

16
3)( xxf   

 

(ii)  
4

3
4

1
)(

x
xf   
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5 
Mathematical Expectation 

 
 
 
Introduction 
The probability distribution for a random variable can be defined 

by either its distribution function,  xF , or its density function, 

 xf , for the continuous or discrete type. Once the probability 

distribution of X  is known, the probabilities of occurrence for any 
event of interest can thus be computed. However, in many 
applications, we may be interested in describing various aspects of 
different probability distributions, and ways of describing certain 
properties of probability distributions. For instance, what is a 
―typical‖ value the random variable can assume? ―Typical‖ here 
may be defined in various ways. How much variability is exhibited 
by the probability distribution or how spread out the possible 
observed values for a random variable are, can be our concern. In 
this chapter, we will discuss some common measures of certain 
aspects of probability distributions such as a value that describes 
the ―middle‖ or the ―spread‖ of the probability distribution. 
 
Objectives  
At the end of this chapter, you should be able to: 

(1) Obtain means of random variables; 
(2) Obtain variances of random variables; and 
(3) Prove the properties of mathematical expectations. 

 
Pre-Test 

(1) Explain the concept of mathematical expectation. 
(2) Define the expected value of a random variable X of the 

discrete type. 
(3) Define the expected value of a random variable X of the 

continuous type. 
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Content 
Mathematical Expectation 
An extremely important concept in summarizing important 
characteristics of distributions of probability is mathematical 
expectation, which is introduced by using example 5.1. 
 
Example 5.1  
A young man who needs a little extra money devises a game of 
chance in which some of his friends might wish to participate.  The 
game that he proposes is to let the participants cast an unbiased die 
and then receive a payment according to the following schedule. 
 

If the event  1,  2,  3A   occurs, he receives N1; if  4,  5B  occurs, 

he receives N5; and if  6C   occurs, he receives N35. 

 
The probabilities of the respective events are assumed to be 3

6 ,  
2

6 ,  1
6 . 

 
The problem that now faces the young man is the determination of 
the amount that should be charged for the opportunity of playing 
the game.  He reasons that if the game is played a large number of 
times, about 3

6 of the trials will require a payment of N1; about 2
6  

of them will require a payment of N5 and about 1
6  of them will 

require a payment of N35. Thus, the approximate average payment 
is 
 

 8
6

1
)35(

6

2
)5(

6

3
)1( 


























 

 
He expects to pay N8 ―on the average‖.  He never pays N8, the 
payment is either N1, N5 or N35.  The weighted average of 1, 5 
and 35 in which the weights are the respective probabilities 3

6 ,  2
6  

and 1
6 , equals eight. Such a weighted average is called the 

Mathematical Expectation of payment.  
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Definition 5.1:  If  f x  is the pdf of the random variable X  of 

the discrete type with space R and if the summation. 
 

 



RxR

xfxUxfxU )()()()(  

 
exists, then the sum is called the Mathematical expectation or the 

expected value of the function  U X  and it is denoted by 

 E U X   .  That is 
 

 
R

xfxUXUE )()()]([  

 
The expected value  E U X  

is thought of as a weighted mean of 

 U X , xR where the weights are the probabilities 

    ,  f x P X x  x R. 

 
Example 5.2  
Let the random variable X have the pdf 
 

 
3

1)( xf , xR 

 Where  R  1,  0,  1  .  Let   2U X X    

 
then, 
 

 

3

2
                              

3

1
)1(

3

1
)0(

3

1
)1(                              

)()()()()]([

222

22































  xfxxfxUXEXUE
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For continuous type random variable, the definitions associated 
with mathematical expectation are the same as those in the discrete 

case except that integrals    replace summation    symbols. 

Definition 5.2: If X is a continuous random variable with p.d.f 

 f x , then the expected value of X  is defined by 
 

 



 dxxxfXE )()(  

 
Properties: When it exists, mathematical expectation E  satisfies 
the following properties. 
 

(a) If  c   is a constant, 

        E c c  
 

(b)  If  c   is a constant, and U  is a function 

         E cU X cE U X        
 

 
(c)  If 1c  and 2c  are constants and 1U  and 2U  are functions, 

then 
                          

       1 1 2 2 1 1 2 2E cU X c U X c E U X c E U X                                                    

 
Proof: 
 

(a) .)()()( cxfcxcfcE
RR

    Since  1)( 
R

xf  

   
 In the continuous case, 
 

     .)( cdxxfcdxxcfcE  








 Since  




1dxxf  

 

(b) 
R

xfxcUXcUE )()()]([  
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         = 
R

xfxUc )()(  

         = )]([ XUcE      Since   )()()]([ xfxUXUE  
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For the continuous case,  

       dxxfxcUXcUE 




  

           




 dxxfxUc  

          XUcE   Since       dxxfxUXUE 




  

 

(c)     
R

xfXUcXUcXUcXUcE )()()()()( 22112211  

    =    
R R

xfxUcxfxUc )()()()( 2211
 

    =     
R R

xfxUcxfxUc )()()()( 2211
 

    =   )]([)]([ 2211 XUEcXUEc   

 
The Mean, Variance and Standard Deviation 

If X  is a random variable with p.d.f.  f x  of the discrete type 

and space R  1 2 3, , ,...b b b  then 

 
R

xxfXE )()(  

        =         ...321  xfbxfbxfb  
 
is the weighted average of the numbers belonging to R, where the 

weights are given by the p.d.f.  f x . 

 

If X is a continuous random variable having p.d.f  f x , then 

  dxxxfXE 




)(  

 

 E X  is called the mathematical expectation or mean value or just 

mean of X  (or the mean of the distribution) and denoted by . 

That is,  E X  . 
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Example 5.3: Let X  have the p.d.f 
 

 
















2,1,
8

3

3,0,
8

1

)(

x

x

xf  

 
The mean of X  is 
 

 
2

3

8

1
3

8

3
2

8

3
1

8

1
0)( 



































 XE  

 

Note that the mean  E X   is the centroid of a system of 

weights or a measure of the central location of the probability 
distribution of X . A measure of the dispersion or spread of a 
distribution is defined as follows. 
 

If    
2

U X X    and  
2

E X  
 

exists, the variance denoted 

by 2 or  V X of a random variable X of the discrete type is 

defined by 
 

  
R

xfxXE )()(])[( 222   

 
The positive square-root of the variance is called the standard 
deviation of X  and denoted by 
 

  )(xVar  

 
Example 5.4 

(a) Let the pdfs of X  be given by   3
100f  ,   3

101f  , 

  1
102f   and   3

103f  , compute the mean, variance and 

standard deviation of X . 
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(b) Find the mean and variance for the following discrete 
distributions: 

(i) 25,20,15,10,5       ,
5

1
)(  xxf  

(ii) f(x)   =   1,     x   =   5 

(iii) 
6

4
)(

x
xf


 ,    x   =   1, 2, 3 

 

Solution: (a) 




































10

3
3

10

1
2

10

3
1

10

3
0)()( xxfxE  

    = 
10

9

10

2

10

3
  

    = 
10

14
 = 1.4 

 

σ2
 =     )()()()( 22 xfxXVXE   

     =  




































10

3
)4.13(

10

1
)4.12(

10

3
)4.11(

10

3
)4.10( 2222  

  = 
10

68.7

10

36.0

10

48.0

10

88.5
  

  = 
10

4.14
 =   1.44  

 2.1)(  XV  

  

  or )()()( 22 XEXEXV   

 

   )()( 22 xfxXE  

   = 



































10

3
3

10

1
2

10

3
1

10

3
0 2222  

   = 
10

27

10

4

10

3
  

   = 
10

34
 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 

Probability and Distribution Theory      71 
 
 

  

2

10

14

10

34
)( 








XV  

   = 
100

196

10

34
  

   = 3.4 – 1.96   =   1.44 

 (b) i.  









5

1
)()( xxxfXE  

 

   = 
5

25

5

20

5

15

5

10

5

5
  

   = 1  +  2  +  3  +  4  +  5 
   = 15 
 
Example 5.5 

Given  4 10E X    and    1164
2
XE .  Determine 

(i)  4Var X   

(ii)   

(iii) 2  
 
Solution 

(i)      
2 24 4 4Var X E X E X     

 
 

      = 116 – 10
2
  

      = 116 – 100 
      = 16 
 

(ii)   4 10E X     

        
 

 

4 10

6

E X

E X

 

 
 

    

(iii)        2 2 2Var X E X E X     
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 But    
2 24 8 16 116E X E X X     

 
   

                     2 8 16 116E X E X    

                   2 48 100E X    

                   2 52E X    

  

 

     2 2

2            52 6

            16

Var X E X E X 

 



   

 
As a measure of variability or spread in a continuous distribution, 

we will again consider the variance,    
2

Var X E X   
 

, and the 

standard deviation is denoted by )(XVarX   

 

The relationship    
2 2Var X E X    holds, where 

  



 dxxfxXE )(22

 

 
Example 5.6  
Let Y be a continuous random variable with p.d.f.  
  

   2 ,    0<y<1f y y  

 

Obtain  E Y and  Var Y   

 
Solution:  

 
1

0
)()( dyyyfYE  

  = 
1

0
)2( dyyy  

  = 
1

0

22 dyy  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 

Probability and Distribution Theory      73 
 
 

  = 
3

2

3

2
1

0

3








 y  

  

 222 )()(   YEYVar  

 
1

0

22 )()( dyyfyYE  

  = 
1

0

32 dyy   

  = 
1

0

4

4

2







 y  

  = 
4

2
   

Hence, var (Y) = 
9

4

2

1

9

4

4

2
  

  = 
18

1
 

 

Summary 
Here we learnt the following, 
 

(1) The expected value of a random variable X  of the 

discrete type, if it exists, is given by    
x

xxfxE . 

(2) The expected value of a random variable X  of the 

continuous type, if it exists, is given by    




 dxxxfxE . 

(3) From the very definition of  E X , the following 

properties are immediate: 

(i)   ccE  . 

(ii)    XcEcXE   

(iii)     dXcEdcXE   

(iv)      YEXEYXE   
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Post-Test 
 

(1) Solve the question in example 5.4b (ii) and (iii). 

(2) Show that       dXUcEdXcUE  , and, in parti-

cular,     dXcEdcXE  where c and d are constants. 

(3) Suppose  
5
1xf , 5,4,3,2,1x , zero elsewhere, is the 

p.d.f. of the discrete type of random variable X . Compute 

 XE  and  2XE . Hence or otherwise, find  XVar and 

  2
2XE . 
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6 
Probability Distributions of Discrete 

Random Variables 
 

 
 
Introduction 
In many situations, it is useful to present the probability 
distribution of a random variable by a general algebraic expression. 
Probability calculations can then be made conveniently by 
substituting appropriate values into the algebraic model. The 
mathematical expression is a compact form of summarizing the 
nature of the process that has generated the probability distribution. 
In this chapter, three probability distributions of the discrete type 
will be discussed: the Bernoulli, binomial and Poisson 
distributions. The procedure for obtaining means and variances of 
these distributions shall also be explained. Other examples of the 
discrete distributions are; Multinomial distribution, Hyper 
geometric Distribution, Negative Binomial, etc. 
 
Objectives  
After a careful study of this chapter you should be able to do the 
following: 

(1) Discuss the characteristics of probability distributions;  
(2) Study some of the frequently occurring probability 

distributions; and 
(3) Examine the assumed chance mechanisms that lead to the 

usage of these distributions. 
(4) Derive expressions for obtaining means and variances of 

the discrete distributions; and 
(5) Discuss the procedures for evaluating expected value of a 

discrete random variable. 
 
Pre-Test 

(1) Discuss the two types into which random variables are 
classified. 

(2) Define the term ‗probability function‘. 
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(3) List the properties of a probability density function. 
(4) List the properties of a binomial distribution. 
(5) Give the mean and variance of a Poisson distribution 

 

Contents 
Probability Distribution 
A probability distribution is a mathematical idealization, or model 
of the relative frequency distribution of outcomes of a random 
experiment. If a random variable can assign only a countable 
number of values to the result of a random experiment, it is said to 
be a discrete random variable.  However, a random variable that 
can assume any real value is called a continuous random variable. 
 
Bernoulli Distribution 
A trial with only two possible outcomes is used very frequently as 
a building block of a random experiment and it is called a 
Bernoulli trial. It is usually assumed that the trials that constitute 
the random experiment are independent. This implies that the 
outcome from one trial has no effect on the outcome to be obtained 
from any other trial. Furthermore, it is often reasonable to assume 
that the probability of a success in each trial is constant. 
 
The principal use of the binomial coefficients will occur in the 
study of one of the important chance processes called Bernoulli 
trials. 
 
A Bernoulli process or Bernoulli trial is developed from a very 
specific set of assumptions involving the concept of a series of 
experimental trials. 
 
Let us envision a process or experiment characterized by repeated 
trials. The trials take place under the following set of assumptions: 

 
(1) There are two mutually exclusive possible outcomes on 

each trial, which are referred to as ―success‖ and ―failure.‖ 
In whatever different language, the sample space of 

possible outcomes on each trial is  ,  S failure success . 

Other examples of experiments with exactly two possible 
results (outcomes) are; guilty and not guilty, defective and 
non defective, male or female etc.  
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(2) The probability p of success on each experiment is the 

same for each experiment, and this probability is not 
affected by any knowledge of previous outcomes. The 
probability q of failure is given by 1q p  . 

 

The distribution is derived from a process known as a Bernoulli 
trial. When a single trial of an experiment results in only one of 
two mutually exclusive outcomes e.g. dead or alive, sick or well, 
the trial is called a Bernoulli trial.  
 

A random variable, X , that assumes only the values 0 or 1 is 
known as a Bernoulli variable, and a performance of an experiment 
resulting in only two types of outcomes is called a Bernoulli trial.  
 

The p.d.f. of a Bernoulli random variable is given as 
 
   xxqpxf  1 , 1,0x   

 
Where, p is the probability of success and it remains constant from 
trial to trial, the corresponding probability of failure is denoted by 
q which is equal to 1-p. The trials are independent. That is, the 
outcome of any given trial or sequence of trials do not affect the 
outcomes on subsequent trials. The outcome of any specific trial is 
determined by chance. Such processes are referred to as ―random 
process‖ or ―stochastic process.‖ Bernoulli trials are one example 
of such processes.  
 

