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Preface

This book is intended as a text for both undergraduate and graduate stu-
dents and as a reference for researchers in statistical theory and methods.
Although no prior knowledge of statistics is assumed, but a good grasp of
real analysis ard calculus is required for the advanced part of this textbook.

The primary purpose of the book is didactic, methods are emphasized
and the book is subdivided into:

* Probability: the introductory part on the background of the concepts
and problems are treated without advanced mathematical tools in
chapters one to three

Distribution theory: the general concepts and tools of random se-
quences; joint distributions as well as functions of random variables
are emphasized with ease in chapters four and five.

Inference: the basic ideas of staitstical inference that every probabilist
and statistician requires in estimation and test of hypothesis are given
in chapters six and seven.

Advanced theory: the notion of advanced probability calculus and
limit theorems; law of Numbers; generating functions and inversion
theorem are discussed in chapter 8 through chapter 10.

D.K. Shangodoyin
O.E. Olubusoye
O.1. Shitta

A. A, Adepoju
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Chapter 1

Introduction

1.1 Introduction

Probability can be described as the study of random phenomena. Most
phenomena studies in the Physical Science, Biological Sciences, Engineering
and even Social Sciences are looked at not only from deterministic but also
from a random view point. Therefore the theory of probability has as
its central feature, the concept of a repeatable random experiment, the
outcome of which is uncertain.

To the Statistician, probability remains the vehicle that enables him use
information in the sample to make inferences or describe a population from
which the sample was obtained:, No wonder Professor Sir John Kingman
remarked in a review Lecture in-1984 on the 150th anniversary of founding
of the Royal Statistical Society that “the theory of Probability lies at the
root of all statistical theory”.

Section I of this book will be devoted to the study of the concept of
probability, and its distribution together with the generating functions.

Since probability is a means to an end, a tool to enable us make valid
statistical inferences,

Later an\Section 1, we shall look into the concept of Statistical infer-
ence vig theestimation procedure and hypothesis testing,

1.2 Basic Definitions

Before we define probability as a concept, it is necessary Lo review the
definition of some probability terms that shall be employed in our discus
sions.



Introduction

(a)

(b)

(€)

(d)

(e)

A Trial: is any process or an act which generate an outcome which
can not be predicted. A trial usually results into only one of the
possible outcomes e.g., A toss of a coin once, will lead to either a
Head (H) or a tail (T) turning up. The selection of a card from a
deck of well shuffled cards result in one of the cards being drawn.

A Random Experiment: is any operation which when repeated
generates a number of outcomes which can not be predetqnpmed e.g.
A toss of two coins at a time; draw of two cards from a deck oneafter
the other; a random selection of a ball from a box dnd examine the
colour.

An outcome: is a possible result of a trial or s experiment. In a
toss of two coins, an outcome could be any one/of HH, HT, TH, TT.
The possible outcomes in a throw of a die-are, 1, 2, 3, 4, 5, 6.

Sample Space: is the collection of all possible outcomes of an ex-
periment. It is a set of all finité-or”countably infinite number of
elementary ovtcomes ¢;; es, ... Itys usually represented by

S\Z e1.65,...,6n.

The sample space in a'toss of a coin and a die is reoresented by

$O H|1H 2H 3H 44 S5H 6H
Coin

Te) 1ATh. 2T 3 undl.« 5T (6GR

| 1 2 3 4 5 6

i.enS)={1H,2H,3H,4H,5H 1T, 2T, 3T AT ,5T,6T}
The sample space when a die is thrown twice is

S = {11,1,2,1,8,1,4,1,5,1,6,1,2,1,22,...,6.6}

An Event: is a subset of a sample space.

It consist of one or more possible outcomes of an experiment. It is
usually denoted by capital letters A, B,C, D,.... It should be noted
that a subset in a given set could consist of all the possible outcomes
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or none of the outcomes of the given set.

e.g. When a die is tossed once, we define. Set
A = {set of even number} = {2,4,6}

B — {set of prime number} = {1,3,5}

C = {set of number greater than 7} = {¢}.

(f) Mutually exclusive events: Two events A and B are said to be
mutually exclusive, if the occurrence of A prevents the occurrence
of B. This implies that the two events can nol oceur together i.e.
AN B = e.g. the occurrence of H prevent the occurrence of 7 in a
toss of a coin.

