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P r é f a c é
This book is intended as a text for both undergraduate and graduate stu- 
dents and as a reference for researchers in statistical theory and methods. 
Although no prior knowledge of statistics is assumed, but a good grasp of 
real analysis ard  calculus is required for the advanced part of this text book.

The primary purpose of the book is didactic, methods are emphasized 
and the book is subdivided into:

* Probability: the introductory part on the background of the concepts 
and problems are treated without advanced mathematical tools in 
chapters one to three

* Distribution theory: the general concepts and tools of random sé­
quences; joint distributions as well as functions of random variables 
are emphasized with ease in chapters four and five.

* Inference: the basic ideas of staitstical inference that every probabilist 
and statistician requires in estimation and test of hypothesis are given 
in chapters six and seven.

* Advanced theory: the notion of advanced probability calculus and 
limit theorems; law of Numbers; generating functions and inversion 
theorem are discussed in chapter 8 through chapter 10.

D.K. Shangodoyin
O.E. Olubusoye
0.1. Shitta 
A. A. Adepoju
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C h ap ter 1 

In troduction

I .  1 Introduction
Probability can be described as the study of random phenomena. Most 

phenomena studies in the Physical Science, Biological Sciences, Engineering 
and even Social Sciences are looked at not only from deterministic but also 
from a random view point. Therefore the theory of probability has as 
its central feature, the concept of a repeatable random experiment, the 
outcome of which is uncertain.

To the Statistician, probability remains the vehicle thaï enables him use 
information in the sample to make inferences or describe a population from 
which the sample was obtained. No wonder Professor Sir John Kingman 
remarked in a review Lecture in 1984 on the 150th anniversary of founding 
of the Royal Statistical Society that “the theory of Probability lies at the 
root of ail statistical theory” .

Section I of this book will be devoted to the study of the concept of 
probability, and its distribution together with the generating functions.

Since probability is a means to an end, a tool to enable us make valid 
statistical inferences.

Later, in Section II, we shall look into the concept of Statistical inrer- 
ence ■■ ; i : e estimation procedure and hypoth: >n:..

J .  J Basic Définitions
Before wè défine probability as a concept, it is necessary to review the 

définition of some probability ternis that shall be employed in our discus­
sions.

1
-
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Introduction 2

(a) A Trial: is any process or an act which generate an outcome which 
can not be predicted. A trial usually results into only one of the 
possible outcomes e.g., A toss of a coin once, will lead to either a 
Head (H) or a tail (T) turning up. The sélection of a card from a 
deck of well shuffled cards resuit in one of the cards being drawn.

(b) A R andom  E xperim en t: is any operation which when repeated 
generates a number of outcomes which can not be predetermined. e.g. 
A toss of two coins at a time; draw of two cards from a deck oneafter 
the other; a random sélection of a bail from a box and examine the 
colour.

(c) An outcom e: is a possible resuit of a trial or an experiment. In a 
loss of two coins, an outcome could be any one of HH, HT, TII, TT. 
The possible outcomes in a throw of a die are, 1, 2, 3, 4, 5, 6.

(d) Sam ple Space: is the collection of ail possible outcomes of an ex­
periment. It is a set of ail finite or countably infinité number of 
elementary outcomes e\\ e2, —  It is usually represented by

S =  ei,e2, . . . ,e „ .

The sample space in a toss of a coin and a die is reoresenteù by

H 1H 2H 3 H 4 H 5H 6H

T IT 2T 3T 4T 5T 6T
1 2 3 4 5 6

i.e. 5  ^  {1H,2H, 3H, AH, 5 t f , \T.2T.3T,4T,5T,6T}
The sample space when a die is thrown twice is

S = {11 ,1 ,2 ,1 ,3 ,1 ,4 ,1 ,5 ,1 .6 .1 .2 ,1 ,22....... 6.6}

(e) A n E ven t: is a subset of a sample space.
It consist of one or more possible outcomes of an experiment. It is 
usually denoted by capital letters A , B , C , D , —  It should be noted 
that a subset in a given set could consist of ail the possible outcomes
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l'niroduction 3

or none of the outcomes of the given set. 
e.g. When a die is tossed once, we define. Set 
A — {set of even number} = {2,4,6}
B = {set. of prime number} =  {1,3,5}
C = {set of number greater than 7} =  {4>}.

(f) M utually exclusive events: Two events A and B  are said to be 
mutualiy exclusive, if the occurrence of A prevents the occurrence 
of B.  This implies that the two events can not occur together i.e. 
A n  B = e.g. the occurrence of H  prevent the occurrence of T in a 
toss of a coin.

(g) M utually Exhurstive Events: Events Ai,  Ai,  As, A4__ , A n are
said to be mutually exhaustive if they constitute the samplespace. i.e.n
y A, — S. However, some events could be both mutually exclusive 
1=1
and exhurstive. This implies that they are disjointed and yet their 
sum is equal to the sample space. This would be illustrated later 
in ^ / '^ r l t  should be noted that the last two probability terms are 
associated with one experiments only.

(h) Independent Events: Two events A and B are said to be indepen- 
dent if the occurrence of A does not. alfect B.  This implies that the 
two events can occur together. e.g. the event of an event number and 
a Tail in a throw of a coin and a die at once.

1.3 The Concept o f Probability
The probability associated with an event is a measure of believe that 

an event will occur.
However, there are three conceptual approaches to the définition of 

probability (l) the classical approach, (2) the relative frequency approach 
and (3) the axiomatic approach, (4) subjective approach. These three con­
cepts are explained as follows:

(a) C lassical app ro ach : This method assumes that the elementary out­
comes of an experiment are equaily likely. It defines the probability of 
an elementary event E, as 1 divided by the total number of outcomes 
for an experiment. There is no requirement that the experiment be
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Introduction 4

performed before the probability is determined, i.e.,

1

and

P(E,) = 

P (A) =

Total number of outcomes of experiment

Number of outcomes in favour of .4 
Total number of outcomes for experiment 

n(A)
P(A)  = n(S)

Probability is a measure of likelihood that a 
spécifie event will occur.

E x a t” - !<■ 1.1: Find the probability of obtaining of obtaining any 
number in a simple throvvn of a die.
Solu tion : The experiment lias six outcomes 1. 2, 3. 4, 5. 6.

P(a number) =  —----------- -—-— ------------- =  -
Total number of outcomes 6

Exam ple 1.2: Find the probability of obtaining an event number in 
one roll of a die.
Solu tion : Let .4 be the event of an ev'en number.

.4 = {2.4.6}; n(,4) = 3 
5 = {1 .2 .3 .4 ,5.6};n(S) =  6

p  _  Number of outcomes included in .4 3 ^ _
Total number of outcomes 6

This approach to the définition of probability only holds for finite 
sample space vvhere elementary events are equally likely. However 
this assumption is not always true in the real life as ail events are not 
equally likely. Afterall we are not equally endowed.

(b) The L im iting  Frequency A pproach: This method defines prob­
ability as an idealization of the proportion of times that a certain 
event will occur in repeated trials of an experiment under the sarne
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Introduction 5

condition. Thus if an experiment is repeated N  times and rc(A), is 
the numbcr of times that A occur, then the relative frequency is

N
Bul relative frequencies are not probabilities but approximate prob- 
abilities. If the experiment is repeated indefinitely, the relative fre­
quency will approach the actual or theoretical probability.

.. P (A) = liin' n—oo .v

However, there is a requirement that the experiment be performed 
before the probability is determined. Hence. the probability is déter­
mine aposteriori. It should be noted that some events in real life can 
not be repeated before the probability is determined. Even if it can 
be determined the limit may not converge.
E xam ple 1.3: Twenty of the 500 cars that enters the University of 
Ibadan on a graduation day are found to be Lexus. Assuming dif­
ferent cars cornes into the campus randomly. vvhat is the probability 
that the next car is a Lexus?
Solu tion: Let N  be the total number of cars and n be the total
number of Lexus. Then

N = 500, n = 20

Using the relative frequency concept of probability, the probability 
that the next car being a Lexus is

P <L“ US> =  ï b  É65 = 0 04

(c) S ubjective Probability: is the probability assigned to an event 
based on subjective judgement, expérience, information and believe. 
Such probabilities assigned arbitrarily are usually influenced by the 
biases and expérience of the person assigning it.
For instance the probability of the following events are subjective:

1. The probability that Jude, who is taking statistics in the second 
semester will get seven points in the course.
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Introduction 6

2. The probability that a particular Football Club win the maiden 
match with another club.

3. The probability that Ade will win the case he has filed against 
his landlord.

Since subjectives probabilities is based on the individual’s own judge- 
ment, it is rarely used in practice as it lacks the theoretical backing.

(d) The A xiom atic or Bayesian Approach: To circumvent the dif­
ficultés posed by the earlier approaches to the définition of proba­
bility, some researchers hâve developed a mathematical expression of 
certain aspects of the real world. The probability of a certain part 
of the real world occurring at random is then determined satisfying 
certain properties (called axioms).

1.4 Probability o f an event
A in a relation to an experiment with sample space S  is defined as a real 
valued function P(A) which satisfy the following axioms:

(1) 0 < P[A) < 1 for every event A

(2) P(S)  = 1

(3) P{Ai  U A ,U ...)  =  P(A ,) +  P(A3) +  . . .OC
=  r  P(Ai) for every finite or infinité sequence of 

1=1
disjoint event Ai, A2, . ■ ■

1.5 C onséquences o f P ro b ab ility  Axioms 
Theorem  I

(a) If A is a given event and A' is the compliment of A, then P(AC) — 
l - P ( A ) .
Proof: A U Ac =  5
P(A +  A:) = P(S)  =  1 by axiom (2)
.. P(A)  + P(AC) = 1 A and Ac are mutually exclusive 
= P(AC) = 1 -  P{A).

(bj Theorem  II:
Given that rp C S,  then P[A) -  0
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Introduction i

P roof:
S  U 0 = S.
P(S j  0) = S  = 1 by axiom (2)
P(S) -  P(<j>) = 1 since P(S) = 1 
1 + P(<p) =  1 
= P(4>) = 0.

(c) Theorem III - Addition Rule:
If .-l] and A2 are any two events of an experiment with sain pie space 
S,  then we hâve the addition rule

P[Ai  U A 2) = P{Ai) + P(A2) -  P(A, n a 2)

Proof:
In a V'enn diagrarn

P(A\  U A2) = P (A ,)U P (A 2) = 1 
P(.4i U At) = P(AX) + P(A2 n  A\) 
but P{A2 H Ac,) =  P( A2) -  P(A, n  A2)

~TP(A, L A;) - P(Aj)  + P(A2) -  P(Ai n A 2) Addition rule |

However, if A1 and A2 hâve no point in common, that is when A, and Aj 
are mutually exclusive

P(A, n A2) = 0 since A, n  A2 =  0

we hâve
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Introduction 8

l P(A t U A2) =  P(A t ) + P(A2) Spécial Addition rule 

Using the same procedure for any three events A, B  and C.

P(A\jB\)C) = P(A)+P[B)+P(C)-P{AnB)-P[AtC)-P{BnC)-P[Af lB( \C)

Example: A coin is rolled three times, what is the probability of getting
(i) 1 head, (ii) 2 heads, (iii) at least 2 heads.
Solution: Let / /  and T  represent Head and Tail respectively.
Let the sample space be defined as

5  = {H HH,  H T  //, H HT,  T H  H, T T  H, HTT,  T  HT,  T T T )

(i) P(1 head) =  {HTT,  T  HT,  T T  H)  = |}

(ii) P{ 2 head) = {H H T , T  H H, H T  H)  -- |}

(iii) P(at least 2 heads) = P(2 heads! -P(3 heads)
= 1 + 1 = 1 = 0 5

Note: The events of 2 h< -ds and 3 heads are mutually exclusive.

Examples: A bag contains 8 black balls; 3 red balls. 1 green balls and 
5 yellow balls ail of which are of the same size. If a bail is drawn at random 
from the bag, what is the probability that the bail is (i) black, (ii) either 
yellow or green (iii) not black. (iv) neither black nor green, (v) black and 
yellow?

Solution: Let B, R, G and Y  represent the event of black, red, green 
and yellow balls respectively. Total number of balls =  20.

(i) P(B) = n{B)
n(S) =  — =  0.4 

20

(ii) P(KUG) =  P{Y)  +  P(G)
5 4 9

=  — + — =  — = 0.5 
.  20 20 20 
(since only one bail is drawn P(YQG) = 0)
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Introduction 9

iv) P(B u  G)e 1 -  
1 -

1 -  
8

20
0.4

P(B  U G) 
\P(B) + P(B)\  
. 8_ _  4_.
20 +  20

Alternatively,

P(neither Black nor Green) P(Yellow or Red) 
P(Y)  + P(R)

A  A
20 20

(v) P(B  n Y) = 0 see note in (ii) above.

Example: A survey of 500 students taking one or more courses in Algebra, 
Physics and Statistics during one semester revealed the following numbers 
of students in indicated subject:

Algebra 186 Algebra and Physics 83 
Physics 295 Physics and Statistics 217 
Statistics 329 Algebra and Statistics 63

A student is selected at randorn what is the probability that he takes

(i) ail the three subjects

(ii) Statistics but not Physics

(iii) Statistics but not Physics and Algebra

(iv) Statistics, Algebra but not Physics

(v) Algebra or Physics
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Introduction 10

Solution: Let A, I’ and S  dénote the event of a student taking Algebra, 
Physics and Statistics respectively.
Presenting the information in a Venn diagram we hâve

n(A n A n R c) = n(A n  S) -  n(A n  P C\ S) = 10 

n |P n S n  Ac) =  n(P  n S) -  n(/1 n p  n  S) =  164

n(A P S' )  =  n(A n P) -  n(A n  P n  S) =  30
Psing the addition rule. we can find the number of students that takes ail 
the three subjects.
n(.4 U P  U S)  n(.4) - n(P)  +  n(5) n(,4 n P) -  n(A n S) + n(A O P  n 5)
500 = 186 + 329 -  83 -  217 -  63 • n(.4 C P n  S)
.. n(A H P n  S) =  53 

P(Ail three subjects) = ^  = 0.106

(ii) P (Statistics but not Physics)
s  P ( S  n  Pc)
= P(s) -  P (S  n  P)

329 217
500 500
H2
500

= 0.221

(i«î> P(Statistics but not Physics and Algebra)
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= P(S) -  P(A  n  P)
= P(S) -  P(A  n P) -  P(S  n P) + P(A  n p  -  S) 

329 83 217 53
500 ~ 500 ~ 500 500 
82 
500

=  0.164

P(Statistics, Algebra but not Physics)
=  p(s)  -  P ( S  n P c)
= P{S) -  \ P ( S n P )  -  P ( ^ n P n S ) ]  

329 217 53
500 _  500 500
165
500 

=  0.33

(v)

i.e. P(UP)

P(Algebra or Physics) 
P{ A U P)
P(A) + P(P) -  P(A U P) 
186 295 83
500 + 500 ~ 500 
398
500
0.796

1.6 Conditional Probability and Independence:
If A  and B  are any two events, the conditional probability of A  given B  
is the probability that even A will occur given that event B  has already 
occurred.
This is équivalent to the probability of events A and B  (occurring simulta- 
neously) divided by probability of event B.

i.e. P ( A/ B )  = Pi'p^B p ' provided P(B)  ^  0

=  P[A CB)  = P[B) P( A/B)  = P(A)P(B).
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Introduction 12

In general
P(AX n At  n  . . .  An) = P(Al)P{AJ/ A l)P(A3/ A1 n A,) • • • P(An ) /(A , . ■. A») ' 

Let A[, A2,A2 dénoté the lst, 2nd and 3rd cards

P(At  n A2 n A3) = P{Al) - P{Ai l A l) - P{Ai l A i OAi )
4 3_ 2_
52 X 5Î X 50 

24
132600 

=  0.00018

Exarnple: A bag contains 10 while balls and 15 black balls. Two balls are 
drawn in succession (a) with replacement (b) without replacement. What 
is the probability that

(i) the first bail is black and the second white

(ii) both are black

(iii) both are of the same colour

(iv) both are of different colours

(v) the second is black given that the first is white.

Solution: Let B  and W  dénoté black and white balls respectively.

(a) with replacement

(i) P [ t i n W )  = P[B)-P(W)
15 10 O O= — x — = 0.24 25 25

Hi) P O B2) = P(B)  x P(B)

■ (S)'—
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Introduction 13

(iii) P(both black or both white) P{Bt n b 2) + P(Wi  n  w 2)

0.36 + 0.16 
0.52

(iv) P(both are of different colours) =  P(B  n W)  + P(W  n  B)
r  is 101 rio 151— — x — + — x —25 25 J L25 25 J

= 2(0.24) 
= 0.40

(v) P ( B/ W)  -
P{ Bt l W)

P ( W f
0^24
oX

0.6

From the last resuit, we could see that the two events are independent,
hence,

P{B/W)  = P{W) =0.6. 

because the drawing is with replacement.

(b) without replacement

(i) P ( B n W )  = P(B)  • P[W/ B)
10=  — x — = 0.25 25 25

(ii) P ( B ,n f i2) P( B1, - P ( B i / B 1)
15 14— x — 
25 24

0.35

(iii) P(both black or both white) = P( B i )P(B2/Bi )  + P(Wi)P(W2/Wi)
15 14 10 9=  — x ---- 1- — x —
25 24 25 24

= 0.35 + 0.15
0.50
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Introduction 14

(iv) P(both are of different colours) P(B)P{W/B)  + P( W)P(B/W)  
15 10 10 15
25 X 25 + 24 X 24
0.25 +  0.25
0.50

P { B n W )
P(W)

15 10.10
25 24 ' 25
0.25
0.4 

0.625

1.7 Statistical Independence: Two events A and B  are said to be in- 
dependent if the probability that B  occurs is not influenced by whether A 
has occurred or not.
i.e. P{B)  = P {B/A)
Hence events A and B  are independent if

P{AC\B) = P[A) ■ P[B)

Three events are said to be mutually independent if

(i) They are pairwise independent, i.e.

P ( A D B )  = P{A) -P(B); P ( AC C )  =  P(A)cotP(C);
P{B  n  C) = P(B) ■ P(C) and

(ii) P(A r  B  r C )  = P  (A) ■ P{B) ■ P[C).

It should be noted that mutually exclusive events are not independent as 
the occurrence of one rules out the possibility of the other, i.e.

P{A/B) = P{B/A) = 0.

(v) P ( B/ W)  =

Example: What is the chance of getting two sixes in two rollings of a 
single die?
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roductiun 15

Solution:
P(six in lst die) = |
P ( six in 2nd die) = |  
ince the two events are independent

P (six in lst and 2nd die) = ~ ^ ~6 6 36
Exam ple: A and B plays 12 games of Ayo (Yoruba traditional game). A 
“ ins 6 and B  wins 4 and two are drawn. They agréé tp play three games
more. Find the probability that:

(i) A wins ail the three games

(ii) Two games end in a tie

(iii) A and B  wins alternately

( iv ) B wins at least one game.
Solution: Let .4 and B  represent the event of A and B  winning the game
■>nd D winning the game and D dénoté the event of a tie.

(0
(ü)

P(A)

P(B)

P(D)

6_ = 1
12 “  2 
A_ 1
12 " 3 
2 1 
12 6

/ J(.4 wins ail three) = \ 
P(2 games and in lies)

x i
8

= P(D.D.DC) + P(De.D.D) + P(D.DC.D)
( \ 1 5 \ /5  1 1\  /= -  X -  X - + -  x -  x - ) +  (\6 6 6 / \6  6 6
5_

72
(iii) lf A and E—B  wins alternately in two mutually exclusive ways.

=  P[ABA) + P(B.A.B)

5
36
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(iv) P(B wins at least one game l-P(no game)

= 1 - P ( B[ B ' 2B'3)

19
27

Example: An unbiased die is rolled n times

(i) Détermine the probability thaï at least one six is observed in the n 
trials.
Calculate the value of n if the probability is to be approximately * 
Solution:

P (a six in a throw)

P {no six in a throw) 

(i)P(at least 1 six in n trials)

(ii) If the probability is then

1
6
5
6
1 -  P(no six in n trials)

1
2

=> (-)"V
nlog(-)

n

n

i - t | r
1
2

log(l/2)
log(5/6)
4

Example: Deterrr..ne the probability for each of the following events.

(a) A king or an ace or .ack of clubs or queen cf diamond appears 
in a single card frorr. a *e!l shuffled ordinary deck of cards.

(b) The sum of 8 appears in a single toss of a pair of fair dice.
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(c) A 7 or 11 cornes up in a single toss of a pair of dice.

>olution:

(a) P(king) =  P(an ace) =  £

PfJack of club) =  -  =  — • -  
v ’ 52 52 4

P(Queen of diamond) = ~
P (a king, an ace, J. of club or Q. of diamond)

( — +  A + A + - î - )  =  —\52 52 52 52/ 26

17

Dice 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

P(sum = 8) = —

(c) P{7) = — , P ( ll)  = — 
' ’ y 1 36 ' ' 36

9
P(7 or 11) = -----\---- =

v ' 36 36
2
9

Ex am ple: A pair of fair coins is tossed once. Let A be the event of head 
on the first coin and B  the event of head on the second coin first coin and 
B  the event of head on the second coin while C is the event of exactly one 
head 1s eveilts A , B  and C mutually independent?

Solation:

S  =  ! HH, HT,  TH,  TT}
A = {HH,  HT},  B = {HH,  TH}
C = { HT , T H}
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Introduction 18

A n  B = {HH},  A n C  =  {HT},  B n C  = {TH},  A n  B n C  = <j> 

.. P [A] = P[B) = P(C) = ? =  0.5

P ( A n B )  = P(A) P(B)  = | ; P ( B n C )  = P(B)  ■ P[C)  =

P(A n  C) = P{A) - P[C)  = j i P { A n B n C ) ï P ( A ) - P { B ) - P ( C )

Hence events A, B and C are not mutually exclusive.

Exam ple: An urn contains ‘P ’ white and V  black balls and the second 
contains ‘C’ white and ld' black balls. A bail is drawn at random from the 
first and put into the second. Then a bail is drawn from the second urn. 
Find the probability that the bail is white.

Solution: This is a conditional probability.

Total number of bail in the ls t Urn is {P + q)
Total number of bail in the 2nd Urn is (c + d)
Total number of bail in the 2nd after the first 
draw is c + d +  1

P(white bail in the 2nd urn)
=  P(W)P{W/B)  + P(W)P(W/W)

= - ( - * - ) + ■  -  ( - 3- )c + d + 1  p + d  c + d + l  p + q
c[p + g)

( c + d + l ) ( p  + q)
C

c + d + 1

1.8 Total Probability rule and B aye’s Theorem : If there are two or 
more causes of an outcome, it is often désirable to détermine the probability 
that the outcome was due to a particular one of the possible causes. Even 
though this kind of problem can be solve by merely applying the addition 
and multiplication rule, much compact procedure has been developed called 
the Baye’s theorem.
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1 9  Baye’s Theorem
i.et a sample space S  of an experiment be partitioned into n mutually 

-xrlusive and exhaustive events A\, A2, . . . ,  An. Let B  be an arbitrary évent 
that occurred when the experiment was performed. Such that P {Ai) ^  
0. 1 = 1,2, . . . ,  n then,

P(B) = t ,P(A<)P{B/Ai)
1=1

and
P(A, /B)  =

P(Aj)P(B/A,)  
P(B)

Proof: Let the events A, and B  be depicted as in Fig.).1̂

By définition of conditional probability, we hâve

P(A, n  B) = P{AÎ)P[B ! Ai)

We know that

But total probability is

P{A, /B)  =
P{Ai n  B) 

P{B)

(1)

( 2 )

P(B) = P {Ai n  B) + P(A2 n  B) + P{A2 n  B ) + . . . +  P{An D B) (3)
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Introduction 20

Using (1) in (3) we hâve

P {B) = P{Al ) P{B/ Al ) + P(A, )P[B/At ) + . . .  + P{An) P ( B / An) 

= 'jr) P{Ai ) P(B/Al) (3)
i=i

Using (3) in (2) we hâve

P (A /B ) =  ïlïîwrWAj = Baye’s form" la
E xam ple: Suppose 15% of apple and lOconsignment were toxic. If the 
consignment consist of 60% apple and 40% mango, what is the probability 
that a fruit selected at random is toxic?

Solution: Let B  be the event of toxic fruit and A UA 2 be events of se­
lected fruit being an apply and a mango respectively.

P{A i)

P{B/ Ai )

P(B)

—  — 0.6; P{A2) =  —  =  0.4 100 v '  100

i r 0- ^  p (B ^  = w o = OA
P( Al) P ( B / A l) + P(A2) P(B/A2) 
(0.6 x 0.15) +  (0.4 x 0.1) =  0.13

E xam ple: Every Saturday a fisherman goes to the river, the sea and a
lake to catch fishes with probabilities - ,  -  and -  respectively. If he goes to4 2 4
the sea, there is an 80% chance of catching fish, the corresponding figures 
for the river and the lake are 40% and 60% respectively.

(a) Find the probability that he catches fish on a given Saturday.

(b) What is the probability that he catches fish an at least three of the 
fire consecutive Saturdays?

(c) If on a particular Saturday, he cornes home without catching anything, 
where is it most likely he has been?

(d) His friend, who is also a fisherman, chooses among the three locations 
with equal probabilities. Find the probability that the two fishermen 
will meet at least once in the next three weekends.' (Any assumptions 
made should be clearly stated).
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Solution: Let S.  R and L dénoté the event that he goes to the sea, the 
river and the iake respectively and F  dénoté the event that he catches fish.

P(S)  = i ;P (F /S )  =  g

P(R)  =  P( F/ R)  = g

P(L)  =  l--,P (F /L) = l

(a) Using the idea of total probability,

P(F) = P(S)P(F/S)  + P(R)P(F/R)  + P[L)P{F/L)
1 4  1 2  1 3

=  i X I + ï X î + ï X 5

=  ^  = 0.65 20

(b) Let the number of Saturdays on which he catches fish be a random
13

variable X  with B (5, — ).

P{X  > 3) =  P(X  = 3) + P(A- = 4)+ P{X = 5)

= ( 3  )  (0.65)s(6.35)*+ (  * )  (0.65)4(0.35)1+ (  * )  (0.65)5(0.35)°

= 0.3364 +0.3124 +0.116
= 0.765

Here we need to calculate the probability that he goes to each of the 
locations without catching fish

P[S/F')  =
P(S  n  F') 

P(F')
P(S)P(F'  /  S) 

P(F')
1 x ! 2 
i-y -5- = -  = 0.286

20 7

Similarly,

P(R/F' )
P(R)P(F' /R)

P(F')
i v 3 3

= -  = 0.429 
20 7
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P [ L ) P( F  R) j x }  2
P(F') i  7

So it is most likely that he has been to the river.

0.286

(d) Let S i , S 2 dénoté the even: that the first and second fisherman goes 
to the sea respective!}-, and dehne Ri, R2, Ly ,L2 similarly.
The probability that they meet on a given Saturday (assuming inde- 
pendence) is

P{SÏ P 5:) + />(/?, ^  R2) + P(Li  P L 2)
1 1 1 1 1 ‘1
2 3 4 3 4 X 3

= S =
Probability that they fail to meet on a Saturday is

,  1 .  2 
( l - 5) =  3 = 0.666

The
is

probability that they fail to meet on three consecutive Saturda. s

(1 |  = 0.296

The probability that they meet at least once in three weekends is

= 1 -  Pfaiied to meet) 
=  1 -  0.296 
= 0.703

Exercises:

1. If Ai, A 2 and A3 be any three events, prove that

P ( A X + A2 + A3) = t ,  -  £  P(A,A}) + P( A xA2A3).
t=i i=j

It is important to note that addition theorem can be validh applied 
only when the mutually exclusive events belong to the samt* set.
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2. A newspaper vendor sells three papers: the Times, the Punch and the 
Commet. 70 customers bought the Times, 60 the Punch and 50 the 
Commet on a particular day. 17 bought Times and the Punch and 
15 the Punch and the Commet and 16 the Comment and the Times, 
while 3 customers bought ail three papers. Every customer bought, 
at least one type of paper. Using Venn diagram or otherwise; find;

(i) how many customers patronized the news agent on that, partic­
ular day?

(ii) how many customers bought a single paper?
(iii) how many customers bought Times but not Commet?
(iv) how many customers bought the Punch or Comment, but not 

the Times?
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C h ap ter 2

C ounting Techniques

In simple experiments such as a roll of two dice or a roi! of three coins, it is 
easy to détermine the sample space. But when an experiments is such that 
it can be treated in three or more stage, it becomes tedious to détermine 
the sample space as well as the number of outcomes in favour of a particular 
event.
Counting techniques are those methods developed to solve this problems.

2.1 Tree D iag ram
The problem of counting the sample space and the points corresponding 

to various events is simplified by the use of a tree diagram, especially if the 
experiment can be treated as not more than three stages. If there are more 
than three stages, the tree becomes unmanageable.

E xarnple 2.1: A bag contains 8 balls, identical except for colour, of which 
5 are red and 3 are white. A man draws two balls at random, what is the 
probability that

afi) one of the balls shown is white and the other red.

(ii) both balls are of the same colour

(b) If three balls are drawn at random what is the probability that exactly 
2 bail are red.

(c) What would be the probability in (a) if the first bail drawn is replaced 
before the second one is drawn?