Properties 
Mean   p   

Variance  2 pq   

Standard Deviation     pq   

 
Example 6.1  
An urn contains 5 red and 15 green balls. Draw one ball at random 
from the urn. Let 1X  if the ball drawn is red, and 0X   if a 
green ball is drawn. Obtain: 

(i) the p.d.f. of X , 
(ii) mean of X  and  
(iii) variance of X . 
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Solution: 

The p.d.f. of a Bernoulli distribution is   xxqpxf  1 , 1,0x   

where 
20

5p  and 
20

15q  

   1,0,
20

15

20

5
1





















xxf

xx

 

 

Mean of                0
20
151

20
51

20
150

20
51

20
15

1

0

20
5 10 






x

x

x
xXEX =  

20
5  

Variance of X =              2
20
50

20
151

20
52

1

0

2 1  XExfxXV  

   =      
16
32

20
5

20
5   

 
Binomial Distribution 
An important distribution arising from counting the number of 
successes in a fixed number of independent Bernoulli trials is the 
Binomial distribution. A binomial experiment is any experiment 
that can be regarded as a sequence of n  Bernoulli trials and 
meeting the following conditions. 
 

(i) The underlying experiment consists of n  repeated trials 
( n  is defined before the experiment begins). 

(ii) The result of every trial can be classified into one of two 
mutually exclusive categories. 

(iii) The probability of success p does not change from trial to 
trial. 

(iv) The result of any trial is independent of the results of all 
other trials.  

 
The shape of the distribution depends on the two parameters p and 

n . 
 

(i) When 0.5p   and n  is small, the distribution will be 

skewed to the right. 
(ii) When 0.5p  and n  is small, the distribution will be 

skewed to the left 
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(iii) When 0.5p   the distribution will be symmetric. 

(iv) In all cases, as n  gets larger the distribution gets closer to 
being a symmetric, bell-shaped distribution. 

 

Properties 
Mean  np   

Variance 2 npq   

Standard Deviation  npq   

 
If X  is a random variable with probability of a success p , then the 

probability of obtaining x success in n trials is 
 

 xnxqp
x

n
xf 









)(  x   =   0, 1, ---- n    

 
That is the probability of x number of successes in n number of 
trials. This is the p.d.f of a Binomial distribution. 
 
Example 6.2  
If 20% of the bolts produced by a machine are bad. Determine the 
probability that out of 4 bolts chosen at random. 
 

(i) one is defective 
(ii) none is defective 
(iii) at most 2 bolts will be defective. 

 
Solution: 4n  , 0.2p  , 0.8q    
 

(i) 4096.08.02.0
1

4
)1(]1[ 31 








 fXP  

 

(ii) 4096.08.02.0
0

4
)0(]0[ 40 








 fXP  

 
(iii)          2 0, 1,  2 0 1 2P X P X P X P X P X          

 
                   = 0.4096 + 0.4096 + 0.1536    
 
                    = 0.9728 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
80     Probability Distributions of Discrete Random Variables 
 
 

or       1 2   1 3 4P X P X P X           
       

or    3 1 4 0
4 4

1 3   1 0.2 0.8 0.2 0.8
3 4

P X
   

       
   

 

 
          =   1 – 0.0256 – 0.0016 
 
          =   0.9728 
 
Example 6.3  
(a) Suppose it is known that 30% of a certain population is 

immune to some disease. If a random sample of 10 is selected 
from this population. What is the probability that it will 
contain exactly 4 immune persons? 

 
  n   = 10,   p   =   0.3,   x   =   4 
 

  64 )7.0()3.0(
4

10
)4( 








f  

 
   =   0.2 
 
(b) In a certain population, 10% of the population is color-blind. 

If a random sample of 25 people is drawn from this 
population (use standard statistical tables). Find the 
probability that 

 
(i) P(X    5)   =   1 – P(X < 5)   =   0.0980 
 
(ii) P(X    4)   =   0.902    

 
   or   1 – P(X    5)   =   1 – 0.0980   =   0.902 

 
(iii) P(6   X    10) =   P(6)  +  P(7)  +  P(8) -----  +  P(10)    
   =  0.0333 

     =  0.0334  i.e.   P(X    6) 
 
Example 6.4  
From the experiment ―toss four coins and count the number of 
tails‖, what is the variance of X? 
 
  n   =   4,   p = ½,   q   =   ½  

    1 1
2 24 1V X npq      
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Example 6.5  
Roll a fair 6-sided die 20 times and count the number of times that 
6 shows up. What is the standard deviation of your random 
variable? 
 

 n   =   20,   p   =   
6

1    q   =   
6

5   

        Var X npq   

   =   
36

100       
6

5  x  
6

1   x  20   

           100 10( )                 
36 6

V X     

 
The Poisson Distribution 
This is concerned with occurrences that can be described by a 
discrete random variable. The random variable can take on values, 
x  =  0, 1, 2 ---- (i.e. non-negative integers)—countably infinite 
distribution, e.g. 
 

- number of telephone calls per minute at a switchboard; 
- number of mistakes per page in a large document; and 
- numbers of traffic arrivals such as trucks at terminals, air 

planes at airports, ships at docks, etc. 
 
All these have something in common, the given occurrences can be 
described in terms of a discrete random variable which takes 
values 0, 1, 2, ----. 
 
The Poisson distribution can be used to find the probability that a 
certain number of events will occur in a given period of time 
provided that the following criteria are satisfied: 

 
(1) The time interval used can be divided into many sub-

intervals, so small that the probability of the event 
occurring in any one sub-interval is almost zero. 

(2) The probability of more than one occurrence in any sub-
interval is negligible. 

(3) The occurrences of the events are independent. The 
occurrence of an event in an interval of space or time has 
no effect on the probability of a second occurrence of the 
event in the same or any other interval. 
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(4) The probability of the single occurrence of the event in a 
given interval is proportional to the length of the interval. 

(5) The probability of an occurrence in any of the sub-
intervals (or the mean rate of occurrence) remains constant 
throughout the entire time under consideration. 

(6) The mean and the variance are equal. 
 
When the above mentioned criteria are satisfied, the probability of 
X occurrences per unit of time is given by 
 

 
!

)(
x

e
xf

x
   x   =   0, 1, 2, ----,  0   

 
  is the average number of occurrences of the random event in the 
interval and e is the constant, 2.7183. 
 
The Poisson distribution gives a very good approximation to the 
binomial distribution. The Poisson distribution can be used when 
the sample size is very large, and the probability of an event 
occurring is very small. 
 
Properties 

Mean                 E X     

Variance             2Var X     

Standard deviation       

 
Example 6.6  
Suppose that an urn contains 100,000 marbles and 120 are red.  If a 
random sample of 1000 is drawn, what are the probabilities that 0, 
1, 2, 3, and 4 respectively will be red? 
 

 n   =   1000, 
100000

120
p   = 0.0012, q   =   0.9988 

 
Solution:  

Using Binomial:         2 1000
1000

0.0012 .0.9988
   

xf x
x

 
  
 
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  For x=3;            3 997
1000

3 0.0012   x  0.9988 0.0867
   3

f
 

  
 

 

 

              = 09166167000 1.728 0.30206   
 
              = 0.0867 
 
Using the Poisson method, 
 
 1000 0.0012 1.2np      

 1.2 0.3012e   

 0867.0
!3

2.1
)3(

32.1


e

f  

 
Note that the result obtained by the two methods is the same but 
the computations involving the binomial distribution is quite 
tedious when n is large, it is however, less stressful when a simple 
method of approximation (i.e. Poisson) is used. Hence, the Poisson 
distribution is particularly suitable as an approximation when n is 
large and p is small. 
 
Example 6.7 
Let X have a Poisson distribution with a mean of  5  .  Find  
 

(i)  6P X   

(ii)  5P X   

(iii)  6P X   

(iv)  4P X  P 

 
Solution: 

(i) 762.0
!

5
)6(

6

0

5

 




x

x

x

e
XP  

(ii)    5 1 5 1 0.616 0.384P X P X        

(iii)      6 6 5 0.762 - 0.616 = 0.146P X P X P X       

(iv)    4 1 4P X P X     
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Example 6.8 
A hospital administrator, who has been studying daily emergency 
admissions over a period of several years, has come to the 
conclusion that they are distributed according to the Poisson law. 
Hospital records reveal that emergency admissions have averaged 
three per day during this period.  If the administrator is correct in 
assuming a Poisson distribution. Find the probability that, 
 

(1) Exactly two emergency admissions will occur on a given 
day; 

(2) No emergency admission will occur on a particular day; 
and 

(3) Either 3 or 4 emergency cases will be admitted on a 
particular day. 

 
Solution: 

(1) ( 2)
!

xe
P X

x



     3   

        =   225.0
2

)9(05.0

!2

323


e

 

 

(2) 
3 03

( 0) 0.05
0!

e
P X



    

(3) 
3 3 3 43 3

( 3) ( 4)
3! 4!

e e
P X P X

 

      

 

  = 









24

81

6

273e  

 

  = 









8

27

2

9
05.0  

 
  = 0.05 (7.875) 
 
  = 0.394 
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Derivation of Means and Variances of Some Discrete 
Distributions 
Binomial Distribution 
Given that X has a Binomial distribution with parameters n  and p . 

Obtain the mean and variance of X 
 
Solution:  The pdf of a Binomial distribution is 

 ,)( xnxqp
x

n
xf 









     x   =   0, 1,  . . . , n 

 

 



n

x

xxfXE
0

)()(  

 

  =      xnx
n

x

qp
x

n
x 



 








0

 

 

  =      xnxqp
xnx

n
x 


 )!(!

!
.    

 

  =      ( 1) ( 1)( 1)!
. .

( 1)!( )!

x n x

x

n n
x p p q

x x n x

   

 
  

   
Let x – 1 = y and   n– 1   = m 
 

  =      ymy qp
ymy

m
np 


 )!(!

!  

 

  =      ymy
n

y

qp
y

m
np 



 








0

 

 
  = np 
   

  )()( 22 xfxXE  
 

  =      








 xnxqp
x

n
x 2  

 

  =     xnxqp
xnx

n
x 


 )!(!

!2   
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  =     
2 1 ( 1) ( 1)( 1)!

.
( 1)!( )!

x n xn n
x p p q

x x n x

   

 
   

 

  =     )1()1(1

)!()!1(

)!1( 




 xnx qp
xnx

nx
np  

 
Let 1x y  , 1n m   

  =     ymy
m

y

qp
ymy

m
ynp 







0 )!(!

!
1  

 

  =     
































m

y

ymy
m

y

ymy qp
y

m
qp

y

m
ynp

00

 

 

  =      1np mp  

 

  =      1 1np n p     

 

  =      1np np p   

 

  =     2 2 2n p np np   

  

       
22Var X E X E X   

 

  =     2 2 2 2 2n p np np n p    

 

  =     2np np  

 

  =      pnp 1  

 
  =     npq  

                                                        
Poisson Distribution 
Given that X has a Poisson distribution with parameter  . Obtain 
the mean and variance of X. 
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Solution:   The p.d.f. of X is given by 

  
!

)(
x

e
xf

x
   x   =   0, 1, 2, ----,  0    

 

 
   























100 !1!1! x

x

x

x

x

x

xxx
x

x
xXE

 





 

 
Let 1 xk , then 
 

  



   













 
00

1

!! k

k

k

k

kk
XE ,  

Since from Maclaurin‘s series expansion  




0 !x

x

x
 

   XE  

 

 
   























10

2

0

22

!1!1! x

x

x

x

x

x

x
x

xx
x

x
xXE

 





 

 
Let 1 xk , then 
 


















 

























00001

1

!!!!!
1

k

kk

kk

kk

kk

k

kk
k

kk
k

k
k


 





 

  

 

  1   

 

Note that 1
!0








k

k

k

   

 

   2  
 

     XEXEX 22var   

 22    

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
88     Probability Distributions of Discrete Random Variables 
 
 

   
 
Summary 
In this chapter, we learnt the following: 
 

(1) The Bernoulli distribution. 
(2) Properties of the Bernoulli distribution which are: 

(i)   pXE    

(ii)   pqXVar  2  

(iii) Standard Deviation pq   
 

(3) Binomial Distribution with its properties given as 
follows; 

(i)   npXE    

(ii)   npqXVar  2  

(iii) Standard tan  S dard Deviation npq   
 

(4) The concept of the Poisson distribution. 
(5) Properties of the Poisson distribution 
 

(i)    XE  

(ii)     2XVar  

(iii) Standard Deviation     
 

(6) How to derive the mean and variance of a binomial 
distribution. 

(7) To obtain the mean and variance of a Poisson distri-
bution.  

 
Post-Test 

(1) Suppose that 24% of a certain population have blood 
group B. For a sample size of 20 drawn from this 
population, find the probability that 

(a) Exactly 3 persons with blood group B will be 
found. 

(b) Three or more persons with the characteristics of 
interest will be found  

(c) Fewer than three will be found. 
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(d) Exactly five will be found. 
(2) In a large population, 16% of the members are left-

handed.  In a random sample of size 10, find 
(a) The probability that exactly 2 will be left-handed 

 2P X  . 

(b)  2P X   

(c)  2P X   

(d)  1 4P X   

 
(3) Suppose mortality rate of a certain disease is 0.1, suppose 

10 people in a community contract the disease, what is the 
probability that 

(a) None will survive   
(b) 50% will be   
(c) At least 3 will die  
(d) Exactly 3 will die  

 
(4) Suppose it is known that the probability of recovery from 

a certain disease is 0.4. If 15 people are stricken with the 
disease, what is the probability that 

(a) 3 or more will recover?  
(b) 4 or more will recover?  
(c) at least 5 will recover?  
(d) fewer than three recover?  

 
(5) In the study of a certain aquatic organism, a large number 

of samples were taken from a pond and the number of 
organisms in each sample was counted. The average 
number of organisms per sample was found to be two,, 
assuming the number of organisms Poisson distributed.  
Find the probability that: 

(i) The next sample taken will contain one or more 
organisms, 

(ii) The next sample taken will contain exactly three 
organisms, 
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(iii) The next sample taken will contain fewer than five 
organisms. 

(6) It has been observed that the number of particles emitted 
by a radioactive substance, which reach a given portion of 
space during time t, follows closely the Poisson distribu-
tion with parameter  =100. Calculate the probability 
that: 

(i) No particles will reach the portion of space under 
consideration during time t; 

(ii) Exactly 120 particles do so; 
(iii)  At least 50 particles do so. 

 
(7) The phone calls arriving at a given telephone exchange 

within one minute follow the Poisson distribution with 
parameter value equal to ten. What is the probability that 
in a given minute: 

(i) No calls arrive? 
(ii) Exactly 10 calls arrive? 
(iii) At least 10 calls arrive? 
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7 
Probability Distributions of Continuous 

Random Variables 
 

 
 
Introduction  
In the last chapter, we discussed the distributions of the discrete 
random variable. In this chapter, we shall look at some 
distributions of the continuous type. We will now consider the 
notion of a continuous random variable. In chapter three, we 
defined a continuous random variable stating clearly its properties. 
We also demonstrated how the mean and variance of a continuous 
random variable can be obtained.  
 
Objectives  
At the end of this chapter, you should be able to: 

(1) Describe the theory of continuous distributions; 
(2) Explain the properties of continuous distributions; and 
(3) Evaluate the means and variances of any given function. 
(4) Discuss the procedures for evaluating expected value of a 

continuous random variable. 
 