(g) Mutually Exhurstive Events: Events Ay, A;, A3, A;,..., A, are
said to be mutually exhaustive if they constitute the sample space. i.e.

n

)" A, = S. However, some events could be both mutually exclusive
=1

and exhurstive. This implies that they are disjointed and yet their

sum is equal to the sample space,” This would be illustrated later
in g‘ . It should be noted that the last two probability terms are
assoclated with one experimeénts only.

(h) Independent Events: Two events A and B are said to be indepen-
dent if the occurrence of A does not affect B. This implies that the
two events can ogeur together. e.g, the event of an event number and
a Tail in a throw of a coin and a die at once.

1.3 The Concept of Probability

The probability associated with an event is a measure of believe that
an event will-oecur.

However; there are three conceptual approaches to the defini‘ion of
probability (1) the classical approach, (2) the relative frequency approach
and (3) the axiomatic approach, (4) subjective approach. These three con-
cepls are explained as follows:

(a) Classical approach: This method assumes that the elementary out-
comes of an experiment are equally likely. It defines the probability of
an elementary event F; as 1 divided by the total number of outcomes
for an experiment. There is no requirement that the experiment be
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(b)

performed before the probability is determined, i.e.,

1
A0 e Total number of outcomes of experiment
e Number of outcomes in f [ A
umber ol outcomes in lavour o
P(4) = =\

Total number of outcomes for experiv.
n(4)

n(S) QY
Probability is a measure of li'lfe]imQ;&;i a |

specific event will occur. ~

P(A) =

—

Example 1.1: Find the probability Wtaining of obtaining any
number in a simple thrown of a die. 6
Solution: The experiment has si Wcomesl 2,3,4,5,6.

gl NG i

e ) gal number of outcomes 6
Example 1,2: Find t A b

one roll of a die. &
Solution: Let A \ 12 event of an even number,

Q.% {2,4.6);n(A) =3

A s {1,2,3,4,5,6};n(S) =

éh Number of outcomes included in A

Total number of outcomes
This“approach to the definition of probability only holds for finite
sample space where elementary events are equally likely. However
this assumption is not always true in the real life as all events are not
equally likely. Afterall we are not equally endowed.

ability of obtaining an event number in

I

)

3
—6—0.5

The Limiting Frequency Approach: This method defines prob-
ability as an idealization of the proportion of times that a certain
event will occur in repeated trials of an experiment under the same
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condition. Thus if an experiment is repeated N times and n(A), is
the number of times that A occur, then the relative frequency is

n(4)
N

But relative frequencies are not probabilities but approximate prob-
abilities. If the experiment is repeated indefinitely, the relative fre-
quency will approach the actual or theoretical probability:

P(A) = Jim ")

However, there is a requirement that the experifnent be performed
before the probability is determined. Hence, the probability is deter-
mine aposteriori. It should be noted that some events in real life can
not be repeated before the probability is-determined. Even if it can
be determined the limit may not converge.

Example 1.3: Twenty of the 500 cars that enters the University of
Ibadan on a graduation day aré found to be Lexus. Assuming dif-
ferent cars comes into the campus randomly, what is the probability
that the next car is a Lexus?

Solution: Let N be the total number of cars and n be the total
number of Lexus. Then

4V='500. n=20

Using the relative frequency concept of probability, the probability
that the next car being a Lexus is

P(Lexus) = 1':-, . il

Subjective Probability: is the probability assigned to an event
based on subjective judgement, experience, information and believe.
Such probabilities assigned arbitrarily are usually influenced by the
biases and experience of the person assigning it.

For instance the probability of the following events are subjective:

1. The probability that Jude, who is taking statistics in the second
semester will get seven points in the course,
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2. The probability that a particular Football Club win the maiden
match with another club.

3. The probability that Ade will win the case he has filed against
his landlord.

Since subjectives probabilities is based on the individual’s own judge-
ment, it is rarely used in practice as it lacks the theoretical backing.

(d) The Axiomatic or Bayesian Approach: To circumvent the dif-
ficulties posed by the earlier approaches to the definition of proba-
bility, some researchers have developed a mathematical expression of
certain aspects of the real world. The probability of a certain part
of the real world occurring at random is then determined satisfying
certain properties (called axioms).