24
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Co--.:.ng Techniques 25

Solution: Since two balls are drawn without replacement

% _____ .R

+ 7

. he possible outcomes is easily seen from the diagram with the correspond- 
ng probabilities

a(i) P(RW)
RW ' ' WR '

5 3 or 3 5-  x - + -  x -
8 7 8 7

. .
0.268 + 0.268 
0.536

ii) P(Same Colour)
RW ' ' ww '

5 4 or 3 2
-  x - + -  x -
8 7 8 7

= 0.357 +  0.107 
=  0.107 =  0.404

(b) If three balls are drawn

i*
 Z

*
 ïct Z
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Counting Techniques 26

P(exactly 2 red halls)
H R W R W R W R R

5 4 3 5 3 4 3 5 4
-  X -  X - + -  X -  X - + -  X -  X -
8 7 6 8 7 6 8 7 6

0.178 + 0.178 +  0.178
0.534

l'c) Bail» are drawn with replacement, hence,

(i) P[R\V) RWorWR
5 3 3 5
8 *  8 +  8 ‘  8 

-  0.234 + 0.234
= 0.468

(ii) l’ (Same Colour) = RRorW’W
5 5 3 3= -  x — 1—  x —
8 8 8 8

-  0.391+0.141
= 0.532 2

2 Multiplication Principle Where the tree diagram is not suitable, 
multiplication rule cornes in handy. In a 3-stage experiment, if the first 

can occur in rz, places and the second stage in n2 places while the 
I ‘•tagc ’ an occur in n3 stages, then the total number of possible out- 

< m - becomes i. , a n2 x n3. This can be extended to any number of stages.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY
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Lxample 2.2: Two coins and a die are tossed at the same time (i) the 
s-a.'nç !e space (ii) what is the probability of obtaining a head and an even
number?
Solution: Two coins can occur in 4 ways, and one die can occur in 6 ways. 

Total number of outcomes is 4 x 6 =  24 ways. 

ii) This can be represented in

1 2 3 4 5 6
HH
HT x x x
TH x X X
HH

X  dénotés the number of outcomes in favour of our event
0

P(H  and even number) = — =  0.25

2.3 Perm utation The ordered arrangement of n distinct items taking ail 
or r of them at a time is called permutation. The items are usually assume 
to be arranged on a line without replacement such that if two of the r objects 
are interchanged, it results into different permutation (arrangement).

The number of permutation of n items taking r at a time is denoted

n!

This is the same as the number of ways in which r spaces can be filled 
taking n different items at a time.
The first place is filled in n way, the second (n -  1) ways . . .  and r plaèe if 
filled in (n+r + 1) ways. Thisr places is filled in n ( n - l ) ( n - 2 ) . . .  (n -lr+ 1)!  
ways.

.-. nPr = n(n -  l)(n -  2 ) . . .  (n -  r + l)

The number of permutations of n distinct items taking ail at a time is 

nPt = n(n  -  l)(n -  2 ) .. .3.2.1 =  n! ways
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Counting Techniques 28

The Symbol n! is called n factorial and we define 0! =  1.

Exam ple 2.3: Evaluate 5Pj 
Solution:

5p‘ =  ( î = ^ i
5 x 4 x 3! x 2!

2!
=  5 x 4 x 3  
=  60 ways

Exam ple 2.4: If 13/>, =  17160, find r.
Solution:

13pr = 13(12)(11) . . .  (12 — r + 1) =  13(12)(11)(10) 
'= 13- r  

.. r =  3

Exam ple 2.5: How many different words of three letters can be formed 
with letters A, B, C, D, E and F no letter is being repeated?
Solution: The first letter can be arranged in 6 ways 
the second letter can be arranged in 5 ways 
the third letter can be arranged in 4 ways.
Total number of arrangement is 6 x 5 x 4 x 3.
Alternatively

6Pa =
6!

(6 -3 ) ! =  6 x 5 x 4  = 120 ways.

(A) Perm utation of n things, not ail of which are distinct.
The number of permutations of n things taking ail at a time where p 
of them are alike of one kind, q are alike of another kind and r alike
of the tl.ird kind is

n!
p\q\r\

Exampie 2.6: In how many ways can the letters of the word STATIS-
TICS L>t arranged.
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Solution:
T occurs 3 times 
I occurs 2 times 
S occurs 3 times.
So the number of possible arrangement are

lü!------ - =  50400 ways
3!2!3! J

(B) W hen certain things always or never occur:

(i) Given n items to arrange taking r at a time out of which S  of 
them will always occur, keep aside the S  items and arrange the 
remaining (rx — s) items taking (r — s) at a time.
The 5  items can be arranged taking 5  at a time in rp> ways. 
The total number of permutations is n  — Spr_$ X rpt .

(ii) N ever occur: Leave out the S  items and find the number of 
permutation of (n — s) items taking r at a time, i.e.,

n  — spr in ~ g)!
(n — s — r)!

Exam ple 2.7: A committee of 7 représentative of a class consist of 
class captain and his deputy. On a visit to the Head-teaching there 
are four seats. How many ways can the committee be seated it:

(i) there is no restriction
(ii) the class captain and his deputy must sit.

(iii) one of the students committed a crime and can not sit down 
even if there were enough seats.

(iv) détermine the probability of the event in (ii) and (iii) above. 

Solution:

(i) When there is no restriction

n =  7, r =  4

7 P< =
7!

(7 -4 ) !
=  7 x 6 x 5 x 4  =  840 ways
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(ii) keep aside the class captain and his deputy:

4pj • (n — 2)Pr- i  — 5Pj x 4Pj —
5! 4!

=  5 x 4 x 3 x 1 2  
=  12 x 60 
=  720 ways

(iii) Leave out the criminal then we hâve
6!

(5 -3 ) !  (4 - 2 ) !

n - 1
p*=*p* = (6 -4 ) !

6 x 5 x 4 x 3
= 360 ways 

720
(iv) P(event (i)) = —  = 0.857 

P(event (ii)) = ^  =  0.428

(C) Perm utation when two things are not to  occur together: 
Procedure

(a) Find permutation without restriction
(b) Find permutation when two things occur together.
(c) The différence between (a) and (b) gives the number of arrange­

ment when two things do not occur together.

Exam ple 2.8: In how many ways can 10 different books be arranged 
on a shelf if two particuiar books are not to stand together? 
Solution:
If the two books are to stand together, regard the two books as one, 
then the number of arrangement is 219Fg = 2 x 9 !  =  72560 ways. 
Number of arrangement without restriction is 1ÜP10 = 10! =  3628800 
ways so the permutation when the two books are not to stand together 
is

10! -  2 x 9! 
3628800 -  725760 
2903040 ways
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Exam ple 2.9: Letters of the word “ARRANGE” are to be arranged. 
Find the probability if:

(i) two r’s do not occur together
(ii) if the two R’s and two A’s do occur together

Solution:

(i) Without restriction, number of arrangement is =  1260 ways.
6!

When two R’s occur together is — =  360 way When two R's do 
not occur together is 1260 — 360 =  900 ways.

P(two R’s not occur together) =  -----  — 0.714
' 1260

(ii) If two R’s and two A’s do occur together we hâve (A,A)(R,R)N 
G E i.e., 5P5 = 5! = 120 ways.

120
P(R’s and A’s occur together) = ----- =  0.095

' 1260

(D) W hen the number of items not occurring together is more 
than two
Some kind of logic would hâve to be applied here. It is better illus- 
trated with an example.

Exam ple 2 .10 : In how many ways can 5 blue cars and 4 red cards 
be arranged in a straight car park two red cars are not to stand to­
gether.
Solution: First, the first 5 cards are positioned as indicated below 

X B X B X B X B X B X

The blue cars can be arranged in 5! ways. Now there are 6 vacant 
positions (marked X). The remaining 4 red cars can be arranged in 
6Pi = 360 ways. The required number of ways of parking 5 blue cars 
and 4 red cars is 5! x 6 P4

=  120 X 360 
= 43200 ways
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(E) W hen items are repeated:
The number of permutation of n different items taking r at a time, 
when each item may occur an number of times is nr.

Exam ple 2.11: A die is rolled 4 times what is the sample space. 
Solution:
A die has six faces, hence may occur in 6 ways.
The sample space is

64 -  1296

(F) Formation o f numbers w ith digits:
The idea of permutation can be applied in the formation of numbers 
with digits. This is particularly useful in a raffle draw. Let us illus- 
trate with a simple case.

Example 2.12: Suppose the five digits 1, 2, 3, 4, 5 are given. To 
find the total number of numbers which can be formed under different 
conditions

(a) Without restriction = 5 P5 = 5! = 120 ways.
(b) Suppose 5 always occur in the tenth place. Now the tenth place 

is fixed, then the remaining four places can be fitted with four 
digits as *P4 =  4! = 24 ways. i.e.

1 2 3 4 5 
1 2 4 5 3

2 1 3  5 4
2 1 4  5 3

1 3 2 5 4 
1 3 4 5 2 
1 4 3 5 2

2 3  1 5 4  x2 =  24ways
2 3 4 5 1 
2 4 1 5  3

1 4 2 5 3 2 4 3 5 1

(c) Suppose we hâve to form a number divisible by 2. Then the 
unit’s place must be occupied by 2 or 4 which can be arranged 
in 2 ways.
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The remaining 4 digits can be fitted in

= 4! =  24

So, the total number of numbers divisible by 2 =  24 x 2 =  48.
(d) Suppose we hâve to form numbers which begin with 1 and end 

with 3. Here the first and the last places are fixed.
Then, the remaining 3 digits can be filled in

3Pz = 3! = 6 ways

1 2 4 5 3
1 2 5 4 3
1 4 2 5 3
1 4 5 2 3 =  6 ways
1 5 2 4 3
1 5 4 2 3

(e) Suppose we hâve to form a number where 1 or 3 is in the be- 
ginning or the end. Then the two digits can be arranged among 
themselves in 2! ways. Hence total number of arrangement will 
be 3 P3 x 2 = 12 ways.

(f) Suppose we hâve to form numbers greater than 30,000. Here 
there should be 3 or 4 or 5 in ten thousand’s place which can be 
filled in 3 ways.
The remaining 4 digits filled in 4! ways.
Therefore, we hâve, i.e.

3 1 2  4 5 
3 2 1 4 5 etc

i.e., total number of numbers

3 x 4P4
=  3 x 24 =  72
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E xam ple 2.13: How many numbers can be formed with digits 1, 2, 
4, 0, 5 when any is not repeated in any number?
Solution: There are 5 digits in ail including zéro. The number of 
single digit numbers is 4Pj. The number of two digit number is 5P2. 
Out of this, some hâve zéro in the tenth place and so reduces to one 
digit number. Hence the number of two digit numbers is 6P2 — * Px. 
Similarly, the number of three digit number is 5P3 —* P2.
The total number of numbers is

«P, + (5P2 - 4Pi) + (5P3 - 4 P2) + (5P < -4 PS) + (5Ps - 4 P«)
4 + 16 + 48 +  96 + 96

260 numbers.

Exam ple 2.14:

(i) Find the sum of ail the numbers that can be formed with digits
1, 3, 4, 7, 5, 9 taking ail at a time.

(ii) Find the probability of having a number with 3 in the tenth 
place.

Solution:

(i) We need to consider when each digit occupy a particular place.
The number of permutation when 1 is in the unit place is 5Pj =
5! =  120. The number of permutation when any of the given 
numbers occupy the unit place is also 5! =  120 ways.
Hence we can sum ail the numbers in the unit place as 120(29) x 
1 = 3480 x 1.
Similarly the sum of numbers in the lOth place is also

120(1 + 3-^4 + 5 + 7 +  9) =  3480 x 10
=  34800

In the same manner. the -um of ail the numbers is

3480(100,000 + 10,000 + 1,000 + 100 + 10 +  1)

=  3430(111111) = 386666280
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(ii) The number of numbers taking ail at a time without restriction 
is

6P6 =  6! = 720

The number of numbers when 3 occupy the tenth place is 5Ps = 
120

120Pria  number 3 in the tenth place) = ----=  0.1667.
'  '  720

(G) Form ation  of w ords w ith  le tte rs:

This is similar to what we illustrated in Formation of numbers with 
digits.

E xam ple 2.15: Suppose the letters of the word STAPLER is given 
to form words.

(a) If there is no restriction, the number of words is

1 Pi — 7! = 5040 words.

(b) Suppose ail words to be formed begins with S. The remaining 
6 places can be filled in 6! =  720.

(c) Suppose ail words to be formed begins with S or ends with E. 
The two positions can be filled in 2P2 =  2 ways. The other 6 
digits can be filled in 6P6 = 6! = 70 ways.
Hence total number of words is 2 x 120 =  240 words.

(d) If ail words formed must begin with S  and end with E. The two 
places are now fixed. Then the remaining 5 places can be filled 
in 5! =  120 ways. Hence, 120 words are formed.

(e) Suppose two vowels A and E  are to stand together. Regard A 
and E  as one

a , E , S T P L R

STPLR can be arranged among themselves in 6! =  120 ways. 
The two vowels can be arranged in 2 ways.
Hence the total number of words is 2 x 120 = 240 words.
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(f) If three particular letter are to occupy the even places. The first 
letter can be filled in 3 ways, the second in 3 ways and the third 
in 1 way, a total of 6 ways.
Then, the remaining 4 letters can be filled in 4! =  24 ways. 
Hence, the total number of words is 6 x 24 =  144

(H) O rdered:
A rran g em en t o f item s ro u n d  a  circle:
Things can be arranged round a circle in (i) clockwise and (ii) anti- 
clockwise direction.

E xam ple 2.16: In how many ways can 7 people sit round a circular 
dinning table

=  5 P - 1 ) !
= 360 ways

The number of arrangements when the direction (clockwise or 
anticlockwise) is specified is (n — 1)! This is because one of the 
items can be used as a starting point.

When the direction of arrangement is not specified is
ways.

E xam ple 2.17: How many ways can 20 different beads be arranged 
to form a necklace?

=  | ( «  -  1)!

= ^(19!) ways 
*

E xam ple 2.18: A round table conférence is to be held by 10 persons 
such that 2 particular person may wish to sit together.

( i )

(ü)
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Solu tion : Regard the 2 people as one. We now hâve 9 persons.
The two persons can be arranged in 2! ways. The 9 persons can be 
arranged in (9 — 1)! ways. The total number of arrangement is

8! x 2! =  80640 ways

2.4 C om bination
The number of arrangement or ‘sélection’ of n different items taking 

some or ail of the number of things at a time irrespective of the order is 
referred to as combination.
The number of combination n things taking r(r  — n) is denoted by

or nCr = nl(n — r)!r!
Most of the problems on sélection without replacement can be solved using 
combination approach.

E x am p le  2.19: In how many ways can a committee of 5 be selected from 
amongst 6 boys and 7 girls; if the committee must consist of (i) 2 boys and 
3 girls, (ii) at most 3 boys?

S o lu tion : There are a total of 13 persons.
(i) The total number of combination is 2 boys can be selected from 6

boys in ^ ^ ^ ways.

3 girls can be selected from 7 girls in ^ ^ j  ways.

Total number of combination is

j  =  15 x 35 =  525 ways

(ii) There could be 0,1,2 and maximum of 3 boys. Hence the total number 
of combination is

=  21 +  210 +  525 +  420 
=  1176 ways
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E xam ple  2.20: A box contains 20 balls ail of which are of the same size. 
15 of them are Red and 5 Black balls. 4 balls are selected at random from 
the box, find the probability of having:

(i) exactly 2 black balls.

(ii) at least 1 red balls.

Solution:

(i) The first thing to do is to find the combination of any 4 balls out of
20 
4

' 5 
2

Number of ways of choosing the remaining 2 from 15 red balls is 
15

20 (i.e. sample space)

Number of ways of choosing 2 black from 5 is

Number of outcomes of favour of the event is

P (2 black and 2 red balls) =

(ii) The probability of having at least 1 red bail is

(i ) ( ? )
( 2;)

15
2

= 0.217

M: ï  ) i
< 5 ' 
V2 ,H

' 15 'l
, 3 yH3)l +  l: ï ) 0

(20 ' 
40 )

75 + 1050 +  2275+ 1365
4845

= 0.983
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A) Com bination when a particular thing must be included or 
not included

(i) The number of ways of choosing r things out of n in which k

particular thing always occur >s ^ ^  ^

(ii) The number of ways of choosing r things out of n which k  par­

ticular thing never occur » ( • ; * )
E xam ple 2.21: 15 players were invited for a crucial match. In how 
many ways can 11 players be chosen if

(i) the skipper must be included
(ii) a particular player is injured and must not be included.

(iii) player A must be included and player B  must not be included.

Solution:

(i) If the skipper is selected first, we hâve 14 players left to select 
the remaining 10 players.

The required number d s ) - 1001 ways.

(ii) Remove the injured player, now select 11 from the remaining 14 
players.

' 14The required number is 11
-  364 ways.

(iii) If we remove B  and select player A.

Then required number is 13
10 =  286 ways.

Exam ple 2.22: A certain examination consist of 12 questions di- 
vided into two parts of 6 questions each. How many ways can a 
student choose any 8 questions if he must attempt exactly 5 ques­
tions from the first part?

Solution: From the first part, questions are selected in
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ways.

In the second part, 3 questions are selected

The required number is 6
5

6
3 =  120 ways.

- 20 ways.

(B) When ali items are alike and each of them  may be disposed 
ofF in 2 ways:
In this situation, the item may be included or rejected. The total 
number of ways of disposing ail things is 2 x 2 x • • • x n times = 2n. 
This include a case where ail the items are rejected.
Hence, the total number of ways in which one or more things are 
included is 2" — 1.

This is équivalent to n
n -  1 + ••• + n

1
/ n l ni.e.
U , M , n ~ +  •■■+ "  = 2 " - l

Exam ple 2.23: In how many ways can a student solve one or more 
questions out of 8 in a paper?
Solution: The student may either solve a question or leave it (i.e. 
2 ways). The total number of ways of solving one or two or ail the 
questions is

=  256 - 1  
=  255 ways

Note:
If it must include a case where none of the questions is solved, then 
the required number is

=  256 ways

Exam ple 2.24: How many different products can be formed with 
the letters a,b,c,d,e  and / .
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Solution: The number of ways in which one or more of the six letter

=  26 -  1

But this include a single letter which is not a product. Hence the 
number of products i.e. 26 — 6 — 1 =  57.

(C) W hen some items are alike and each o f them  can be disposed 
in a way:
Given n  =  [p + ç + r  + sH---- ] items out of which p, q, r, s of them are
alike and
p can be chosen in (p + 1) ways 
q can be chosen in (q + 1) ways 
r can be chosen in (r H- 1) ways.
then the total number of combinations is (p+ l)(ç +  l)(r + l)(s  + 1) -  1 
ways.

E xam ple 2.25: How many factors has 2160?
Solution: The factors of 2160 are i.e.

2160 =  16 X 27 x 5 
=  24 x 33 X 51

But
24 can be formed in 5 ways.
33 can be formed in 4 ways.
51 can be formed in 2 ways.
Hence the total number of factors are 5 x 4 x 2 =  40.

(D) W hen Sharing (Dividing) in items into different groups:
A number of items can shared among a group of people equally or in 
given proportion.

(i) If n -  p -t  q + r and p = q = r.
n\

Then the number of ways of sharing n things equally is ——
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(ii) If n =  p +  ç +  r and p q ^  r, then the number of ways of
m!sharing n things proportionally is -, ' .

p'.qirl

E xam ple 2.26:

(a) In how many ways can a deck of 52 cards be shared among 4 
players equally?

52!
Solu tion : = 5.36 x 1028

(b) If the group of 13 cards are to be arranged, in how many ways
can this be done?

52!
Solu tion : 4!-^—y- =  1.28 x 11030

E xam ple  2.27: How many ways can 18 books be divided?

(i) equally or 

(ii) in ratio 1:2:3

Solu tion :

(i) 18 books can be divided into 3 groups of 6 each. Then the 
required number is

18!
=  17.153,136 ways

fii) To divide 18 books in ratio 1:2:3 each group would consist of 
3,6,9 respectively.

. 1 8 !
Ht ace the required number is =  4,084,080 ways.

,) P e rm u ta tio n  an d  C om bination  O ccurring  S im ultaneously

Some problems requires the application of the permutation and com- 
binatic.’ approaches simultaneously. We shall give a theory which 
may ne: be proved.

T beo rem : if there are m  different things of one kind, n different
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thins of the 2nd kind and k different things of the 3rd kind. The 
number of permutation which can be formed containing r  of the first, 
5 of the second and j  of the third is

x (r * s +  j)\

E xam ple 2.28: How many ways can 5 boys and 4 girls selecued from 
among 12 boys and 9 girls be arranged on a bench?

12Solution: 5 boys are selected from 12 in ways.

4 girls are selected from 9 in ^ ^ | ways.

but the 9 people can be arranged among themselves in ap9 =  9! ways. 
Thé required number is

12
5 9! =  3.62 x 1010

E xam ple 2.29:

(a) How many words each containing 2 vowels and 3 consonants can 
be formed with 5 vowels and 8 consonants?

(b) How many words can be formed if

(i) ‘a’ must be included
(ii) the words must contain at least two consonants?

Solution:

(a) 2 vowels can be chosen from 5 in 

3 consc a.nts can be chosen from

the 5 let*. s can be arranged among themselves in 5! ways.
The requ red number is

5
2

5! =  560 x 120
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(b) ‘a ’ is a vowel = 67200 ways.
(i) if 'a ' must be included, we need one more vowel. The required
number is

j  5! = 33600 ways

(ii) If the word must contain at least 2 consonant, then it could 
contain 2 or more consonants.
The required number is

5!

=  33600 + 67200
= 100800 ways

(F) C om bined w ith  rép é titio n
Sometimes we are interested in the number of combinations of items 
when each of the items may be repeated. Given n items, the number 
of combinations taking r at a time then répétitions are allowed is 
denoted by nf fr  where

nHr { n + r - 1  \  _  (n +  r -  1)!
V r J  (n +  r — 1 — r)!r!
)n + r -  l)(ra + r -  2) • • ■ (n + r -  r -  l)(n  -  l)n

r!
(n + r - l ) ( n  + r -2 ) - - -n  

r!
E xam ple 2.30: How rnany combinations of 4 digit numbers can be 
formed Irom the digits 2,, 4, 5, 7, 8, 9 if the digits may be repeated 
at least once?

Soluth-o: There are 6 digits, to take any 4 at a time, the required
number is

6 H< / 6 + 4 — 1 \ _  9!
V 4! /  4Ï5!
126

E xam plr 2.31: 1 . ,.n experiment, 2 dice are rolled once. Find the
!olal number of outcomes if
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(i) they are distinct
(ii) they are ot distinguishable

Solution
On a single die there are 1, 2, 3, 4, 5, 6 (6 numbers)

(i) If they are distinct, the total number of outcomes is 62 =  36
(ii) If they are not distinguishable, then any number on the die may 

be repeated. Hence the required total number of outcomes is

P F )
Exercises:

(1) Show that ^

(2) If nCn_4 =  15; find n.

7!
2!5! =  21 .

(3) An examination question is divided into three sections A, B, C with
3,4 and 5 question respectively. A student is required to answer two 
questions each from. Sections A and B and 3 from Section C. In how 
many ways can he Write the examination?

(4) In how many ways can he solve one or more question in Section C.

(5) If the paper is one of the professional examination papers where can­
didates are required to attem pt as many questions as possible, find 
the total number of ways a candidate can Write the examination if he 
must attem pt at least one question?

(6) In how many ways can a person purchase two or more items out of 
5?

(7) A nursery school pupil learning simple arithmetic is given 5 counters 
with digits 2, 1, 3, 0, 4, 5 to form numbers. Find the probabilily that 
the pupil is about to form a

(a(i)) 3 digit. number

(ii) a number greater than 100,000
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(b) Using ail the digits except 0, how many numbers can be formed 
and what is their sum?

(8) How many ways can the letters of the sentence “Daddy did a deadly 
deed” be formed?

(y, A boy found a keylock for which the combination was unknown, but 
correct combination is a four digit number d i,d2,d3,d4 where d, , i  =
1,2,3,4 is selected from 1,2,3,4,5,6,7,8.
How many different lock combinations are possible results in such 
keylock?

(10) Ten children are to be grouped into two clubs in such a way that five 
will belong to each club. If in watch club a secretary and a president 
is to selected, in how many ways can this be done?

(11) A shelf contains Chemistry, Mathematics and Economie text books. 
In how many ways can 5 books be selected?
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C h ap ter 3

R an dom  V ariab les and  Their 
D istribu trion s

3.1 In tro d u c tio n
In a statistical experiment, the set of ail possible outcomes is termed the 

sample space. Some experiments yields sample spaces whose éléments are 
numbers, but some other experiments do not yield numerically valued élé­
ments. For mathematical convenience, it is often désirable to associate one 
or more numbers (in addition to probabilities) with each possible outcomes 
of an experiment.

In this chapter we shall study the integer-valued random variables which 
is known as discrète random variables, continuons random variable and 
their distribution.

D éfinition: R andom  V ariable
A random variablex X  on a sample space 5  is a function X  : X  — » Æ. 

that assigns a real number A'(s) to each sample point s G S.
Capital letters, such as X,  Y  and Z  will be used to dénoté random 

variables. The lower case letters x ,y ,2 ,. . .  will be used to dénoté possible 
values that the corresponding random variables can attain.

47
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E xam ple 1: A fair coin is tossed three times. The sample space

S = {TTT, H TT. T T  H, T  HT. H HT. H T H , TU  H, HH H} 

Let X  dénoté the number of heads which appears. Then

X{s) = {0,1,2,3}.

The tree diagram is shown in figure

Sample Points A'(s)
- HHH

■ HHT 
-HTH

HTT 
-TH II

-THT
-TTH

■ TTT

2
2

1
2

1
1

If the outcome of one performance of the experiment were S  = TH T ,  
then the resulting experimental value of the random variable X  be 1 - that
is,

X (T H T )  = 1
Note that two or more sample points might give the same value for X  (i.e., 
X  may not be a one-to-one function), but that two different numbers in the 
range cannot be assigned to the same sample point (i.e., X  is a well-defined 
function). For example

A' (HTT) = X (T H T )  = X (T T H )  = 1

D iscrète  R andom  V ariables
Random variables that arise from counting operations, such as the ran­

dom variable in example 1 are integer-valued. Integer-valued random vari­
ables are examples of an important spécial type known as discrète random 
variables.
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D éfinition
If the set of ail possible values of a random variable, X, is a countable 

set, X\,X2, ■ • ■ ,x„, or i j ,  12, • • •, then X  is called a discrète random variable. 
The function

f{x) = P \ X  -  x\ x  = x (1-1)

that assigns the probability to each possible value x will be called the 
discrète probability density function (discrète pdf).

Another common terminology is probability mass function (pmf), and 
the possible values, x,, are called mass points of X.

Sometmes a subscribed notation, f x(x) ,  is used. The following theorem 
gives general properties that any discrète pdf must satisfy.

Th e o re m  1.1
A function /(x ) is a discrète pdf if and only if it satisfies both of the 

following properties for at most a countably infinité set of reals X\,Xi, ■ ■■

f(*i) > 0 (1.2)

for ail Xi, and
E  /(*.■) =  1 (1.3)

ail *.
P ro o f

Property (1.2) follows from the fact that the value of a discrète pdf is 
a probability and must be non-negative. In case of property (1.3), since 
xj, £2, ’ ’ represent ail possible values of X,  the events \X  =  Xi], [X =  X2] • ■ • 
constitute an exhaustive partition of the sample space. Thus,

£  / M  =  £  p \x  =  * ]  =  1.
ail x, ail x,UNIV
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Exam ple 2
Returning to example 1,

/(O) =  P[X  = 0] =  \

f ( l )  = P[X = 1] =  |

f(2) = P[X = 2\ = Z-

f(3) = P[X = 3 } = 1- .

Here
/( x t) > 0 for x, = 0,1,2,3

and

È/w = m + m +m +m
z ,= 0

1 3  3 1
8 + 8 + 8 + 8
8
8

-  1

Définition: Cumulative distribution function (CDF)
The cumulative distribution function (CDF) of a random variable X  is 

defined for any real x by

F(x) = P\X < x] (1.4)

The function F(x) is often referred to simply as the distribution function 
of X,  and the subscripted notation, Fx[x), is sometimes used.

For brevity, we will often employ a short notation to indicate that a 
distribution of a particular form is appropriate. If we write X  ~  /(x ) or 
X  ~  F(x), this will mean that the random variable X  hais pdf /(x ) and
CDF F(x).
The general relationship between F(x) and /(x ) for a discrète distribution
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is given by the following theorem.

T heorem  1.2
Let X b e a  discrète random variable with pdf / ( x) and CDF F(x).  If 

the possible values of X  are indexed in increasing order, Xj < x2 <  x3 < • • -, 
tnen

/ ( i i )  = E(xi), and for any t > 1
(1.5)

f ( i i )  = F(ii) -  F( ii - i )

Also, if x < xi then F(x) =  0, and for any other real x

F(x) = £  /(*,-) (1.6)
i,<i

E x p ec ta tio n  an d  V ariab le of R andom  V ariable D éfinition
If X  is a discrète random variable with pdf /(x ), then the expected value

of X  is defined by
«P0 = X>/M (x-7)

X

The sum (1.7) is understood to be over ail possible values of X.  Also, it is 
an ordinary sum if the range of X  is finite, and an infinité sériés if the range 
X  is infinité. In the latter case, if the infinité sériés is not convergent, then 
we will say that E[X)  does not exist. Other common notations for E{X)  
include /z, possibly with a subscript, px - The terms mean and expectation 
are also often used.