Pre-Test 
(1) Enumerate the relationship between Bernuolli and 

Binomial distributions. 
(2) Define a continuous random variable X. 
(3) Differentiate between discrete and continuous random 

variables. 
(4) Write the p.d.f. of a normal distribution. 

 

Contents 
Uniform Distribution 
Suppose that a continuous random variable X can assume values in 
a bounded interval only, say the open interval (a, b), and suppose 
the p.d.f. of X is given as       
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     
1

,  
; ,

0,  

a x b
f x a b f x b a

otherwise


 

  



 

 
This distribution is referred to as the Uniform or Rectangular 
Distribution on the interval (a, b) and is simply written 

as  baUX ,~ , where ‗a‘ and ‗b‘ are the parameters of the 

distribution. It provides a probability model for selecting a point at 
random from the interval (a, b).  
 
Properties 

Mean   
2

ba 
  

Variance   
12

2

2 ab 
  

Standard Deviation      
2

12

b a



  

 
Example 7.1  
The hardness of a certain alloy (measured on Rockwell scale) is a 

random variable X. Assume that  75,50~ UX . 

a. Find  7060  XP    

b. Find  E X  

c. Find  Var X  

 
Solution: 

(v)  7060  XP = dx
ab 

70

60

1  

 

            =  70

60
5075

1
x


 

 

          = 
5

2  
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(vi)    E(X) = 

75

50

1
xdx

ab
=

2

125
  

 
    Or   
      

    E(X) = 
2

125

2

5075

2





 ab
 

 

(vii)        
12

625

2

125

25

1
275

50

222 







  dxxXEXEXVar  

   
  Or      

     
 

12

625

12

2





ab

XVar  

 
Exponential Distribution 
An exponential distribution is a continuous distribution related to 
the Poisson distribution. In the Poisson process, the number of 
changes occurring in a given interval is counted which results in 
discrete distribution. But not only is the number of changes a 
random variable; the waiting times between successive changes are 
also random variables which are of the continuous type. The latter 
results into a distribution called the exponential distribution. 
 
A continuous random variable X has the exponential distribution 
with parameter 0 , if it has a p.d.f. of the form 
 

     
1

,  0
;

0, 

x

x
f x f x

otherwise



 




  



 

 
The exponential distribution, which is an important probability 
distribution for lifetimes, is characterized by the following 
properties. 
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Properties 

Mean     XE   

Variance    2XVar  

Standard Deviation    

So if   is the mean of changes in the unit interval, then 



1

 is 

the mean waiting time for the first change. 
 
Example 7.2 

Let the p.d.f. of X be     


xxf
x

0,2

2
1  . 

(i) What are the mean and variance of X? 

(ii) Calculate  3XP  

(iii) Calculate  25  XXP  

(iv) Calculate  2XP  

 
Solution  

(i)   2XE  and   42 XVar  

(ii)   2231.0
2

1
3

3

2
3

2  



 dxXP

x

 

(iii)   2231.025 2
3

2
2

2
5

2

2

2

2
1

5

2
1



























x

x

XXP  

(iv)   6321.011
2

1
2 1

2

0

2
2

2  

 
x

XP  

 
The Normal Distribution 
The normal distribution plays a central role in statistical theory and 
practice, particularly in the area of statistical inference. The normal 
distribution is perhaps the most important distribution in statistical 
applications since many measurements have (approximate) normal 
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distributions. The main reason for this is its role in the Central 
Limit Theorem (CLT).  
The random variable X has a normal distribution if its p.d.f. is 
defined by  
 

  
 








 
 x

x
xf ,

2
exp

2

1
2

2






 

 
In this equation, the mean and standard deviation, which determine 
the location and spread of the distribution, are denoted by   and 

 , respectively. These are said to be the two parameters of the 

normal distribution satisfying   0, . Briefly, we 

say that X is  2,N .   

 

Theorem: If the random variable X is  2,N , 02   then the 

random variable    XZ  is  1,0N .  

 
Proof: The distribution function of Z is 
 

    















 zXPz

X
PzZP  

 

            =
 

dx
x

z








 





2

2

2
exp

2

1









 

 

Changing the variable of integration by writing    xw , 

  wx . We then obtain; 
 

    dwzZP
w

2

2

2

1 




 


 

 

This is the expression for  z , the cumulative distribution 

function of a standardized normal random variable. Hence, Z 

is  1,0N . 
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This fact considerably simplifies the calculations of probabilities 
concerning normally distributed variables, as seen in the following 
illustration: 
 

Suppose, that X is  2,N , let 1 2c c , and since   01  cXP , 

then 
 
      1221 cXPcXPcXcP   

 

  






 











 



















 12 cX
P

cX
P  

 

  






 








 








 12 cc
 

 

Note that    xx  1 . 

 
The normal distribution possesses the following properties. 
 
Properties 

Mean     XE   
 

Variance    2XVar  
 
Standard Deviation   
 
Example 7.3 

(1) If Z is  1,0N , find; 

(i)  06.253.0  ZP  

(ii)  89.2ZP  

 

(2) If X is  100,75N , find  60XP . 

(3) If X is normally distributed with a mean of 6 and a 

variance 25, find  126  XP  
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Solution 
(1)   

(i)  06.253.0  ZP  =     2784.07019.09803.053.006.2   

(ii)     0019.09981.0189.2189.2 ZP  

 

(2)     0668.05.1
10

7560

10

75
60 







 



 ZP

X
PXP  

 

(3)    2.10
5

612

5

66
126 







 



 ZPZPXP  

 

        3849.05000.08849.002.1   

 
Derivation of Means and Variances of Continuous Distribution 
Uniform Distribution 

Let X have a uniform distribution  ,U a b with p.d.f 

  
ab

xf



1

)(      a x b   

  
Obtain the mean and variance of X. 

Solution:  


b

a

b

a
dx

ab
xdxxxfXE

1
)()(  

 

   = 

b

a

b

a

x

ab
xdx

ab












  2

11 2

  

 

   = 






 

 2

1 22 ab

ab
  

 

   = 
  








 

 2

1 abab

ab
 

 

   = 
2

ab 
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 
b

a
dxxfxXE )()( 22

 

  = 






 















  3

1

3

11 333
2 ab

ab

x

ab
dxx

ab

b

a

b

a
 

 

  = 






 

 3

))((1 22 aabbab

ab
 

 

  = 
3

22 aabb 
 

 

 
 

4

2

3
)(

2222 aabbaabb
XV





  

 

  = 
12

363444 2222 aabbaabb 
 

 

  = 
12

)(

12

2 222 abaabb 



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Summary  
In this chapter, we  considered the following: 

(1) The concept of uniform and exponential distributions. 
(2) How the Poisson distribution is related to the exponential 

distribution. 
(3) The uniform distribution has the following properties; 

(i) Mean 
2

ba 
  

(ii) Variance  
12

2

2 ab 
  

(iii) Standard Deviation     =    
12

2
ab   

(4) The exponential distribution on the other hand has the 
following properties; 

 
(i) Mean   XE  

(ii) Variance   2XVar  

(iii) Standard Deviation     
 

(5) The importance of the normal distribution. 
(6) The p.d.f. of a normal distribution is given by 
 

 
 








 
 x

x
xf ,

2
exp

2

1
2

2







 

 
(7) A theorem to show that the random variable    XZ  

is  1,0N . 

 

Post-Test 
(1) Let X have an exponential distribution with a mean 

of 20 . Compute 

(i)  3010  XP  

(ii)  300  XP    

(iii)  30XP  

(iv)  1040  XXP  
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(2) Telephone calls enter a college switchboard according to a 
Poisson process on the average of two every 3 minutes. 
Let X denote the waiting time until the first call that arrives 
after 10 A.M. 

(i) What is the p.d.f. of X? 

(ii) Find  2XP  

 
(3) Customers arrive randomly at a bank teller‘s window. 

Given that one customer arrived during a particular 10-
minute period, let X equal the time within the 10 minutes 

that the customer arrived. If X is  10,0U , find 

(i) The p.d.f. of X. 

(ii)  8XP  

(iii)  82  XP  

(iv)  XE  

(v)  XVar  

 
(4) Explain the relationship that exists between the poisson 

and the exponential distributions. 
 

(5) If X is  100,75N , find  35XP and  10070  XP . 

 

(6) If Z is  1,0N , find values of c such that 

(i)   025.0 cZP  

(ii)   95.0 cZP  

(iii)   05.0 cZP  

 

(7) Let X be  2,N , so that   90.089 XP  and 

  95.094 XP . Find   and 2 . 

 

(8) Show that the random variable    XZ is 

distributed  1,0N . 
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(9) Suppose that  1,0~ NZ . Find the following probabilities: 

(i)  53.1ZP  

(ii)  48.0ZP  

(iii)  01.235.0  ZP  

(iv)  28.1ZP  

 
  Find the value of ‗a‘ and ‗b‘ such that 

(v)   648.0 aZP  

(vi)   95.0 bZP  

 

(10)  The p.d.f of X is 3)(
x

dxf  , 1 x  , zero elsewhere. 

(i) Calculate the value of d so that  f x  is a p.d.f 

(ii) Find  E X  

(iii) Show that  Var X does not exist. 

 
(11)  Find the mean and variance of the following distributions. 

(i)   11     ,
2

3)( 2  xxxf  

(ii) 11              ,
2

1
)(  xxf  

(iii)      
10          1

01         1
)(










xx

xx
xf  

 
(12)  Obtain the mean and variance of the exponential   
    distribution. 
 
(13)  Derive the mean and variance of the normal distribution. 
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8 
Generating Functions 

 
 
 
Introduction 
In the preceding chapters we saw the importance and derivation of 
the mean, standard deviation and variance of a random variable X. 
For some distributions, it can be fairly difficult to obtain directly 

 XE and  2XE , the first and second moments. We shall discuss 

here a function of a real variable t  that can be used to find 

 XE and  2XE  as well as higher moments of X. Moments are 

merely the averages of powers of the variable values. In this 
chapter, we will treat the notions of the location, spread, symmetry, 
and peakedness of a histogram as measures of the characteristics of 
shape. It is important to note that once location and spread have 
been determined, it is more informative to look at standardized 
variables, or standardized moments, to measure the remaining 
shape characteristics. 
 
Although, the moment-generating function (m.g.f.), if it exists, is a 
useful tool for determining moments, its major importance is in the 
fact that it uniquely determines the distribution.  
 
The moments of any given random variable can be computed using 
the moment-generating function approach. For many random 
variables the cumulant generating function (c.g.f) proves easier to 
use in evaluating the mean and variance. The reason for this 
simplicity is that the first two derivatives of c.g.f. of X written as 

 tCx  evaluated at 0t  directly give the mean and the variance of 

X. For many of the standard random variables that we will discuss, 
these two derivatives are very easy to compute. Either the 
cumulant generating function or the moment generating function 
can be used to evaluate means and variances (and other moments) 
of a random variable. 
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Objectives  
At the end of this chapter, you should be able to: 

(1) Obtain the means and variances of distributions; 
(2) Show the usefulness of m.g.f. over the direct computation 

of expectations; and 
(3) Make extensions for determining higher moments. 
(4) Discuss the concept of cumulant generating function; 
(5) Distinguish between the moment-generating function and 

the cumulant generating function; and 
(6) Compute moments using c.g.f. 

 
Pre-Test 

(1) Define the term ‗moment‘ of a random variable X . 
(2) What do you understand by the term ‗first moment about the 

origin?‘ 
(3) What do you understand by the term ‗r

th
 moment about the 

mean?‘ 
(4) Explain the term ‗factorial moments.‘ 
(5) Obtain the mean and variance of a geometric distribution. 
(6) Write down expressions for the first, second and r

th
 

moments about the origin. 
(7) Differentiate between ‗moments about the origin‘ and 

‗moments about the mean. 
 

Contents 
Moments of a Distribution: Mean, Variance, Skewness and  
Kurtosis 
When a set of values has a sufficiently strong central tendency, that 
is, a tendency to cluster around some particular value, then it may 
be useful to characterize the set by a few numbers that are related 
to its moments, the sums of integer powers of the values. 

Best known is the mean of the values 1 2, , , Nx x x , 
 

1

1 N

i

i

x x
N 

     

    
which estimates the value around which central clustering occurs. 
This does not imply that the mean is the only available estimator of 
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this quantity, nor is it necessarily the best one. For values drawn 
from a probability distribution with very broad ―tails,‖ the mean 
may converge poorly, or not at all, as the number of sampled 
points is increased. 
 
Having characterized a distribution‘s central value, one 
conventionally then characterizes its ―width‖ or ―variability‖ 
around that value. Here again, more than one measure is available. 
Most common is the variance, 
 

   
2

1 2

1

1
, , ,

1

N

N i

i

Var x x x x x
N 

 

    8.1 

 
or its square root, the standard deviation, 
 

   1 2 1 2, , , , , ,N Nx x x Var x x x    8.2 

 
Equation (8.1) estimates the mean squared deviation of x from its 
mean value. 
 
As the mean depends on the first moment of the data, so do the 
variance and standard deviation depend on the second moment. It 
is not uncommon, in real life, to be dealing with a distribution 
whose second moment does not exist (i.e., is infinite). In this case, 
the variance or standard deviation is useless as a measure of the 
data‘s width around its central value: The values obtained from 
equations (8.1) or (8.2) will not converge with increased numbers 
of points, nor show any consistency from data set to data set drawn 
from the same distribution. This can occur even when the width of 
the peak looks, by eye, perfectly finite. A more robust estimator of 
the width is the average deviation or mean absolute deviation, 
defined by 

 1 2

1

1
, , ,

N

N i

i

ADev x x x x x
N 

     8.3 

 
Higher moments, or statistics involving higher powers of the input 
data, are almost always less robust than lower moments or 
statistics that involve only linear sums or (the lowest moment of 
all) counting. 
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Fig. 8.1: Distributions whose third and fourth moments are significantly 

different from a normal (Gaussian) distribution. (a) Skewness or third 
moment. (b) Kurtosis or fourth moment. 

 
The skewness characterizes the degree of asymmetry of a 
distribution around its mean. While the mean, standard deviation, 
and average deviation are dimensional quantities, that is, have the 

same units as the measured quantities ix , the skewness is 

conventionally defined in such a way as to make it non-
dimensional. It is a pure number that characterizes only the shape 
of the distribution. The usual definition is 
 

 
3

1 2

1

1
, , ,

N
i

N

i

x x
Skew x x x

N 

 
  

 
   8.4 

 

where  1 2, , , Nx x x  is the distribution‘s standard deviation 

(8.2). A positive value of skewness signifies a distribution with an 
asymmetric tail extending out towards more positive x; a negative 
value signifies a distribution whose tail extends out towards more 
negative x (fig. 8.1a). 
 