1.4 Probability of an event
A in a relation to an experiment with sample space S is defined as a real
valued function P(A) which satisfy the following axioms:

(1) 0 < P(A) <1 for every eyent A
(2) P(S) =1
(3) P(A;UA:‘J...) 35(‘4”"}’(.4;)“?'...

= Z P(A,) for every finite or infinite sequence of
=)
disjoint event A;, A;,...

1.5 Consequences of Probability Axioms
Theorem I

(a) If'A is a given event and A° is the compliment of A, then P(A) =
1 - P(A).
Proof: AVA*=S
P(A + A°) = P(S) = 1 by axiom (2)
.. P(A)+ P(A°) =1 A and A® are mutually exclusive
= P(A%) = 1 - P(A).

(b) Theorem II:
Given that @ — S, then P(A) =0
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Proof:

Su¢g=2S_.

P(S u@) =S =1 by axiom (2)
P(S) + P(o) = 1 since P(5) = |
14+ Ple) =1

= P(¢) = 0.

(¢) Theorem III - Addition Rule:
If A, and A; are any two events of an experiment with sample space
S. then we have the addition rule

P(.‘l; J .'12) = P(A,) + PfA:) = P(A,l T As)

Proof:
In a Venn diagram

A

Fig 1.1

P(Al U A:) = P(’A]) U P(Az) =]
P(A, U A!) = P(Al) + P(A: N A';)
but P(A) T Ai) = P(Az) - P(A, 0 .43)

‘r. P(A; U Ay) = P(A;) + P(A;) — P(A; 1 Ay) Addition rule |

However, if A; and A; have no point in common, that is when A, and A,
are mutually exclusive

P(A;nA;) =0 since AyN A =9

we have
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| P(A; U As) = P(A,) + P(A,) Special Addition rule |

Using the same procedure for any three events A, B and C.
P(AUBYC) = P(A)+P(B)+P(C)- P(ArB) - P(AQC) - P(BaC)—P(ANBIC)

Example: A coin is rolled three times, what is the probability of getting
(i) 1 head, (ii) 2 heads, (iii) at least 2 heads.

Solution: Let H and T represent Head and Tail respectively:

Let the sample space be defined as

S={HHH,HTH HHT,THH,TTH, HTT, THT,TTT)
(i) P(1 head) = {HTT,THT,TTH)} = ¥}
(ii) P(2 head) = (HHT,THH, HTH} = }}

(iii) P(at least 2 heads) = P(2 heads)*l’(&)eads)
1+1=13=05

>

Note: The events of 2 heads and :Nl'gzﬂs are mutually exclusive.

Examples: A bag contains § black balls; 3 red balls, 4 green balls and
5 yellow balls all of which are of The same size, If a ball is drawn at random
from the bag, what is thé probability that the ball is (i) black, (ii) either
yellow or green (iii) net \black, (iv) neither black nor green, (v) black and
yellow?

Solution: Let\B,/R, G and Y represent the event of black, red, green
and yellow balls respectively. Total number of balls = 20.

(i) P(B)= %% s ek

(i) P(YUG) = P(¥) + P(G)

-.._+__.=

(since only one ball is cﬁ% P(YAG) =0)

(i) P(B")=1-P(B)=1-
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(iv) PIBUG) = 1-P(BUG)
= 1-[P(B) + P(B)]

g Vg

P b ]
1 [20+2o*

- O

|

= 04

Alternatively,

P(neither Black nor Green) = P(Yellow.or Red)
= P(Y)+P(R)

0

(v) P(BNY) =0 see note in (ii) above.

Example: A survey of 500 students taking one or more courses in Algebra,
Physics and Statistics during one semester revealed the following numbers
of students in indicated subject:

Algebra 186 Algebra and Physics 83
Physics 295  Physics and Statistics 217
Statistics 329 Algebra and Statistics 63

A student is'selected at random what is the probability that he takes
(i) all the three subjects
(ii) Statistics but not Physics
(iii) Statistics but not Physics and Algebra
(iv) Statistics, Algebra but not Physics

(v) Algebra or Physics
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Solution: Let A, P and S denote the event of a student taking Algebra,
Physics and Statistics respectively.
Presenting the information in a Venn diagram we have