The variance of X  is given by

uar(X) =  E [ ( X - M)2] (1.8)

Other common notations for the variance are o2, ox , or V (X),  and a related 
quantity, called the standard déviation of X,  is the positive square root of 
the variance, o =  ox  =  \Jvar[X). It is possible to express the variance in 
terms of p = E( X)  and E ( X 2).
In particular

var(X)  =  E \ ( X - p ) 2) = ^ { x - p ) 2f(x)
X
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=  £ x 2/(x ) “  2/i £ * / ( * )  +  M2Z / ( a:)
Z X X

= E ( X 2) - 2 n E { X )  + m2(1) byeqn. 1.3 
=  E { X 2) -  2/i-M +  M2
=  æ (at* ) - m2
=  £ ( * ’) -  \ E{X )\2

E xam ple
A discrète random variable X  has a pdf of the form

/ ( x) = k (8 — x ) for x  = 0 ,1 ,2 ,3 ,4 ,5 , and zéro otherwise.

(a) Find the constant C.

(b) Find the CDF, F(x)

(c) Find P[X > 2]

(d) Find E[X)

(e) Find var(X).

Solution

(a) If f (x)  is a pdf, then

à  /w = i
z=0

Z  k(8 - x )  = 1 
1=0

]C (8 - x )  =  l
r=0

Ar[8 + 7 + 6 +  54-4 + 3] = 1 
33A: =  1
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(b) F(x) =

(c) P \ X >  2|

(d) E(X)  =

(e) E(X*) = 

var(X) =

P ( X  < x)

=  i -  m
= 1 — P(X  < 2)

-
_ r_s_ _r_ _e_

133 + 33 + 33
= l - 2- l33

12
33

= 0.636

„ 8 7 6 5 4 3
° X 3l + 1 X 3i+ 2 X i5 + 3 x ^  + 4 X 3l+ 5 X 35
0 ^  12 15 16 15
33 + 33 + 33 + 33 + 33 + 33 
65
33
1.9697

02 x ^ -  + l 2 x ^ -  + 22 x ^ -  + 32 x - ^ - + 4 2 x — + 52 x —33 ' " 33 ~ 33
0 T_ 24 45 64 75
33 + 33 + 33 + 33 + 33 + 33 
215

6.5152

33 33 33

£(X 2] -  (£(X)]2 
6.5152 — [1.9697]2 
2.6355
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E xam ple
A distribution of positive integers has probability function

J,W = è(x)
P(x) = 0

for x  = 1 ,2,3,4,5

for x  > 5

80
Prove that the expected mean value is — and that the variance is

31

S o lu tion

X  = x 1 2 3 4 5
P{x)

5 10 lu b 1
31 —31_i 31 _31 3J_

Mean =  E{X)  =  V~ xf (x)

E [ X 2) =

Var{X)  =

i=i
, 5 10 10 5 1
1 x -  + 2 x - + 3 x -  +  4 -  +  5 x -  

31 31 31 31 31
5 20 30 20 5— -j- — -f- — H- — —

31 31 31 31 31
80
31

T x 2f{x)
x= 1

, 5  , 1 0 ,  1 0 , 5 , 1
l 2 x  —  + 22 X —  + 32 X —  + 42— + 52 x —

31 31 31
5 40 90 80 25

3 l + 3 l + 3 l + 3T + 3Î 
240
31

E ( X 2) -  [£(X )j2 
240 _ /8 0 \ 2 
31 V 31 /
1040

31 31

1040
961

961
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' - B ernoulli D is trib u tio n
Suppose that, on a single trial of an experiment, there are only two 

events of interest, say E  and its complément E' . For example, E  and E'  
could represent the occurrence of a “head” or a “tail” on a single coin toss, 
or, in general, “success” or “failure” on a particular trial of an experiment. 
Suppose that E  occurs with probability P  = P[E)  and consequently E' 
occurs with probability q = P(E')  = 1 — P.

A random variable, X,  that assumes only the values 0 or 1 is known 
as Bernoulli variable, and a performance of an experiment with only two 
types of outcomes is called a Bernoulli trial.
/(O) =  {X = 0) =  q 
/ ( I )  =  P ( X  = 1) =  P
where p + q = 1.

The pdf can be expressed as

/(* )  = pzqî-* x =  0,1

The corresponding CDF is given by

0 for H A O

F (x)  = Q for »—4V HVIO

1 for X > 1

(1.9)

( 1.10)

E x p ec ta tio n  A nd V ariance of B ernoulli D is trib u tio n

E(A) = 0 • g +  1 • p =  p 
E ( X 2) = O2 • g + l 2 • p =  p

so that
Var{X) = p -  p2 = p(l -  p) = pq

3.3 B inom ial D is trib u tio n
In a sequence of n independent Bernoulli trials with probability of suc­

cess p on each trial, let X  represent the number of successes. The discrète 
pdf of X  is given by

pzqn~zb(x\n,p) = n
x x =  0,1 ,, . . ,71 ( 1. 11)
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The general properties (1.2) and (1.3) are satified by équation ( l . l l )  since 
0 <  p <  1 and

£ b ( x ; n , p )  = t ( nx ) p r  
z=0 z=0 \  X 1

=  ( p + ? r  
= r
= î

The CDF of a binomial distribution is given at integer values by

z

B{x-,n,p) =  ]T  b(k]n,p) x  = 0 , l , - - - , n  (1.12)
k=0

A short notation to designate that X  has the binomial distribution with 
parameters n and p is

X  ~  B(x;n,p)

or an alternative notation

BIN(n,p)

The M ean an d  V ariance of B I N ( n , p )

E\X\ = X > / ( x )
1=0

1=0

=

since the term when x  =  0 contributes zéro to the sum,

=  np y ------------- (?. ^ --------------h  _  p)(n
^ ( x - l ) ! [ n - l - ( x - l ) ] ! U PJ

—!)-(*-!) *-l
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■vriting N  = n -  1, R = r — l in  the summation,

= n p [( l-p )+ p )*  
=  np.

We could hâve shortened this work a little by using the notation q = 1 — p, 
and we use this when finding var(X).

E( X ' )  =  Ê

= E N 1 -  1) + *] ( r )  XpX'

Since the term for which r =  0 contributes zéro to the summation,

_  y ,  z(x — 1) • n! n-x x ,
-  £ “ô r - " * )w  9 p + E l

=  n(n -  1 )p2 Y,
(n — 2)! 

i=2 ( x - 2 ) ! ( n - x ) !

9 P

_ n - x „ z - 2  , _ _q p + np

Since the term for which x = 1 contributes zéro to the summation, and 
we hâve already shown, when finding E(X) ,  that the second summation is 
equal to np.

If we put N  = n  — 2, R  = r — 2 in the first summation', we hâve

E[X2)

.. Var(X)

n [ n ~ 1)p2L  m - R v qN~RpR+np
n(n -  l)pJ [9 +  p)W + np
n(n -  l)p2 +  np, since p +  q =  1
n(n -  l)p2 + np — n2p2
np(l -  p)

=  npq

3.4 U seful equality
In a problems on the binomial distribution where we hâve to calculate 

more than one probability, a useful equality connects consecutive terms in 
a binomial expansion. It is

p(z+  1) =
n — x 
x + 1
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For example, the value of P(2) can be obtained from that of (P (l) by using 
the equality

where n and p will be given in the problem.

3.5 Hypergeom etric Distribution
Suppose a population or collection consists of a finite numher of items, 

say N,  and there are M  items of type 1 and the remaining N  — M  items are 
of type II. Suppose n items are drawn at random without replacement, and 
dénoté by X  the number of items of type 1 that are drawn. The discrète 
pdf of X  is given by

(1.13)

The underlying sample space is taken to be the collection of ail subsets

of size n, of which there are 

outcomes that correspond to the event \X = x\.
A short notation to designate that X  has the hypergeometric distribution 
with parameters n, M, and N  is

N
n , and there are M

x
N - M  
n — x

X  ~  HYP(n , M, N)

A n Id en tity

For a hypergeometric distribution we must hâve ^  P(x)  =  1, because
1=0

P(x)  represent ail the possibilities that can occur; it follows that

N  -  M

M

M

£
1=0

M
x n

N
n

M ean an d  V ariance o f H Y P (n , M, N)

E{X)
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M
E( X)  =  £ *

x = 0

M
x

M

=

) ( )
(M — 1)! ( N - M

X

M-l
=  M E

r |  (x -  1)!(M — x)! \  n — x

( M - l ) !  ( N - M
i!(M — £ — 1)! \  n - t -  1

(setting t =  x — 1, that is, x =  t +  1, so that, as x goes from 1 to M , t goes 
from 0 to M  — 1)

M - l
=  w  E  

1=0

M - l  \  (  N - l - ( M - l )
n - t  -  1

=  M AT- 1 
n -  1

Using the identity given above, it follows that

E(X)  = M

= M x ( * - ! ) !
(n -  l ) ! (AT-n)!

n!(AT-n)!
AT!

= n M
AT

N ote:
MIf we were sampling with replacement, P = —  would be the appropriate

binomial parameter and the binomial mean would be np =  n —  the same
N

as for the hypergeometric distribution.

V ariance We first find E \ X ( X  -  1))

=  V - V  ( N - " )
x 2̂ (x  ~  2)!(M -  x)! V n - x  )
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Now set t = x  -  2

=  M ( M - ^  (M - 2)1

’ h  - t -  2)! (
N - M  \ 

n — 2 -  t )

(use the identity)

Thus

£ [ * ( * - ! ) ]  =  M ( M - l ) ( ^ : 22 ) / ( " )

-

It follows ghat

V( X)  = E \ X ( X - 1 ) )  + E \ X ) - \ E ( X ) ] '

= M ( M  -  1) 

M  /_ M

n[n -  1) M
N [ N - l ) + n N  H 

N - n '

-M!
N 1

M  (  M \  ( N  — n \  
" N V ” ~n )  \ N  -  l )

N ote:
If we are sampling with replacement, p =  ^  would be the appropriate 
binomial parameter and the binomial variance would be

n , ( l - p ) = B f  ( l - £ )

s is slightly greater than the hypergeometric variance because of the 
. or (N  — n ) / ( N  — 1) in the latter. As N  becomes very large compared 
wiih n (the number of trials), the hypergeometric distribution tends to the 
binomial distribution.
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Theorem
If X  ~  HYP(n,M, N),  then for each value x =  0 ,l , . . . , n  and as N  -* 

oo and M  —► oo with M / N  -* P, as a positive constant,

Note:
The binomial distribution is applicable when we sample with replacement, 
while the hypergeometric distribution is applicable when we sample with- 
out replacement. If the size of the collection sampled from is large, it shoud 
not make a great deal of différence whether or not a particular item is re- 
turned to the collection before the next one is selected.

3.6 The G éom étrie D istribution
This distribution can arise in an experiment which fulfils the conditions 

which are required to be satisfied for the binomial distribution except that, 
instead of counting the number of ‘succeses’ which occur in^the n. trials, 
as we die for binomial, we carry on with the trials only until we get one 
‘success’.

If we dénoté by X  the number of trials required to obtain the first 
success, then the discrète pdf of X  is given by

/(* ;p )= M * _1; X =  1 ,2 ,3 ,... (1.15)

A spécial notation to designate that X  has géométrie distribution is X  ~Geo(P).
The general properties of (1.2) and (1.3) are satisfied by (1.15), since 

0 < p < 1 and
OO OO

E / ^ p l ^ E r 1
X =  1 1=1

=  P{l + q + g2 + ---)

P
q

= 1

(1.14)
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3.7 Mean and Variance of GEO(P)
The mean of X  ~GEO(P) is obtained as follows:

e (x ) = £ > « * - »
1=1
A  d z 

= L , P - r qX=, dq
ri 00

=  p - Y  qk 

d .  1 i
=  W — J

(i -  qy
p_
p2
î

In other words, if independent trials, having a common probability p of 
being successful, are performed until the first success occurs, then the ex- 
pected number of required trials equals
To détermine the Var(.X') let us first compute EjAT2]. With q =  1 -  p:

e [x 2\ = Y x W ~ l
X=1
00 d

=

= pU È xq')
■

=  p 1 , 2 (1 - P)
P2 P5
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Hence, since E\X] = -

Var{X) = (1 - p

3.8 N égative B inom ial D istribu tion
In repeated independent Bernoulli trials, let X  dénoté the number of 

trials requird to obtain r successes. Then the probability distribution of X  
is the Négative binomial distribution with discrète pdf given by

/(z ;r,p ) =
x  — 1 
r -  1 pr( i - ? r r (1.16)

A spécial notation, which désignâtes that X  has the négative binomial 
distribution is

X  ~  NB(r,p).
The general properties (1.2) and (1.3) are satisfied by (1.16), since 0 < p < 1

£ l * : î  J * "  = 'Z«=0
i + r  -  1 

r -  1

=  pr( i - < ? r
~  i

Note that Ÿ  ^ 1 T  ̂ 1 j  g' is the sériés expansion of (1 — q) r.

3.9 M ean and  V ariance of NB(T, P)

E [ X k\ =

r  00
=  - £ *  P x=r

*-l

X  ~  1 
r -  1

„ r + i

Pr( i - Pr r

pr+1(l — p)x r since x x  I
r -  1

= -  £  ( m -  1)t_1 (  m 1 ) Pr+1 (1 -  p)m (r+I) by setting m =
P m = r + 1  V r  /

=  1 + 1

= -E[(Y  - l ) * - 1)
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where Y  is a négative binomial random variable with parameters r + 1 , p. 
Setting A: =  1 in the preceding équation yields

m  - 1 .

Seuil g k = 2 in the preceding équation, and using the above formula for 
the e>pected value of a négative binomial random variable, gives that

E\X2\

Therefore,

Var[X) =

3.10 Poisson  D is trib u tio n
A discrète random variable X  with probability function

/(x;/*) = ^ j A  x - 0 ,1 ,2 ,. . .  (1.17)

where \i > 0 is said to hâve a Poisson distribution with parameter [i.
A spécial notation that désignâtes that a random variable has the Pois­

son distribution with parameter n  is

X ~  POI{n)

The properties given by (1.2) and (1.3) are clearly satisfied, since p. > 0 
implies f(x;p.) > 0 and

£ / ( * ; M ) = e - " £ ^ = e - V * =  1 
1 = 0  x = 0  X ■

=
r +  1

-  1

r +  1
P

r (l — p)

- 1  -  -
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3.11 M ean  a n d  V ariance o f POI(fx)

Next,

Hence 

so that

Mean =  E\X] = £
00

1=0 x!

£
MMx - i

x t l ( x - l ) !
00 nm= —t  where m  =  x — 1

m = 0

=  /nT^e"
=  M

E \ X ( X -  1)] = £ x ( x - l ) e - ^  
x=o x -

= £ z ( z - l ) e M
x=2 x(x — l)(x  — 2)!

00 Zi1M 2
=

x = 0  Z -

£ ( * 2) = m2 +  m

Var(AT) = p2 + p — p 2 =  p.

3.12 Poisson as a L im iting Form  of th e  B inom ial
If X  ~  BIN(n, p), then for each value x = 0 , 1 , 2 , . . and as P —* 0 with 
P  p  constant,

lim BIN(n,p) = POI(n)

lim 1 n
n—»co \ x

p x ( i  _  p j n  —x = e^p*
x!

P ro o f
P x(l -  P)n~x = ni

x!(n — x)! \ n 1 - *
n

(1.18)
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limn—oo lim ( l - ^ n = n—oo V n )
n p z [ \ - p y

mV "  
i !

smce

and, forf fixed x, lim f l  — = 1
n - o o  \  n )

T heorem  1.3
A function /(x ) is a continuons pdf if and only if it satisfies kboth of 

the following properties for ail x  €  S , the sample space

(i) /(x ) > 0

(ii) Js f{x)dx =

(1.19)

( 1 .20 )

Eq. (1.20) means intégration over the sample space. 
For any xq < Xi in S,

P(x0 < X  < Xi) =  f  f (x)di  
J zu

(1.21)

Equation (1.21) represents the area of the région under the graph of the 
probability density function /(x) between the limits x =  xq and x =  xj

Définition
The probability (cumulative) distribution function, F(x) is defined by 

the relation
F(x0) = P ( X  < x0) = /  “ f {x)dx  (1.22)

J - O O

This represents the area of the région under the graphy of the pdf, /(x ), 
from x =  —oo to x =  io- The function F(x) obviously increases from zéro 
at the bottom of the range to unity at the top of the range.

From Eq. (1.22)

/(* ) =  (1-23)

3.13 E x p ec ta tio n  and  V ariance o f a  C ontinuons R an d o m  V ariab le
We define

/+oo
xf{x)dx

OO
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the expected mean value of X,  and

„ r + o o  r + o o
o2 =  var(X) = (x -  fj)2f (x)dx = / xi f (x)dx  -  fi2

J - o o  J - o o

the variance of X.

P ro o f

/+oo r+oo r+oo
(x -  n)2f (x)dx = / x 2f ( x ) d x - 2fi x f (x)dx

•OO J -O O  J - o o

/+00
f (x)dx

-oo

/+oo
x 2f [x)dx -  2/x2 +  n2

•00/ + 00
x 2f (x )dx  -  fi2

-00

Since
[  x f (x)dx  = n, f  f (x )dx  = 1,
J-oo J-OO

or /-♦-oo
x7(x)dx  — /j,2 = E { X 2) -  u2.

-oo

Exam ple 1
The pdf of the continuous random variable X  is given by 

/(x ) = kx2, 0 < x < 1 

/(x ) =  0, elsewhere
Find (a) the value of k

(b) P{Xl-,eq\)

(c) P ( i < X < i )
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Solution

(a) [  f (x)dx = 1
J - O O

=> f  k z2dx = — =  1
Jo 3

=> k =  3

(b) P ( X  <  i )  =  /  ̂  m i t  = j f*  3x3dx =  i

u p'\<x<\)=l; h
E xam ple 2

A random variable X has cumulative distribution function
F[x) = 0 , x < 0

F{x) = kx4, 0 < x  < 2,

F(x) = 1, i  > 2.

Solution

( a ) / ( * )  =  =  4kxZ
F(x) must be unity at x = 2,
=> 16 A: =  1, k =

16
giving ^

/ ( x ) =  T ’ 0 < a; < 2>

/(x ) = 0, elsewhere.

(b) E(X)  = J
+ 00

xf (x)dx =
-O O

r - - x d x =
Jo 4

x6'
20

(c) Var(X)  = M * - (!)’
2 _  64 64 _ 8

[24)0 U “  24 25 ~ 75

8
5
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3.14 T h e  C on tinuons F unction  D is trib u tio n
A continuons random variable X  whose probability density function 

(pdf) is given by

/(x ;a ,6 ) =  — — forf a < x  < b, where a, b are finite
b ~ a (1.24)

/ (x; a, b) = 0 otherwise,

has a continuons uniform distribution over the interval [a,6j.
A notation that désignâtes that À'’ has pdf of the form (1.24) is

UNIF(a,6).

We can see that this is a valid density function, since f {x)  > 0, and
/ +<» rb 1

f {x)dx = / ------dx = 1.
-oo J  a  0 — a

M ean  a n d  V ariance  of U N IF (a, b)
The mean of X  is obtained as follows:

b2 - a 2 

2(6- a )
(6 + a) (6 -  a)

2(6 -  a) 
a + 6 

2

Furthermore,

w  - /> '(X )di
b3 - a 3 

3(6 -  a)
(62 +  a6 + a2)(6 -  a)

3(6 -  a) 
b2 + ab + a2

3
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Thus,

Var(X) E[X' \  -  (E(X)]2 
b2 + ab +  a2 (a +  6)2 

3~ 4

12

3.15 T he E x p o n en tia l D is trib u tio n
A continuous random variable X  whose pdf / ( )  is given by

f (x )  = \e~Xx for x  > 0, where A is a positive constant

f (x )  = 0  otherwise

has an exponential distribution with parameter A. Since

/ : > > - = f —  - [——ir
= 1, for A > 0

(1.25,

The notation that designate that X  has an exponential distribution with 
parameter A is X  ~  Exp(A). M ean and  V ariance o f Exp(A)

E{X)  = f°° \ xe~Xxdx 
Jo

= [—i e _Alj o + J e~>xdx,  integrating by parts,

re- A* r  i
- N 0=Â’ forA>°

E[X2} = r  Xx2e-Xzdx 
Jo

= [~x2e_Jl]û + 2 J xe~Xzdx,  integrating by parts,

2

= h - h - h
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3.16 Weibull D istribution
A continuous random variable X  is said to hâve the Weibull distribution 

with parameters 0  > 0 and 6 > 0 if it has a pdf of the form

f (x;O,0 ) = ^ x ° - ' e - ^ \ x >  0

and zéro otherwise.
A notation that désignâtes that X  has Weibull distribution with parameters 
0  and 6 is

A' ~  WEI(e,0).
It is a distribution that lhas been successful used in reliabi 1 it y theory.

3.17 The Mean and Variance o f WEI(0, J)

m )  =

= --  H  x [1+0)~'e-{t/e)"dx
W o

Following the substitution t =  (x/d)s , and some simplification.

E(X) = 9 I™ e~ldt = er  f l  4 M

Similarly,

E( A 2) = t?2r ( i  + | ) ,

e2 [r  f i  4  - ) -Y2 (1 4  M l
\  P) \ 0 } \

and thus UNIV
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C h ap ter 4

M om ent-G enerating Functions

4.1 Introduction
In this chapter, we shall define the moment-generating function of a 

random variable. Specifically, vve shall consider bot h discrète and contin­
uons random variables. We shall also show how the mean and variance of 
a distribution can be determined using the method of moment-generating 
function.

Définition
Let X  be a random variable of the discrète type with p.d.f. f[x).  If 

there is a positive number h such that

E(e“ ] =  £ e ‘7 (* )
X

exists for -h < t < h, the the function of t defined by

m  = e w  i
is called the moment-generating function of X.
For any positive integer r,

M (r,(t) =  £ x re'7(x)
2

Thus, it can be shown that for -h < t < h, the dérivatives of /Vf(<) of ail 
orders exist at t = 0.

am  =  z , x c « m
x

M"(t) = £  *»«*•/(*)

72
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S e t t i n g  t  =  0 ,  w e  h â v e

M'(0) =  ] [> /(* )  = £ [* ]
X

M " ( t )  =  £ x 2/(x ) =  £[X 2]
X

a n d  in  g e n e r a l

Afw (o) = x y /(* ) =  * [ * ”]
X

T h e r e f o r e ,  i f  t h e  m o m e n t - g e n e r a t i n g  f u n c t i o n  e x i s t s ,

H -  M'(0) a n d  a2 = M"{0) -  [M'(0)]2

T h e  d é f i n i t i o n  o f  m o m e n t - g e n e r a t i n g  f u n c t i o n  r e m a i n s  t h e  s a m e  fo r  c o n t i n u o u s -  
t y p e  r a n d o m  v a r i a b l e s  e x c e p t  t h a t  i n t é g r a i s  r e p l a c e  s u m m a t i o n s .  S o  f o r  a  
c o n t i n u o n s  r a n d o m  v a r i a b l e  X  w i t h  p . d . f .  / ( x ) ,  t h e  m o m e n t - g e n e r a t i n g  

f u n c t i o n  is
M ( t )  -  I  el z f ( x ) d x ,  - h  <  t <  h .

Exam ple 1: L e t  X  b e  a  b i n o m i a l  d i s t r i b u t i o n  w i t h  p .d . f .

/(* ) =
( x  ) pZ^  ~ P',n 1 ’ 1 = 0 ,l ,2 , . . . , n  

0 , elsewhere

T h e  m o m e n t  g e n e r a t i n g  f u n c t i o n  o f  X  is

M ( t )  =  £ [ e - ]  =  E  « * * /(* )
X

-

=  1(1 -  P)  + P e ' j n

4.2 M ean and variance of binom ial d istribution

S in c e  M ( t )  =  ( l - p ) + p e ‘]n

M ‘(t )  =  n p e ‘i ( l -  p j  +  p e ' r 1
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and

E \ X ]  =  Af'(O) =  n p [ ( l - p ) + p i" - 1 = np

M"{t) =  « ( n - l J K l - p J + p e r - W  + n p e ' K l - P Î + P e ' r 1
M "(0) =  n(n -  l)p2 + np 

It follows that

V { X )  = M" { 0) -  |M '(0)j2
= n(n -  l)p2 +  np -  (np)2 
= n p -  np + np -  n p‘
= np -  np2

=  «P(l -  P)
=  npç where q — 1 — p

E xam ple 2: Let .Y hâve a poisson distribution with p.d.f.

Xze~x

/(* )  = i! , x = 0 ,1 ,2 , . . .  and A > 0

0 , elsewhere

The moment generating function of A' is 

M(t)  = E\c'*\ = £ < '* /(* )

= E
i = 0

00 etxXxe~x
i = 0 X!

=  e~AE
1=0

(Xe‘)x
X!

= e_AeAe'
= eA,e' 11 for ail real values of t

Mean and variance of Poisson distribution

Sine» M(t)  = eA(e‘- ,)
M'(t) = eA(t' - 1>(Ae1)
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and

and

then

Therefore

Af'(O) =  A

M " ( t )  =  e ^ ' ~ 1\ X e t) + eA(e'-1)(Ae1)2 

M"(0) =  A + A2

V{X)  = M"{0) -  (M'(0)]2 
=  A + A2 — (A)2 
-  A

That is, a poisson distribution has

fx = o2 -  A > 0

E xam ple 3: Let X  hâve a gamma distribution with p.d.f.

/(* ) =

X a - l e - x / p

, x > O : c t > O , 0 > O
3aT(a]

{ 0 , otherwise

where a and 0 are the parameters of the distribution.
The moment-generating function is

roo 1

=  L  etzw w f ~ le dx 

= L v* 1/0dx
— / —TT/—\ x  e f/o 0aT (a)

=  [ ~ — L - z ' - ' e - ^ - M d aJ o /3°T(a)

y = x(l  -  0 t ) /0 , t < -
If we set
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or
x = (3y/ (1 -  Bt)

We obtain

m) m r mxpu ey
K1 Jo r(û)/3a 1 -  Bt

a-1
e~vdy

■  {rh Y  l" w r ' r,d«
- (rbi)' m r ^ é ,

1 \ “ 1
----- — provided t < - .
1 - B t )  B

4.4 M ean and  variance of gam m a d is tribu tion

Since M {t) =

M '(0  = ( - « ) ( ! -iS*)— 1^ )

then
A/'(0) = û/3

and
M "(0  =  ( - û ) ( - a - l ) ( l - / 3 / ) - ° - 2( - ^ ) î

then
M"(0) =  a (a  + l)/?2

= M"(0) -  |Af'(0)]2 
= «(a + i )B2 -  (c>B)2
-  q(q 4- 1)02 -  a 'B2 
= o2B2 + o02 -  a232

-  a/32

Therefore,
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Exam ple 4: Let X  hâve a Normal distribution with p.d.f.

/(*)
, - o o < i < o o  

0 , otherwise

We can find the moment-generating function of a normal distribution as 
follows.

M (l) =  E (t: ) =

1 ( - 2o2tx + x2 -  2/ix +
=  — 2 a2

dx

*]} dx

We complété the square in the exponent. Thus

= exp{— -  M2 - 2fia2t -  [o2)2t2}dx
because the integrand of the last intégral is equal to 1 

= exp{/it + —  }

4.5 The M ean and variance of N orm al d istribution 
Since

M{t) = exp{M* +

Now,

M'(t) = exp{fit + } x [n + o2t)
so,

A/'(0) = n — mean

and

M"{t) = a2 exp{^« + + exp {ut + ~ )  X [n + o2t2)

M"{ 0) = a2 + n 2
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Thus

V'ariance M"(0) -  (M '(0)): 
o 2 + M2 -  M2

T h ecrem
The moment generating function of a sum of two independent random 

vari tbles is the product of their moment generating functions.
if X  and Y  are independent random variables, the moment generating 

function of the sum X  +  Y

M x+y(t) = E(c«x+Y') = E(etXetY)
= E(etx)E(etŸ)
= Mx [t)-My{t)

Where M x (t) is the moment generating function of X  and My(t)  is the 
moment generating function of Y .

P roof: The joint p.d.f. of X , Y  is / ( x,y)

Ai x +y{t) £[e‘l*+1')]

^  Jx  e'(l+1'1 f (x,y)dxdy

jY jy etxe,v f{x,y)dxdy

Jy jx e'1 • etvf x (x) • fy  (y)dxdy 

(since X  and Y  are independent) 

fx e,xf x [x)dx etvf Y[y)dy

M x ( t ) - M y [ t ) .

Finite induction extends this theorem to the sum of any finite number of 
independent random variables: if X\ ,  X ^, . . . ,  X n are independent, then

«=i
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If the random variables hâve identical distributions, say, with common mo­
ment generating function Mx(t) ,  then

MXl+Xi+ +Xn(t) = [Mx (t) f .

4.6 M oments
Moments has its origin in the study of Mechanics. It is one of the devices 

for measuring the characteristics of a distribution.
There are three different kinds of moments.

(i) Moment about the origin

(ii) Moment about the mean

(iii) Factorial moments

Each of these shall be treated separately.

(i) Moment about the origin is defined as U' = E { X T)
OO

=  ^2 X rP[X)  for a discrète random variable
i= 1

/ oo
X r f (x)  • • • for a continuous random variable.

-O O

(ii) The rth moment about the mean is defined as nr = E ( X  -  n)T
OO

.. nr =  ^(AT — n)TP[X)  for discrète random variable.
1=0

/oo
(X -  fi)rf ( X )  for continuous random variable.