Of course, any set of N measured values is likely to give a nonzero 
value for (8.4), even if the underlying distribution is in fact 
symmetrical (has zero skewness). For (8.4) to be meaningful, we 
need to have some idea of its standard deviation as an estimator of 
the skewness of the underlying distribution. Unfortunately, that 
depends on the shape of the underlying distribution, and rather 
critically on its tails! For the idealized case of a normal (Gaussian) 
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distribution, the standard deviation of (8.4) is approximately 15 N . 

In real life it is good practice to believe in skewnesses only when 
they are several or many times as large as this. 
 
The kurtosis is also a nondimensional quantity. It measures the 
relative peakedness or flatness of a distribution (relative to a 
normal distribution). A distribution with positive kurtosis is termed 
leptokurtic. A distribution with negative kurtosis is termed 
platykurtic (fig. 8.1b). And an in-between distribution is termed 
mesokurtic. The conventional definition of the kurtosis is 

 

 
4

1 2

1

1
, , , 3

N
i

N

i

x x
Kurt x x x

N 

   
   

   
   8.5 

 
where the −3 term makes the value zero for a normal distribution. 
 
The standard deviation of (8.5) as an estimator of the kurtosis of an 

underlying normal distribution is 96 N . However, the kurtosis 

depends on such a high moment that there are many real-life 
distributions for which the standard deviation of (8.5) as an 
estimator is effectively infinite. 
 
Moments  
The k

th
 moment about the origin of a random variable X  is 

  

 )( k

k XE  

 
and the k

th
 moment about the mean is 

 

  ( )
k

k E X E X    

       
k

E X  
 

 
Definition 8.1: Moment Generating Functions 
Let X  be a random variable of the discrete type with p.d.f 

 f x and space R.  If there is a positive number h such that 
 

  



Rx

txtx xfeeE )()(  
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exists for h t h   , then the function of t  defined by 
 

    txM t E e  

 
is called the Moment – generating function (MGF) of X. 

The derivatives of  M t  of all orders exist at 0t  .  Thus 
 

 



Rx

tx xfxetM )()(  

 



Rx

tx xfextM )()( 2  

 
and, for each positive integer r, 
 

 



Rx

txrr xfextM )()()(  

 
Setting 0t   
 

 )()()0( XExxfM    

 )()()0( 22 XExfxM    

 
and in general 
 

 )()()0()( r

Rx

txrr XExfexM 


 

 
In particular, if the MGF exists, 
 

  0M   and     
22 0 0M M        

 
For continuous random variable X 

 hthdxxfetM tx  



        )()(  
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The moment-generating functions have the following properties: 

(1)   10 xM . 

(2)   1tM x  

(3) xM is uniformly continuous. 

(4)    tMtM x

td

dx  , where d is a constant. 

(5)    ctMtM xcx  , where c is a constant. 

(6)    ctMtM x

td

dcx   

     ,
0

n

t

xn

n

XEtM
dt

d




 ,...2,1n ,if nXE  

 
The proofs of selected properties are as follows; 
 

Property 1:    txE tMx , for 0t ,       11tM 0

x  EE   

 

Property 4:          txtdtdtxdxt

dx EEEtM   

  

                     tM x

td  

 

Property 5:          ctMEEtM x

xctctx

cx    

 
Example 8.1: Binomial Distribution  

Let X have a binomial distribution  pnb ,  with p.d.f 

  xnx pp
x

n
xf 








 )1()( , x   =   0, 1, 2, ----, n 

 
The MGF of X is 

    












n

x

xnxtxtX pp
x

n
eeEtM

0

)1()(  

              =   









n

x

xnxt ppe
x

n

0

)1(  
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Using the formula for the binomial expansion with 1a p  and 
tpeb   

   =  








 xnxab
x

n
 

   =  
n

a b  

       1
n

tM t p pe       real values of t 

 
The mean and variance are, 
 

       
1

1
n

t tM t n p pe pe


       

 

and            
22 1

1 1 1
n n

t t t tM t n n p pe pe n p pe pe
 

             
 

  

Thus           0E X M np     

 

and                   
22 2 2 0 0E X E X M M          

                                              =    
221n n p np np    

                                              = 2 2 2 2 2n p np np n p    

                                                  =  pnp 1  

 
Example 8.2: Poisson Distribution 
Let X has a Poisson distribution with p.d.f 

  
!

)(
x

e
xf

x  

   x   =   0, 1, 2, ---- 

 
The MGF of X can be obtained as follows; 

  





0

)()()(
x

txtX xfeeEtM  
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                = 
!x

ee xtx




 

                 = 
 



!x

e
e

xt  

 

Note that, 





0 !X

n
X

n

x
e  

 

   
teeetM )(  

             = )1( tee     real values of t 
 
The first and second moments are; 
 
     0MXE   

 

  
      )0()( 1 MetM

tt    

 

          2121 )0()(     MeetM
tt tt    

 

Then       200 MMXVar   

 

            22    
 
                  
 
Example 8.3:  Normal Distribution 
Let X have a normal distribution with p.d.f. 
 

   
 

2

2

1
exp ,

22

0,  

x
x

f x

elsewhere



 

  
      

    


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The moment-generating function of X can be calculated as follows; 
 

     
 

dxEtM
x

txtx
2

22

1

2

1 









   

 

 dxxx
tx








 22 2
2

1 22

1




                

 

   
    

dx
ttx











 



2222

22

1

22

2

2

1 





  

 

   
    

dx
txt











 



22

22

1
222

22

1

2

1 



  

 

   
 






 


222222

22

1 2 tt 
  

 

Since 
  

dx
tx







22

22

1

2

1 



 =1 

 

     2

22tt
tM

 
   

 
The first and second moments are given as follows: 
 

         2

22

2

22

2
tt tt

ttMtM
 




   

      









2

22

2

22

222
tt tt

tttM
 

   

The mean is therefore 
 

     0M  

 

 22 2   xx  

 dx 
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To get the variance, we proceed as follows: 
 

    220  M  

 

         2222
00   MMXVar 2  

 
Example 8.4: Uniform Distribution 
Let X have a uniform distribution with p.d.f 
 

  
ab

xf



1

)(   a x b   

 
Obtain the moment-generating function of X. Hence find its mean 
and variance. 
 

   


b

a

tx dx
ab

etM
1

)(  

 

   = 

b

a

tx
b

a

tx

t

e

ab
dxe

ab












 
11

 

 

   = 






 

 t

ee

ab

tatb1  

 

   = 
)( abt

ee tatb




 

 

   =  tatb ee
abt


 )(

1
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Note that 
!3!2!1

1
32 XXX

e X  

 

   
!3!2!1

1
3322 btbttb

e tb  

 

   
!3!2!1

1
3322 atatta

e ta  

 

 












62
1

62
1

)(

1
)(

33223322 atat
ta

btbt
tb

abt
tM  

 

       = 









 6622
)(

)(

323222 atbttatb
ab

abt

t
 

 

 












6

2

6

2

22

1
)(

3322 tatbab

ab
tM  

 
The mean is thus, 
 

 






 




2

1
)0(

22 ab

ab
M  

 
And the variance is  
 

 












6

2

6

21
)0(

33 ab

ab
M  

 

         = 







 

 3

1 33 ab

ab
 

 

       
2

00 MMXVar
   

2
2233

23


























ab

ab

ab

ab  

 

              = 
 

12

2
ab 
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Definition 8.2: Cumulant Generating Functions 
The cumulant generating function is defined to be the natural log 
of the moment generating function (assuming it exists). That is, 

 M t  is the moment generating function of X, then the cumulant 

generating function for X is 
 
      tMtCx ln     

i.e.      tCxtM   

 

So if  tCx  were known, it is easy to find  tM x .  Then 
 

  

2

2

2

2

))((

))(()()(
)(

)(

)(
)(

tM

tMtMtM
tC

dt

d

tM

tM
tC

dt

d







 

 
where  
 

  )()(),()(
2

2

tMtM
dt

d
tMtM

dt

d
  

 

Since  0 1M  , i.e.      txM t E e , then    00 1M E e   

  



 1)0(

)0(
)( 1

0

M

M

M
tC

dt

d

t

 

  
)0(

))0(()0()0(
)(

2

2

0

2

2

M

MMM
tC

dt

d

t






 

   = 2
2

12

1

)(


 MM
 

 

The first two derivatives of  tCx  evaluated at 0t   directly give 

the mean and variance of X. 
 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
116     Generating Functions 
 
 

Example 8.5  

Let X be a random variable with    
2

1
4 1 tM t e  . Find the 

cumulant generating function. 
 

Solution:       1
4ln ln 2ln 1 tC t M t e     

  
t

t

e

e
tC

dt

d




1

2
)(  

  
22

2

)1(

2
)(

t

t

e

e
tC

dt

d


  

  


1
2

2
)(

0t

tC
dt

d  

  2

2

0

2

2

2

1

2

2
)( 

t

tC
dt

d  

 
Example 8.6  
A discrete random variable X has mgf 
 

     exp 2 1tM t e  
 

 
 
Find the c.g.f of X and use it to evaluate   and 2 . 

 

Solution:       ln ln exp 2 1 2 1t tC t M t e e         
 

  tetC
dt

d
2)(   

  tetC
dt

d
2)(

2

2

  

  


2)(
0t

tC
dt

d  

  2

0

2

2

2)( 

t

tC
dt

d  
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Example 8.7 
 

(1) The m.g.f. of a normal random variable X is 
 

   M(t)   =  
22

2
1

)(
tt

etM
 

  

  
  Find the c.g.f and hence it‘s mean and variance 
 

(2) (i)  The mgf of a binomial random variable X is 
 
   M(t)   =   (q  +  pe

t
)
n 

 
   (ii)  For a Poisson random variable X is 
 

   )1()( 
teetM   

 
  Find the means and variances of X. 
 
Solution: 

(1) 
22

2
1

)(
tt

etM
 

  

  22

2

1
)()( tttInMtC    

  ttC
dt

d 2)(    

 

  2

2

2

)( tC
dt

d
 

 

  0)( ttC
dt

d
 

 
   (2i) M(t)   =   (q  +  pe

t
)
n 

 
  C(t)   =   In  M(t)   =   n In (q  +  pe

t
) 

 

  
t

t

peq

npe
tC

dt

d


)(  
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22

2

)(

)()(
)(

t

tttt

peq

penpenpepeq
tC

dt

d




  

   

  nptC
dt

d

t


0

)(  

   

  npq
peq

enpenpnpqe
tC

dt

d
t

ttt

t









2

2222

0

2

2

)(
)(  

 

 (2ii) C(t)   =   In M(t)   =   (e
t
 – 1) 

   

  tetC
dt

d
)(  

   

  tetC
dt

d
)(

2

2

 

   

  
0

)(
t

tC
dt

d
 

   

  
0

2

2

)(

t

tC
dt

d
 

 
Example 8.8  
Let X  have an exponential distribution with p.d.f 
  

 



x

exf



1

)( ,  0 x  , 0   

 

Obtain the MGF of X , hence or otherwise find    and  2 . 
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Solution: 
 

 dxeetM
xtx















0

1
)( 


 

 

  = dxe
b

xt

b 











0

)1(1
lim 


 

 

  = 

b
xt

b t

e

0

)1(

1
lim 














 



 

 

  = 


1
,

1

1



t

t
 

  

 
2)1(

)(
t

tM





  

 

 
2

2

)1(

2
)(

t
tM






  

 
 
   )0(M  

 
 

 22 )]0([)0( MM   

 
 

   =  2  
 
Example 8.9 
Let X have the pdf 
 

 


 




elsewhere    ,      0

0    ,
)(

xxe
xf

x

 

 

 



0

)( dxxeetM xtx
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  = 




b
xt

b
dxxe

0

)1(lim  

 

  = 

b
xtxt

b t

e

t

xe

0

2

)1()1(

)1(1
lim 


















 

 

  = 
22

)1()1(

)1(

1

)1(1
lim

tt

e

t

be btbt

b 



















 

 
2)1(

1
)(

t
tM


 , provided   t < 1 

 
 
Summary 
In this chapter, we have learnt the following: 
 

(1) The importance of moment- generating function. 
(2) How to obtain the means and variances of distributions 

from m.g.f. 
(3) The properties of m.g.f. 
(4) The notion of cumulant generating function. 
(5) How moment-generating function relates to the 

cumulant generating function. 
(6) How to derive cumulant generating function from the 

moment-generating function. 
(7) Evaluating the means and variances of random variables 

using c.g.f. from a given m.g.f. 

 
Post-Test 

(1) Define the r
th

 moment about the mean. 
(2) Obtain the 3

rd
 and 4

th
 moments and state their usefulness. 

(3) Define the moment-generating function of a discrete 
random variable X. 

(4) Give the proof of the remaining properties given above. 
(5) Obtain the m.g.f. of the exponential distribution and hence 

or otherwise find the mean and variance. 
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(6) Find the m.g.f. when the p.d.f. of X is defined by 
 

(i)   ,
5

1
xf  3,2,1x  

(ii)   ,1xf  5x  

(iii)   ,
10

5 x
xf


  .4,3,2,1x  

 
(7) A random variable X  has moment-generating function 
 

       ,75.025.0
12t

x tM    
 
Find the cumulant generating function of X  and use it to 
obtain the mean and variance of X . 
 

(8) Find the moment-generating function, mean and variance 
of X  if the p.d.f of X  is 

 

     ,
3

2

2

1
x

xf 















  ,...4,3,2,1x  

             
  From the m.g.f. obtained, find the c.g.f of X . 
 

(9) Given the following m.g.fs of X , find the c.g.fs and hence 

or otherwise obtain  and 2 . 
 

(i)    14 
t

tM   

(ii)   ,
7.01

3.0
t

t

tM





   7.0lnt  

(iii)   tttttM 432 1.02.04.03.0    
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9 
Chebyshev’s Inequality 

 
 
 
Introduction 
Limit theorems are basically concerned with finding approxima-
tions to statistics and/or distributions of statistics. Finding limits 
may not be attained without looking at some important 
inequalities. One of the most important inequalities used in 
probability is the Chebyshev’s inequality. Loosely speaking, it 
asserts that if the variance of a random variable is small, then the 
probability that it takes a value far from its mean is also small. 
Note that the Chebyshev inequality does not require the random 
variable to be nonnegative.  
 
A small standard deviation for a set of values indicates that these 
values are located close to the mean. Conversely, a large standard 
deviation reveals that the observations are widely scattered about 
the mean. The Russian mathematician P.L. Chebyshev (1821 – 
1894) developed a theorem that allows us to determine the 
minimum proportion of the values that lie within a specified 
number of standard deviations of the mean. For example, 
according to Chebyshev‘s theorem, at least three of four values, or 
75 percent, must lie between the mean plus two standard 

deviations and the mean minus two standard deviations  2  . 

This relationship applies regardless of the shape of the distribution. 
Further, at least eight of nine values, or 99.9 percent, will lie 
between plus three standard deviations and minus three standard 

deviations of the mean  3  . 