A P

&

v
®<2~

n(ANANB) =n(ANS) -&POS) =10

n(PNnSnA) = ..(Pn%Y"(AnPnS) = 164

n(An PN S = QP) ~n(ANPNS) =30

Using the addition rule, we d the number of students that takes all
the three subjects,
(AU PUS) = n(A) ggu(s) - (AN P)—n(ANS)+n(ANPNS)
500 = 186 + 329 - 83 63 +n(ANPNS)
. n(ANPN S)E@ oy

P(All three su = 0.106

(i) Pl st.hia but not Physics)
: »:Sé *
-~ R - P(SOP)

320 27
500 500
112
500

= 0.224

(ivi? P(Statistics but yot Physics and Algebra)




= P(S)-P(ANP)
= P(S)-P(AnP)-P(SNP)+P(ANnPNS)
329 83 217 E_

= 0.164

(iv) P(Statistics, Algebra but not Physics)

P(S) - P(S N PY)

= P(S)-[P(SNnP)-P(ANnPNS)]
329 217 53

500 500 @ 500
165
500
= 0.33

Il

(v) P(Algebra or Physics)

= P(AUP)
ie. P(UP) = P(A)+ P(P)=P(AUP)
_ 186 295 8
~ 500 500 500
_ 3%
~ 500
= 0796

1.6 Conditional Probability and Independence:
If A and B are any two events, the conditional probability of A given B
is the probability that even A will occur given that event B has already
occurred.
This is equivalent to the probability of events A and B (occurring simulta-
neously) divided by probability of event B.

n
i.e. P(A/B) = P(:(_B)B) provided P(B) # 0
= P(ANn B) = P(B) P(A/B) = P(A)P(B).
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In general
P(Al N Ag i BT An) - P(A])P(A:/Al)P(Aslﬁl N A,) S P(An )/(A; - ..A,‘)

Let Ay, Ay, A; denote the 1st, 2nd and 3rd cards

P(A N AyNA3) = P(A1)- P(A:/Ay) - P(As/A 1 é}zﬁ,

R e A |

52 51 50

L meX2

132600 )
= 0.00018

Example: A bag contains 10 while balls and 15; bluk balls, Two balls are
drawn in succession (a) with replacement (b)\ without replacement, What
is the probability that

(i) the first ball is black and the second white
fii) both are black
(iii) both are of the same colour
(iv) both are of different colours
(v) the second is black/given that the first is white.
Solution: Let Band W denote black and white balls respectively.

(a) with replacement

()NRBNW) = P(B)-P(W)
15 10
= £X2—5—0.24

(ii) PIB,NB;) = P(B)x P(B)

15\?
— ) =0.36
(3)

1]
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(ili) P(both black or both white) = P(Byn By) + P(W, NW))

- (@) G
— \25 25
= 0.36 +0.16

= 0.52

P(BNW) +P(W n B)
I8, 0L I, 16
25 251 125 25

2(0.24)

0.40

(iv) P(both are of different colours)

]

P(BNW)  0.24
PW)"" "~ 04
= 0.6

(v) P(B/W) -

From the last result, we could seé that the two events are independent,
hence,

P(B|W) = P(W) = 0.6.

because the drawing is with replacement.
(b) without replacement

(1) P(Br‘\W) = P(B)-P(W/B)
15 10
T

(ii) R(By" By) P(B,)-P(B;/B))
15 14
— 2—5 x 2—4 - 0.35

(iii) P(both black or both white) P(B,)P(B;/B,) + P(W,)P(W,/W,)
15 14 10 9

— X = — X -

25 24 25 24

= 0.35+0.15

= 0.50
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(iv) P(both are of different colours) = P(B)P(W/B)+ P(W)P(B/W)
15 10 10 15

25 26 24 24

= 0.25+ 0.25

= 0.50

P(BNnW)
P(W)

15 10,10

= — X _../_..

25 24" 25

0.25

0.4

= 0.625

(v) P(B/W)

1.7 Statistical Independence: Two events A and B are said to be in-
dependent if the probability that B occurs is not influenced by whether A

has occurred or not.
i.e. P(B) = P(B/A)
Hence events A and B are independent if

P(ANB) = P(A) - P(B)
Three.events are said to be mutually independent if
(i) They are pairwise independent, i.e.
P(ANB) = P(A)-P(B); P(AnC) = P(A)cot P(C);
P(BnC) = P(B)-P(C) and
(ii) P(ANnBNC)=P(A)-P{B)-P(C).