OO

For a sim ple sériés:
rth moment about the origin is given by

u.  = l £ ( x  o r
_  n i=i________

~ -  O)1 =  ~ ~  =  X  (mean)

-  }n ± ix - o ) ' = ±±X*
”  i n .=i
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d  = !  > ":!*  »}=. l < : x ‘
n r= i n r=i

mî =  1-± ( x - o r = ± ± x '
n r=i n r= i

,, , , , j Z f { X -  O)3for grouped data n3 = -----—— —
2-* y

T he rth m om ent a b o u t th e  m ean is given by

nr = l t ( x - x y
_____ n i= 1_________

Note that the first moment about the mean is zéro and the second 
moment about the mean is the variance.

■■■ «  = i t ( X - X )‘ = 0
U i= I

M2 = -  — X )2 =  (variance)
n  .= 1

It is otherwise known as the central moment. However, the central 
moment can be expressed as a function of the moment about the 
origin as follows:

m2 =  ~ Y , x 2 - n x 2 

_  1 ' p  y 2 X )2

• = M2 -  (m!)2

Ms

i  +  3X -  X* -  X3]

l E x , _  t x z i r  z x  ^ 3 _ l v S
n n

- X 3 + 2X 3 + 2X 3 - 3 -  — 
n n n

- X 3 = - X 3 -  2X 3 n 3— —  
n n
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••• M3 =  M3 +  2^1 ~ 3m}̂ 2

(iii) F ac to ria l M om ent
The rth factorial moment is defined as fi(r) — E \ X ( X  — 1)(AT — 2)(X —
'  +  1)1

M(i) =  £ (* )
The second is factorial moment is n (2j =  E[X( X — 1)]

3rd factorial moment = E \ X ( X  — 1)(X — 2)]

4.7 M ean  an d  V ariance  o f a  R an d o m  V ariab le M ean of a random 
variable can be defined as E{X).

F*
E( X)  = T ,  XP{X)  for close variable

t

/OO
xf[x)dx  for continuons variable

-OO

The variance of a random variable is defined as

V(X)  =  E(X>) -  (E(X)Y

= m5 - ( mî)2

The moment coefficient of skewness is defined as 0i = = U3I112

02 = m u4/ n j  -  3
Illu s tra tio n : The probability distribution function (pdf) of a continuons 
random variable

- 2x +  1
0 < X  < 2

f (x)  = 6

0 otherwise

Find the 3rd moment about the mean. 
Solution:

fX3 = JQ {X~(x)3f(x)dx

where jt3 is not given.

but Ms =  A»s + 2(MiX)3 ~ 3mX
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MÎ =  fQ xf[x)dx

=  ^x(2x + l )dx = i x ( 2 x + l )dx

And,

A

2x3 X21___
2 1 16___ 41

3 h 2 0 6 3 h 2j
1 32 + 12 
6 6 1

=  1 ^ 1  =  11 =  1.22
6 6 36

A x - 0  )2f (x)dx  
J  o

i2 (2 i + i )dz

/4  =

i r 2x4 x3
6 [ 4 + 3
r2

1 [32 8
6 4 + 3

= 1.78

/  ( x - 0 ) 3/(x)dx 
J  o

1 / o! x>(2x + l ) i x

1 [2x5 x4 
6 [ 5 + 4 
1 [64 16
6 [ T  + "4

t2

0
=  2.8

M3 — Ms + 2/x’3 — 3/Xj/xîj
= 2.8 + 2(1.22)3 — 3 ( 1.22) ( 1.78)
=  2.8 +  2(1.816) -  3(2.172)
=  2.8 +  3.632 -  6,516 + 6.432 -  6.516 
=  -0.084

4.8 T he M ode an d  M édian  o f a  D is trib u tio n
Just like it is possible to find the mean of a probability distribution, it is 
also possible to obtain the médian and mode of a distribution.
Given probability mass function (pmf), the médian is defined as the value
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of M such that
£  W  > \  or ±  Px (x) > l-

*= oo  ^  * = m  "

M ode:
For a discrète distribution the mode is the value of X  for which the prob- 
ability is maximum. For a continuous function, the mode can be obtained 
by method of calculus.

Illu s tra tio n  1: The p.m.f. of a random variable X  is given by

Px[x) =

Find the (i) mode and (ii) médian.

Solu tion:

(i) The mode of the above distribution is X  — 0, since Px(x)  is maximum 
at this point.

m
(ii) Médian =  ^  P*(x) >  0.5 = 0

*=oo

T X  =  — 1

-  i  =  0

-  x — 1

-  x  =  2
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Illu s tra tio n  2: Given the p.m.f. for a random variable Y

y =  -1

Py{y) =

2
9'

2
9 :

1
9 ’

2
9 ;

2
9 ’

y =  o 

y =  i

y = 2 

y = 3

Find the (i) mode and (ii) médian.

Solution: (i) The above is a Multimodal distribution.
m

(ii) Médian: ^  Py{y) > 0.5 =  1 i.e. y = 1
y = -o o

The mode and médian for a continuons random variable with the pdf. f(x)

IS r 1 f°° 1/  f {x)dx  < -  and / f{x)dx > -
J - o o  & J m  6

I llu s tra tio n  3: Given a random variable X  with pdf.

Xe~z 0 < oo < oo 

0 elsewhere
f (x)  =

Find (i) the mode, (ii) the médian (iii) lst Quartile (iv) 3rd Quartile and
(v) Semi-interquartile range.
Solution:
î) Mode

f (x)  = X f *

/ ' ( x )  =  £ ( * . - )
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/'(x ) =  - x e x + ex = 0

=>• - X e  x -  e z x  1 dx 
=> [ -X e _I + c_I]m =  0.5
Substitute for m and 0

— me~m -  e~m -  (0.1) = 0.5

— me~m -  e~m +  1 =  0.5 

- ( m  + l)e -m +  1 = 0.5

— (m + l)e~m = -0 .5  

e-m(m + 1) = +0.5

loge e m -  loge 0.5 
- m  =  logc0.5 

m =  — log. 0.5 = 0.693

Find the médian and Q3 and hence the interquartile range. 
Solution:

Médian: / f (x)dx  = 0.5

[ - * « "  -  « - j r  = 0 5

Solve for m

3e 3 0 < x  < oo
/(* ) =

0 otherwise

-e io 0.5
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=> - c - jm -  [-1] =  0.5 
1‘ -  e3m = 0.5
— e~3m = -0 .5  e-3m = 0.5 
Solve m

logee-3m = loge 0.5 
0 — 3m = logt 0.5

m =  —̂  loge 0.5 = 0.23

Qi = r  f (x)dx  =  0.25
J o

=  l -  e- 3îl =  0.25 
e-3,‘ =0.75 

Çi =  - ^ lo g f 0.75 
=  0.10

Q3 = f {x)dx = 0.75 
J o

=  1 — e~393 =  0.75 
e-3,s =  0.25

ç3 =  — -  loge 0.25 =  0.46 
3

Semi-interquatile Range = Q s - Q i  0 . 4 6 - 0 . 1 0
=  0.12

Quartile Déviation = Q3 - Q i 

Q3 + Q \

86

4.9 L irait T heorem s
The important results in probability theory are those that involve the limit 
theorems. Some of these are:

(i) Cbebyshev’s inequality

(ii) Central limit thcorem

(iii) Law of large numbers.
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Before we prove the Chebyshev o inequality let us consider the Markov’s 
inequality.

M arkov’s inequality : If X  is a continuous random variable that takes 
only non-negative values then for any value a >  0

P { X > a ) < m
a

Proof:
If X  is continuous with / (x) as the density function

e (x ) =  r , / ( . ) d *
Jo

= ^  xf{x)dx  + J  xf[x)dx  

Ja xf{x)dx  

Ja af (x)dx  

= a I  f[x)dx
J a

=  aP[X > a] => P[X > a) =

>

>

E(X)

C hebyshev’s inequality
If X  is a random variable with finite mean n and variance a2, then for any 
value k  > 0 2

P { \ X - n \ > k } < ° - .

P roof: Since (X -  fi)2 is a non-negative random variable, we can apply 
Markov’s inequality (with a = k2) to obtain

but since E ( X  — fi)2 = a2 and

( X - f i ) 2 > k 2 iff \ x - n \  > k  

then * is équivalent to

(*)
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••• P { \ X - g \ > k } < £

and equivalently

P { \ X - g \ < } > \ - ~

The above theorems enables us to dérivé bounds on probabilities when only 
the mean or both the mean and variance of the probability distribution are 
known.

The c en tra l lim it theorem s: is one of the m ost rem arkable results in 
probability theory. It States tha t

“Let X i , X j , . . .  be a sequence of independent and identically distributed 
random variable each having mean g and variance o2. Then the distribution 
of

X\  +  X% + ■ • • + Àn — ng
ojyfn

tends to the standard norma as n —» oc i.e.
X\  + X 2 H------ H X„ — ng  ^  1 1 r°° _xi

o/y/n
as n —* 00
i.e. the distribution of nearly ail variables tends to be normally distributed 
(i.e. X  ~  N(0,  l) | as the sample size becomes large.

E xam ples (C hebyshev’s inequality)
If it is known that bags of pure water produced in a factory during a month 
is a random variable with mean 50 litres.

(i) What can be said about the probability that this month production 
will exceed 80 litres?

(ii) If the variance of the month’s production is 36, what can be said 
about the probability that this month’s production will be between 
35 and 65 litres?

Solution:
If X  represent the number of items in a month by Markov’s theorem

P ( X  > 80) <
E(X)  _  50 

80 ~ 80
-  =  0.625 
880
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by Chebvshev’s theorem.

P {\x  -  501 > 1S> < ^  H  =  0.16

= >  P{ \X -  501 < 15} > 1 -  0.16 = 0.84

4.10 C hebyshev’s inequality

a2 = £ ( * - m)2 = E ( * - m)7(*)
I e*

=  E ( X - m)2/ W +  E ( ^ - m)2/ ( x) V A & R
i g  A TgA'

and

but

A = x : (X -  fj) > ko}

E ( X - m)2/ ( x) >  0
xeA1

= >  E ( * - * ) 2/ ( * ) >  E ( ^ - m)2/ ( x)
Ig A  rg A '

<?2 > E ( x - ^ ) V ( x)
x€A

However in A, |X -  /z| > /cct.

E l * -  m|2/(*) > E  fc2̂ 2/(i) > *72 E  /(*)
I g A  * 6 A x€A

0 2 > k 20 2P { \ X - f l \ > k o }

=>• fc2a 2P { |X  -  n\ > W  < O2 

P \ X ~ ^ \ > k o 2} < ^

,  P { \ X - v \ > k o } < ±

Exercise:

(1) Express the forth moment about the mean as a function of the mo­
ment about the origin.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



M om ent-G enerating Functions 90

(2) For a continuous random variable X

2-  0 < x  < 4 
3

0

(i) Find the expectation and variance of X
(ii) Find the 4th moment about the mean.

(3) The table below is the Probability distribution of random variable 
table

t a b

m
2
3

1
3

Given that a = 36 and a + b — 8, find (i) the value of a and 6, hence 
or otherwise find (ii) mean and variance of t. (iii) The 3rd moment 
about the mean.
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C h ap ter 5

Sam plin g  Theory

5.1 Sam pling Theory
Sampling theory deals with the study of relationships between a pop­

ulation and samples drawn from the population. It is important in most 
applications. For instance, it is used in the estimation of population pa- 
rameters from a knowledge of the corresponding sample statistics.

In statistics, sample data are observed in order to make inferences or 
decisions concerning the populations from which the samples are drawn. 
Hence, statistical inference deals with the question of how inferences can 
be made about population characteristics from information contained in 
sample. However, if the statistician knew the population values,^ there 
would be no need to make inferences about them! A value such as X ,  that 
is, a number computed from sample data, is referred to as statistic. Thus, 
the sample mean X  is a statistic which may be considered as an estimate 
of the population mean from which the sample was drawn. A statistic may 
be used as an estimate of an analogous population measure, known as a 
parameter.

5.1.1 Populations and Samples
Population is the term used to describe a large number set or collection 

of items that hâve something in common. That is, universe or population 
consists of the total collection of items or éléments that fall within the 
scope of a statistical investigation. The purpose of defining a statistical 
population is to provide very explicit limits for the data collection process 
and for the inferences and conclusions that may be drawn from the study.

91
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The items or éléments which comprise the populationmay be individuas, 
animais, families, employées, schools, etc.

A sample on-the other hand, is a subset of the population, selected ii 
such a way that it is représentative of the larger population. The terrn; 
population and sample are relative. An aggregate of éléments which con- 
stitutes a population for one purpose may merely be a sample for another

5.1.2 F undam en ta ls  of Sam pling 

P u rp o se
There are a wide variety of reasons why sampling is important. In mos: 

situations, a study of an entire population is impossible; hence sampling 
may represent the only possible or practicable method to obtain the désiré: 
information. For example, in the case of processes, such as manufacturir.g 
where the universe is conceptually infinité including ail future as well as 
current production, it is not possible to accomplish a complété enumeratio- 
of the population. Also, in destructive sampling of a finite population, it 
is possible to effect a complété énumération of the population but it wouid 
not be practical to do so.

Sampling procedures are often employed for overall effectiveess if prop- 
erly selected. The results from samples are often more accurate than résulta 
based on a population. A study of a sample is also less expensive than : 
study of an entire population, because a smaller number of items or sub- 
jects are examined. Samples can be studied more quickly than populations

5.2 R an d o m  and  N o n-random  Sélection
Sample can be drawn or selected from statistical universes in a varie: 

of ways. It is therefore, important to distinguish random frorn non-random 
methods of sélection. In this book, attention is focussed on random sarr.- 
piing or px bability sampling, that is, sampling in which the probability o: 
: zlusior • -ver y élément in the population is known. Non-random sam­

pling metn is .:re referred to as “judgement sampling”, that is, selectio: 
method.-* in which judgement is exercised in deciding which éléments of a 
miverse t;> incluüe in the sample.

The ba , rcason random sampling is préférable to non-random sampling
haï ir . ment • tion. there is no objective method of measurir.g
rrecision or reliabii tv v estimâtes made from the sample. On the other
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hand, in random sampling, the précision with which estimâtes of popula­
tion values can be made is obtained from the sample itself.

5:3 Simple Random Sampling
A random sample or probability sample is a sample drawn such that 

every element in the population has a known, equal probability of inclusion.
Suppose we hâve a finite population of N  éléments, a simple random 

sample of N  éléments is a sample selected in a way that every combination 
of n éléments has an equal chance of being included. If the sampling is 
drawn without replacement, then every element in the population has an
equal probability of - -, of being selected on the first draw; each of the re-

maining N —l éléments has an equal probability of of being selected
on the second draw and so on until the last sample item is drawn. There

possible ways in which the samples of n items can be drawn,

then the probability that any sample of size n will be drawn is

For example, let a population consist of five letters, A, B, C, D and E. 
Here N  = 5, suppose a simple random sample of size n = 2 is drawn. The 
possible number of sample is

these ten possible samples are
(A. B ), (A. C), [A, D ), (A, E ), (B,  C), (B , D), (B , E), (C, D), (C, E) and (D, E). 
The probability that any one of these ten samples will be chosen is — .

For sampling with replacement, since it is possible for the same item to 
appear more than once in the sample, it is not always used for practical 
purposes, hence we shall not discuss it here.

A simple random sample may be drawn by the method of “Drawing 
slips from a Bowl” where the population is usually finite and the éléments 
or items easily identified and numbered.

Another method is the use of “Tables of Random Numbers”. This 
method is preferred especially when the poplation is very large, the preced-
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ing method becomes quite unwieldy and time consuming. Bias may also 
be ’ntroduced if the slips are not properly mixed.

5.4 S tra tified  R an d o m  Sam pling
In stratified random sampling, the population is first divided into mu- 

tu?”y exclusive subgroups called strata and probability samples are then 
drawi. independently from each stratum. Samples may be drawn from 
each stratum  by simple random sampling or cluster sampling or system- 
atic sampling. The objective may be to combine sample statistics from each 
stracum to obtain an overall estimate of a population parameter or to make 
comparison between strata to investigate strata différences.

There is an increase in précision i.e., a réduction in sampling error when 
this method is employed. This réduction in sampling error is achieved by 
minimizing différences among éléments within strata and maximizing dif­
férences among strata. This method is most effective when the éléments 
within each stratum  are homogeneous (éléments within each stratum  are 
alike with respect to the characteristics being studied) and when différence 
of éléments among strata are heterogeneous.

5.5 C lu ste r S am pling
In cluster sampling the population is divided into groups called clus­

ters and then a probability sample of the clusters is drawn and observed. 
Cluster sampling is used to achieve a réduction in cost of sample design. 
Sampling error is also reduced in clustering especially when the éléments 
within each clusters are heterogeneous and the éléments among cluster are 
homogeneous. The advantages of cluster sampling from the point of view 
of cost arise from the fact that collection of nearby units is easier, faster, 
cheaper, and more convenient than observing units scattered over a région.

5.6 S ystem atic  Sam pling
Systematic sampling is often used in place of simple random sampling 

as a procedure of obtaining random sélection in most practical applications. 
In a systematic sampling, every kth element is taken from the population 
arranged in some specified order. The first sample which is the starting 
point is drawn randomly from the first k éléments. The value k is obtained 
by dividing the number of items in the sampling frame (a list of ail éléments 
in the population) by the sample size. The results of systematic sampling
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are similar to those of simple random sampling if the éléments in the popu­
lation occur in random order. A population can be assumed to be random 
when for instance, items contained in this population are thoroughly mixed. 
However, the results of this method is not reliable when there is a cyclical 
variation in the way the éléments of the population are arranged.
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C h ap ter 6

In troduction  to S ta tis t ic a l 
lnference

6.1 Introduction
We hâve been exploring some basic principles and applications of proba- 

bility in the preceding chapters. A few of the probability distributions tha 
hâve been found by expérience to be particularly useful in solving certai: 
classes of problems hâve also been carefully examined. We hâve seen tha- 
probability theory is a useful and cohérent framework for dealing with th- 
problems of uncertainty. We now introduce one of the key areas to whicr 
probability is applied-statistical inference. This field called statistical in- 
ference, which is the subject matter of this chapter and the next chapter. 
uses the theory of probability for making reasonable decisions concernir,: 
a population on the basis of the samples drawn from it.

Statistical inference deals with two different classes of problems: ! 1 
Estimation, which is discussed in this chapter and (2) hypothesis testing 
which is examined in the next chapter.
In both cases, the problem is structured in such a way that inferences abou- 
relevant population values can be made from sample data.

6.2 Estim ation
The subject of estimation is concerned with the methods by which pop­

ulation characteristics are estimated from sample information. The objec­
tives are

(i) to présent properties for judging how well a given sample statisti

96
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In troduction to S ta tistica l Inference 97

estimâtes the parent population parameter,

(ii) to présent several methods for estimating these parameters.

Very often we know or are willing to assume that a random variable X  fol- 
lows a particular probability distribution but we do not know the value(s) 
of the parameter(s) of the distribution. Foi example, if X  is assumed to 
follow a normal distribution we may be interested in obtaining the values 
of its two parameters, namely, the mean and the variance which are un- 
known. In this problem of parameter estimation, the usual procedure is 
to assume that we hâve available a random sample of size n of a random 
variable X ,  whose probability distribution is assumed known. and use the 
sample data to estimate the unknown parameters. Let us take a doser look 
at this problem of estimation. This estimation problem can be broken into 
two major categories: point estimation and interval estimation.

6.2.1 P o in t E stim ation
The basic reasons for the need to estimate population parameters from 

sample information as earlier noted in the previous chapters are that it is 
ordinarily too expensive or simply infeasible to enumerate complété popu­
lations to obtain the required information. The cost of complété censuses 
may be prohibitive in finite populations while complété énumération are 
impossble in the case of infinité populations. Hence estimation procedures 
are useful in providing the means of obtaining estimâtes of population pa­
rameters with desired degrees of précision.

A point estimation is a single number which is used as an estimate of the 
unknown population parameter. For instance, let X  be a random variable 
with p.d.f. /(x ,0 ) , where 6 is the parameter of the distribution which is 
unknown. Suppose also that a random sample of size n is drawn from this 
distribution, then a function of the sample values such that

§ = / ( x u x2, - - - , x n)

provides an estimate of the true 6. 6 is called a statistic or an estimator (a 
function or rule that is used to guess the value of a parameter) and a partic­
ular numerical value taken by the estimator is known as an estimate (that 
>c a particular value calculated from a particular sample of observations).

Note that 6 can be treated as a random valable because it is a function 
of the sample data, ê provides us with a rule or formular. that tells us how
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10 estimate the true 9. Thus, if

9 =  — (xi +  H-----+ xn) = Xn

then X  (the sample mean) is an estimator of the true mean value, p. So if 
X  =  25, then this provides an eétimate of fi. The estimator 9 obtained is a 
point estimator because it provides only a single estimate of 9.

3.2.2 In te rv a l E stim atio n
For most practical purposes, it would not suffice to hâve merely a sin­

gle value estimate of a population parameter. Any single point estimate 
will be either right or wrong. Therefore, instead of obtaining only a single 
estimate of 9, it would certainly seem to be extremely useful, and per- 
haps necessary, to obtain two estimâtes of 9 by constructing two estimators 
0x(xi, x2, - - •, and 92(x i , x2, - ■ ■ , x n), and say with some confidence that 
the interval between 9i and 92 includes the true 9. Thus, an interval es­
timâtes of a population parameter is a statement of two values between 
which it is estimated that the parameter lies.

We shall be discussing the construction of confidence intervals as a 
means of interval estimation in our subséquent discussion.

6.3 P ro p e r tie s  of E stim ato rs
Sometimes we are faced with questions such as, how good are some es­

timâtes? what makes them good? can we say anything about the closeness 
of a particular estimate to an unknown parameter? Suppose the arithmetic 
mean, x, the médian, x,  and the mid range, r, are calculated from a random 
sample drawn from a given population. Which method would be the best 
estimator for obtaining the population mean? Your answer probably would 
be the sample mean, x. Why do you think the sample mean represents the 
best estimator? These and many more questions will be answered in this 
section.

6.3.1 U nbiasedness: If 9 is to be a good estimator of 9, a very désir­
able property is that its mean be equal to 9, that is, E(è) = 9. 
D éfinition: Let X \ , X 2, . . . , X n be identically independently distributed 
random variables with p.d.f.^ f(x;9)  and 9 =  (X1} X 2, . . . ,  X n) be a statis- 
tic. Then we shall say that 9 is unbiased for 9 is E[Ô) = 9.
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An estimator T of an unknown parameter 9 is unbiased if E(9) = 6, for 
ail values of 6. The différence

B\ÔJ = E{9 -  9\ is called the bias of 6

If B[6] 7̂  0 then 6 is said to be a biased estimator. Thus, an unbiased es­
timator is a random variable whose expected value is the parameter being 
estimated.

E xam ple 6.1: Let Xi,  X^ , . . .  ,X„ be a random sample from a nromal 
distribution N ( n , o 2). Show that X  is an unbiased estimator of fi.

Proof: X  = ^  £  X,

E{X)  =

1 "Exam ple 6.2: Show that S2 =  -  y^(X, — X ) 2 is not an unbiased estimator
n j

of the population variance o2.

Proof:

e (s 2) = e [ - x : ( * - * ) 2
in .=i

=  * { ; D ( * - * ) - ( * - * ) ] ’ }

=  i  ± E { X , - n Ÿ - E t f - p ) '  
n 1

=  ± i ; \ v { x ) - v ( x ) )

- ± E ( X , )  
n J
1 "

1
1-  - nu 
n
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=  i  E l » ’ -  o ’/»]
=  o ” -  o ‘jn  
_  (n — 1)02

This shows that S 2 is not an unbiased estimator of 02. However, an unbi- 
ased estimator can be constructed by multiplying the sample variable, S 2. 
by the factor n/ (n  — 1). Thus

î £ ( 5 2) = 0 2

since

n
n -  1S2

D *  -  x ) 7
i_________

n -  1
Note that it is possible for an estimator not to satisfy some of the désirable 
statistical properties especially in small sample cases as above. But as the 
sample size increases indefinitely, the estimator possesses several désirable 
properties. These are large-sample or asymptotic properties.

An estimator 6 is said to be an asymptotically unbiased estimator of 9
if

lim E(9n) = 6
n — o o  '  '

where Ôn impies that the estimator is based on a sample size n.
That is, Ô is an asymptotically unbiased estimator of 6 if its expected ap- 
proaches the true value as the sample size increases. For example,

E ( S 2) =
( n - l ) o 2

n

then
lim E ( S 2) = lim 0 (1 ---- ) = 0"’

n — 0 0  n - » o o  72

6.3.2 Efficiency: This concept refers to the sampling variability of an es- - 
mator. The most efficient estimator among a group of unbiased estimator: 
is the one with the smallest variance. Thus, if 0\ and 02 are two unbiased 
estimators of 6. and the variance of 81 is smaller than the variance of 0;
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Of the two unbiased estimators and 02 in fig 3.1, <?i is best unbiased or 
efficient. Their relative efficiency is measured by the ratio

MA*) _  ° l  
v (ê 1) o)v

where o\  is the smaller variance.

E xam ple 6.3: A simple random sample of size n is drawn from a nor­
mal population with mean il and variance a 2. If the sample mean X  and 
the sample médian X  are two estimators of the population mean n. Obtain 
the relative efficiency.

Solution
— i 2

the variance of the sample mean, X , is = —

~ ■ i °the variance of the sample médian, X,  is Oÿ =  1.57 —n
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Thus, the relative efficiency of X  with respect to X  is

i.îf^Zï.,.,7
o 2jn

6.3.3 M inim um  M ean -S q u are -E rro r (M SE) E s tim a to r 
D éfinition: Let X u X 2, . . . ,  X n be a random sample of size n from a dis 
tribution with p.d.f f(x:0)  and let 9 =  h ( X u X 2, . . .  , X n) be any statistk 
Then, the mean square error of 9 (estimator of 0) is

MSE(Ô)  =  E { 9 - 0 ) 2

If 9 is unbiased for 9. then E{9) = 9 and it implies that

B(9) =  E{9) 0 = 0
MSE(Ô) = E { 9 - 9 ) 2

=  E\Ô-E(Ô)  l2 
=  Vnr(Ô).

The différence is that, Vcr{9) measures the dispersion of the distribution i 
9 around its mean. whereas MSE(9)  measures dispersion around the tr 
value of the parameter. This relationships shows the following;

MSE{9)  =  E( Ô-O)2
= E \ 0 - E ( Ô ) + E ( Ô ) - 6 \ 2
=  E\0 -  E(Ô) + E\E(9) -  9\2 +  2E\9 -  E(Ô)}\E(Ô) -  9\

since the last term is zéro.

MSE(9)  = E 9 -  E{0)}2 + E\E(0) -  0\2 
= var(Ô) +  B 2(Ô)
= variance of 0 plus square bias

If the bias is zéro, MSE(0)  = var(9).

D éfinition: The statistic 9 = h ( X i , X 2, . . . ,  X n) that minimizes E\ {9 - 9  : 
is the one with minimum mean square error. If our attention is restr ' 
to unbiased estimators only, then var{9) =  E(0 — 9)2, and the >• ..asec
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Introduction to Statistical Inference 103

statistic 6 that minimizes this expression is said to be the unbiased mini­
mum variance estimator of 6.

6.3.4 Low er B ound  fo r the  V ariance o f an  E stim a to r
A method of finding minimum-variance unbiased estimator of a param- 

eter is to find the Cramer-Rao lower bound for an unbiased estimator.

T he C ram er-R ao  lower bound  (R egularity  conditions).
The Cramer-Rao lower bound is obtainable under the following regularity 
conditions.
Let X u . . . , X n be independent random variables each having the density 
function /(x ; 0) absolutely continuous with respect to a cr-additive measure 
fi.
An estimate <r(xi,. . .  ,x„) not necessarily unbiased is wanted for the pa- 
rameter 6.

(i) —  log / (x; 6) exists for ail 0. 
d u

(ii) qq f  ••• J  f { x i \ 6 ) t - - - f ( x n\6)dxl ---dxn 

=  / ■ • • /  f ÿ f ( XÛ0) - - - f { Xn ^ ) dxU - - - , dxn

(iü) ^  /  ’ ' ’ /  ‘ ‘ ’ x«) f i x -i l e) ' ’ ' / ( x"i ‘ ' dx"

= f  ••• J  a(x1, . . . , x n) ^ / ( x  i;Ô) ■■■ f { x n]0)dxl , - - - , dxn

t  r d
(iv) 0 < E \ ^ - \ o g f ( X - , e ) < oo

where <7(xl5. . . ,  xn) is a statistic satisfying

■••.**) =  * +  *(*)

where 6(0) is the expected bias.
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T heorem : C ram er-R ao  inequality
If the regularity conditions (i) to (iv) above are satisfied, then

P roof: Let

and

Then

Var(o(X i ,  ■ ■ ■ , Xn)) >
[l +  * W

nE  [& log /(z ;0 )] '

vi =  ^ l o g  f[x\0)

v  = t , v ,  = ' £ ^ \ o g f ( x t-,e)

E(V,) =  f ̂ \ o g f { x i- e ) - f ( x t;e)dxi

= J Yenx<;e)dx<

fç /  f ' x"  û)dx< ■0

so that E(V) = 0. 
Consequently,

Var(V) = nE(V*) = n E ( - f ( x ; 0 ) ) 2

note that, Ect(x: , . . . , x„) = 8 + b(9) that is

J f o{x 1, • • •, xn) n f (xï ,  6)dXi = 6 + b{0)
t=i

Differentiating with respect to 0, we get

j ÿ  /  /  o [ x u - ’ - >x n) f { f { x i \ 6 ) d x i =  l  +  b'{0)

J . . .  J  o ( x i ,  ■ • •, *„) ±  n  / ( * ;  0)dx,  =  1 +  b'(6)
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/••/<' (E17(^) 9)) S  /(w 9)dIi = ' + k'(9)
f " f ° Q/fcî$Mi =1 + 6'(0)
f  ■ ■ ■  f o ( Y , v . ) f [ f [ x , - , 0 ) d x i =  \  +  b ' (e )
J J «=i

E[oV)  =  l  +  &'(0).