 
Objectives  
At the end of this chapter, you should be able to: 

(1) Find bounds on probabilities based on moments; 
(2) Find upper and lower bounds for certain probabilities; and 
(3) Show that the inequality is valid for all distributions for 

which the standard deviation exists. 
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Pre-Test 
(1) Have you ever come across the word ‗inequality‘? 
(2) Mention the inequalities you have come across in the past. 
(3) Define Markov‘s inequality. 
(4) Define the word ‗statistics‘. 
(5) Differentiate between statistics and parameter. 

 

Contents 
Chebyshev’s Inequality 
Many important inequalities exist which relate expectations and 
probabilities. A lot of these are variations on the basic inequality 
called Markov‘s inequality. Chebyshev‘s inequality will be used to 
show that the sample mean, x , is a good statistic to estimate a 
population mean,  ; the relative frequency of success in n 

Bernoulli trials, 
n

x , is a good statistic for estimating p; the 

empirical distribution function,  nF x , can be used to estimate the 

theoretical distribution function  F x . The effect of the sample size 

n on these estimates is discussed. 
 
First, show that Chebyshev‘s inequality gives added significance to 
the standard deviation in terms of bounding certain probabilities. 
The inequality is valid for all distributions for which the standard 
deviation exists. 
 
In general, the theorem states that for real numbers k , 1k  , at 

least 21 1 k  of the values lie within k  standard deviations of the 

mean (or average).  
 

Table 9.1: Chebyshev’s Theorem for Some Values of 1k   
 

At least this proportion of 
data: 

Lies within this interval: 

Population Sample 
21 1 2 3 4   

21 1 3 8 9   

21 1 4 15 16   

21 1 k  

2   

3   

4   

k   

2y s  

3y s  

4y s  

y ks  
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Table 9.2: The Empirical Rule 
 

Approximately this 
proportion of the data: 

Lies within this interval: 

Population Large Sample 

0.682  

0.954  

0.997  

1   

2   

3   

1y s  

2y s  

3y s  

 
Note that the theorem is true for any population or sample. 
Although this theory gives only a lower bound for the proportion 
of the data within certain intervals, it is applicable to all data sets 
regardless of the shape of their distribution and regardless of their 
size. If a population or a large sample is symmetrical and mound 
shaped, an estimate is possible for the proportion of the data within 
certain intervals. 
 
Theorem 9.1: (Markov’s Inequality) If X is a random variable and 

 XU  is a non-negative real-valued function, then for any positive 

constant 0c  , 
 

  
c

XUE
cXUP

)]([
])([   

 

Proof:  If   A x U x c  , then for a continuous random variable, 

 

  



 dxxfxUXUE )()()]([  

 

      =  ( ) ( ) ( ) ( )
cA A

U x f x dx U x f x dx   

 

     A
dxxfxU )()(  

 

     A
dxxcf )(  

 
      = ][ AXcP   
 
      = ])([ cXUcP   
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Theorem 9.2: (Chebyshev’s Inequality) If the random variable X 

has a mean   and variance 2 , then for every 1k   
 

  
2

1
][

k
kXP    

 

Proof:   Let  f x denote the pdf of X, then 
 

 



Rx

xfxXE )()(])[( 222   

    = 



AxAx

xfxxfx )()()()( 22    

 

where,     };{  kxxA    

 

Hence,     



Ax

xfx )()( 22   

 

However, in A, x k   ; so 
 

 



AxAx

xfkxfk )()()( 2222   

 

But )()( AXPxf
Ax




  and thus 

   kXPkAXPk  22222 )(  

That is     
222

2 1

kk
kXP 




  

 
Corollary If  k  , then 

   
2

2




 XP  

 
In words, Chebyshev‘s inequality states that the probability that X 
differs from its mean by at least k standard deviations is less than 
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or equal to 2
1

k
.  It follows that the probability that X differs from 

its mean by less than k standard deviations is at least 2
11

k
 . 

That is  
 

 
2

1
1)(

k
kXP    

 
From the corollary, it also follows that 
 

 
2

2

1)(



 XP  

 
Thus, Chebyshev‘s inequality can be used as a bound for certain 
probabilities. However, in many instances, the bound is not very 
close to the true probability. 
 
Example 9.1  
If it is known that X has a mean of 25 and a variance of 16, then, 

since 4  , a lower bound for  17 33P X  is given by 
 

 )825()3317(  XPXP  

            =   75.0
4

1
12  XP  

 

and an upper bound for  25 12P X    is found to be 

 
9

1
)3()1225(  XPXP  

 
Example 9.2  
If X is a random variable with mean 33 and variance 16, use 
Chebyshev‘s inequality to find 
 

(a) A lower bound for  23 43P X   

(b) An upper bound for  33 14P X    
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Solution: 

(a)    
25.2

1
15.21033  XPXP  

   = 1 – 0.16 
   = 0.84 
 

(b)    
25.12

1

5.3

1
5.31433

2
 XPXP  

   = 0.082 
 
Example 9.3  
Let X denote the outcome when rolling a fair die. Then 7

2   and 

12
352  . (Note that, the maximum deviation of X from   

equals 5
2 )  Express this deviation in terms of number of standard 

deviations; that is find k  where 5
2k  .  Determine a lower bound 

for  3.5 2.5P X   . 

 

Solution: 
2

5k  

   


5.2
k  

 but, 
12

35  

 464.1

12
35

5.2
k  

     
2464.1

1
14645.15.25.3  XPXP  

  
    = 1.0.467 
    = 0.5328 ~ 0.533 
 
If Y is the number of successes in n Bernoulli trials with pro-

bability p of success on each trial, then Y is  ,b n p .  Furthermore, 
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nY  gives the relative frequency of success, and when p is 

unknown, nY  can be used as an estimate of p.  To gain some 

insight into the closeness of nY  to p, we shall use Chebyshev‘s 

inequality with 0 . 
 

   nnpYpp
n

Y
p 








  

  = 













 npq

pq

n
npYp


 

 

However, np   and  npq   are the mean and the standard 

deviation of Y so that, with 
pq

nk  , we have 

 

  
22

1




n

pq

k
kYpp

n

Y
p 








  -------- (9.1) 

 
or, equivalently, 
 

 
2

1



n

pq
p

n

Y
p 








  

 

when p is completely unknown,  1pq p p   is a maximum 

when 1
2p   in order to find a lower bound for the probability in 

equation (9.1).  That is  
 

 
  

2

2
1

2
1

2
11

 nn

pq
  

 
For example, if  0.05   and 200n   
 

 
  

75.0
)0025.0(200

105.0
400

2
1

2
1









 p

Y
p  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
130     Chebyshev’s Inequality 
 
 

Note that Chebyshev‘s inequality is applicable to all distributions 
with a finite variance, thus the bound is not always a tight one; i.e, 
the bound is not necessarily close to the true probability. 
 
In general, it should be noted that with fixed 0   and 0 1p  , 

 

 11limlim
2




















 


n

pq
p

n

Y
p

nn
 

 
Since, the probability of every event is less than or equal to 1, then 
 

 1lim 










p

n

Y
p

n
 

 

That is, the probability that the relative frequency 
n

Y  is within   

of p  is close to 1 when n  is large enough.  Thus, this is one form 

of the law of large numbers. 
 
 
Summary 
In this chapter, we have been able to discuss: 
 

(1) The upper and lower bounds for probabilities. 
(2) The theory of Chebyshev‘s inequality. 
(3) A theorem on Chebyshev‘s inequality and provided the 

proof. 

 
Post-Test 

(1) If   17E X   and  2 298E X  . Use Chebyshev‘s 

inequality to determine 

(i) A lower bound for  10 24P X  . 

(ii) An upper bound for  17 16P X   . 
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(2) State and prove the Chebyshev‘s inequality. 
 

(3) If X is a random variable such that   3E X   and 

 2 13E X  , use Chebyshev‘s inequality to determine a 

lower bound for the probability  82  XP . 
 

(4) If Y is  5.0,nb , give a lower bound for 









 08.05.0

n

Y
P  when 

 
(i) 100n   
(ii) 500n   

(iii) 1000n     
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10 
Central Limit Theorem 

 
 
 
Introduction 
The relationship between the shapes of the population distribution 
and the sampling distribution of the mean can be summarized in 
what is often referred to as the most important theorem in statistics, 
namely, the central limit theorem. The central limit theorem is 
concerned with the probability distribution of sums of random 
variables as n, the number of terms in the sum, increases without 
bound. The central limit theorem is frequently relied on to justify 
the assumption of a normal probability distribution for any random 
variable whose value can be thought of as the accumulation of a 
large number of independent quantities.  
 
Objective  
At the end of this chapter, you should be able to provide an 
approximate distribution in cases where the exact distribution is 
unknown or intractable. 
 
Pre-Test 

(1) What is sampling distribution of means? 
(2) What are limiting distributions? 
(3) What do you understand by the central limit theorem? 

 

Contents 
Central Limit Theorem 

Theorem: If X  is the mean of a random sample 1 2,  ,  , nX X X  

of size n from a distribution with a finite mean   and a finite 

positive variance 2  then the distribution of 

 








n

nX

n

X
W

n

i

i







 1  
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is  0,1N in the limit as n  

 

Proof: Let     xM t M t  

      
n

sM t M t  where   iS X   

  






















 





n

nS
t

tw

w eEeEtM ][)(  

  = 

n

X
n

tt
n

eEe
























































 S
n

t
t

n

eEe 



 

 

   = 

n

X
n

tt
n

eEe













































 

 

   = 

n
t

n

n

t
Me 



























  

 

 

     ( ) loge w e

n t
Log M t t n M

n



 

 
    

 
 

 

Note, 
!3!2

1log
32 XX

XXe  

 

 



2

)0(
)0(1)(log

2tM
tMtM we  

  = 
 

2
1

22 



 t  

 












2

222

2
1)(  













n

t

n

t
nIn

tn
tMIn w  
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32

)1(log
32 xx

xxe   

 

   





















 





2

2

222

2

222

22

1

2
)(





















n

t

n

t

n

t

n

t
n

tn
tInM w

 

 

 = 
   

3

223

2

22

2

222

2

1

22 



















n

ttttntn 



  

 = 

 
3

223

2 2

1

2 



n

t
t



  

 = 
2

2t ,   since  0,1N  

 
Example 10.1 

Let X  denote the mean of a random sample of size 15n   from 

the distribution whose p.d.f is   2

2
3)( xxf  , 1 1x   . 

Approximate  15.003.0  XP . 

 
Solution: 

   2

2
3)( xxf   

 0
42

3
2

3)(

1

1

4
1

1

3 












x
dxxXE  

 
5

3
10

6]11[
10

3
52

3
2

3)(

1

1

5
1

1

42 












x
dxxXE  

 
5

3)()( 22  XEXV  

 

























15
5

3

015.0

15
5

3

0

15
5

3

003.0
15.003.0

X
PXP  
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  = ]75.015.0[ WP  
 
  = )15.0()75.0(    
 
  = 0.7734 – 0.5596 
 
  = 0.2138 
 

OR  nNYXXn i 5
3,0~  

  = Y –  0,9Y N    

 )15.003.0()15.003.0( nXnnPXP   

  =  0.45 2.25P Y   

  = 









9

25.2

9

45.0
WP  

  =  0.15 0.75P W   

  =    0.75 0.15   

  = 0.2138 
 
Example 10.2: Uniform 

Let X  be the mean of a random sample of size 12 from the 
uniform distribution on the interval (0, 1). Approximate 











3
2

2

1
XP  

 

Solution:   
2

1)( iXE  

         
12

1)( iXV  

         



n

i

iXY
1

;   then   








12
,

2
~

nn
NY  

  






 








1

68

1

6

1

66
)86(

Y
PYP  
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   = )20( WP  
 
   = )0()2(   
 
   = 0.9772 – 0.5 
 
   = 0.4772 
 
Example 10.3: Exponential 

Let  X  be the mean of a random sample of size 36, from an 

exponential distribution with mean 3. Approximate )45.2(  XP . 

 2)(   ,)(   ii XVXE  

         ,    108,324iY X Y N  








12
,

2
~

nn
NY ~ N  ,    108,324iY X Y N   

 )14490()45.2(  YPXP  

 

   = 






 







18

108144

18

108

18

10890 Y
P  

 
   = ]21[  WP  

 
   = )0()2(   

 
   = 0.9772 – 0.158     = 0.8185 
 
Normal Approximation to Binomial 
 

Definition: Let 1 2,  ,  , nX X X  be a random sample from a 

Bernoulli distribution with mean P   and a variance 

 2 1 ,  0 1P P P     . Then  
n

iXY
1

  is  ,b n P  
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The CLT states that the distribution of 
 

 








  n    as  )1,0(~      

)1()1(
N

nPP

nPX

PnP

nPY
W  

 

is  
2

1
2

1  kyK    if   5)1(,5  PnnP  

 
Example 10.4a: Let Xi denote whether or not a randomly selected 
individual approves of the job the Chairman of their local 
government is doing. More specifically: 
 

 Let Xi = 1, if the person approves of the job the Chairman is 
doing, with probability p 

 Let Xi = 0, if the person does not approve of the job the 
Chairman is doing with probability 1 − p 

 
Then, recall that Xi is a Bernoulli random variable with mean: 

       0 1 1E X p p p       and variance: 

     
22 1Var X E X p p p      

 
 

 
Now, take a random sample of n people, and let: 
Y = X1 + X2 + ... + Xn 
 
Then Y is a binomial (n, p) random variable, y = 0, 1, 2, ... , n, with 
mean: 

np   and variance  2 1np p    

 
Now, let n = 10 and p = ½, so that Y is binomial (10, ½). What is 
the probability that exactly five people approve of the job the 
Chairman is doing? 
 
Solution: 
We can calculate the exact probability using the binomial table 
with n = 10 and p = ½.  
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     5 5 4

              0.6230 0.3770

              0.2460

P Y P Y P Y    

 



 

 
That is, there is a 24.6% chance that exactly five of the ten people 
selected approve of the job the Chairman is doing. 
 
Note, however, that Y in the above example is defined as a sum of 
independent, identically distributed random variables.  Therefore, 
as long as n is sufficiently large, we can use the Central Limit 
Theorem to calculate probabilities for Y. Specifically, the Central 
Limit Theorem is given by: 
 

 
 0,1

1

dY np
Z N

np p


 


. 

 
The Central Limit Theorem is a tool that allows using the normal 
distribution to approximate binomial probabilities.  
 
Example 10.4b: Using the normal distribution to approximate some 
probabilities for Y. Again, what is the probability that exactly five 
people approve of the job the Chairman is doing? 
 
Solution: 
First, recognize that the mean is: 
 

 1
2

10 5np      

 
and the variance is: 
 

    2 1 1
2 2

1 10 2.5np p      

 
Now, the diagram below is the graph of the binomial distribution 
with the rectangle corresponding to Y = 5 shaded: 
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It should be observed that we would benefit from making some 
kind of correction for the fact that we are using a continuous 
distribution to approximate a discrete distribution. Specifically, it 
seems that the rectangle Y = 5 really includes any Y greater than 
4.5 but less than 5.5. That is: 

 

   5 4.5 5.5P Y P Y     

 
Such an adjustment is called a "continuity correction." Once the 
continuity correction has been made, the calculation reduces to a 
normal probability calculation 

   

 

4.5 5 5.5 5
5 4.5 5.5

2.5 2.5

                                             0.32 0.32

                                             0.6255 0.3745 0.251

P Y P Y P Z

P Z

  
       

 

   

  

 

 
Now, recall that we previously used the binomial distribution to 
determine the probability that Y = 5 is exactly 0.246. Here, we used 
the normal distribution to determine the probability that Y = 5 is 
approximately 0.251. That's not too shabby of an approximation, in 
light of the fact that the sample size of n = 10 is relatively small. 
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Example 10.4c: What is the probability that more than 7, but at 
most 9, of the ten people sampled approve of the job the Chairman 
is doing? 
 
Solution:  
Looking at a graph of the binomial distribution with the area 
corresponding to 7 < Y ≤ 9 shaded in red: 
 

 
 
Note that the following continuity correction should be made: 
 

   7 9 7.5 9.5P Y P Y      

 
Now again, once we've made the continuity correction, the 
calculation reduces to a normal probability calculation: 
 

   

 

7 9 7.5 9.5

7.5 5 9.5 5
                    

2.5 2.5

                    1.58 2.85

                    0.9778 0.9429 0.0549

P Y P Y

P Z

P Z

    

  
   

 

  

  
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It interesting to note that the approximate normal probability is 
quite close to the exact binomial probability as shown below;  
The approximate probability is 0.0549, whereas the following 
calculation shows that the exact probability (using the binomial 
table with n = 10 and p = ½) is 0.0537: 
 

     7 9 9 7

                    0.9990 0.9453

                    0.0537

P Y P Y Y     

 



 

 
Example 10.4d: What is the probability that at least 2, but less than 
4, of the ten people sampled approve of the job the Chairman is 
doing? 
 
Solution:  
If we look at a graph of the binomial distribution with the area 
corresponding to 2 ≤ Y < 4 shaded in red: 
 

 
 
we should see that we'll want to make the following continuity 
correction: 
 

   2 4 1.5 3.5P Y P Y      
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Again, once we've made the continuity correction, the calculation 
reduces to a normal probability calculation: 
 

   

 

2 4 1.5 3.5

1.5 5 3.5 5
                    

2.5 2.5

                    2.21 0.95

                    0.1711 0.0136 0.1575

P Y P Y

P Z

P Z

    

  
   

 

    

  

 

 
By the way, the exact binomial probability is 0.1612, as the 
following calculation illustrates: 
 

     2 4 3 1

                    0.1719 0.0107

                    0.1612

P Y P Y Y     

 



 

 
The following comments are worth noting before we close this 
discussion of the normal approximation to the binomial.  
 
(i) First, to discuss what "sufficiently large" means in terms of 
when it is appropriate to use the normal approximation to the 
binomial.  
 
The general rule of thumb is that the sample size n is "sufficiently 
large" if: 
 

5np       and      1 5n p   

 
For example, in the above example, in which p = 0.5, the two 
conditions are met if: 
 

 0.5 5np n      and       1 0.5 5n p n    

 
Now, both conditions are true if: 
 

 5 10 5 10n       
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Because the sample size of the example above was at least 10 
(well, barely!), this is why our approximations were quite close to 
the exact probabilities. In general, the farther p is away from 0.5, 
the larger the sample size n is needed. For example, suppose p = 
0.1. Then, the two conditions are met if: 
 

      0.1 5np n       and      1 0.9 5n p n     

 
Now, the first condition is met if: 
 

  5 10 10n    

 
And, the second condition is met if: 
 

 5 10 9 5.5n    

 
That is, the only way both conditions are met is if n ≥ 50. So, in 
summary, when p = 0.5, a sample size of n = 10 is sufficient. But, 
if p = 0.1, then we need a much larger sample size, namely n = 50. 
 
(i) In reality, the Central Limit Theorem is often applied to the 
sum of independent Bernoulli random variables to help draw 
conclusions about a true population proportion p. If we take the Z 
random variable that we've been dealing with above, and divide the 
numerator by n and the denominator by n (and thereby not 
changing the overall quantity), we get the following result:  
 

   
 0,1

1 1

i d
X np p p

Z N
np p p p

n

 
  

 


 

 
The quantity: 

1

n

i

i

X

p
n



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that appears in the numerator is the "sample proportion," that is, 
the proportion in the sample meeting the condition of interest 
(approving of the Chairman's job, for example).  
 
Normal Approximation to Poisson 
Just as the Central Limit Theorem can be applied to the sum of 
independent Bernoulli random variables, it can be applied to the 
sum of independent Poisson random variables. Suppose Y denotes 
the number of events occurring in an interval with mean   and 

vaiance . Now, if 1 2,  ,  ,X X X are independent Poisson 

random variables with mean 1, then: 

  
1

i

i

Y X




  

is a Poisson random variable with mean  . So, now that we have 
written Y as a sum of independent, identically distributed random 
variables, we can apply the Central Limit Theorem. Specifically, 
when   is sufficiently large: 
 

  0,1dY
Z N






   

 
This result will be used to approximate Poisson probabilities using 
the normal distribution. 
 
Example 10.5 

Let Y be  1
236,b .  Then 1

236 18 5np      and  1 5n P   

  )5.185.12()1812(  YPYP  

   = 






 







9

185.18

9

18

9

185.12 Y
P  

   = )833.1()167.0(   

   = 0.5329 
 

Note that 12 was increased to 12.5 because  12P Y   is not 

included in the desired probability. 
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Example 10.6 

Let Y have the binomial distribution of  1
210,b .  

Approximate   3 6P Y  . 

   3 6 2.5 5.5P Y P Y      because  6P Y   is not included 

in the probability. 
 

 












 







410

55.5

410

5

410

55.2 Y
P  

  = )581.1()316.0(   

  = 0.6240 – 0.0570 
  = 0.5670 
 
 

Summary 
In this chapter, we have discussed the following: 
 

(1) The theory of central limit theory. 
(2) To approximate exact probability distributions for sums 

of independent random variables. 
(3) The central limit theorem also gives a good 

approximation when the number of random variables 
summed together is large 

 
Post-Test 

(1) A nursery man plants 115 cuttings of ivy in every flat he 
prepares. Assume the probability that an individual cutting 
will develop roots is 0.9 and approximate the probability 
that the average number of rooted cuttings (per flat) in 50 
flats is less than 100. 

 
(2) A big city car dealer opens 365 days per year; the number 

of sales he makes per day is a Poisson random variable 
with parameter 2 , independently from one day to 

another. Let Y be the number of sales he makes in a year, 
approximate 
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(i)  700YP  

(ii)  800P  

(iii)  800700 YP  

 

(3) Let 1521 ... XXXY  be the sum of a random sample 

of size 15 from the distribution whose p.d.f. is 

  ,
2

3 2xxf  11  x . Approximate  5.13.0  XP  

 

(4) Let X  be the mean of a random sample of size 36 from an 
exponential distribution with mean 3. Approximate 

 0.45.2  XP . 
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11 
Joint Probability Density Functions 

 
 
 
Introduction 
Up till now, we have only examined probabilities (outcomes) as a 
function of one variable. We have also spent time studying the 
concept of a random variable and have studied some simple 
models that led to several other frequently used probability 
distributions. The random variables considered so far are one 
dimensional, because the observed value for a random variable can 
be thought of as a single point on a real line. In almost all 
applications, random variables do not occur singly. We need to 
develop tools necessary to describe the behavior of two, three or 
more random variables simultaneously. For example, the hardness 
and tensile strength of a manufactured piece of steel may be of 
interest and so a p.d.f. may be necessary for experimental outcome. 
In order to deal with situations such as these, we will extend some 
definitions as well as give new ones. 
 
We have discussed in chapter five, how expected values can be 
used to summarize or describe various aspects of one-dimensional 
probability distributions. These concepts can be extended to the 
case of two-dimensional variables. Just as was done in chapter 
four, in this chapter, we will discuss measures that describe the 
―middle‖ or the ―spread‖ of probability distribution involving two 
random variables. 
 
Objectives  
At the end of this chapter, you should be able to: 

(1) Define rules that would associate two numbers, or three 
numbers or even n numbers with experimental outcomes. 
These rules are examples of what we call two-
dimensional, three-dimensional or in general n-
dimensional random variables; 
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(2) Handle problems involving two-dimensional random 
variables; 

(3) Discuss the concepts of joint and marginal probability 
density functions; and 

(4) Discuss when two random variables are either 
independent or dependent. 

(5) Compute the conditional probability density functions of 
a random variable given another random variable. 

 
Pre-Test 

(1) Define probability density function of a random variable 
X. 

(2) Enumerate the properties of a probability density 
function. 

(3) Describe what you understand by a ‗two-dimensional‘ 
random variable. 

(4) Define the conditional probability of an event. 
(5) Define independent event. 

 

Contents 
Joint Probability Density Function 
Definition 11.1    
Let   X and Y be two random variables defined on a discrete 
probability space. Let R denote the corresponding two-

dimensional space of   X and Y , the two random variables of the 

discrete type.  The probability that X x , and Y y  is denoted by  

   , ,  f x y P X x Y y   . The function  ,f x y  is called the 

joint p.d.f. of   X and Y and has the following properties: 
 

(a) 1),(0  yxf  

(b) 1),(
),(


yx R

yxf  

(c) 



Ayx

yxfAYXP
),(

),(]),[( , where A is a subset of the 

space R. 
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Example 11.1 
Roll a pair of unbiased die.  For each of the 36 sample points with 

probability
36

1 , Let X denotes the smaller and Y the larger 

outcome on the dice. 
 
Definition 11.2 
The joint probability density function of two continuous-type 

random variables is an integrable function  yxf , with the 

following properties: 
 

(a)   0, yxf . 

(b)   1,  








dxdyyxf . 

(c)     dxdyyxfAyxP
A

 ,, ,  

  

where,   AYX ,  is an event defined in the plane. Property (c) 

implies that   AYXP ,  is the volume of the solid over the 

region A in the planexy  and bounded by the surface  yxfz , . 

 
The Marginal Probability Density functions 
Definition 11.3    

Let   X and Y have the joint p.d.f  yxf , with space R. The p.d.f of 

X alone, called the marginal p.d.f of X is defined by 
 

 
1 1( ) ( , )      

y

f x f x y x   R1 

 
the summation is taken over all possible y values for each given  x  
in the space R1. 
 
The marginal p.d.f of Y is given by 
 

 2 2( ) ( , )      
x

f y f x y y   R2 
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where the summation is taken over all possible  x  values for each 
given  y  in the space R2. 

The random variables   X and Y are independent if and only if 
 

 1 2 1 2( , ) ( ) ( )       ,f x y f x f y x y   R1, 2 2( ) ( , )      
x

f y f x y y   R2 

otherwise   X and Y are said to be dependent. 
 
Example 11.2 
Let the joint p.d.f of   X and Y be defined by 
 

 
21

),(
yx

yxf


 , x   =   1, 2, 3,   y = 1, 2 

 
Obtain the marginal p.d.f.‘s of   X and Y . 
 
Solution: 

 





2

1

1
21

),()(
yy

yx
yxfxf  

  = 
21

32

21

2

21

1 





 xxx
,   x   =   1, 2, 3; 

 
21

36

21
),()(

3

1

2

yyx
yxfyf

xx





 



,   y   =   1, 2. 

 
Definition 11.4  

Let  yxf , be the p.d.f. of   X and Y then the respective marginal 

p.d.f‗s of continuous-type random variables   X and Y are given by 

    




 ,, dyyxfxf 1 2 1 2( , ) ( ) ( )       ,f x y f x f y x y   R1 

 

    




 ,, dxyxfyf2 2( ) ( , )      
x

f y f x y y   R2 

 
where R1 and R2 are the spaces of   X and Y .  
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Example 11.3  

Let   yxyxf  2, , 0 y  be the joint p.d.f of   X and Y . Find 

 f x  and  f y , the marginal p.d.f‘s of   X and Y respectively. 

 
Solution: 

 

2

2
( ) ( , ) 2

1

                                2

                                2

x y
x y

x x

x y

x

e
f x f x y dy e dy

x

e

e

 
 

 

 




  







 

   x y   

 yy
yx

y
yx

y

ee
ye

dxedxyxfyf 


 


  22
01

2
2),()( 2

00
 

                   =   yy ee 222    

                               =   )1(2 2ee y    0 y  0 

 
Example 11.4 

Let   1
4, ,  0 2,  0 2f x y x y      be the joint p.d.f of 

  X and Y .  Find; 

(i)  f x ; 

(ii)  f y ; the marginal probability density functions. 

(iii) Are the two random variables independent? 
 
Solution: 

(i) 20      
2

1
4

2
0

2

4
1

4
1),()(

2

0

2

0
  xydydyyxfxf  

(ii) 20      
2

1
4

2
0

2

4
1

4
1),()(

2

0

2

0
  yxdxdxyxfyf  

(iii) 
4

1

2

1
  x  

2

1
)()( yfxf , Yes, the two random variables are 

independent. 
 
Conditional Distributions and Mathematical Expectations 
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Let   X and Y  have a joint discrete distribution with p.d.f  yxf , on 

space R Also let  xf1  and  yf2  be the marginal probability 

density functions with spaces R1 and R2 respectively. Let event 

 xXA   and event  ,yYB   Ryx , .  

 

Thus  yyxXBA  , . Since  

       yxfyYxXPBAP ,,   

 
and 

        02  yfyYPBP  (since 2Ry ), 

 
The conditional probability of event A given B is 

     
 

 
 yf

yxf

BP

BAP
BAP

2

,



 . 

 
The following definition is then apparent. 
 