Note that < 1, where pov is the corrélation coefficient of o and v. 
Thus

[covty; v)2 < 1
var(o)var(v) ~

i.e. [£(cru) -  E[o)E(v)}2 < var(o) ■ uar(v) 
i.e. [l + b'(6)}‘ < var(o) ■ var(v) 
since E(v) = 0 nd E(ov)  =  1 + b'(0)

i.e. V a r M  >  /  + « W  ^
n E (dê ><«/(*<;•))

R em ark : It can be shown that

£(ê '(l‘i9)), = -£( l ^ ;9)
which gives a Cramer-Rao lower bound as

(i + m r
- n £ ( & / ( x , ; 0 ) )

E xarnple 1: Let X l f . . . ,  X n be a random sample from /(x ; 0) = — —
i  =  0 ,1 ,2 ,. . .
Obtain the Cramer-Rao lower bound for the unbiased estimator of 0.

for

Solution: /(x ;0 ) =
r*6z

xi , x = 0 ,1 ,2 ,. . .

log / (x; 9) = — 9 + x  In 0 -  In x!
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thus,

^ lŒ / ( x ; f l )  =  f  -  1 
2

E ^ lo g / ( x , ;0 ) 1 F r fl,2 Var(x) 
- p E x - li -  ~ p - 92

n E  [fs log /(x t:0)] 

Hence, X  is the UMVUE of 6.

1 0
' n/9 n

E x am p le  2: Let X lt X 2, . . . ,  X n be a random sample from the exponential
distribution having a p.d.f. of f[x\9) — \ e~x ê, 9 > 0, 0 < x < oo.9
Obtain the Cramer-Rao lower bound for the variance of an unbiased esti-
mator for 9. 

Solu tion : /(* ;* ) =  y ' "
log /(x ; 9) =  — ln 9 — x/9  
d\ogf{x\9)  _  _ 1  _x 

39 9 ' 92
hence,

E d\og f(x-,9)' 2
=  E 1 1 H

-*
f |H

de e e2}

= T A * - 6?

dl
94 92

The Cramer-Rao lower bound is 

Var{9) >
d\ogf(z]6)

den - E [
1

n/92 
^  _  var[X) _
n = var(X)

fo (r,), r, < t
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6.S.5 C onsistency
Knowing that an estimator is unbiased gives little information as to the 

goodness of the method of estimation, lt would seem that closeness of the 
estimator to the parameter is of importance. The concept of consistency 
is slightly sharper than the variance of an estimator which gives a better 
idea of how close the estimate of the parameter is to the actual parameter. 
Roughly speaking, if an estimator, 0, approaches the parameter 9 doser and 
doser as the sample size n increases, 9 is said to be a consistent estimator 
of 0.

D éfinition: Let 6 be an estimator for 9, based on a random sample of 
size n. If

lim PI 9 -  9\ > t) = 0, for any t > 0,
n —*co

then 9 is a consistent estimator for 9.
Thus, an estimator is consistent if as the sample size becomes larger, 

the probability increases that the estimâtes will approach the true value of 
the population parameter. Alternatively, 9 is consistent if it satisfies

(i) F (0) —> 0 as n —► oc

(ii) 9 becomes unbiased as n —* oc

Fig  6.2: S am pling  d is trib u tio n  o f 9 as th e  sam ple size increases
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From Chebyshev inequality (chapter?) we know that

p ( i â - < ? |> £) < ^ E \ [ ê - o Ÿ )

= ~MSE(Ô)

It follows that if MSE(d)  —* 0 as n —* oo, then 9 is consistent.

6 .3 .6  Sufficiency
A sufficient statistic is an estimator that summarizes from the sample 

data ail information contained in these data, and no other estimator car 
provide additional information.

D éfinition  1: A statistic, T ( X lt X 2, . . . ,  X n) is said to be sufficient fo: 
9 if the conditional distribution of X\,  X 2, . . . ,  X n, T — t, does not depenc 
on 9 for any values of t.

D éfinition  2: Let Xj ,  j  — l , 2 , . . . , n  be iid random variables with p.d.f. 
f (x\0),  and let 9 = [6i , 92, . . .  ,ûr) G fi Ç R r be a vector, let T  = 
(TuTi t . . . , T m) where T; = t ^ X ^ X 2, . . . , X n), j  = 1 ,2 ,. . .  ,m  are statis- 
tics. We say that T  is an m-dimensional sufficient statistic for the family 
F  =  {/(x; 9)\9 G fî} or for 6, if the conditional distribution of (ATi, X 2, 
given T  = t is independent of 9 for ail values of t.

6.3.7 F ac to riza tion  C riterion
The above définitions of sufficiency are difficult to work with, since they 

givo no information about how the sufficient statistic mav be calculated. 
and for a given statistic, T,  it would be difficult to conclude whether it wa  ̂
sufficient because of the problems involved in evaluating the conditiona 
distribution. Thus, the following factorization theorem is relatively easy 
for examining a statistic or set of statistics for sufficiency.

T heorem  1: Let X\,  X 2, . . . ,  X n dénoté a random sample from a distribu­
tion that has p.d.f. f(x;9),  9 G H. The statistic T  = t {Xi , . . . ,  X„) is a 

fficient statistic for 9 if and only if we can find two non-negative functions. 
. and k2 such that

f { x i \6 ) f {x2\9) •■■f(xn\9) =  k1{t(x1, - - - , x n);6}k2{xu - - - , x n\
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where k2[xi , . . .  ,xn) does not dépend upon 9.

T heorem  2: Let X i , X 2, ■ • •, X n be iid random variable with p.d.f. / ( i ;  9),9 - 
(9i , . . . , 9r) G H. An m-dimensional statistic

T  = t [Xu X 2, . . . , X n) =  («1(X1, . . . , X n) . . . . , t m(X1....... X„))

is sufficient for 9 if and only if the joint p.d.f. of Aj, . . . ,  X„ factors as 
follows:

f [ x i ,x 2, . . .  , x n\0) =  g\t{xi,x2, x „ ) ; 9 ] h ( x u x 2, 

where g dépends on x x, x2, . . . , x „  and h is entirely independent of 9.

6.3.8 C om pleteness
Let X  be a t-dimensional random variable with p.d.f. f(x;9).  9 G Ü Ç 

R r and let g : R k —> R  be measurable, so that g(x) is a random variable. 
We assume that exists for ail 9 G fi and set F = {f (x\6)\9 G ft}.

D éfinition: We say that the family F  (or the random variable X)  is com­
plété if for every g, E[g(x)j =  0. for ail 9 6  fi implies that g(x) =  0 except 
possibly on a set N  of X ’s such that Po{X G N) = 0 for ail 9.

6.3.9 U niqueness
Let Xj, X 2, . . . ,  À'„, where n is a fixed integer, dénoté a random sample 

from a distribution that has p.d.f. f [x\9) ,9 G ft. Let Y  =  y(X\ ,  X 2, . . . ,  X„] 
be a sufficient statistic for 9 and let the family g{y\9)\9 G H’ of the p.d.f. 
be complété. If there is a conditional function of Y  which is an unbiased 
function for 9, then this function of Y  is the unique best statistic for 9.

Exam ples:

(1) Let X !,X 2. __ X n be a random sample of a random variable with
mean p  and finite variance o 2. Show that X  is a consistent estimator

P roof: X  is an unbiased estimator for y  and its variance is o2/n  
Since 2

M S E ( X )  = ------ '0  as n —> ooTl
X  is a consistent estimator for n.
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(2) Let À-!, ÀV . . . ,  X n dénoté a random sample from a distribution with
p.d.f.

' ex6-1 , o <  x < î
f ( x - J )

0 , elsewhere

vhere 0 <  fl. Prove that the product u ( X u X 2, . . . ,  X n) = X x ■ 
A'2 - • • X n is a sufficient statistic for fl.

Solution
The joint p.d.f. of X 2, . . . , X n is

/(*;*) n  /(* .;«)

i \ o * r
1=1

r f a X t  —  Xn)9- 1

where 0 <  x, < 1, 1 = 1,2....... n. In the factorization theorem let

/ci[u(ij,a:2,... ,x „ ) ;d ]  = 0n[xu x2, . . .  ,x„)*

and

k2[xi ,x2, . . . , x n) = ----------------
\ x u x2, . . .  , x n

since k2(x2, x2, . . . ,  x„) does not dépend upon 0, the product X t ■ 
X 2. . .  X n is a sufficient statistic for 9.

(3) Let Xi ,  X 2, . . .  X n be a random sample from a distribution with p.d.f.

/(x;fl) = $’ { 1 -  fl)1' 1, 1 =  0,1, 0 < fl < 1

n

Show that ^  Xi  is a sufficient statistics for fl. 
1
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Solution

/(*;*)

L(x;9)

ex( i - e y - x

f l  /(* .;*)
i=i

n ^ d -  °)i~x'
i= 1
0El'( l  - g)n-Zz,

E*.
(1 -  e r X 1

This function is of the form fc] x2, . . . ,  :rn); 0 fc2(xj, x2, . . . ,  xn) 
where

2*.
(i -  o y

and M x i ,x 2, . . . ,x „ )  = 1.
n

X,  is a sufficient statistic for 0
î

(4) Assume À' is uniform on the interval (0 ,-y). Based on a random 
sample of n observatins, the maximum likelihood estimator 
T = max(xi, x2, . . . ,  xn) whereas the method of moments estimator is 
f  =  2X.  Compute

(i) £ [f] and E[t\
(ii) the mean square errors of the estimators

(iii) Are they consistent?

Solution: Let À' ~  u(a, 6), /(x ) =  —-— , a < x < 6
o — a

If X  is uniformly distributed over (0,7), the p.d.f. of

Y  = max(Xu X 2, . . . , X n) is n[i:’(y)ln“1/(y )

Ai [u(x i, x2, . . . , x„ ) j  =  ^

or
g { y )  = n(“ )n_1~> 0 < y  <  i
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The expected value on this density and hence the estimâtes of T an : 
f  are

(i) E\ t \  = [  yg{y)dy 
J o

E\f  ] =  E[2X)

i r1—  / nyndy =y  Jo

m

y

2 E

i

n i  
n + 1

A »
Note that in the limit lim fT r)  =  i ,  the estimate of T is asympto-.

n—  o o

cally unbiased.
(ii) M S £ jf  ] =  V ar(f) + (B[t ) )2 
but Var{r) = E [ t 2} -  {E[t})2 
so

E[t2} =  f  y2n(-)n~l -dy = ~ /V +I
1 J o  1 1  1 JO

dy

n + 2

V ar(f)

5 ( f )

n i 2 n2i 2
n + 2 (n + l )2 

l 2n
(n +  2)(n +  l )2
E[t)~ i

n +  1 n +  1

.. M S E ( t )  =  V'ar(f) +  \ B { t ) \ 2

l 2n - 1  I 2
(n +  2)(n +  l ) 2 n  +  1. 
l 2n + (n -f 2) i 2 
(n +  2)(n +  l ) 2
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Introduction to  Statistical Inference 113

(n +  1) (n + 2)

M S E ( t )  = P a r( f )  +  (P (f))2

But

V ar(f) =  Var(2X) = 4E [ X 2) -  (£ ( f ) )2
W_
12n

4 d 2
.. MSE(T)  = —  since P ( r)  = E(T) -  = 0

12n

(üi) As n  -> oo, M S E I Î )  =  {n + ^ n + 2) -  °

f  is a consistent estimator.
4'y2

As n — oo, MSE{T)  = - J -  0IZfl
F is a consistent estimator.

(5) Let P ' =  {6(0, n), 0 < 6 < 1} be the family of binomial distribution 
corresponding to n independent trials with constant probabiüty 6 
with

P{X = x ) =  ( nx ^ ( 1 - t f ) — l * =  0 , l , . . . , n  

Then P" is complété.

Proof: We hâve to show that

(*) Ê  (  "  )  «‘ f1 -  S)“- s M  =  0

implies ÿ(x) = 0 for x = 0 ,1 , . . . ,  n.
We can write * as

(**) E W  = ° -
x=0

where
a(x) = 9{x) and <p = 6

1 ^ 1x
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Introduction to Sta tistica l Inference

Equation (**) is a polynomial of degree n in <p and v
value of which is true only when 
a(x) = 0 for i  =  0,
Hence p(x) =  0 for x  =  0 , l , . . . , n .

6.4 M ethods of Finding Estimators
6.4.1 M ethod of M oments
The oldest method of determining estimators is the method of moments 
This is derived by equating sample moments to population moments.

Let X], X-t, . . . ,  X n be a random sample from a population which dé­
pends on unknown parameters 6X, . . . ,  6k. Assume that the first k moment* 
about the origin exist as function d>r(0 i,. . . ,  9k) of the parameters, (wher’
r =  1 , 2 The expectation E ( X r) is frequently called the rth rr.c-

moment of the sample about the origin, r  =  1 ,2 ,3 ,—  The method ai 
moments can be described as follows.

Equate E ( X r) to M r to obtain K  équations in k unknown parameters 
Thus one can get an estimate of a parameter.

6.4.2 M ethod o f Least Squares
Generally the method of least squares is used to estimate parameters ir. a 
linear model.
Let F i,. . . ,  Y n be independent random variables such that E ( Y i )  =  a  +  3z. 
where x, is a known constant and a  and 0  are unknown parameters. 
Consider the quadratic function

ment of the distribution, r = 1 ,2 ,3 ,—  The sum Mr =

Q ( x i , . . . , x n\a,0)  =  £ ( y ,  -  a -  0x,)2 

Let â  and 0  be the values of q and 0  that minimizes Q
Then
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Introduction to Statistical Inference 115

Solving :he two équations simultaneusly, we get

0

à

E ( v ,  -  g )  (g .  -  x) 
E(x. -  x)’ 

ÿ -  0x

6.4.3 M inim um  C hi-S quare  M eth o d
This method is applicable where observed values of the random variables 
themselves are frequencies of a finite number of mutually exclusive events 
with probabilities Px, . . . , P m which are functions of K  unknown parameters 
to be estimated. The data consists of n i , . . . , n k frequencies for the m 
mutually exclusive events.
Let £  m = n.
Obviously, nP^,nP2, . . .  , nPm are the expected frequencies of the m events. 
Then, a measure of discrepancy

v2 _  y -  (J i ~ n PxY
h  "P> (*)

may be used.
The values of the unknown parameters that minimize * are referred to 

as minimum chi-square estimâtes.
Usually non-linear équations resuit in minimizing * therefore, coinputa- 
tional methods are usually employed. However, an approximation to the 
chi-square expression was obtained by Berkson where

P, = [1 + e- (®+0*i)]-*

is the logistic curve used often for analysing bioassay data.
The resulting approximate chi-square expression which he called logit chi- 
square is given as

Q  =  j r ( l , - a - 0 x , ) 2
i=i

where l, = log P , /q i ,  P, is the proportion responding in a dose response 
experiment.
It is important to note that, it is usually very difficult to obtain minimum 
chi-square estimators thus, most statisticians use maximum likelihood for 
estimating the parameters.
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6.4.4 M ethod of M aximum Likelihood
Let i j ,  x2, . . . ,  i„  be the observed values of a random sample Xi ,  X 2, ■ ■ ■, A* 
Then i f X t , . . . , X „  are discrète, random variables, the likelihood function of 
the sample denoted by L is defined as the joint probability of i lt i j , . . .  ,1» 

Such that

L{6) =  P(x  .............. xn\0)
= P{zl;e)P(xt;e),. .. ,P(xn;$).

If X i , . . .  , X n are continuous random variables, the likelihood L, is defir 
to be the joint density evaluated at i j ,  i 2, . . . ,  i„ .

L(0) =  / ( i „ . . . ,  *„;<?)
= f ( x ù 0) f ( x 2-,Û). . . f[xn;0)

The value of 0 that maximizes L(6) will be taken as the estimate 6.
In general, let X \ . . . X„ be independent random variables with dens‘" 

function / ( i , ;  61, . . . ,  0k). The likelihood function is defined as
n

L ( x i , . . . , x n\Oi , . . . ,0k) = Y[ f {x i \0u ---,0k)
i=x

This gives the likelihood of obtaining the particular sample values. (0\ , —  
is said to be the maximum likelihood estimate of (0j , . . . ,  0k) if it maxim^ 
the likelihood function.

Examples

1. Let X i,X 2, . . .  , Xn be a random sample from each of the distribué- 
having the following probability density functions:

(a) f(x; 0) = 0xe l , 0 < 0 < 00, 0 < 1 < 1

(b) f{x\0)  = , 0 < i < o o ,  O - < 0 <oo0
yja Vo-L-W

(c) / ( x , a t 0 )  = ----- -----------. X > 0 ,a  < 0 , 0  >  0 (i)

(i) Find the moment estimâtes for the unknown parameter! 
in (a-c).
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Introduction to Statistical Inference 117

(ii) Find the maximum likelihood estimator for the unknown 
parameters in (a) and (b).

Solution:

(ia) E( X)  = C  x ■ d x B- l d x  =  [ ' O x ' d x  
J 0 J 0

0xe+I 1
0 + 1

The corresponding lst sample moment is

1

0 + 1

Mi =  - £ * , •  =n
Equating the corresponding moments and solving for the unknown 
parameter 6, we get

ti\ = x 0

0 =

0 + 1 
X

1 -  X

= x

(b) f { x \ ô )  — ^e Z/S, 0 < x  < 0, 0 < 0 < oo 
Solution: fi\ = E{X) = 0 
The first moment is

1 n
mi = -  Y^Xi = xn

Setting mi =  E [ X ) we hâve

ê = x
ou y a - l e - S X

(c) f { x , a , 0 )  = ' r| Q)----- , X > 0, a  > 0, p  > 0

Solu tion : Since we seek estimators for two parameters a and 0, we 
equate two pairs of population and sampie moments.
Then

E( X)  =  Kl - |  and E ( X ’) =  r i  =
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Introduction to Statistical Inference 1

Given a random sample of size n, the first two moments are given r i

mi =  —----  =  x and m2 =  —----n n
We set mj =  E[X)  and m2 = E ( X 2) and solve for a and 0. 
That is,

and

a
Mi = mi  = — = x = M\

_  a (a  + 1) 1 v -  2Hi = m 2 = ----—---- = -  2^ x{ = M2

(0

(«0

From équation (i)
/ 3 = "  =  - ^  

x M x
Substituting this into équation (ii) and solving for a , we hâve 

a (a  +  1)
=  M2

_  M, 
a

a M \  +  =  ûMj

M 2 = oM2 - a M l  
M 2 X 2

û  =
M2 - M 2 i  £  X,2 -  X2 

Substituting a  into équation (i)

M 2
0 = _  "h  

m2 — m2mi

Ï L X ï - x 2

ii(a) / ( x ;0) = 6x'~ , 0 < 0 < oo, 0 < x < 1

m  = n /(**;•) 
1=1
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Introductior. to  S ta tistica l Inference 119

(b) /(* ;* ) =

ln L(0) 

d\n  L{9)
a e

Ô

t = l

en(xï . . . x ny - 1 
n ln 6 + (9 — 1) ln x, 
n  ln 9 + 9 ln x, — In x,

— +  ln X, = 0 
9
- n

x' 6, 0 < x < oo, 9
0 < 9 < oc

L{9)

ln L{9)

d ln  L{9)
d9

9

n  /(* .;*)
i = l

r-r 1n
t=\ 0
_ L e - s x , / i i

9*

n ln 9 — Ex,-

Z ?  +  5 ï i = 0
9 92

EX,
= Xn
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C h ap ter 7

T ests o f H ypothèses

7.1 Tests o f Hypothèses
We now discuss the subject of hypothesis testing. which as earlier note»: 

is one of the two basic classes of statistical inference. Testing of hypothesis 
involves using statistical inference to test the validity of postulated value; 
for population parameter. If the hypothesis spécifiés the distribution com- 
pletely it is called simple, otherwise it is called composite. For example, a 
demographer interested in the mean âge of residents in a certain local gov- 
ernment area might pose a s,mple hypothesis such as n = 42 or he migh: 
specify a composite hypothesis such as p ^  42 or n > 42.

A statistical test is usually structured in terms of two mutually exclusive 
hypothèses referred to as the null hypothesis and the alternative hypothesis 
denoted bv H0 and H, respectively.

Two types of error occur in hypothesis testing; these are type I erro: 
and type II error. Type I error occurs if H<> is rejected when it is true. Th-> 
probability of a type I error is the conditional probability, P(reject H0 H 
is true) and is denoted by a.
Hence,

a  = P(reject H0'H0 is true) and 
1 -  q = P(accept H0\H0 is true)

Type II error occurs if H q is accepted when it is false. I t’s probability i: 
denoted by the symbol 0, where

0  = P(accept Hq\Hq is false)
1 -  0  = P(reject H0'H: is false) called power of the test

120
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Tests o f Hypothèses 121

Types I and II error can be explained as follows:

H0 is true H0 is false

Accept H0
1 — a

correct devision
0

Type II errors

Reject Ho
Q

Type I error
1 - /3

coirrect decision

Standard format of hypothesis testing: This format involves 5 steps. 
Step 1: State the null and alternative hypothèses.
Step 2: Détermine the suitable test statistics. This involves choosing the 
appropriate random variable to use in deciding to accept or reject the null 
hypothesis.

Test Statistics

Unknown Parameter Appropriate Test Statistic

V ’

o known, population normal

^  _  X  -  Po 
o/y jn

o known, population normal r, X  -  Po

if n is “large” usually n > 30

V
o known, population normal

•y
t - —— , with (n — l)dfs/y/n

“o2”
population normal

upn

population normal

;  (X/n)  -  Po

‘  ^
Step 3: Détermine the critical région using the cumulative distribution 
table for the test statistic. The set of values that lead to the rejection of 
the null hypothesis is called the critical région. A statistical test may be 
one one-tail or two-tail test. Whether one uses a one- or two-tail test of 
significance dépend upon how the alternative hypothesis is forrnulated.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Tests o f  H ypothèses L

Types of 
hypothesis

Ho H  ! Decision Rule 
Rejected H0 if

Two-tail
Right-tail
Left-tail

P  = Mo 
P  <  P o  

P  >  P o

P  ^  P o  

P  > P o  

P  < P o

z  < z a j 2 or z  > Za/2 
Z > Za/2
Z < Za/2

S tep  4: Compute the value of the test statistic based on the sample info: 
mation, e.g. Ze, t c, x 2c-
S tep  5: Make a statistical decision and interprétation. Ho is rejected if 
the computed value of the test statistic falls in the critical région otherwia* 
it is accepted.

E xam ple 1. An Emir from the north belives that the mean monthiy 
income of messengers in the north is ATI,000. Suppose a random sample 
of 144 workers is taken and a mean income of #1,200 found. If the pop- 
ulaiton standard déviation is known to be #300. Check the claim of tbe 
Emir based on the sample information at a =  0.10 level of significance.

Solution:

Step I: /f0 : Mo = #  1,000
Ht : p 0 ^#1 ,000

Step II: The test statistics to use is Z X -  Mo 
o/y /n

since po and o are known.
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Tests o f Hypothèses 123

=  8

Step V: Since the computed value Zc = 8 lies in the critïcal région, we reject 
the null hypothesis, Hq, that p =  1000.

7.1.1 O ne-sam ple te s t ab o u t p(o  known)
The standardized normal random variable, Z , is the test statistic to use 

when the population variance is known. The two cases are:

1. For a sampling with replacement or an infinité population, the ap- 
propriate test statistic is

7 _  % ~
a / v ^

2. For a sampling without replacement or a finite population, use

E'cam ple: Suppose a counsellor in a local government area believes 
that the teachers in that area are working at most 35 hours a week. 
A random sample of 64 teachers yields an average of 38 lus of work 
per week. The population standard déviation is known to be 4 hrs. 
Détermine whether the claim is correct at a = 0.05.
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S olution
Ho : Mo 5: 35 
H\ : p > 35

X  = 38, o = 4, p0 = 35, n =  64 
X  — p 3 8 -  35 3

Zc = ff/V'n 4/\/64 4/8
= 6

reject #0 and conclude that the counsellor’s claim is not true.

7.1.2 O ne-sam ple te s ts  ab o u t p (o unknow n)
If sampling is drawn from a normal population and the population 

ance is not known, then the test statistic to use is

tc =
X - P o
s/y/Tl

with n — 1 degrees of freedom.

E xam ple: A production company decided to examine the weights of t 
Products. The manager believes the mean weight is 3.0 pounds. Supf 
the company took a sample of 25 items from their production and fo. 
the mean weight was 3.6 pounds. with a sample standard déviation of : 
pounds. TVing a = 0.05, can this company’s claim be regarded as corre

U =

H0 : Mo =  3.0 
Hi : p ^  3.0

X  = 3.6, s =  2.2, n = 25

X - P o  3 .6 -  3.0 
s 'y /n  ~ 2.2/5

= 1.363

Solution:
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Tests o f  H ypothèses 125

Since te =  1.363 is less than =  2.064, then H0 is accepted.

7.1.3 Tests on th e  P o p u la tio n  V ariance, o 2
The foliowing test statistic is used to test hypothèses about an unknown 

population variance
2 _  (” ~  l ) s2

where er2 is the hypothesized value of the population vairance, and n — 1 is 
the degrees of freedom for this test statistic.

E xam ple: A government wage review board daims that the wages of 
some cooks across the country show a variance of at least A<T20 per year. 
A random sample of 25 workers revealed a sample variable of £740/year. 
What is your conclusion about the review board’s claim using a = 0.01?

Solution: 770 : o2 > 120 against 77, : < 120
n = 25, s2 =  40 x3.oi.24 =  10 86

2 _  24 x 40 
120
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7.2 B est C ritica l Régions
We want to consider the properties a satisfactory test or (critical régie- 

should possess.

D éfinition: Consider the test of the simple null hypothesis Ho : 6 = 
ng. inst the simple alternative hypothesis H  y : 6 = 0X. Let C  be a crit! 
région of size a; that is a  =  P( C; 0o). Then C  is a best critical région 
size a  if, for every other critical région P  of size a  =  P( B;  0O), we hâve

P(C;0i) > P{B-,0i)

That is, when Hy : 6 = 6y is true, the probability of rejection Ho : 6 
Oq using the critical région C is at least as great as the correspond! 
probability using any other critical région B  of size a.

Thus a best critical région of size a  is the critical reigon that has the 
greatest power among ail critical régions of size a. The Neyman-Pears: : 
lemma provides sufficient conditions for a best critical région of size q .

T heorem  (N eym an-P earson  Lem m a): Let X u X 2, ■■■ , X n be a raz- 
dom sample of size n from a distribution having p.d.f. f(x;0),  where 
and 9i are two possible values of 0. Dénoté the joint p.d.f. of X i , X it • • •, A. 
by the likelihood function

L(0) = L[6\x i , i 2, . . . , i n)
=  f { ^ ù0 ) f { x2\0) ••■f[xn;0)

= f t / ( * ; • )
.=i]

If there exists a positive constant k and a subset c of the sample 
space 5

(a) P[(Xl , - - - , X n) e C ; 0 o] = a.

(b) < k for (xj, •■•,!„) €  C

{c) U M - k f o i  {xi' - " ' X n ) € C '
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then C is a best critical reigon of size a for testing the null hypothesis 
H0 : 0 = 9Ü against the simple alternative hypothesis H, : 6 — $1

P roof: For random variables of the continuons type; replace the intégrais 
by summation signs for discrète type.

J  L{9) = J  ■■■ j  L{9\®i , i 2, • • •, xn)dxi,dx2, ■ ■ ■, dxn

If there exists anothei critical région of size a, say S , 3

a = [  L{60) = [  L(90)
JC J B

0 =  [  L(60) -  [  L(60)
JC J B

Since C is the union of the disjoint sets C n  B  and C P B'  and B  is the 
union of the disjoints sets B  n  C and B  C\ C1

= [  L(90) + / L(60) — f  L(00) + f  L(90)
JcnB1 JCnB JcnB JC'nB

hence,
0 =  [  L(90) + [  L(0o>

JcnB1 Jc'nB

By hypothesis (b), KL{0i) > L(90) at each point in C , and C n  B 1 in 
particular, thus,

k f  Lie,) > [  L(0o)
JcnB' JcnB'

By hypothesis (c), KL(9,) < L(9q) at each point in C1 and C 'n B  in 
particular, thus

K  [  Lie,)  <  f  L[90)
J c n B  Jc'nB

0 =  [  L(0o) -  [  L{eo) < K  { [  L(6,) -  [  L(0,) }
Jc'nB Jc'nB l JcnB' Jc'nB J

or
o < k { fc L ie , ) -  Jb Lie,) |

thus,

Jc m n  fB w y ,
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.hat is, P(C;6i) > P{B;0). C is a best critical région of size a , since 
:esult is true for every critical région B  of size a.

E x am p le  1: Let X\,  X 2, ■ ■ ■, X n be a random sample of size n from a F 
son distribution with mean A. A best critical région for testing H0 : A 
ag. inst Hi : A =  5 is given by

m
L(5)

S E i . g - S n  J

— -----— x —- < k5El-e_5n xA ~

3 \ 2 >

5>
,2 n < k

Y r x, ln -  +  2n < ln k 

v-, ln/c —2r _
M W = C

The best critical région is { (ii, • • •, xn) : E  x, > C}

E x am p le  2: Let X i , - - - ,X n be a random sample from a normal d 
bution N(p,  64).