Definition 11.5  
The conditional probability density function of X, given that yY  , 

is defined by  

     
 

,
,

2 yf

yxf
yxg  provided that   02 yf  

 
Similarly, the conditional probability density function of Y, 
given ,xX  is given by 

     
 

,
,

1 xf

yxf
xyh  provided that   01 xf  

 

Moreover, since   0xyh , if we sum  xyh over y for fixed x , we 

obtain 

     
 

 
 

1
,

1

1

1


xf

xf

xf

yxf
xyh

yy
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Thus  xyh satisfies the conditions of a probability density 

function, so the conditional probability can be computed as 
 

     
 





byay

xyhxXbYaP
:

 

 
and the corresponding conditional expectations are given as 
 

        
y

xyhyuxXYuE  

 
Written compactly, the conditional mean and conditional variance 
of Y given xX  are given respectively as 
 

     
y

xY
xyyhxYE , 

 
and  
 

          ,222 xyhxYEYxxYEYE
y

xY    

 
which is alternatively written as 
 

       .
222 xYExYE

xY
  

 
Similar expressions can be used for conditional mean and 
conditional variance for X given .yY   

 
The above definitions also hold for continuous random variables. 
For continuous random variables,   X and Y , with joint p.d.f. 

 yxf ,  and marginal p.d.f’s  xf1  and  yf2 , respectively. The 

conditional p.d.f., mean and variance of Y, given ,xX  are, 

respectively, 
 

     
 

,
,

1 xf

yxf
xyh   provided   01 xf  

 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
156     Joint Probability Density Functions 
 
 

     




 dyxyyhxYE , 

   
   and 
 

        xxYEYExYVar
2

  
 

            




 dyxyhxYEy
2

 

 

                        .
22 xYExYE   

 
Expressions for conditional distribution of   X given Y y  are 

similar. 
 
Example 11.5  
Let   X and Y  have the joint p.d.f.  
 

  
32

),(
yx

yxf


 , x   =   1, 2, y   =   1, 2, 3, 4 

 
Find 

(i)  yxg  

(ii)  xyh  

(iii)  ,131  XYP  

(iv)  22  XYP   

(v)  32  YXP  

(vi)  1XYE  

(vii)   1XYVar . 
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Solution:  
 

(i)  yxg =
 


yf

yxf ),(  
 

2,1,
323232

32










x

y

yx

y

yx
 

 

(ii)  xyh
 


xf

yxf ),(  
 

4,3,2,1,
10432104

32










y

x

yx

x

yx
 

(iii)    
14

9
432

14

1

14

1
131

3

1








 
 

y

y
XYP  

 

(iv)  
18

7

18

4

18

3

18

2
22

2

1




 
y

XYP  

 

(v)  
9

5
32  YXP   

 

(vi)  1XYE    






 


4

1

4

1 14

1
1

y
yxyyh  

 

                    
7

20

14

40
54433221

14

1
  

 

(vii)  1XYVar =     
24

1

222

7

20

14

1
11 
















 
 

y
yXYEXYE  

               

    
49

55

49

400

14

130
  

 
Definition 11.6 

Let nXXX ,...,, 21 , be random variables of the discrete type having 

a joint distribution  yxf , . If  nXXXU ,...,, 21  is a function of n  

random variables of the discrete type having a joint pdf. 

 nxxxf ,...,, 21  and space R, then 
 

    ),...,,(),...,,(,...,, 2121

),...,(

21 ...
1

nn

xx

n xxxfxxxUXXXUE
n

  
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if it exists and is called the mathematical expectation of 

 nXXXU ,...,, 21  
 

(a) If   in XXXXU ,...,, 211 , then 

       iin XEXXXUE ,...,, 211  

 is called the mean of  iX , ni ,...,2,1     

(b) If    2212 ,...,, iin XXXXU  , then 

        22

212 ,...,, iiin XEXXXUE    

 is called the variance of iX , ni ,...,2,1   

 
Example 11.6 

Let the joint p.d.f  of 1 2  X and X  be defined as 
 

 ,
8

3
),( 21

21

xx
xxf


    1 0,  1x   and 2 0,  1x   

 

Find the  21 XXE   

 
Solution: 

 
8

3
)()( 21

1

0

1

0

2121

2 1

xx
xxXXE

x x


 

 

 

  = 
4

3

8

6

8

1
2

8

2
1

8

2
1

8

3
0 



































 

 
Example 11.7   
Let   X and Y have the joint p.d.f 
  10        2),(  yxyxf  

 
Obtain  

(i) Marginal p.d.f’s of   X and Y .   

(ii)  E X ,  E Y  and  2E Y . 
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Solution: 

(i) )1(222),()(
1

11

xydydyyxfxf
x

xx
   

  yydxdyyxfyf
y

yy

222),()(
0

00
   

(ii)  
0

132
1

0

11

0 3

2

2

2
)1(22)(

xx
dxxxxdydxXE

x
  =

3

1

3

2
1   

 

  
3

2

3

2
22)(

0

13
1

0

2

0

1

0
 

y
dyyydxdyYE

y

 

 

  
2

1

4

2
22)(

0

14
1

0

3

0

2
1

0

2  
y

dyydxdyyYE
y

 

 
 
Summary  
In this chapter, we learnt the following: 
 

(1) We discussed that in many situations, we may be 
interested in observing two characteristics simul-
taneously by solving problems involving two-
dimensional random variables. 

(2) The concepts of joint and marginal probability density 
functions. 

(3) The concepts of conditional probability density function 
of a random variable, given another random variable. 

(4) The methods used in obtaining the conditional mean and 
conditional variance. 

(5) The points given above are considered for both discrete 
and continuous random variables. 

 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
160     Joint Probability Density Functions 
 
 

Post-Test  
(1) Let the joint p.d.f of   X and Y  be defined by 

  
32

),(
yx

yxf


 , x   =   1, 2, y   =   1, 2, 3, 4 

   
  Find  

(a)  xf , the marginal p.d.f of X   

(b)  yf , the marginal p.d.f of Y   

(c)  P X Y   

(d)  2P Y X  

(e)  3P X Y   

(f)  3P X Y   

(g) Are   X and Y independent or dependent? 
 

(2) Let   ,, yxyxf    yx 0,0 , be the joint p.d.f. 

of   X and Y . Argue that   X and Y are independent and 
compute 

 
(i)  YXP   

(ii)  YXP   

(iii)  2XP  

(iv)  XYXXP 33,0   

(v)   YXXP 3,0  

 

(3) Let   ,9,...,2,1,0,
10

1
1  xxf and 

 
 

.9,...,1,,
10

1



 xxy

x
xyh  Find  

 
(i)  yxf ,  

(ii)  yf2  

(iii)  xYE  
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(4) Let   ,81, yxf 40  y , 20  yx , be the joint 

p.d.f. of X and Y. 
 

(iv) Find  xf
1

, the marginal p.d.f. of X. 

(v) Determine  xyh , the conditional p.d.f. of Y, 

given xX  . 

(vi) Compute  xYE , the conditional mean of Y, 

given xX  . 

(vii) Evaluate  xYVar . 
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12 
Transformations of Random Variables 

 
 
 

Introduction 
In this chapter, another important method of constructing models 
shall be discussed. To understand the depth of theory and 
application of statistics, transformations of random variables must 
be taught. An example of such transformations is that of the 
normal distribution that can be transformed into a standard normal 
distribution. We will first consider transformations of variables in 
one dimension in this current chapter. The joint transformations 
shall be discussed in the next chapter.  
 

Let  xu  be a real-valued function of a real variable x . If the 

equation  xuy  can be uniquely solved, say  ywx  , then we 

have a one-to-one transformation. Discrete and continuous cases 
shall be considered separately. 
 

Objectives  
At the end of this chapter, you should be able to: 

(1) Transform random variables of both the discrete and 
continuous types; and 

(2) Determine the distribution of a random variable, Y, by the 
distribution of another random variable, X. 

 

Pre-Test 
(1) What do you understand by the terms ‗monotonic 

increasing‘ and ‗monotonic decreasing‘ functions. 
(2) What is a ‗one-to-one‘ transformation? 
(3) Explain the term ‗Jacobian‘. 

 

Contents 
Transformations of Variables of the Discrete Type 
An alternative method of finding the distribution of a function of 
one or more random variables is called the change-of-variable 
technique. 
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Let X have a Poisson p.d.f. 
 

 ( ) !

0,   

xe

f x x

elsewhere

 


 



, x   =   0, 1, 2, --- 

 

Let A  denote the space  :  0,  1,  2,  A x x  so that   0f x  . 

Define a new random variable Y  by 4Y X . 
 
Suppose we wish to find the p.d.f of Y by the change-of-variable 
technique. 
 
Let 4y x , we call 4y x   a transformation from  x to y, and we 

say that the transformation maps the space A on to the space 

 : 0,  4,  8,  12,  B y y  . The space B is obtained by trans-

forming each point in A in accordance with 4y x  (i.e. every 

point in A corresponds to one and only one point in B and vice-

versa).  Therefore, any function  y U x that maps a space A onto 

a space B such that there is a one-to-one correspondence between 
the points of A and those of B is called one-to-one transformation. 
 

 yxxy
4

1
4    

 

The problem is to find  g y of the discrete type of random 

variable 4Y X . 
 

Now

!
4

4
Pr)()(

4






















y

ey
XyYPyg

y 
,   y = 0, 4, 8, 12, ---- 

                              = 0, otherwise 
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Example 12.1  
Let X have the binomial p.d.f 
 

 

3
3! 2 1

,  
( ) 0, 1,  2,  3!(3 )! 3 3

0,  

x x

f x xx x

elsewhere

    
         



 

 

Find the p.d.f  of  2Y X . 
 
Solution: 

   2y U x x   maps   : 0,  1,  2,  3A x x   onto 

  : 0,  1,  4,  9B y y   

 

yy

yy
yg






















3

3

1

3

2

)!3(!

!3
)(  y   =   0, 1, 4, 9 

 
Example 12.2 

Let  PGEOX ~ , so that 

    1 xpqxf  x   =   1, 2, 3 ---- 

 
Find p.d.f. of 1Y X  ,   
 
Solution: 
 y   =   U(x)   =   x – 1, and x = y + 1 
 g(y)   =   P(Y  =  y)   =   P(x  =  y +  1)   
                 =   Pq

y + 1 – 1 
 

       = Pq
y
 ; y   =   0, 1, 2 --- 

 
Example 12.3 

Let X  have a p.d.f.   
1

3 ,  1,  2,  3

0,  

x
f x

otherwise





    

                  
Find the p.d.f. of 2 1Y X   

0 = otherwise 
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Solution: 
2

)1( 


y
x  

 
3

1

2
)1(

)( 





 


y

XPyg , y   =   3, 5, 7 

 
Example 12.4 

Let X  have the p.d.f. 

2
1

,  1,  2,  3,  
( ) 2

0,  

x
f x

otherwise

 
   




   

    

Find the p.d.f of 3Y X . 
 
Solution: 

   3Y U x x  .   Since   yxxy 33   

 

y

yg

3

2

1
)( 








 , y   =   1, 8, 27 ---- 

 
Transformations of Variables of the Continuous Type 
Let X be a random variable of the continuous type having p.d.f  

 f x .  Let A be the one-dimensional space where   0f x  . 

Consider the random variable  Y U X , where  y U x  defines 

a one-to-one transformation that maps the set A onto the set B. 
 

Let the inverse of  y U x be denoted by  x w y , and let the 

derivative )(yw
dy

dx
  be continuous and not equal to zero for all 

points y in B. 
 

Then the p.d.f of the random variable  Y U X  is given by 

 
[ ( )] ( ) ,  y B

( )  
0,   

f w y w y
g y

elsewhere

 
 


    

0 = otherwise 
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Where  )(yw
dy

dx
  is the Jacobian (denoted by J) of the 

transformation. 
 
Example 12.5 
Let X  be a random variable of the continuous type having p.d.f 
 

   
2 ,  0 1

0,  

x x
f x

elsewhere

 
 


 

 

Define the random variable Y by 38Y X  
 

Solution:     g y f w y J  

  38y x  is a transformation from x to y.  

   33

2

1

8
y

y
x   

                      = 3
1

2

1
y  

 3
2

6

1 
 y

dy

dx
J   

1 2
3 3

1
3

1
3

1
( )   x  

6

1
       

6

1
       ,   0 8

6

g y y y

y

y
y









  

     

since, 1
2

1
0 3

1

 y  20 3
1

 y 0 < y < 8 

 

0 = otherwise 
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Example 12.6 
Let X  have the p.d.f 
 

  
1,  0 1

0,  

x
f x

elsewhere

 
 


 

 
Find the p.d.f of 2lnY X  . 
 

Solution: The transformation   2lny U x x   , so that  

2)(
y

eywx


    

  2

2

1
)(

y

eyw
dy

dx
J


  

The p.d.f. of Y  is 

  


yeeywfJyg
yy

0,
2

1
1.

2

1
))(()( 22  

 
Example 12.7 

Let the p.d.f of X  be defined by
4

)(
3xxf  , 0 < x < 2.  Find the 

p.d.f  of  2Y X . 
 

Solution: The transformation y = U(x) = x
2
, so that  yx    or  

)(2
1

ywy   

 Jywfyg ))(()(   

 2
1

2
1 

 y
dy

dx
J ;  

4
))((

2
3

2
1 y

yfywf   

 
2

y
  x  

4
)(

2
1

2
3 -

y
yg   

  = 
8

y
, 0 < y < 4 since, 0 < x < 2 

      0 <  2
1

y   < 2    0 < y < 4 

 

0 = otherwise 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 

Probability and Distribution Theory      169 
 
 

Example 12.8 

Let the p.d.f  of  X  be defined by   2

2
3)( xxf  ,   - 1  <  x  <  1. 

Find the p.d.f.  of   
2

13 


X
Y  

 

Solution: The transformation  
2

1
)(

3 


x
xUy , so that x

3
 = 2y – 1 

      

 3
1

)12(     123  yoryx  

 2  x  )12(
3

1
3

2
 y

dy

dx
J  

  = 3
2

)12(
3

2 
y  

 3
2

)12(
2

3
))((  yywf  

 1)12(
2

3
  x  

3

2
))(()( 3

2
3

2




yJywfyg  

 

That is - 1 < x < 1 1)12(1 3
1

 y  

   - 1 < 2y - 1 < 1 
   0 < 2y < 2 
   0 < y < 1 
 
 
Summary  
In this chapter, we have discussed the following: 
 

(1) Finding the p.d.f. of a random variable from a p.d.f. of 
another random variable using the change-of-variable 
technique.  

(2) How to transform variables concerning either discrete or 
continuous random variable. 
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Post-Test  

(1) Let the p.d.f. of X  be defined by   ,...,3,2,1,
2

1









 xxf

x

 

zero elsewhere. Find the p.d.f. of 3XY  . 

(2) If the random variable X  is distributed as  2,N , show, 

by means of a transformation, that the random variable 

  22 XY  is distributed as 2

1 .  

(3) If Y  has a uniform distribution on the interval  0,1 , find 

the p.d.f. of  3

1

12  YX . 

(4) Let X  have p.d.f.   ,242xxf  42  x and zero 

elsewhere. Find the p.d.f. of 2XY  . 
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13 
Joint Transformations 

 
 
 
Introduction 
A one-dimensional case that was considered in the last chapter can 
be extended to a multi-dimensional case with appropriate 
modifications. Joint transformations of continuous random 
variables can be accomplished in a similar manner to those 
considered in our last chapter, but the notion of Jacobian will be 
generalized. 
 