(a) Show that C = { ( ih x2, • • • ,x„) : x < c} is a best critical reigoa 
testing H0 ■ P =  80 against Hi : p  =  76

(b) Find n and c so that a = 0.05 and 0 = 0.05 approximately. 

Solution:
(a) H0 : p  80 against H y : p = 76

1(80) _  ( ^ S i - ^ e x p l - ^ E l x . - S O ) 2]
L(76) (128)-"/2ex p (-ïii E(x, -  76)2]

=» e x p [ - ^ - ( - 8 X : ^  +  ^ 0 2 - n 7 6 2)]<A: 
I / o

=> 8 ^  x, — 624n < 128 ln k 

Y^x ,  -  78n < 16ln k

x  < 78 + — ln k n
x  < c
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where C -  78 H---- ln Ar.
n . . . .According to N.P. lemma, the best critical région is

.. C =  { (ij, •••,!„ ) : x < c}.

(b) Find n and c so that a =  0.05 and 0 = 0,05

a  =  P ( X  < c\p = 80)
X  -  80 c -  80=  P

= 4>

8 l \ n
c — 80

<
8 /v n ; p = so

8/x 'n  (
/? = ( X  > c; p = 76)

= P
76 c -  76

> ——7=\ M = 76

=  1 - 0

8/v 'n  8 /\/n
c — 76
8 \  n

0 f -=  0.05
^ l ) = 0 . 9 5

c — 80
c -  76 
c -  80

c
and n

••(0  => = -1.645
••(»•) =► =  -1-645

-1.645 
1.645 

- c - r  76
78
43

= -1

7.2.1 U niform ly M ost Pow erful (U M P) Tests
We now consider testing a simple hypothesis H0 against a composite 

hypothesis H i

D éfinition: The critical région C is a uniformly most powerful critical 
région of size a  for testing a simple hypothesis Ho against an alternative 
composite hypothesis H\ if C is the best critical région of size a  for testing 
Ho against each simple hypothesis in H\. A test defined by this critical
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région C is called uniformly most powerful test with significance level a fo:
testing a simple hypothesis H0 against a composite hypothesis H i.

can be used to find them.

E xarnple  1. Let X u ■ ■ ■, X n be a random sample from a distribution with 
density function

Show that there exists a uniformly most powerful test for testing the sim­
ple hypothesis H0 : A =  Ao against an alternative composite hypothèse 
H 1 : X >  A0.

Solu tion: Let A[ > A0.
Consider testing H0 : X -  X0 against H\ \ X = X\.
By TV -  P  lemma,

This inequality holds for ail A] > A0. Thus UMP critical reigon exists ar.i 
is

E xam ple  2. Let X i , . . . , X n be a random sample from N(p,  25). Shc- 
that there exists a UMP for testing H0 : p. =  40 against the cor..posi«

UMP tests do not always exist, however when they exist the N  — P  lemm-

f (x ,  A) =  Xe~Xa, x > 0, A > 0

L(Hq)
L(H\)

that is

C  =  { ( x i , . . . , ! » )  :  <  c )

where
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hypothesis : p > 40 (H\ : p = pi > 40).

Solution:

L(H0) = L{ 40)
L(H ,) L(pi)

The best critical région of size a for testing H0 : p =  40 against H\ : p = pi 
where p\  > 40 is given by

C = { (ij • • • !„ ) :  x > c}

C is selected such that P ( X  > c : H0 : p  — 40) =  a.

Exercises:

1. Let Xi- - -X „  be a random sample from N(9, 1). Show that there 
exists no UMP test for testing the simple hypothesis H0 : 9 = 90 
against an alternative composite hypothesis H\ \ 9 ^  90.

2. Let X  hâve an exponential distribution with a mean of 9\ that is, '
p.d.f. of X  is /(x ; 9) = \ e - z' e\ 0 < x < oo.

6

(a) Show that a best critical région for testing Ho ■ 0 = 3 against
n

Hi : 6 = 5 can be based on the statistic y  X,
î

(b) If n =  12, find a best critical région of size a =  0.10 for testing 
Hq : 9 = 3 against H\  : 9 =  7.

(507r)?exp l-^L (x , -  40)2j
(507r)?exp[—i £ ( x ,  - M i )2i

exp - 40)2 -  £(*•■ -  m0 !

exp( -  — |2(mi — 40) y  x< + n(402 — /if)]} < k 

-  40) y  x-, + n(402 -  /z2)] < lnA:

2 (py -  40) y  x< + n (4°2 -  Mi) > -5 0  ln k 
2(/ij -  40) y , i ,  > -50  ln k -  n(402 — p\)

-5 0  ln k
x > 2n(pi -  40) { 4 0  +  Pi) =  c
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3. Let A-!, A'2, • • •, AT,, dénoté a random sample from a normal distri: 
tion N (0,100).

(i) Show that c = {c : c < x)} is a best critical région for test - 
Ho : 9 = 75 against Hi : 9 = 78

(ii) Find n and c so that

P\(XU.X2.

and

P [ ( X u X i t -

approximately.

■ , X n) Ç ç  : H 0\ = P{x >  c; H0) =  0.05 

, X n) €  c : Hi] = P(x > C : Hi) = 0.09

7.3 L ikelihood R a tio  Tests
A general test-construction method that is applicable when both 

null and alternative hypothèses, say H0 and H i, are composite shal. 
considered here. The functional form of the p.d.f. is assumed known 
dépends on an unknown parameter or parameters. That is, assume 
p.d.f. of X  is /(AT; 0), where 9 represents one or more unknown paramet 

Lei f! dénoté the total parameter space i.e. the set of ail possible valu 
of the parameter 0 given by either H0 or Hi.
Consider the following hypothèses

Ho : 9 G vj against H\  : 0 €  w'

where w is a subset of ft and tu' is the complément of w with respect te :

D éfin ition  1: The likelihood ratio is the quotient

\ _
L( A)

L(û') is the maximum likelihood function with respect to 9 when 9 € u 
L(Ô) is the maximum likelihood functin with respect to 9 when 9 6 fi 
Since A is the quotient of non-negative functions, it implies that A > 
And since u; C H, then L(w) < L(Ù) and hence A <  1. Thus 0 < A < I 
If the maximum of L in w is much smaller than that in fl, then the 
x j , . . . .  xn do not support the hypothesis.
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Ho : 0 €  w. That is, a small value of A = L H
L ( f i )

leads to the rejection of

H0. However, a value of the ratio À that is close to 1 supports the null 
hypothesis Hq.

D éfinition 2: To test Ho : 0 G w against H\ : 0 £ w', the critical ré­
gion for the likelihood ratio test is the set of points in the sample space for
which

A =
L ( f i )  -

where 0 < k < 1 and k is selected so that the test has a desired significance 
level a.

E xam ple. Let Xi,  • • ■,X n be a random sample from N{6x,0i). Consider 
testing the hypothèses

Hq : 0i = 0, 02 > 0, -oo  < 6i < oo

H \ : #i 7̂  0, #2 >  0, 0 <  02 <  00 n =  {0J, 02}

Solution

L{w)

ln L(w) 

d ln L(w)
de,

n

Ô2

L(Û>)

2 7T0,

= f — yV2tt62)
e '^ E x ?

n , n , „ Ex?
- r  ln2yr -  -  ln02 -2
—n 
W 2 '  
Ex? 
02

Ex?
n

202
Ex?
20?

= 0

(27rEx?/n)
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m

ln L[U)

d\n L{U) 
dû,

E i, — nÔ\ = 0 
àï = x

d ln L(H) 
dÛ2

0,

-J-  + 4 -E (x , -  x)2 = 0
2fl2 20\

nû2 + E(xj -  x)2
20j

S(s, -  x)2
n

L ( n )

Taking the ratio,

a i £(»■-«>* 3 Ë(a.-i)2e H

a
2

_  ae a

Note that Ex2 = E(x< -  x)2 + n i 1

L(à) = (  E (x,- + Æ)2
L(n) V £ ( x , - i ) 2 + n î 2J
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. 1 + Ë * F  
1

< A0

1 + nz* -  A°
Et».-*)1

*/"

Converting, we hâve

1 +
nx i

U *  -  *)2
v > A'

"*  - „  > A' -  1 =  A" 
E(x. -  î ) J “

Taking the square root,

V»* >

Multiply through by An -  1

'E(*« -  ï )2

_ fy "  >
/Et».-*)1n-l

Divide through by y'n

s/ V *
Thus, the test can be based on the t distribution with n -  1 dcgrees of 
freedom.

Exercise: Let X i , . . . , X n be a random sample from N(p,  5). Find the 
likelihood ratio for testing the hypothesis. H0 : p  = 72 against / / ,  : u /  72

7.4 S equen tia l P ro b ab ility  R a tio  Test
The two assumptions made on the previous methods of hypothesis test­

ing are:

(i) th&t 4  «Ample of fixed size is taken

(ii) choice hag to be made in favour of one or two possible outcomes
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However, in sequential sampling, samples are taken one at a time 
a decision is made at any point in time. At each stage of the sampling 
of three decisions is made:

(i) accept

(ii) reject

(iii) continue sampling.

Sequential analysis refers to techniques for testing hypothesis or 
mating parameters when the sample size is not fixed in advance but 
determined during the course of the experiment by criteria which de' 
on the observations as they occur.

Consider testing a simple null hypothesis against a simple altern 
hypothesis. That is, suppose a sample can be drawn from one of two d; 
butions and it is desired to test that the sample came from one distribu 
against the possibility that it came from the other. If A j, X i , . . .  de~ 
the random variables, we want to test

Ho: X,  ~  /o( ) against /fj : X { ~  /i(-)
the simple likelihood-ratio-test was of the following form;

Reject H0 if A =  — < k for some constant k > 0.
L\

the sequential test employs the likelihood-ratio sequentially.
Define

Lo{x\, ■ ■ ■, xm)
' ' ' i xm)

L0(m) _  nr=i /o(x-)
Li{m) n,” i / i  (*<)

for m =  1 ,2 ,. . .  and compute sequentially Ai ,A2, —  For fixed k0 a: i 
satisfying 0 < k0 < k u  adopt the following procedure:
Take observation x\ and compute Aj: if A! < ko reject Ho,
If A! > k\ accept H0: but if k0 < Xi < kx take observation and con. 
A2.
If A2 <  kQ reject H0\ if A2 > ki accept H0 and if k0 < X2 < k j take xs, 
The idea is to continue sampling as long as k0 < X, < ki and stop as 
as Am < k0 or Am > kj where you reject or accept H0.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Tests o f Hypothèses 137

The critical région is defined as

c = { J c n,
n=1

where

Cn = {(^l • • ' I n); ^0 < ^j (®1 ■ ■ ' xj) ^  ^li J = li • • • ? n~  T ^«(^î ’ ‘ ‘ xn) ^  ^o}

i.e. a point in Cn indicates that H0 is to be rejected for a sample of size n. 
Similarly, the acceptance région is defined as

OO

A = { j A n
n = l

A n  =  { ( i l  • • • ! „ ) ;  ko <  \ j ( x x ■■■Xj) <  k x, j  =  l , . . . , n - l ,  A „ ( i i  - I „ )  >  k x)

D éfinition: For fixed 0 < ko < kx, a test as described above is defined to 
be a sequential probability ratio test.

Determining k0 and kx so that the sequential probability ratio test will 
hâve pre-assigned a and 0  for its respective sizes of Type I and Type II 
errors. OO .

a =  P[reject H0\H0 is true] = / L0(n)
--« JCnn = l

( i )

and
0 = P[accept H0\H0 is false] =  Y ,

n = l
L , ( n ) ( 2 )

For fixed a and /3, (1) and (2) are two équations in the two unknowns k0 
and kx. Solutions to équations (1) and (2) would give the SPRT having the 
desired preassigned error sizes a and 0.

T heorem  I: Let k0 and kx be defined so that the SPRT corresponding 
to k0 and kx has error sizes a and 0\ then k0 and kx can be approximated 
by k'0 and k[ where
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Proof:

Also,

a  =  Pjreject H0 H0 is true]

n=l JC"

< £  /  *o^x(«) < * o £  (  Lt (n)
I |

< fc0P[reject is true]
<ko{ l - / 3 \

Û
and hence ko >

1 - / 3
k'0 SS o / l  -

That is k'j ss

hence,

1 -  a

1 -  a = Pr[accept H0 \H0 is true]

= t  i  io(n)n= 1

> * i £ /  Li(n)

> ÂriPrJaccept /70|//i is true]
> M

0
Theorem II- Let a' and 0' be the error sizes of the SPRT defined b?
i 1 and k[.
Theü a ' + ?  < a  + 0.

of: Let A' and C1 dénoté the acceptance and critical régions of the
b T deifned by k'0 and k\. Then

= t / c , *>(«) s  i '(" )  =  -  «
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and
1 -  a(P)

1 -  *»' =  E  fA, M » )  > k'i E  fA, LiN  = -------J

Combining the two results, we hâve:

a ' < r —~r(l -  0') and 1 -  o ' >1 - 0 ' 0

or a '( l  — 0) < a ( l  -  0') and 0 ( 1 -  a') > (1 -  a)0'
.«':(! -  0 )  <  tt( l -  0')  and 0 ' ( l  -  a )  <  0 ( 1  -  a')

or «'i(l -  Jt) +  ^ { 1  -  a ) <  a ( l  -  0‘) + 0(1 -  a')
«*•' -t- 0 ' < a  + 0

7.4.1 A ppraxantate  E xpec ted  Sam ple Size of SPR T
Select two nnmbers *D and kx and continue sampling as long as ko < 

Àm < kx and stop as soon as Xm < k0 or Am >  kx. If

Z, =  log,

an équivalent test is described as follows:m
Continue samping as long as logc k0 < E  2> < *°6e a °d stop “  soon as

f=i

/o (*«)

A M

E  ^  *b
i

E 2, > logt *1
1

Let N  be the random variable denoting the sample size of the SPRT, and 
let

Zt = loge

T heorem : Wald’s équation: Let Zx, Zi, - — ,Z n - • • be independent identi- 
cally distributed random variables satisfying J5[|.Zi|] < oo. Let N  be an

fo(X>)

when you Teject Æ?o 
or

when you accept H0.
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integer-valued random variable whose value n dépends only on the value* 
of the first n Zi s.

Suppose E(N)  < oo. Then E\zx + ---- h zn] = E(N) ■ E[ZX).

Proof.

aloge k0 + (1 -  a) logf kx 
E\Z, Ho is true]

^  Qlogt [Q!(l -  3)} + (1 -  û) loge[( 1 -  g)\0]
E[Z{ H0 is true]

(1 -  0) loge k0 + 0 logg kx 
E[Z, Hç, is false]

(1 - /3 )  lo g ,[a /( l- / ? ) ] + fl log«[(l-/?)//?] 
E\Z,\Ho is false]

E xam ple 1: Let X  hâve a Poisson distribution with mean 0. Find the 
sequential probability ratio test for testing H0 : 6 — 60 against Hx : 0 = 6X.

n
Show that this test can be based upon the statistic If 0o = 0.02,

0X = 0.07, a  = 0.2 and 0 = 0.1, find ko and kx.

Solution:

, n?.i
gZz,e-ne

l (Qq) = r « . '
L{0\)

E\N\Ho is true]

and

E\N\H0 is false]
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k° < r ï
e-n(«o-<i) < ki

ln (r= )̂ < 2>In [y) - n(0û -^ <ln (^ir)

ln +  n i°0 -  Oi) < J 2 x i ln < ln + n ^ °

,n ( A )  +  n (*o -  *i) ln f 1̂ )  + n(0o -  #i)
ZTTiï  > 2-,x* > , f tû\
•n

î.e.
ln ( 1? )  + " ( « 0 -  *.) ^  ln ( * ) + » ( « » - « . )

^  < ^ <  I n f è )

M ( | f ) - 0 . 0 5 n ^  . In ( H )  -  °  ° 5"

'" (§ § )  ^
ln 8 -0 .0 5 n  ^  ln0.22 -0 .0 5 n

-1.25

k0 = —1.66 +  0.04n

-1.25

ki =  1.20 +  0.04 n
E xam ple  2: Consider testing the hypothesis H0 : p < po Vs Hi : p  = 
Pi > p0, where p is the mean of a normal density with known variance o‘. 
Here the likelihood ratio

U
Lo

e x p [ - ^ r E ( j .  ~ Mi)2] 
e x p [ - ^ E ( i .  “  Mo)2]

— ~ ^ [ 2(Mo “  M i ) H x« + n (^ï “  A*ô)l]

exp

exp
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The critical reigon C will be deteriri:red by the inequality

cxp [ mi -  Mo v -
2cr2 > k

ii r.on-negative constant. 
TaKm* logarithms

Mi ~ Mo + ” (MÎ -  m5
32** -  ,nfc
\r* - ^  a ! h l * "(Mi + Mo)/  . zi _  — _

Mi -  Mo 2

Tjn—  = exp
•̂ On

Ml -  MO
I >  +

n(M? -  Mi)
2o:

log 0 Mi^M v  »(*4 -  M?) , 1 -  0
a2 2- I ,+  2cr» < l0g û1 -  Q

Since mi > Mo, then

*  + ^  < e x s  j ; ,  < *  L z *  + f c i ï

Mi

£ " (mo + mÎ)

Mi -  Mo
io g î ^ i  +  " w - ' «

Q 2o2

log
Mi -  Mo 1 ~ «

. v -  ,  °  1 1 -  3  , n Ml +  Mo)< 2_ i ,  < ---------log------- + -------------
—  Mi -  Mo Q 2

Suppose we hâve chosen a = 0.05. 3 0.10, and that we are testing Mo — 10
against mi = 10.5 with o = 1, ther.

-4.50 -  10.25n < ^  x, < 5.78 + 10.25n

and the sequence test proceeds as follows:

(i) 5Zz, < -4.50 - 10.25n accept /i = 10

(ii) If T,x, > 5.78 -  10.25n acccpi p = 10.5
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(iii) If neither inequality is satisfied, take another observation.

Suppose 15 values of Xi obtained in sampling axe as follows: 
10.91, 8.88, 10.35, 9.84, 10.42, 10.05, 9.94, 11.15, 9.92, 10.23 
10.53, 8.61, 9.70, 8.83, 8.96

n 1 2 3 4 5 6 7 8 9 10
bo 5.75 16.00 26.25 36.50 46.75 57.00 67.25 77.50 87.77 98.00

E x . 10.91 19.79 30.14 39.98 50.40 60.54 70.39 81.54 91.46 401.69
6i 16.03 26.28 36.53 46.78 57.03 67.28 77.53 87.78 98.03 108.28

bp
Z  Xi 
bi

11
109.25
112.22
118.53

12
118.50
120.83
128.78

____13_
128.75
130.53
139.03

14
139.00
139.36
149.28

____15_
149.25
148.32
159.53

The decision to accept p =  10 which is the correc decision occurred at the 
15th sample.
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P robab ility  C alculus and Lim it
Theorem s

8. The P ro b ab ility  C airo tes
8.1 Space o f E vents and

Events arising ont of 
certainty; but certain 
is a natural enquiry as tt> 
attaching précisé measures or 
These quantities, to be w ü  
conditions based on intuitive

The calculas of probabtit? s  
such quantities. Their apf 
as examination of the 
situation or the estimatioa of 
events based on tbem 
and methods to vhich tha d  
step, we must spec.fj ' * set a  al 
distinguishable r. ----- 
some practical reas< 
general statement gorenmg

Consider the heights of 
vations can theoreticaily 
or if height is measured in 
be confined to a countable set of

se predicted with 
tkaa others. so that there 

be described by 
peahehâfities) to events.

consistency

scs truc; ion and study of 
the real world, that is, 

probabilities in a contigent 
t.-es and prédiction of 

-a f .e r  of statistical theory 
tertrc -ri .5 ail about. As a first 

yf an experiment which are 
- ail them eiementary events for 

t i -  ie ir. t on of an event as a more 
1

fr : m a population, the obser- 
- a.ues on the entire real line, 

of ! sc— the eiementary events will 
j  : : - real ine. Events of interest

144
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in such cases may be the occurence of individuals with heights in specified 
intervals.

Let the set of ail elementary events be S, also called the sample space 
with éléments or points A representing elementary events. If an event A\ 
is defined by a property tt possessed by an element, it is natural to consider 
the event where n does not hold. Some basic fundaments of calculus hâve 
been discussed earlier. Our class C of sets on which probabilities are to 
be defined should at least hâve the property that if Ai and Ai  G C, then 
A,, Ai U A2 and Aj n  A2 G C. Such a class of subsets is called Boolean 
field and is represented as 7 , we shall discuss more on this later in this part.

8.2 P ro b ab ility  Set Function
For each set A G J  we hâve to assign a value P(A) (called probability 

of A) or we define a set function P  over the members of 7. The proba­
bility function has to satisfy some intuitive requirements. First, its range 
shoud be [0,1], the value 0 for impossibility and 1 for certainty. Second, 
let A i,...,A *  (A,- G 7) be disjoint sets whose union is S , which means 
that any elementary event that occur has one and only one of K  possible 
descriptions A i,...,A * . The relative frequencies of the events A i,...,A *  
must then add up to unity which suggests, the following requirements stated 
in form of two fundamental axioms governing the set function P  on the cho- 
sen field 7\
F irs t Axiom : P[A) > 0 . A G 7 
Second A xiom :

OO

U  A, = 5, A,- O A, = <(> V f #  j
i= 1

This implies

t K A ) - .
1

A set function P  defined for ail sets in 7  and satisfying the first and 
second axioms is called a probability measure. The consequencies of these 
axioms are:

(i) 0 <  P[A) < 1 , A G J
O O  OO

(ii) P(é) 0 [by observing à -  ((J  A,) =  S  = (J  A, and the second axiom
«=ft 1

hold- tor a lin ire dororn;>'>'~'il ion of £-
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(iii) P{S)  =  1 [since S  U <t> U 4> =  • • • 5]

(iv) = E P [Ai), for any countable union of disjoint sets in 7,  whose 
union also belong to 7. [(IM,-) U  (U./4;)] =  S  =  (LM*)' U A\ U j42 ...] 
tbten ( P ( U A )  + P[(uA,)c]) =  1 =  P[(lM,-)e + P(AX) + P(A2) +  • • •]

(v) Let Ai be a non-increasing sequence of sets in 7  s.t. lim Ai =  H/t,- €
'  7 i —»oo

7.  Then lim P[A,) = ‘P(lim  Ai). The compliments A'  form a non-
i —*oo i —*oo

decreasing sequence and

UA' =  (nAt)c =  A\  U (A\ -  A\) U (Al - A l ) . . .  

using the conséquence (iv) of the second axiom, we see that

P\(nAiY\ = P\A\) + P ( A l - A \ )  + ---
=  P ( ^ )  +  [PM c2) - P ( ^ ) ]  +  .. .
=  limP(AJ) as i —* oo.

i.e. 1 -  P(ni4.) = lim[l -  P(.4,)] as t —» oo *
or P(limA,) = P(nA ,) = limP(A,) as t -» oo. This establishês the 
non-increasing sequnce.
Similarly, if Ai, i  = 1 ,2 ,. . .  is a non-decreasing sequence of sets in 7  
such that lim A, = UA, 6 J ,  then

lim P (A,) =  P(Ui4,) = P ( lim A,)
»  — O O  •  — OO

establishes the non-decreasing sequence.

E xam ple 8.1: Let A, e  7 ,  i = 1,2. ..  be a countable number of disjoint

sets such that lM, =  S. Then what is the behaviour of V p ( i j ?  From
i

OO

the second intuitive requirement that ^ P ( A ,)  =  1, for any finite decom-
1

OO

position of S  it follows that ^  P(AX) < 1.
i

O O

E xam ple  8.2: What are the consequencies of ^ P ( A ,)  < 1? Let us con-
î

O O

sider the sequence of events Bk = (JA,-, the sets B iyB 2). . .  form a de-
k

creasing sequence tending in the limit (we shall discuss this shortly) to the
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empty set 4>. We may then expect P( Bk) to decrease to zéro as k increases.
OO

This does not happen if ^  P(A,) < 1, it appears then that we need as a
îOO \

conveniest condition ^  P(Ai) for a finite or countable décomposition of 5.
î

8.3 B orel F ield  an d  Its  E xtension  to  P ro b ab ility  M easure
A field which contains ail countable unions and intersections of sé­

quences is calied a Borel field or a sigma field (o-field). Given a field J  
there exists a minimal Borel field containing 7  which we dénoté by S (J), 
this we can show as follows:

There is at least one Borel field which contains 7.  Ail arbitrary inter­
sections of Borel fields 0 are also Borel fields. Hence the intersection of ail 
Borel fields containing 7  is precisely the minimimal Borel field, B(7) # .

A set function defined n 7  and satisfying the first and second axioms 
can be uniquely extended to ail sets in B(7),  that is, there exists a unique 
function P ‘ such that:

(i) 0 < P ’(A) <1 ,  A € 0(7)

(ii) P ’ (uAfl) =  E P '(A n) for a countable sequence An of disj Vnt sets in 
B(7)  and

(iii) P-(A) = P{A),  if A e  7.

We define a function P'  as follows:
OO

Consider a set A in B[7) and a collection of sets A, in 7  s.t. A C (J A ,,
i= 1

then
P ’ ( A )  = i n f  Z  P ( A i )

It may then be of some advantage to consider the wider field B(7) as 
our basic class of sets for defining the probability function, we are then in a 
position to build up a calculus of probability based on the basic space S  of 
élément A, a Borel field or a-fie!d 0 of sets (events) in S  and a probability 
measure P on 0. The triplet (S, B, P) is calied a probability space, while 
we define S  or (5 ,0) as the sample space.

Let us consider the following Lemma to substantiate our discussion on 
probability measure.
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Lem m a 8.1: If P'(S) is a probability measure on Si with P(S) = F ( S ), 
if S  = ( - 00. y), then P(s) =  P'{s) V s G Sj.

P roof: Let S  = [a, 6 ; since ( 00. 6) = (-oc ,  a) + la, b)
F (b) =  F(a) + P((a, 6)) =  F  (a) +  P'([a, b))
Hence P  and P' agréé on intervals of the form \a,b).

Let 7n be the class of finite unions of sets of the form \a,b) in [—n, n). 
Then 7n is a field and a set S £  7n can always be expressed as union of 
disjoint sets of the form 5, = a,, b,). Therefore

et») = E  e (|«A » = = e 'W

so that P and P' agréé on 7„ and therefore on B(7).  Now let s € Si, then
S n [—n, n) € B(7„) so P S n, n ,. = P'\S n  [ - n, nj) and letting n • 60, 
P(s) =  P '(s) #•

8.4 L im it Theorem s
The distributions of manv statistics of interest are too complicated to 

dérivé in useful forms. In many cases, however, limiting distributins can be 
obtained; these may be used as approximations to the exact distributions 
when the number of observations N  is large. In this section we study some 
limits theorems of general applicability. A conventional method of obtain- 
ing the limiting distribution of a sequence of random variables is to find 
the limiting distribution of an approximating sequence discuss as follows:

8.4.1 C onvergence of R andom  V ariable
A sequence of random variables {A'„}, n — 1 ,2 ,. .. is said to converge 

to a random variable X  (applicable to constant c):

(a) Weakly or in Probability (written as X n X) if for every given
€ > 0,

lim P( A'n -  X| > e) = 0 (8.1)
n ~ *  0 0

(b) Strongly or almost surely (written as Jirr^ X n = X  with prob 1 or

Xn - -  X) if
P  f lim Xn =  X )  =  1

\n -* o o  /
(8 .2 )

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Probability Calculus & L im it Theorems 149

or equivalently

lim P  sup \Xn — X\  > e =  0
W  —  o o  \ n > N  In > N

(8.3)

for every t.

(c) In quadratic mean (written as X n q- ^ X )  if

lim E(Xn -  X ) 2 = 0
f l — OO

(8.4)

or in r-th mean il

lim £(:.Yn .Y|r) = 0 , V r > 0
f l —* 0 0

A sequence of random variables {A'’n(-)}, n =  1 ,2 ,... is said to con­
verge to a constant c is sense of équation (8.1) through (8.4) according as 
the sequence {X„{-) — t}, n =  1 ,2 ,... converges to zéro in the sense of (8.1) 
through (8.4).

8.4.2 R ela tionsh ip  A m ong V arious Types o f Convergence

(A) C laim  1
Convergence in quadratic mean (when r = 2) implies convergence in

and by virtue of P(-) > 0. then L.II.S. takes zéro only as its value. #

(B) C la im  2
Convergence almost surely implies convergence in probability. 
Proof:
Recall that in almost surely

Probability.
Proof:

/>(\ Xn - X \ > Z ) < ± - 2E l\Xn - X \ * \

Jim  P X n -  X \  > Ç] <  ^  J im ( |X n -  X |2) =  0

lim P  sup |X n -  X\ > £ = 0,V—oo n>Nn> N
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Thon
À'„ .V > £ => sup X n -  X  > £

n > N

.. P \ ,  X > i ) < p ( s u
\n>

X\  ï) lim P  sup X > Z

sup X n -  X\  > Ç 
U > . v

=  0 #

(C) \  : that £ À'n \  x  then Xn X
P '-  tif: trince LF.1 V.. — X ) 2 x ,  the infinité sum

T .  x . - x y
i

(8.5)

■ orge exropt for . -  *f sequence of measure zéro in R°°. 
f 1-5 a sel cf measure P, lot Aw be the set

" Il j t

_  V .  - X )2 > X

\ } n <cre-cL-'ng and hence I 

lin - s ) = / ,lim A,\) > P

' I sériés ntu »ily exceeds any ■ o A. Conse-

N
B * .  * ) ' XPE(X,  -  '<)* = E

.. . contradicts the assumption,
00

B *  -  X)2 oc for sufficiently large A
î

Hence P[E(À '„-À ')2 converges -  1. but if an infinité sériés converges 
the n-th term tends to zéro as n increases to infinity. Hence

P (|X n — X| —♦ 0 as n->oc) > P B*« - x y
i

con' es) — 1

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Probability Calculus & L im it Theorem s

This is almost surely, but incidentally we hâve proven thaï, if 
n =  1,2, . . .  is a sequence of random variables then

(OO \ 00
Ç x nj  = ç w

provided £  E\Yn\ < oo, which ensures 

probability one.