We shall also consider two probability distributions that are used 
considerably in certain problems of statistical inference; the t 
distribution and the F distribution. Both of these probability 
distributions occur for certain functions of normal random 
variables, as will be seen shortly. The t distribution is first 
discovered by W.S. Gosset when he was working for an Irish 
brewery. The distribution is often known as Student‘s t 
distribution. However, the F distribution was first proposed by 
George Snedecor to honor R.A. Fisher, who used a modification of 
this ratio in several statistical applications. 
 
Objectives 
At the end of this chapter, you should be able to:  

(1) Appreciate the concept of transformations of jointly 
distributed random variables. 

(2) Know the importance of the t and the F distributions; 
(3) Discuss how the t distribution is obtained from the normal 

distribution; 
(4) Discuss how the F distribution can be generated from two 

independent Chi square random variables; 
(5) Discuss how the Cauchy distribution can be derived from 

the t distribution; and 
(6) Discuss how the two distributions (t and F) are also useful 

in tests of hypotheses. 
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Pre-Test 
(1) Define the joint p.d.f. of random variables   X and Y . 
(2) What is a marginal probability density function of a 

random variable?  
(3) When are two events said to be independent? 
(4) Give the p.d.f. of a standard normal distribution. 
(5) List the properties of the normal distribution. 
(6) Describe the properties of the Chi square distribution. 
 

Contents 
Joint Transformations 
This method of finding the p.d.f of a function of one random 
variable of the continuous type will be extended to functions of 

two random variables of this type. Let  1 1 1 2,y U x x  and 

 2 2 1 2,y U x x define a one-to-one transformation that maps a 

(two-dimensional) set A in the 1x , 2x  – plane unto a (two-

dimensional) set B in the 1 2y y – plane.  If we express each of 1x  

and 2x  in terms of 1y  and 2y  we can write  2111 yywx  .  The 

determinant is of order 2 

     

2

2

1

2

2

1

1

1

dy

dx

dy

dx

dy

dx

dy

dx
 is called the Jacobian of the transformation, denoted by J. 

 
Example 13.1  

Let 1X , 2X  denote a random sample from a distribution
2

)2(  (note 

that p.d.f. of X  is 
 







xeX
r

xf
x

r

r

0         
2

2

1
)( 2

2

1
2 , then X  

has a Chi-square distribution with r degrees of freedom 

abbreviated by X  is 2

r .              . 
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Find  

(i) The joint p.d.f of 1 1Y X  and 2 2 1Y X X  , for 

 210 yy . 

(ii) The marginal p.d.f of each of 1 2  Y and Y . 

(iii) Are 1 2  Y and Y  independent? 

 
Solution: 

(i) 2

1
1

2

1
)(

x
exf


    

  2

2
2

2

1
)(

x
exf


  

 

The joint p.d.f of 1 2  X and X  is 

 
2

21

4

1
)()( 21

xx

exfxf




  

 

The transformation   12111 , xxxUy  and   

 
    122122 , xxxxUy   
 

So that     12111 , yyywx    and 

                122122 , yyyywx   

        Jyywfyywfyyg 21221121 ,,,   

 1
11

01



J  

 

The joint p.d.f of 1 2  Y and Y  is 

 

 
22

21
2

121

4

1

4

1
),(

y

yyy

eeyyg





           

 
 
 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
174     Joint Transformations 
 
 

 

(ii) The marginal p.d.fs are 

   2122111 0                   ),()( yydyyygyg  

 = 




212

2
          

4

1

1

2 yydye
y

y  

 = 














1

2

2
1

2

4

1

y

y
e

 

 =  21

2

1 y
e


  

 = 21

2

1 y
e
  

  1
0

2

22

2
2

4

1
)( dyeyg

y
y




 ;  1 20 yy   

 =   2
2

0

2

1
4

1 yy
ey
          

 = 2

2
2

4

1 y
ey
              

 

(iii)   No, since  
 

2
2

2

2

2
21

21

8

1

4

1
  x  

2

1 yy
yy

eyeye



          

 
The t and F Distributions 
The t-distribution    
The t  distribution with n  degrees of freedom can be defined as 
that of a random variable symmetrically distributed about zero 
whose square has the F  distribution with 1 and n  degrees of 

freedom in the numerator and denominator, respectively. Let W  

denote a random variable that is  0,  1N ; let V denote a random 

variable that is 
2
(r); and let W  and V  be independent. 

Then  
  

  

r
V

W
T   
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has a t-distribution with  r  degrees of freedom.  Its p.d.f is 
 

  
  

  








t

r
trr

r
tg

r
    ,

1
2

21
)(

2
)1(

2



 

 
Proof Since W  and V  are independent, the joint p.d.f of W and 

V , say   ,  h w v  is the product of the p.d.fs of W  and V . 
 

  

2
1

2 2 2

2

1 1
,    

02 2( , )
2

0,  

w Vr

r

w
e v e

vrh w v

elsewhere



      
    



 

   

The change-of-variable technique is used to obtain the p.d.f  g t  

of  T . 
 

  

r
v

w
t     and    u v  

 
Define a one-to-one transformation that maps 

  ,  : ,  0A w v w v      onto

  ,  u : ,  0B t t u      . 

 

Since 
r

utw

r
v

w
t  ,   v u  

 

 
r

u
dt

dw
J   

 
The joint p.d.f of T  and U  is given by 
 

 Ju
r

uthutg 







 ,),(  

otherwise 
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  = 
  r

u

r

tu
u

r

r

r 





















2

1
2

2

1
2

exp
2

2
2

1


 

 
  = 0   elsewhere  ,  0t u     

 
The marginal p.d.f. of T  is 
 

 



 duutgtg ),()(  

 

     =   

 
du

r

tu
u

rr

r

r 
























2

1
2

)1(

0 2

1
2

exp
2

2
2

1



 

 

Let    21
2

r
tuz    then 

 

 

 
 







































dZZ

r

r

r
t

e

r
t

z

rr
tg

2
1

2
1

2

)1(

2
2 1

2

2
2

2

1
)(



 

 

  = 

 

    2
)1(

2

1

1

2

2
1










 



r

r
t

rr

r


      t   

 

Thus if  W   is   0,  1N , if  V   is   2 r ,  and  W  and V are 

independent, then 
 

  

r
v

W
T    
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Properties 

(1) The t  distribution is symmetric about zero (   0TE  

when 2r ) and its general shape is similar to that of the 
standard normal distribution. 

(2) The t  distribution approaches the standard normal 
distribution as r , for smaller v the t distribution is 

flatter with thicker tails and, in fact,  0,1~ CAUT  when 

1r (the t  distribution is the Cauchy distribution and the 
mean and thus the variance do not exist for the Cauchy 
distribution). 

(3) The t  distribution has more variability than the standard 
normal distribution since more variation is noticed when 
Z  is divided by another random variable.  

 
The F-distribution   
In the problem of comparing normal populations with respect to 
their variances, as well as in a variety of other problems, it will be 
necessary to know the distribution of the ratio of two Chi-square 
random variables. Consider two independent Chi-square random 

variables U  and V  having 1r  and 2r  degrees of freedom 

respectively; then 
 

  

2

1

r
V

r
U

F   

 

has an  F-distribution with  1r  and 2r  degrees of freedom.  Its p.d.f 

is 
 

 
   

     











w
rwrrr

Wrrrr
vuh

rr

rr

0      ,
122

2
),(

2

2121

122

2121

21

11
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Proof: The joint p.d.f of U and V is 
 

 2
)(

1
2

1
2

)(21

21

212
22

1
),(

vurr

rr

eVU
rr

vuh























  

 
         = 0, elsewhere   u0 ;   v0  
 
To find the p.d.f g(w) of W , the equations  
 

  

2

1

r
v

r
u

w   and 

   z = v 
 
define a one-to-one transformation that maps the set 

  ,  : 0 ,  0A u v u v      onto the set 

  ,  z : 0 ,  0B w w z     ,  Since  ,
2

1 zw
r

r
u 







   v  =  z 

z
r

r
J 








2

1 .  The joint p.d.f  ,  g w z of the random variables  W  

and Z V  is 
  

 
2

1

2

1
1

2

1
2

2

1

221

1
2

exp

2
22

1
),(

2

1

21 r

zr

r

wrz
z

r

zwr

rr
zwg

r
r

rr



















































, 

provided that  ,  w z   and zero elsewhere, 

 

The marginal p.d.f  g w  of  W  is 

 



 dzzwgwg ),()(  
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  = 
 

 

dz
r

wrz
z

rr

w
r

r
rr

rr

rr























































 1
2

exp

2
22

)(

2

1
1

2

0
221

1
2

2

2

1
21

21

1
1

 

 
If we change the variable of integration by writing 
 

 








 1

2 2

1

r

wrz
y  

 
it can be seen that 
 

 

 

dy

r
w

e

r
wrrr

w
r

r

wg y

rr

y

rr

rr


























































 










1

r

2
  x  

1

2

2
22

)(

)(

2

1
0

1
2

2

1221

1
2

2

2

1

1

21

21

1
1

 

 

  = 

 

 









 




























 






w0      

1

)(

22

2

2

2

1

1
2

21

2

2

121

21

1

1

rr

r

r

r
wr

w

rr

r
rrr

 

 

  If U  and V are independent Chi-square with 1r   and  2r  

degrees of freedom respectively, then 
 

 

2

1

r
V

r
U

W   

 

has p.d.f  g w .  The distribution of this random variable is usually 

called an F distribution. 
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If  21,~ rrFX , then  
 

   















































22

22

21

21

1

2

rr

r
r

r
r

r

r

XE

r

r , rr 22   

 

For 1r , the mean,  
22

2




r

r
XE , 22 r  

 
 
The variance is given by 
 

   
 

   42

22

2

2

21

21

2

2






rrr

rrr
XVar , 24 r . 

 
Properties  

(1) If F is distributed as
21 ,rrF , then, F1  is distributed as 

12 ,rrF . 

(2) If X  is  1,0N , Y  is 2

r  and X , Y are independent, so that 

rYXT   is distributed as rt , then 2T  is distributed as 

rF ,1 , since 2X  is 2

1 . 

 
Examples 13.2  

(1) Let X have a t  distribution with r  degrees of freedom. 
Find  

(i)  228.2XP when 10r  

(ii)  228.2XP when 10r  

(iii)  552.2330.1  XP when 18r  

 
(2) Let X  have a t  distribution with 19r  . find c  such that 

(a)   025.0 cXP  

(b)   95.0 cXP  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



   
 

Probability and Distribution Theory      181 
 
 

 

 
Solution: 

(1) (i)  228.2XP =1 – 0.975 = 0.025 

  (ii)  228.2XP = 0.975 

  (iii)  1.330 2.552 0.99 0.90 0.09P X      

(2) (i)   025.0 cXP , c = 2.093  

  (ii)   95.0 cXP , c = 1.729 

 
 
Summary  
This chapter discussed the following: 

(1) Transformations of variables involving jointly distributed 
random variables. 

(2) The last chapter dealt with the notion of a one-to-one 
transformation and the mapping of one set to another set 
under that transformation; however, we built on these 
ideas in this chapter to help us find the distribution of a 
function of two variables of the discrete type. 

(3) We also looked at the same problem raised in 2 above 
when the random variables are of the continuous type. 

(4) Examples of these transformations were given for clearer 
understanding of the concept. 

(5) Computation of marginal p.d.f.s and independent 
variables re visited. 

(6) The t  distribution is completely determined by the 
number r , the degrees of freedom. 

(7) Because of the symmetry of the t  distribution about 
0t  , the mean if it exists, must be equal to zero. 

(8) The F distribution depends on two parameters, 1r and 2r  

in that order. The first parameter is the number of degrees 
of freedom in the numerator, and the second is the 
number of degrees of freedom in the denominator. 

(9) The t  distribution is very useful in testing hypothesis 
about the mean. 

(10) The F distribution on the other hand, is used to test 
hypothesis about ratio of two variances or sum of 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



 
 
182     Joint Transformations 
 
 

 

squares. 
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Post-Test 

(1) If 1 2  X and X  denote a random sample of size two from a 

Poisson distribution,  POIX i ~ , find the p.d.f. of 

21 XXY  . 

 

(2) Suppose that 1 2  X and X  denote a random sample of size 

two from a gamma distribution,  21,2~ GAMX i . 

(i) Find the p.d.f. of 21 XXY   

(ii) Find the p.d.f. of 21 XXW   

 

(3) Let 1 2  X and X  denote a random sample of size two from a 

distribution that is  2,N . Let 211 XXY   

and 212 XXY  . Find the joint p.d.f. of 1 2  Y and Y  and 

show that these random variables are independent. 
 

(4) Let 1 2  X and X  have the joint p.d.f.   ,8, 2121 xxxxh   

,10 21  xx zero elsewhere. Find the joint p.d.f. of 

211 XXY   and 22 XY   and argue that 1 2  Y and Y  are 

independent. (Hint: Use the inequalities 10 221  yyy  

in considering the mapping from  to ). 
 

(5) Let X have an F distribution with 1r  and 2r degrees of 

freedom. Find  

(i)  02.3XP when 10,9 21  rr  

(ii)  14.4XP when 15,7 21  rr  

(iii)  1508.0XP when 5,8 21  rr .  

           Hint: 63.611508.0   

(iv)  79.21323.0  XP when 15,6 21  rr  
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(6) Let X have an F distribution with 1r  and 2r degrees of 

freedom. Find  

(i)   90.0 bXaP  when 6,8 21  rr  

(ii)   98.0 bXaP when 6,8 21  rr  

(iii) Let X have a t distribution with r degrees of 
freedom. Find  

(iv)  228.2XP  when 10r  

(v)  602.2753.1  XP  when 15r  
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Central Limit Theorem, 94, 139, 
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cumulant generating function, 104, 
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177 
distribution functions, 57, 59, 61, 62 
 
 
elements, 2, 23, 45, 47 
events, 2, 12, 13, 22-26, 29, 32-36, 

57, 64, 145 
- independent, 16, 17, 21 

exponential distribution, 93, 99, 101, 
118, 120 

 
 
F –distribution, 167, 171, 174, 177, 

179 
factorial moments, 104 

Functions, 46, 55, 61, 66, 100, 108, 
109, 135 

 
 
Gamma distribution, 178  
 
 
Independence, 17, 21-26 
Intersection, 23, 27, 29 
 
 
Jacobian, 167, 168  
joint probability density function, 
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- conditional,  150, 154, 159 
- discrete distribution, 142, 
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- marginal, 150, 151, 152, 
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joint transformations, 167, 168 
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- discrete distribution, 85, 86 
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- normal distribution, 96 
- continuous distribution, 97 

moment generating function, 107, 
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multiplicative principle, 24 
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normal distribution, 94, 95, 96, 99, 
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parameter, 78, 85, 90, 93, 124, 146 
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Subset, 2, 3, 11, 150 
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t –distribution, 167, 179 
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uniform distribution, 91, 113, 136, 
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