OO
the convergence of X n v u

i

(D) C laim  4
The convergence in r-th mean implies convergence in Prol s, 
P roof: Let g(-) be a positive function of X  and select £

£(ff(*)) = /  9(x)dF(x) = f  g(x)f(x)dx
J  -o o  J  -o o

> f  g(x)dF[x) > f  SdF(x) = € r  <//■ (*!
Jg(z)>Ç

= > 61

> p |9 (i) >  d

Set <7(x) -  Xn -  Xlr, then

P(\Xn X\r > t ) < ± r E(\Xn X\r) ^ 0

I' .onv* g-ne* in r th mean.

W< ail i-" Icmv* stucl, orra. • : a r ' • <.n limita of • H> ••
<■ of .r';. •

I 8 .

r, ■
A ; Y,
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T h e  X n c o n v e r g e s  i n  p r o b a b i l i t y  t o  z é r o ,  t h a t  is ,

- ^ 0

P r o o f :

E ( X n )  =  0

F(X„) =  E ®  =  ^

F o r  e v e r y  Ç >  0 ,  b y  C h e b y c h e v ' s  i n e q u a l i t y  w e  h â v e

^ [ |* » I> É ] <

nl i m P ( | X n | > 0  <

^V ar(X n)

ï & 3 k V lX*)

#

T heorem  8.2
I f  { i? n } i s  a  s e q u e n c e  o f  r a . n d o m  v a r i a b l e s  v vh ich  c o n v e r g e s  i n  P r o b a b i l i t y  

t o  ( i)  S  a n d  ( i i )  T ,  t h e n  S  and T  a r e  é q u i v a l e n t  r a n d o m  v a r i a b l e s .

P r o o f :  S u p p o s e  w e  h â v e

P ( 0  : S ( 0 ) - T ( 0 ) | > O=  p(e • |(sn(*)-r(0)-(sn(0)-s(0))|>o
L e t  K ,  K i  a n d  K 2 r e s p e c t i v e l y  d é n o t é  t h e  s e t  o f  p o i n t s  in  P ° °  f o r  w h i c h

| ( S 4 * ) - T ( 0 ) - ( S n ( 0 ) - S ( 0 ) ) |  

=  | S - T \ > ± = K ,

| 5 „  -  5 !  >  —  =  K i  a n d

| S n - r | > -  =  * 2

S e a r c h i n g  t h r o u g h  w e  s e e  t h a t  K  C  K p j K 2 i m p l i e s  P[K)  Ç  P ( K 1)+ P(K 2). 
t h e n

* ( | S  -  r | )  >  i  <  P ( | S „  - s  I) >  ^  +  P ( | S „  -  T | )  >  i  ( 8 .6 )

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



P robability CalcuJus & Lirait Theorems 153

For n  s u f f i c i e n t l y  l a r g e ,  é q u a t i o n  ( 8 .6 )  t e n d s  t o  z é r o .

L e t  H k  d é n o t é  t h e  s e t  i n  R ° °  f o r  w i n c h  | S  — T \  >  ~  is  t r u e  f o r  N  =  
1 , 2 , . . s o  t h a t  H i  C  H 2 C  H 3 . . .  is  a l s o  t r u e .  T h e  s e t  o f  p o i n t s  i n  R ° °  f o r  
w h i c h  S is  n o t  e q u a l  t o  T  is  t h e r e f o r e  g i v e n  b y

H  =  l i r a  H n =  U  H ,n-*oo

a n d  s o
P ( S  ?  T) = P ( u H , )  < Z P { H , )

B u t

P ( H , )  = P ( \ S  - T \  > = 0 (by 8.6)

T h e r e f o r e ,

P(S ?  T) =  0 #

Th e o re m  8.3
A  f u n c t i o n  /  : s  —» R  is  s a i d  t o  b e  u n i f o r m l y  c o n t i n u o u s  i f  f o r  e v e r y  

£ >  0 ,  t h e r e  e x i s t  a  <5 s u c h  t h a t  f o r  e v e r y  T  G S ,  P  6  S ,  i f  \T — P  <  S 
t h e n  | / ( 7 ’ ) — f { P ) \  <  £• T h e n  g i v e n  { T n } s e q u e n c e  o f  r a n d o r n  v a r i a b l e s  

s u c h  t h a t  Tn — » T,  l e t  g(T) b e  a  c o n t i n u o u s  f u n c t i o n  o f  T  o n  S,  t h e n

g{Tn) —  g(T).

P  ro o f:
g(T) is  u n i f o r m l y  c o n t i n u o u s  o n  a  c l o s e d  i n t e r v a l  ( - a . a l ,  f o r  £  >  0 ,  

c h o o s e  a  s u c h  t h a t

P[\T\ >  a] <  ^  (8.7)

fo r  s u c h  a  a n d  £ t h e r e  e x i s t  a  < 5 (£ ,a )  s u c h  t h a t  if:

( i )  | T |  <  a  ( i i )  |T „  -  T <  6 , t h e n  

( i ü )  W r » ) - f f ( T ) | < { .

L e t  K i ,  K *  a n d  K z  r e s p e c t i v e l y  d é n o t é  t h e  s e t  o f  p o i n t s  in  R x  f o r  w h i c h  

( i )  =  K i ,  ( ii)  =  K i  a n d  ( i i i)  =  K z  h o l d s  t h e n  K z  D  K i ~  K i .  F r o r a  h i  h 3 
but K i  D Ki  C K 3. T h e r e f o r e

K z  C  K i  K i

Kz C l<i u  R i  (By De Morgan’s l.awl 
P(K3) Ç P(Ki) + P(Ki)
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From (iii), we hâve

P(\g(Tn) - 9( T ) > Ç < P \ ] T  - I  Tn -  T\ < 6)

Bul thero exist. S(6, £,a) surh ‘ ii • ■ f a) sufficiently large,
then F(|F„ -  T\ < <$) tends n t

P { T n - T < t ) > t 2  (8.8)

Using ('• TI and i->.8) we !

P(\g(Tn) -g(T)  > 0 < |  +  ^ = Î #

8.4.3 C onvergence o f a S  i* ce o f D is trib u  ion Functions 
In tro d u c tio n

We shall dénoté the sequence of distribution functions of the random 
variables {T„}, n  = 1 ,2 ,. . .  by {Fn}^Li- The sequence of random variables 
{jT„} is said to converge in distribution or in law to a random variable T  
with distribution function Fr; if Fn -* P  as n —» oo at ail continuity parts 
of F , such convergence is denoted as Tn T.

The approximating distribution F  is called the limiting or asymptotic 
listribution of Tn. In statistical applications, limiting distribution plays an 
mportant rôle. The random variable Tn stands for a statistic computed 

amnle of size n, whose actual distribution is difficult to find. In 
i mav be approx.nat.ed by the limiting distribution, at least 

■ 1 .:il examine some results that. are important in 
studyi-., litn 1 distributions.

^ho o ren i 8.4
t • . • .s of variables Then |Tn —i?„| 0,

k„ - 1 ii- m i. is the limiting distribution of Tn ex-
- and t. arne as that

•>of:
F be the distrib-i t ion function of Tn and that of Rn be FR. 

■t, . . Tn -  Rn and t be a* oiuinuity point of FR, then

J  -J -  P{Tn < t ) =  P(Sn -  Rn < t) =  P(Rn < y - S n)
-  P[Rn < t -  S  Sn > -  Çj +  P[Rn < t -  Sn/S„ < -£]
< P[i2n<t +  €i + PiTn < - f ]
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as n —► co, P[Sn < £ —» 0 since

Tn - R n 0.

liminf FTn(t) < lim supirî-ri(«) < Fn(r + £),

also

FTm(t) = P [ R n < t - S n-,Sn < t \  + P \ R n < t - S n;Sn > t]
> P [ R n < t - S n;Sn < t ] - P { R n < t - Ç \
> P[Rn < t - C } - P [ R n < t -  ^ ,Sn >^}
> P \ R n < t - t ] - P [ S n > t}  

as n —► oo, P[Sn > Z) ~+ 0
FTn(t) > FRn[t -  f), since Rn R  and collating these results we hâve

FR(t — Z) < liminf Frn[t) <  limsupi'V„(0 < FT{t +  Z)

liminf FTn[t) = limsupFT„(<) =  FR(t) 

i.e.
FTn —  Fr = >  —  R  #

T heorem  8.5
Let {Tn, R n}™=, be a sequence of pairs of random variables, then.

(a) Tn - ^ T , R n - ^ 0 = >  TnR n 0 

P roof: Consider

P(|rnf in| > 0  = P(\TnR„\ >  Z , |i?n| < Z, k ) 

+ P [ \ T n R n \ >  Z. \R .. >  i  k)
=> Wmsnp P(\TnR n\ > Z) = P(\T\ > k)

n—*oo

for any fixed k  and any <5 positive, we can choose k sufficiently la ge 
such that

P (|T | > K) <6,  is true 

\ imP(\TnRn\ > t )  = 0
n—* oo
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(b) T ri - £ - >  T ,  R n C = >  T n +  R n T  +  C

Proof: We hâve that Tn T .  R n -?-* C  hence Tn +  C  T  + C  ,  

now
{Tn + R n ) -  (T n -T C ) =  T n -  C  —  0

and by Theorem (8.4)

T n + R n T  + C  since Tn +  R n -L* 0

and
T n + C  Y  +  C  #

( c )  T n  - ± T , R n - ^ C  => T nR n -±>  C T

P roof: r„ i în -  CT„ = r n(iü„ -  C) but T n -±> T  and C,
then Tn(i?n -  C) 0 = >  Tntfn -  CT„ 0 , but C T n CT. 
Hence TnRn CT #

T heorem  8.6
A sequence of distribution converges vveakly to F  iff Fn —> F

at every continuity point of F.

Proof:
A seequence A is said to be dense in B if for every 6 € S, we can find 

a subsequence in A which converges to B. Also a sequence { F n } ^  of 
‘ motions is said to converge weakly to a function F  if Fn —* F  at every 
t €  C { F ) .

(i) The necessary condition is true because the continuity intervals of F  
are dense in the real line.

0 For the ,'ufficiency condition, let D be a dense set, take T '  and T "  ir 
F), then V  < T  < T "  => F  {T')  < F  {T)  < F ( T " ) ,  so

Fn(T ' )  < liminf Fn ( T )  < lim supF„{T) < F n (T")

' ben
T' e  D,Fn -+ F => Fn{T') -+ F [T')
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and since T" €  D ,

Fn -  F  => Fn[T") -  F  [T")

Let T  — T  and T" -  7 , then

Fn(T') -> F(T), Fn(T") -  F(T)

Then
liminf F„(T) — * F (7 ), lim supFn(7) -  F(T)

=> Fn(7) —» F(T) which is weakly convergence. #

T heorem  8.7 (H elly’s S equen tia l E x trac tio n )
Every sequence of distribution is weakly compact, that is. there is a 

subsequence which tends to a function (not necessarily a distribution func- 
tion) at ail continuity points of the latter.

P roof:
Let D — {rt } be the set of ail rationals. Since F„(Tr ) is bounded, 

there exists a convergent subsequence. Consider the sequence Fri| (<)} which 
converges for the particular value of t =  r : . From the sequence {F„r (t)} we 
can extract another subsequence {Fn, (t)} in a similar way, which converges 
at t = r2, and of course such a sequence will converge at / = r, and so on.

Let Fnjj be the j -th rnember of Fnj(t) then the sequence 
{F.} =  {Fnil,Fn„ , . . . , F njt ...}  necessarily converges l'or ail t £ D. F0 is 
bounded and non-decreasing for ail any t.

Let F  (y) — upper bound

FD(rt), r, < t (8.9)

F  is continuous from the left, bounded ar.d non-decreasing if t Ç. C{f) ,  
there exists a sequence of rat.ional values {t[,t"} such that t\ < t < t" and 
F(t") -  F(tJ) -  0 as t -  oo. 

a Iso
F.(t[) < F,(t) < F,[t'l)) (8.10)

For each s, where F,(t) is the sequence that converges to FD.
Taking limits in (4.10) we obtain

FD(t\) < lim inf F,[t) < lim supF,(t) < Fd(^)
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and is true for each i. Then FD{t" ) -  FD{t[) — 0 so that the limit .F,(i) 
• xists and is equal to F(t) defined in (8.9) #

Th e o re m  8.8 (H o lly  B ra y )

A sequencc {/•„} is said to converge completely (ci to F, that is, F„ 
r ,  1 Fn(- x l  -  F(— oo) and Fn(co) = -F(oo)

The tiieorem States that if Fn — » F , then

I gdFn —  / gdF for bounded continuons function g.

P roof:
Takt a , and a x with a at a -  two continuous points and consider 

R  = g d F -  r  gdF = H  g(dFn -  dF)
J - o o  J -OO J - o o

= g(dFn — dF) + f ' , g(dFn - d F )  + f " g ( d F n - d F )

R  <  . 7 ]  - t -  J ;  +  | J j |

where

J l  = r  g{dFn -dF)-,
J - oo 

/■ * »

dj /  g(dFn - d F y ,
J Oh
eoo

Jz — /  g{dFn - d F )
Jo.

Since g is bounded there exist C such that ;<7 < C

i ,  - I" g{dFn -  dF)‘ < f  g(dFn dF)I
■' - o c  J -oo

< f  ‘ (dFn dF) = C Fn(a) + F(a)\ = ^
J-00 S

For n n„ and a, sufficiently small, similarly £ 5 for n > n0 and ai
sufficiently large, g is uniformly continuous in tlic interval («,,, ax), suppose 
we divide the interval (a, . c/,) into K parts, that is,

a,, =-tf| < < ! < . . . <  tk ~  ai •
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with t, £ 5(F); i — 1 , . . . ,  K.  Such that |<7(ft) g(tx 1)j < |  for 
t,+1, uniformly for ail i.

Let. us define gm[t) — g(t,), U < t < t,+i, then

r  gm(t)dFn = Y !  r '  9{U)dFn{t)
•'<!„ , = 0 Jt'

m-1 ..(I+1 m-1
= £ ÿ)*,-)/ dFn =  E  g(ti) [F„(f,+i) -  Fn

i=0 Jt< i=0

This tends to
”»-i .ai
E  9(U) \F(ti+1) -  F(t,)} = /  gm(t)dF
<=o Ja"

as n —> oo we hâve
gm ( t ) ( dFn - d F )  <  |J an Ô

Now,

J 2 =  [  9 {dFn -  d F )  =  [  ( g -  gm) dFn -  d F  +  [  ‘ gm (dFn
J  an J  an J  a 0

=  f  (gm - g ) d F

1^1 <
Ç
5 a(,

dFn + 1 + r  d F
/««

< 3 |
5

■AI + l^ ! + l-Jsl

«

Problem s 8.1

1 (a) Define eacli of tho following concepts:

(i) a cr-algebra
(ii) a probability measuro

(iii) a probability space
(iv) a random variable

#

tt < t <

(*.)!

- d F )
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OC

:»  Show that if A, 3, then p) .4, -  3. where 3 is an algebra of sets.
1=1

2. Prove that the convergence of a sequence of random variables in 
quadratic mean to a constant C in a way that E E(X,  -  C)2 < oo 
implies convergence almost surelv to C.

3. If Q'(s) is a probability measure on Bi with Q(s) =  / '(s ), for s = 
(-o o ,x ), show that

<?(*) = < ? »  V s e B x

4. If {An}“=1 be a sequence in {,show that if EP(An) < oo then P(A) -  
0, where .4 is the set of éléments common to an infinity of these sets 
in {.

5. Show that if EP(.4„) oo and the events An are independent, then 
P(A) = 1.

S olu tions 8.1

l(a) (i) A field which romains unions of ali countable sequences of set (and- 
therefore countable intersections) is called a Borel field or o-field.

(ii) A set function C defined for ail sets in s and satisfyng the axioms:

(a) P{A) > 0 , AÆ K
OO oo

(b) (J  .4, =  n , .4, Aj = <b for ail j  ^  j  this implies ^  P(At) -  1
i=i i
is called probability measure.

(iii) Suppose \ve define the space fl of éléments u , a Borel or cr-field of 
sets in fl, and a probability measure P on S. The triplet (fl, S ,P ) is 
called a probability space.

(iv) A real valued point function Àr(-) defined on the space (fl, S, P) is 
called a random variable of the set : X(w) < x}  € S for every x 
in ff.
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Probability Calculus & L im it Tbeorems 161

CO

2. Since ^  E ( X n -  C)2 < oo, then the infinité sum
1

CO

E ( * n  -  C)2 (0
1

must converge except for a set of sequences of measure zéro in 
Suppose that (i) diverges on a set of measure P. Let An be the set

N
in R x  such that -  C)2 > A.

i
The sequence {.4n} is non-decreasing and hence by the conséquence 
of the axioms of probability, that is,

P(lim.4,) = lim P(At),
I  —* CO

we hâve
lim P(An) — P(lim A n ) >  P

Consequently,

J 2 E ( X t - C ) 2 = e \ Y , ( X , - C ) 2) > \ r  
1

o o

which contradicts the assumption. ^  E[X, -  C)2 < oo, if A is chosen
i

sufficiently large.
CO

Hence, ]T(À'„ - C ) 2 converges) = 1, but if an infinité serins converges
i

the n-th term —* 0 as —* oc. Hence
OO

P[\Xn -  C  —> 0 as n —» oc) > — C)2 converges) = 1
i

3. see Lerama 4.1

OO OO

^  =  n u - 4
r -  1 n  = r

4. A  is the set defined as
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Probability Calculus & Lirait Theorems 162

00

it follows that A C [J An, for each r and
n = r

P{A) < P  < Ê ^ ( A n ) < ( ,

for r  -♦ oo since EP(An) converges, that P(A) = 0 

5. -4e is defined as

Ac

1 -  P[A)

00 00un»
r =  1 n = r

cn

P(Ae) = P
CO CO \ 00
u n » cJ < E ^
r = l  n = r  /  r =  1

Ë n lu - .
r = l  n = r

using independence of events, since £P(j4n) =  oo, the infinité product 
diverges to zéro for each r., Hence P(A) = 1.
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C h ap ter 9

Law  o f L arge  N um bers

9.0 Introduction to Large Num ber Concepts
In practical terms, estimâtes are usually made of an unknown parameter 

by considering the average of the number of replicated observations of the 
quantity, each of which may be in error. The properties of the estimate is 
of interest, as an initial step, we observe its behaviours as the number of 
repeated observations increases and the nature of its convergence.

Let {7n}~=1 be a sequence of observations and Ÿn the average of the 
first n observations. Then we ask the question on what conditions can any 
of these convergence forms exist:

and also

ÿ> > £ (9.1)

OîC
uy1 (9.2)

where {£„} is a sequence of constants measured by the sequence of obser­
vations {yn}~r

We say that the large law of numbers holds if the convergence is either in 
form of (9.1) or (9.2). When the convergence is in probability, we say that 
the weak law of large numbers (WLLN) holds, and when the convergence 
is almost surely, we say the strong law of large numbers (SLLN) holds. In 
the next subsections we shall consider some important theorems on both 
weak law and strong law of large numbers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Law o f Large N um bers 161

9.1 W eak Law  o f L arge N um bers
Let us study some situations when the weak iaw of large number hold 

by Theorems and Lemmas:

T heo rem  9.1 (C hebychev 's T heorem )
Le. E)YX) = n„ Var(Yt) = crf and Cov(Y,Y,) = 0; » j4 j .  Then

Ü m  Y ,  ° i  =  0  =>  -  A n  0

Proof:
1 n

Define An =  and by Chebychev’s inequality, we hâven j

P(\Ÿn - f i n > 0

üm P( Pn - i in! > Ç)

< ^ V 'a r(ÿ n)

i Œ > ’)
1

Ç*n*'

< lim —î— Y" a* »—oo f 2n2 j

0

this implies that Ÿn -  An 0 #
T heorem  9.2 (K h in tch ine 's  T heorem )

Let {K,}. i =  1 ,2 .. . .  be independent and identically distributed (i.t.d) 
and E(Y,) exists. then

£(>',) = n < o => Ÿ  n

P ro o f
Define a pair of new ra.uiom variables for i = 1.2---- ,n  and fror fixed

0, we hâve
w, =  r,. y, = o. if y, < on

w, =  0. r , = y, if y, >

so that y, = U', 4- Let El U',! nr. for . = 1,. . .n  since (}') = p then

Pn -  M <  £ (9.3)
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Law o f Largo Num bers lf>5

For any given £, if n is chosen sufficiently large. Now

V > .) =  y°dF(y) - n l <  |y]dF(y) <  bOn 
J - B n  J - B n

where b — £(|]K|) exists. Using theorem (2.1), we hâve

1 ^
P  " E ® *  “ /*»! >  £  <n

bd

or by équation (2.3), we hâve

since

by chosen n sufficiently large, we hâve

p  < e w * o) <

Let us considet

p{ l Y . y> -  ■■ ( ' V " ' .  - M) +  - r i ' , i > 4n * n
I 1 -  n, 2^ + P [ | - y ' l ' 1| > 2 f l

fi n
ht) b0

-  f ' S u m V i  y  C] <  —  4 -  0

- -r 0 -  U, by correct <~hoic* of 0.
**

-  Ÿn - p- , M

✓ r>
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I aw of Large Numbers 166

T heorem  9.3 (H ajeck R enyi Inequality )
Let {y„}“  , be independent random variables such that E(Yn) =  0, 

V(Yn) = ol  < oo. If c i,c2). . .  be a non-increasing sequence of positive 
constant, then for any positive integers m and n such that m < n, and any 
arbitrary Ç > 0, we hâve

P max%m<k<n Ck \Y\ + Yi H------ h Yk\ > + 1  c l ° l
m+1

P ro o f
Set

y = X ( . c } - c i ^ s ; + e i s i
k=m

k
where Sk = ^  Y,. Then

«=i

E(Y)  = E t c y - C ^ . I ^ S Î J + c ; ^ )
k=m 
n-1

( t ' - î - O X > , 2 1 + c l tl
m

i > 
m + 1

1

n

£ * ? + c i _ v
1

m n
. i 1

=  + y c y k

n-  1

+ c l X>, 2 - X > , 2

(9-4)
m -  1

Let t , ; i  = m , m + 1, - . n be the event Cj\S]t < Ç for ; ; t and
Ct \Si\ > Ç. Then

P max C* Sk
m < f c < n E n * , )

and because £, are mutually exclusive. Let e0 dénoté the event C S 
m < j  < n  in this sense we shall hâve from (2.4)

E(Y)  > J2 E(Y\et)P(et ) if F (F |£0)P(£0) > 0
i=m
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Law o f  Large N um bers 167

We shall consider the case when k > i and j  > i as follows:
C ase A
Consider k > i, we hâve

E ( S 2k]\e,) = E\{S;  -h (Y1+1 + • • • +  K*)2 +  25,(V;+1 +  • • • +  n)}i<.j 
>  E(s2/ (i) +  2E\Si(Yi+1 +  • • •  +  y * ) / e< ]

C ase B
Consider j  > i, we hâve £(S, Y)/^) = 0, then E(Sk/ei) > E(S?/ f t), given 
€, (event Cy|S,-*| > £) then

\s.\ > e i^

e (s ?\ï ,) > e \ c f

Now,

s ( y / 0  =  ”£  E {s l/ei)(c l -  c'M ) +
k=m

> zm m ci-cuj+ciE&M ,)
k=l

>  ^ E W - c t j + c â i  
u > *=.

> t t f - c h  + c l .  + c l i - c u
C l
i l

-  C}
> c 2 = e

c 2 - • )n n /

(9

By using (9.6) in (9.7) gives

and by (9.5), we ha-.

P ma x C

< i m r 1Cl C l Y . o ;  + Y C 2ol
m+I
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;.aw u‘ I .tige Numbers 168

9.2 S tro n g  Law of Large N um bers
'.V|.i convergence is almost surely we say we hâve a strong law of 

nu .■ rs being satisfied. Let us consider the following Theorems and
; . inr-i. ' i si.udy the strong law of large numbers.

; lu- in 9.4 (Kolm ogorov I)
L t î i  = 1,2, . . .  be a sequence of independent random variables

uch that E(y,) =  //,, and V« r (Y i )  =  of. Then

, the si lence Yi ,Y3__ obeys the strong law of large numbers.

Let ns consider the random variables X, =  YJ — /i, and apply the Hajek-
Rexji’s ir.equality, we hâve

l’roo.

t 'hoosing ( — 1 / 1, we hâve

By letting v • co, we see that

(since 1) cj* z" converges) it follows that

It implies
#
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T heorem  9.5 (Kolm ogorov II)
Let 3/1, j/2, • • • be a sequence of independent, identically distributed vari 

ables. Then a necessary and sufficient condition that Ÿn ^  // is that E[Y,
exists and is cqual to fi.

P  roof

(A) N ecessary  C ondition
Let En be the event that |Yn| >  n. Then

— =  ÿ_ -  1Wÿszl 0 (9.8)
n  n

since Ÿn —* n. The resuit (2.8) implies that the probability of in- 
finitely many events cn occurring is zéro. Also the independence of 
implies the independence of cn, and by the following lemma crédit' " 
to Borel Cantelli:
If {An} is a sequence in 7 , then

(a) £  P{An)n < oo => P[A„i.O) = 0

(b) 52 P(A„) = oo and Ai are independent then ■=> P(A„i.o) -

By this lemma we see that

£ P ( | Y n| > n )  = f ; P ( fn) < o c
n =  1

Let P; = P(]V| > j ) ,  then

^(1^1) <  | ( l - i \ ) + 2 ( P , - P 2) +  - j.

=  1 + Pi + P2 + • • • =  1 + Ê P(e„)
n=l

From (9.9), the last expression in (2.10) is less than oo. Hence A 
exists and from the sufficiency condition it follows that iE(Y)

(B) Sufficiency C ondition
Consider the sequence of truncated variables

Yn for |Yn| < n

0 for |Yn| >  n
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We then obtain

K(yn’) < E(Y;)2 = y2dF{y) < + 1 )2P(k < \Y\ < k  + 1)
J~n k=0

and

g ' y ç i  <  Ë E ^ ± i ) ! p ( * < m < *  +  i)
__t K « — 1 b -  C, ^n = l n = l * = Û

oo

< Y : p ( k - i < \ Y \ < , k ) K 2 f : ±Tlk=l
co

n=k

< 2 ^ K P [ k  - \ < \ Y \ <  K)
k=-\

< 2[1 + E ( \ l  |)| < oo

By Kolmogorov theorem 1, the sequence Yn* obeys the law of large 
numbers, that is,

n i

Now as Tl —> oo, E[Y‘) —» E(Yn) =  /x, hence —* M as
n —* oo

•••

Also, we hâve to establish that Y '  and Yn are équivalent sequences,
that is,

P{Yn =£Y’i n > N ) - * 0  as N  -* oo;

which irnplies that yn obeys the S.L.L.N. If Y„ does and that the 
limits are the same.
Consider

p ( î „ #  !■„•.»> w ) <  E  f f f i . /  W  =  Ê  p ( |ï .I  >  «)
n>W
oo

n=/V

> £  (n -  JV + l)P (n  > |y „ |c  (n + 1 ))
n = N

oo

< 53 nP(n  < iV < (n + 1)),
n = N
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since ail F„ hâve the same distribution function.

P(YnÏ Y ; , n > N ) < { ^ >N\Y\dF(Y)-*0 

as N  —* oo. fr

P roblem s 9.2

1. Let {-K*}”.!  be a sequence of observations and for which E[Y,,)

V ar{Yi) =  of  and Cov(Yi,yj) — er,,, t ^  j .  Define F„ = andn
H „  = Show that

n

ï ™  A i > . 2 = o ,n —oo n 1 = 1

implies that ÿn converges to m„.

2. Does the strong law of large numbers hold for the following sequence*

(i) P(Yn = ±2") = -

(ii) P(Yn = T n) =  \ y / ^ ,P ( Y n = 0) = 1 -  4= f
1 Vnl

(iii) P(Yn = *2") = ^ " +1,P(F„ =  0) = 1 -  ^

3. Show that if { F ,} ^  is a sequence of independent random variables 
with E[Yi) =  Md F  (F ) =  <r? ; i  = 1,2, . . .  then

E a.2/* < °°>

it implies th a t the sequence of random variables obeys the strong law 
of large numbers.

4. If F* has the binomial distribution with parameters k and p, does the 
sequence Fi, F2, F3, . . .  obey the strong law of large numbers?

5. Compare the assumptions and results of Khinchine’s theorem ( WLLN) 
and Kolmogorov II theorem (SLLN).
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v '>lution 9.2

1. Suppose we hâve

Prob(|ÿ . -  * . |  > f l  < ^  =  g È * *  -  0

as n —» oo. Hence

üm P r o l > { ( | P , , > 0 }  = 0

and so Ÿn -* £n.

20) E(V») =  0, V(Kn) = i(2**) +  J(2}") = 2în
Now,

00 00
S X ^ n )  =  E  22B =  °0
n = l  n=l

Hence, Yn does not obey the S.L.L.N.

(“'  £ ( r") = 0' v <y") = ^ < " , ) + 2̂ < - ' , ) = ^
Also

E  V*r{Yn) = £  nS/J =  oo
n = l  n=l

Kn does not obey the S.L.L.N.

1 2în 1 92n
1 î) v"W = \b + \hml

which is bounded, since the variances are uniformJy bounded, 

y  . ----- j-2 - < oo and hence Yn E(Ym) = 0. Hence the sequence
Yn obeys the S.L.L.N.

] et {K.}™ , be a sequence of independent random variables, such 
liât E 1},.) = 0, Var[Yn) = o\  < oo. If C i,C j,. . .  is a non-increasing 

sequence of positive constant, then for any positive intefgers m  and 
h , with m < n and arbitrary $ > 0 we hâve

I [ rrax
I n

C*
*

E * >  e 4 c l  E  ° \  +  E  c l ° l
i=i i=l m+1

(«)
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Set Yi = X, -  ut in (i), we hâve

max C*
m<i<n

k
E *
i t = l  m + l

Select Ci = 1/t as a sequence of non-increasing constants, therefore

s . M 4  ^ P +È aî/mlmax
m « < n (*0

If m is as large as possible ^  o2/m 2 —► 0, and so for sufficiently large 
m the expression on the r.h.s. of (ii) tends to zéro. Thus makes the 
probability on the L.H.S. to converge in almost surely to zéro.

4. Let {y*} be the sequence of I.I.D. binomial random variables, a suf- 
ficient condition that Ÿ  /x is that E{Yi) exist and is equal to 
H  = KP.  Now assume E(Yt) < oo and E(Yi) = K  P,  set

y ;  =  Yk, \{\Yk\ < K
= 0, otherwise

But

v« r(iV ) < E [(y ;)’ ] =  f y j F

z i  rn+l - izi rn+l= E [ y dF  + E f y dF
- k  Jn  o

*-i
< £(n+l)2P(n< |y|<n + l)

E K 2

o
00 fc-1

k=ln=0
oo

=  E { ( »  +  i m » < | r | < »  +  i )  E  à
" = °  k = n + 1 *

=  ± n * P ( n - l < \ Y \ < n ) ± ±
1  k=n K

oo

< 2 ^ > P ( n -  1 £  |V| < n)

< 2(1 + £(|K |))
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That is E V ( Y ; ) / K 2 < oc hence the sequence obeys the S.L.L.N.

5. Both assume i.i.d. random variables and existence of the mean. The 
resuit in Khinchine’s theorem is that the assumptions are necessary 
for Ÿn -?-* g. but not the reverse. That is, conséquence in probability 
does not necessarily imply finite expectation. However, the resuit in 
Kolmogorov II theorem is that the assumptions are necessary and 
sufficient for Ÿn n.
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G en eratin g  Functions and 
Inversion Theorem

10.1 In tro d u ctio n
The first moment about an arbitrary point a by the Stieltjes intégral is 

defined as „roo
Mi =  /  (y -  <*)dF (10.1)

J -oo

and the second moment

m'2 = [  (y -  <*)2dF  (10.2)J -oo

The generalization of these équations defined by a sériés of coefficients 
n'k] h =  1,2, . . .  by the relation

A  = [°°(y ~ ci)kdF  (10.3)
J OO

n'k is called the moment of order k  about the point a. When a  is the mean 
fi\, we write the moment without the prime as

Mt =  f  (y -  Ml)kdFJ — OO (10.4)

called the central moment or moment about the mean. In the spécifie, 
when ni = 0, we may define a moment of order zéro as

Mo = Mo — [  dF = 1J -OO

175
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Generating Functions and Inversion Theorem 176

Because of some theoretical reasons, n\  exists only when

=  £ ( |Y - a |* )  = J  |Y — a\kdF

exists, this is true when the intégral defining n'k is of Lebesque-Stieltjes 
type.

T. e relationships between the central moments and moment about an 
arbitrary origin may be verified as follows:

If a  and 0 are two variate-values, let 0 — a  — t and dénoté the moments 
about a  and 0 by p '(a) and n'(0) respectively. Then we hâve, by binomial 
theorem

Hence

*4(0) =

( y - « ) ‘ = (y -  0 +  0 -  a)k
= (y - e  + r)k

k 
3

t
= E

j=0
( y - 0)

f _ J y  -  a )kdF

c W ) { y ~ e r i T ' d F

è o  y  O ’ - 1

y=o

{**'(•)+^>* (10.5)

This équation is of particular importance if one of the values a  and 0 is 
the mean of the distribution. In this case we shall hâve

*4 =  E  (  y )  H k - A 3) (10-6)

(10.7)
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In particular,
Mj =  M 2  +  Mi2 (10-8)

Ms =  Ms +  3MiM2 +  Mi3* (10.9)

m'4 =  M< +  j Ms +  6m'i(2)M2 +  Mi 4) (3-10)

Let us discuss a few results concerning the mean and variance of a given 
distribution in terms of moments;

Resuit (A): The second moment fi'2(a) is a min when takes about the 
mean m- That is,

E ( Y  -  a )2 =  E ( Y - n + n - a ) 2

=  E ( Y  -  m)2 + (M -  a ) 2 +  2(m -  a)Æ7(yr -  m)

f ; ( y - M )2 +  ( M - a ) 2 > ^ - a ) 2.

Resuit (B): The Chebychev’s inequality discussed in Chapter two is an 
important inequality as it is independent of the exact nature of the distri­
bution of the variable, say, Y.  By définition, let

By dropping the middle term and replacing (T -  /z)2 by the smallest value 
in the first and third terms, we hâve

o2 > f o *  r v  d F + z 2o 2 r  dF
J- oo Jit+Ço

>  C ' o 2 p \ \ Y  -  m| >  £ o \

Resuit (C ): Suppose Y\ and Yi are two randorn variables with means M11M2 
variables o \,o \  and distribution functions F i,F : , then

Fi(y + m, '  Ft{-y + fa ) > F2(y + ni) -  F2{-y  + n2) (10.11)
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Because of some theoretical reasons, n'k exists only when

7* -  E{\Y  -  a |‘ ) =  / \ Y -  a\kdF

exists, this is true when the intégral defining n'k is of Lebesque-Stieltjes 
type.

The relationships between the central moments and moment about an 
arbitrary origin may be verified as follows:

If a  and 9 are two variate-values, let 6 — a  =  r  and dénoté the moments 
about a  and 9 by n'(a) and n'(0) respectively. Then we hâve, by binomial 
theorem

Hence

(y -  « )‘ (y - 0  + e -  a)k 
( y - 6  + r)k
k

£
;=o

)  )  (y - 1 ) * - ^

f “j y - a ) kdF

c U ’ ) [ y - , r > T , d r

(y -

U ’ h A , ] "

W W  + (10.5)

This équation is of particular importance if one of the values a  and 9 is 
the mean of the distribution. In this case we shall hâve

Mi

■ - U ‘ ) ( 10 .6 )

(10.7)
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In particular,
m'2 = M2 + Mi2) (10.8)

Ms =  Ms +  3MiM2 + MiS) (10.9)

Mi =  M4 + ViMs + 6/zi(2)/X2 + Mi 4) (3.10)

Let us discuss a few results concerning the mean and variance of a given 
distribution in terms of moments;

Resuit (A ): The second moment /z'2(a) is a min when takes about the 
mean n. That is,

£ ( F - a )2 =  £ ( F  -  m M ~  <*)2
=  E (Y  -  M)2 + (n -  a )2 + 2(u ~ a)E (Y  -  /x)

£ ( F  -  M)2 +  (M -  a )2 > E { Y - a ) \

Resuit (B): The Chebychev’s inequality discussed in Chapter two is an 
important inequality as it is independent of the exact nature of the distri­
bution of the variable, say, Y.  By définition, let

*2 =  [ ( Y -  t f d F
J R

/ Y - i o  r n + i o
(Y  -  t f d F  + /  ( Y -  n)2dF

- o o  Jfi— Ça

+ r  { Y - n Ÿ d F
J  n + f r

By dropping the middle term and replacing (V -  /z)2 by the smallest value 
in the first and third terms, we hâve

o2 > Ç V  r  'C dF + ÿ o 2 f X dF
J - o o  Jit+Çc

> f V p [ |y  -  n\ > $o]

Resuit (C ): Suppose Yi and Y2 are two random variables with means n i ,n 2 
variables o \,o \  and distribution functions Fi t F2, then

^i(y  +  Mi' +  > F2(y + n 2) -  F2( - y  + ,u2) (10.11)
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for each y  impliss that o\ < o\. To prove this, let Gi and G2 be the 
distribution functions of and \y2~ n 2\ respectively. Then integrating
by parts, we hâve

o\ -  oï = lim f  y2d(Gi -  G2)
1 * T - o o J o

= lim r 2[ G , ( r ) - G 2(T)J
T  —*00

rT- 2  lim / y(Gi -  G2)dy

=  0 - 2  r  y{G1 -  G2)dy < 0
Jo

The condition in (10.11) implies that G i > G2, the converse proposition is 
not true, however, if o\  < ,a 2, then it implies that for at least one value of 
y the inequality (3.11) is true but not necessarily true for ail values of y.

10.2 M om ent G enerating Functions (M .G.F)
The results (A) and (C) in subsection 3.1 show that for some cases 

we can dérivé from the distribution function a function M[t)  which, when 
expanded in powers of t, will yield the moments of the distribution as the 
coefficients of those powers. This function is accordingly be referred to as 
a moment-generating function (m.g.f).

The m.g.f of the distribution of a random variable Y  is formally defined 
as -oo

#(l)£(«,r)= / =  E  e-'/t»)
J - o o

sum/oo
e‘vdF  or the

•OO

/(y ;)}  does not exist for some or ail real values of t. When 4>(t) 
exists, this expectation dépends on the choice of t, and so defines a function 
of t.

Depending on the distribution; <l>(t) ^  1 at t  = 0 and for other values 
of t, 4>(t) may and may not exists. To gei.erate moments, suppose the 
exponential function in the integrand of ô(t) is replaced by its power sériés 
expansion, then

= f
J  — •

T
0

(ty)k
k\ "  . \  1 <‘dF[y))
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=  £  E [ Y k)tk/k\  (10.12)
o

under commutation functions, the k-th moment of a distribution is.simply 
be coefficiencies of tk/k\  in the power sériés expansion of the m.g.f. The 
coefficient t*/k\ is the Maclaurin power sériés expansion, that is, the k - t h  
dérivative at 0 is

E ( X k)=4>W ( 0),
it is équivalent to

=  « ( y  V )
t= 0

gives the required coefficients.

Exam ple 10.1
Let us consider a simple random variable Y  having just two possible 

values, 1 with probability P  and 0 with probability 1 — P.  The moment 
generating function is

4>{t) =  E(etY) = e* • P  + e° • (1 — P)
= Pel + { 1 - P )

= P (1 +  î i + ^  +  - )  +  (1 - P )
=  1 +  P ( t/l! )  4- P (t2//2!) +  • ■ •

Clearly the coefficients of t k/k\  are equal to p (for k = 1,2, . . . )  and so 
E ( Y k) = P, except fer k = 0.

The moment generating function of two independent random variables 
wiiose term is (Y  +  Z),  is a particular simple combination of the moment 
yenerating functions of the summands, namely, their product:

4>Y+Z[t) = E[e‘lY+Z)) = E(e,ye z )
= E{ctY)E(rtZ) = d*vft)07 (t)

The finite induction extends this resuit to the suin of any finite number 
of independent random variables Y;, Y2, - , , , ,  Yn, thus

n
'Prv/.i ï -  ] | .p;

1=1
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If the summands hâve identical distributions, with common m.g.f. 4>y(t), 
then

<£en (0  -  [<M*)]n
In conclusion, if one obtaines the moment generating function of a dis­

tribution indirectly, he can then calculate the moments of that distribution; 
but one puzzle is on the précisé density function or probability function of 
the distribution. There is a uniqueness theorem (treated later in this chap- 
ter) for moment generating functions, which says that there can only be one. 
distribution leading to a given m.g.f (under certain conditions). Thus, if 
themoment generating function of a random variable Y  is obtained directly- 
but is recognised as themoment generating function of a known distribution, 
then that distribution is the distribution of Y.

10.3 T he F ac to ria l M om ent G enera ting  F unction  (fm gf)
Another function that is closely associated to m.g.f. is a function that 

generates factorial moments. This function is well defined as follows:

Hy(t) = E( t Y) = E[eY'oet] = ^y(logt)

Because log 1 =  0, it is the point at t = 1 which might interest us and this 
produces the factorial moments from the dérivatives. On a formai note we
hâve

Vl(t) = E ( Y t y - 1)\t=i = E(Y) (10.13)

also
V."(t) = E ( Y ( Y - l ) t y - % =i = E ( Y ( Y - l ) )  

=  E[Y{Y  -  l ) ( y  -  2) • • • (y  -  K  +  1)] (10.14)

Equation (10.14) is called the k -  th factorial moment.
For a discrète random sequence Y ,  the FMGF is called probability gen­

erating function

Hy ( t ) =E ( t Y) = j r t kP(Y = K) (10.15)
k=0

Because of the awkwardness in writing out. k factors starting with n, we 
may write the factorial expression as

y(y -  h)(y -  2h) ■ • • {y{k -  l )h}
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which is conveniently written as y*'}, a notation which brings out an anai- 
ogy with the povver y*. Taking first différences w.r.t. y and with unit k,  
we hâve

A y« =  (y +  -  y(t)
=  (y +  h ) y ( y  — h)  •• • { y  — (k — 2 ) h }  -  y { y  -  h )  ■ ■ ■ { y  -  ( k  -  l ) h )  

= ky(k~^h  = dyk/dx

conversely,

and corresponding to

k + V
*+i

Thus the k — th factorial moment about an arbitrary origin may then be 
defined by the équation

F-\k) = E  )vi -  a)[k]f{yj)  (10-16)
> = -00

In statistical theory the f.rn.g. functions are not very prominent, but 
they provide very concise formulae for the moments of certain discontinuous 
distributions of the binomial type. When it is necessary to distinguish 
between factorial moments about the mean and those about an arbitrary 
point we may Write the former without the prime.

Factorial moments obey the laws of binomial transformation governing 
ordinary moments. The expressions are:

(a +  6)|fc| = E  (  y )  oI*_,|6Ij1

and so

= ( y - 6  +  e)W, where c — b -  a

(y -

(y - «)'“
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and hence

=  {n'(b) + c}iK (10.17)

Exam ple 10.2
Let Yi ,Y 2, - ■ ■ ,Yn be independent sequence of random variables, each 

with the distribution P(Y  =  1) =  p, P ( Y  =  0) =  q -  i p. the m.s.f. of 
this distribution is

<t>y(t) =  E(etr) =  ' tP + e'Jq 
and so the moment generating function of the sum i

<t>ZY.(t) = \<t>y(t)r = (Pe‘ + Qr

The factorial moment generating function is then

PU) = «Mlog f) =  (pe'°g‘ + «)"
=  (P‘ + ç)n

also
M(t) = n(n -  l)(pt + q)n~2p:

whence
B ( Y ( Y - l ) )  = „"(l) = n ( n - l ) p 2.

10.4 Cumulant Generating Function (c.g.f.)
The moment functions are a set of descriptive constants of a distribution 

which are useful for measuring its properties and in o  rtain circumstances, 
for specifying it. They are not the ony set of constants for this purpose, 
cumulants hâve properties which are more useful from the theoretical view- 
point.

By définition, the cumulants Ki ,K2, -- ,Kr are defined by the identity 
in t

exp { K xt + ~ ~  + krtT p'it2
r\

oo ±r
=  E t n n = * w

r= 0  K -
(10.18)
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Log 4>{t) may then be called a cumulant-generating function and de no' ' 
by c.g.f.

E xam ple  10.3
Consider the discrète Poisson distribution whose frequencies at 0 ,1 ,----y

are

The moment generating lfunction if exists, is given by

H t)  =
j=o J-

= e_Aexp(Ae')
= exp{A(e' -  1)}

Since the variate is non-neeat :>r any r the absolute moment is the saine 
as the oridnary momen'. hâve

-A

and sine- this converges commutant^ ail orders exist. Then

log 6 U) A(e‘ -  1)

A
i=i

and hence kr = X for ail r. Thus the cumulants of this distribution are 
equal to A.

10.5 Characteristic Functions (c.f.)
The characteristic function of a random variable has many useful <ird 

important properties which gives it a central rôle in statistical theory, we 
shall give an account of some in this subsection.

Formally, the characteristic function $(<) defined on t of a random v i ­
able Y  whose distribution function is F  is defined as

«MO = E(e{tY) = [  e{,Y)dF{y)JRy
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<P(t) always exists, since

|* (i) | =  H  eitvdF < H  | M d F  = dF -  1
J - o o  I J - o o -o o

so that the defming intégral converges absolutely. Also $(<), is uniformly 
continuons int and différentiable k  times under the intégral of the resulting 
expressions exist and are uniformly converges for which it is sufficient that 
V} exists. Then

|* w (0l =

<
i s y ^ HFr  |y*| dF = vJ — oo

Exam ple 10.4
Consider the distribution defined by the density e~v for y > 0, the 

characteristic function of the distribution is

* (0  = E ( ^ )  =  r  e ^ d y  = - i -j -OO 1 -  it
The characteristic function genertes moments in such a way as the mo­

ment generating function. except that each differentiation.introduces factor 
of i:

E ( Y k) =  r k<t>W{ 0)

This is possible only if the k -  th moment of the distribution exists. If 
moments up to a certain order, say r, exists, then it is possible to express 
$(<) as a Maclaurin sériés. Although the c.f. does generate moments, its 
principal use is as a too. m deriving distributions, as such it is necessary to 
know several facts about characteristic functions by theorems that estab- 
lishits facts.

Theorem 10.1
Let 4>(t) be the characteristic function of a random variable Yn, whose 

distribution function is Fn. Suppose $(i) is the characteristic function of a 
random variable Y  whose distribution function is F. Then

Yn - ^ Y  iff «MO — > *(0-

To prove, we shall consider both the necessary and sufficient conditions.
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P roof

(A) N ecossary
Assume Yn —  ■ ) . then

f  e"vdFn — » I e''vdF by Kelly Bray’s theorem.

(B) Sufficienry
Assume 4> {t) M' mplies that

I t vdFn — * f  e,tvdF

choose .1 ! • w n h tends to a non-decreasing bounded
fonction

* i "  e’fW m

Taking the lin 1

♦ . . , ( 0  - <P(t) =  / *  e^d F  (1 0 .1 9 )J — OO

from thi' we

■ i G x ) -  G (-oo) = 1,

b e c a u s e  <ï>(0> ' b a t  ( .  i-  n e c e s s a r i l y  a  d i s t r i b u t i o n

a n d  G  =  F  '  fonction s a t i s l i e s  é q u a t i o n  ( 1 0 .1 9 ) ,

i t  is  u n i q u e .  V  - • arily 1> a d  t o  ' h e  s a m e  d i s t r i b u t i o n
f o n c t i o n  f o r  sonie reasons. #

T heorem  10.2
I f  in  t h e o r e m  (10.1). il i only supposed t h a t  4>n(<) —« <P{t) fo r  a i l  t, ilie 

l i m i t  f o n c t i o n  is  a  c h a r a r t e r i  t i c  f o n c t i o n  p r o v i d e d  o n l y  t h a t  i t  is c o n t i n u o u s  
a t  t  =  0  o r  i f  t h e  l i m i t  i- u t  i f o r m  in  a s  i n t e r v a l  c o n t a i n i n g  z é r o .
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l’roof
Choose a subsequence Fm tending to a non-decreasing bounded function 

and consider

= r ( / i

[°° c,w* -  1 
/y

dF„

Taking limit as m tends to infini'.;-

rV

$(t)dt
lo V

* (0

f  e‘vv - 1
/  — — -dG
J «y

r eiv» - 1
: / — — - d GJ ivy

r eivv -  1dt =  lim /  .v-o '  ivy
dG

dG

f a n

m  = f .

Jim $ (t, = ^^0)

$ ( 0 )  =  G ( o o )  -  G ( - o c )  =  1

îid by theorem 10.1, $ m(t) —» $(f), the characteristic function of G. #

6  T he Inversion Theorem  
i i . o re m  10.3

We now sfate and prove the fundamental tneorem of the theory of char- 
■ri.'tic functions called Inversion theorem or Uniqueness theorem: The 

c.teristic function uniquely détermines the distribution function more 
,riv if

/OO
e,tvdF,

OO
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then

P  roof: Let
*.)-*■ «»-£ £L(

1 r o c  (  1 _  e « » \

)

;-«*!/» _ e'<y
ti

Set Yj = Z and Y2 — Y  and lel z —> 0 then
1FIY)  -  F(0) = ~  lim lim f

V '  27T z-0c-ooj_e

-.«(O) _  t»'
---------- ) * (* )*

The last results hold at the continuity point of F and the lirr 
evaluated with respect to any set of points in continuity point o:

T heo rem  10.4
Let Y  be a random variable having characteristic fun ion 

distribution function F(-). If YI and Y2 are points in c{I
g-**vi _ 

it T

P roof: Set

Then
’- h L

>-'!yi _  p'tVl

>■ •  èL  
■ i £ | /:.(

it

-»«vi _  /.«fya

it
e'tvdF(y)

oo t g'<(v-n) _  e«t(i/-y2;
it dF(y) dt

The integra! w.r.t. F or y converges absolutely and 
is within finite limit (-c ,c ) and so we may need to ch., 
intégration to obtain

g->ftfl _  g><K3

^ ( y )*  ■  è /:.[r ,(
_  i _  y°° I J 00 ê«*(»-wi) _  g-dv-vi) _  e»t(w- .

-  / °°  î  r  f  s i n^ y ~ _  sin<(^
TT i-oo [iü V t t
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cos x +  sin x, then as c —* oo 

1 f c sincit1 [ c sine 
7T J Q  t

dt —■ A ; if a > 0
or ( 10.20)

-1 /2 ; if a < 0

The convergence is uniform w.r.t. a in every région a > 6 > 0 o r a < - 6  
nd for |a | <  <5, and for ail values of C.

Also
I
ir Jo t < 1 ( 10.21)

dt

Take y2 > yi£ c (/) and set

= i  [' (*!fezal - *îfexJSl'
ÎT Jo [ t t

Then

Jt = [  \P{t,ytyi ,yt )dF(y)
J-oo

=  [  ÿ ( c , y , y u y 7)dF(y) +  [  rJj(-)dF(y) +  [  ÿ(-)dF{y)
J  - c o  J y \ - o

+ r  il>(-)dF(t) + f  v(-)dF(y)
J y o - 6  J m + f

with 6 chosen such that yt + <5 < y2 -  <5 and gives the interval -o c  < y < 
t antl y -  yx < - 6 ,  for the first intégral -o c  < y < yj -  6 and so 

y -  yz < —b since y2 > yi then

rvi/Vl -c
M ')dF = 0

•oo

1 • v\ the fifth intégral gives

r  1>()dF = 0Jvi+6V2+S

y2 -  6, we hâve y -  yi > S and y — y2 < -6 ,  this gives

V2~(

V:

r V2-i
/  il>(-)dF= 1
•'yi+s
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and so

as c —♦ oo. 
Sismilarly,

[  i/j(-)dF = F(y2 -  S) -  F(t/i + <5)
J VI +6

f 3T4 rJj{-)dF < 2 r +6 dF{y) = 2[F(y2 +  6) -  F(y2 -  5)) 
Jy2-6 Jvi-à

By collating results, we hâve for 6 > 0,

Hm Jc = F(y2- 6) - F ( y i + 6) + 2[F(yi + 6) - F ( y i - 6) + F[y2+6) - F ( y 2- 6)}

so
lim Je -  lim Jc = F{y2) -  F(yi) #

c — * o o  C—* CO

This is so because F is continuons and Jc does not dépend on 6.

T heorem  10.5
If the characteristic function cj>(t) is Lebesque intégrable over the entire 

line (-00,00), then the distribution function F(y) that corresponds to it is 
continuous and F(y) is also continuous with

P ro o f
If $(i) is Lebesque intégrable, then

* (0

is Lebesque intégrable and the inversion formula may be written in the 
form

1 l-O O  (  ( , - ' ‘ 111 -  p-«<V3 \

f («> -  m  =  2 _ / ”  ( — ü — ) i{t)dt

select h such that

Vi =  y - h  
y2 =  y + h,
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Select A so large such that

[  -  l|*(*)<ft < £/2
J\t\>A

and also select h as small as possible, such that

-  l|$(<)<fc < f/2

Then
|F(y + / i ) - F ( y ) | < |  + |  =  e

P ro b lem  10.3

#

1. The distribution function for Y  with cumulative distribution function

0, if y < 0
F(V) =

1 -  0.6e"1', if y > 0

obtain the moment generating function at point t and the k — th 
moment of the distribution.

2. Let Y  dénoté the number of points on a die. Suppose the die is 
tossed three times, obtain the probability generating function and its 
probability if the total number of points is 7.

3. By considering the characteristic function of thebilateral exponential

f ( Y ) = ~ °°  <  y < 00

and using the inversion theorem or otherwise, show that the charac­
teristic function of the Cauchy distribution is $y(t) = e-1'""1'

4. Compute the moment generating function of the distribution defined 
by the density

f{y) = e~v, y > 0 

Expand it in a power sériés.
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ther.
i r» /g - ^ r - k  _  - î  r-è)\

F( y + h ) - F ( y - h )  = — J ^ [ ---------- - --------- - J  +(t)dt

r.oting that e“v = cos ty ~ isin ty. *e obta:r

F{y + h) -  F(y -  h) = - J  sintAfcœtjr -  isïnty)$(t)dt

h [<* s:n tk
=

\F(y + h) -  F(y -  h) <  -  ’  c : dt
■ «as

Let h —* 0, we obtain

^(y  +  0) -  f ( y  -  0) and F{y‘ I -  F (y û 

which shows that F is con:'.r___

F(» + *) -  r (» -  *) = i  p
en  ~ J -  «  t/i

When h —* 0, then we oota.-.

n » )  =  =

h E
We need to show that /(y) is continuous:

F(y + h ) - F ( y )  = ~ £ j'~ * * * * *  ~

| F ( y +  fc) -  F (y )| <  ±  f ”  r " -  r ' "  *  t ,dt
-00
roo

=- £  e - 'v « " *  -  1 0 ( 0 *

|f (y  +  / i ) - F ( y ) |  < ^ - r | « - rtA-li*(*)<ftJ7T y-oo
-it/i -  1 0 (0 *

2 tt | / | t |< A

+  / e~’" ‘ - l i O ( 0 *
J  !l|>A
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5. Coinpute the factorial moment generating function of the discrète 
distribution defined by the probability function.

/(* ) =  2 ^ T> ^  = 0 ,1 ,2 , . . .  

détermine the mean and variance of the distribution.

Solution 10.3

1. In this distribution there is a discrète lump to probability, in the 
amount 0.2, at y =  0. The moment generating function is

<P(t) T  etvdF[y) = e°(0.2)+ T  e,v{0.8e~v)dy 
J  oo J  0

= 0.2 + 0.8(1 -  t ) -1 = 1 +  0.St + 0.8t2 + . . .
=  (0.8)fc!(t*/«); k =  0 ,1 ,2 ,...

Hence the k — th moment is

E[ Yk) = 0.8 K\

2. Let Z  =  total number of points thrown is a random variable Z  whose 
factorial moment generating function is

E(t‘ ) = E ( f ) E ( t * ) E ( t ” ') 
r t ( l - t 6) '
.6 (1 - t )

By writing the expansion for E(t‘ ) as a double deem, as

. ( 3)( 4)( 5)( 6)

E ( n  = ~ t h - ^ y + k l 3  
*=0;=0

-3
4 216 x 24

15
216 =  0.069
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3. The characteristic function of Y  at t is
1 f c

* ® s L
i t x

1 - ^ ) ’

dy

y - eSet 2 =  — — , then y = 6 + Xz and dy = Xdz,
A

«‘) = r j y ^ ï d(1 +  «*)
Xdz

= -
K  J-œ 1 + Z 2

but

then

OO

*tp—=—
1 + <2i« -w  =  -l  r

2 2?r J -

r  ei,p- ^ ; d t  =  n e - |p|
J - œ  1 +  t2
en r =

* (0  =  ; /TT J o

i + t2
In (ii), set V — —z , then r =  - d v  and

- O O

eite ■ e-™*

Kir J-œ 1 +  U2 /

1 + î 2 
_1 

1 +
Let 6 =  tu, then

lt«  1  T T .-16!

= e,t(le_A !|. înce A > 0

d>(«) = exte ■ -  Ue
7r

4. Mk (0 = t™ r-ve‘vdy = [ '  e-v[l- ,]dy 
J 0 JO

=  —  [■
1 —  É L

- -w i-o r
lo

=  ( i - 0
-i

1 - i
1 +  x  +  x i + • • • +  X* +

s. Vx(t) = k+1

«° « <2 
2 + ^ + 2^ +

(»)

(«*')
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From S, 1 -  r (sum to infïnity), we hâve

Vx{t)

E( X)

E ( X ( X -  1)) 

Var{X)

1
2 -  t = { 2 - t ) ~ l

Æ 'W
1 1

1=1 ~~ (2 — l ) 2
— 1

t-1

^ ( 0
2 = 2

(=iî=l _  { 2 - t ) 3
r/!2' -f E( X)  -  {E(X))2
t]''2'1 +  77W -  [r?!1!]2 

2 +  1 -  l 2 = 2
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