It should be noted that mutually exclusive events are not independent as
the occurrence of one rules out the possibility of the other, i.e,

P(A/B) = P(B/A) = 0.

Example: What is the chance of getting two sixes in two rollings of a
single die?
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Solution:

P(six in 1st die) = !

P(six in 2nd die) = }

since the two events are independent

P(six in 1st and 2nd die)

T 36

Example: A and B plays 12 games of Ayo (Yoruba traditional game). A
wins 6 and B wins 4 and two are drawn. They agree tp play three games
more. Find the probability that:

(1) A wins all the three games
(1) Two games end in a tie
(i) A and B wins alternately

{iv) B wins at least one game,

Solution: Let A and B represent theevent of A and B winning the game
and D winning the game and D denote the event of a tie.

6 1
4 1
R(B) = 5=3
2 1
RD) = 3%
(i) P(A wins alt three) =1 x1x1=1
(i) P(2 gameés dnd in ties) = P(D.D.D¥)+ P(D°.D.D) + P(D.D:.D)

= (A d) s (Bxlxl)s (Bxixl
T \N6T 876 6 6 6 6 6 6
B
= g

(1) If A and E—B wins alternately in two mutually exclusive ways.
P(ABA) + P(B.A.B)

s (!..1x1)+(1 1
A NETETYS 3

3)

3

X

1
w -
2

1

)
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(iv) P(B wins at least one game 1-P(no game)

1 - P(BB; By)

= l_(gxgxg)
- S B
.4 38
0 27

Example: An unbiased die is rolled n times

(i) Determine the probability that at least one six is observed in the n

trials.
Calculate the value of n if the probability is to-be approximately }
Solution:
P(a six in a throw) = tl-i
P(no six in a throw)( = 2
(1) P(at least 1 six in n-trials) = 1 - P(no six in n trials)
-— 5 n
(ii) If the probability is }, then
G B
e =)
|
74 (8; T
1
nlog(z) = log(3)
n = log(1/2)
~ log(5/6)
n = 4

Example: Determine the probability for each of the following events.

(a) A king or an ace or jack of clubs or queen cf diamond appears
in a single card from a well shuffled ordinary deck of cards.

(b) The sum of 8 appears in & single toss of a pair of fair dice.
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(c) A 7 or 11 comes up in a single toss of a pair of dice.
solution:

(a) P(king) = &, P(an ace) = &

1 4 1
P(Jack of club) = = = = - =
P(Queen of dizamond) = Z;

P(a king, an ace, J. of club or Q. of diamond)
4 4 1 1 ) 5

(5‘2*5_2*5“2"35
(b)

Dice [1{2]|3] 4| 5]86
1 21314 5817
2 |34 sgs 7|8
3 [4|5|6L 7| 8|9
4 x5{6 Ay 819 10’
5 6‘7 89 10|11
6 L 08|9/10[11]12]
I-’(sum=8)=i
36
(c) P(7) = 3%‘ P(n):%5
P(7or11)=-§——-l 2

3 36 0
Example: A pair of fair coins is tossed once. Let A be the event of head
on the first coin and B the event of head on the second coin first coin and
B the event of head on the second coin while C is the event of exactly one
head 1Is events A, A and C mutually independent?

Solation:

§ = {HH,HT,TH,TT}
A = {HH,HT}., B={HH,TH}
C = {HT,TH)
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ANB
. P(4)

P(AN B)

P(ANC) =

18

(HH}, ANC = {HT}, BnC={TH}, AnBnC=¢
P(B) = P(C) = & =05

P(A) - P(B) = %.P(Br‘nC) P(B)- P(C) =

P(4) - P(C) = 3 P(ANBAC) £ P(A)- P(B) . P(C)

Hence events A, B and C are not mutually exclusive.

Example: An urn contains ‘P’ white and ‘¢’ black halls and the second
contains ‘C’ white and ‘d’ black balls. A ball is drawn at random from the
first and put into the second. Then a ball is drawn from the second urn.
Find the probability that the ball is white.

Solution: This is a conditional probability.

Total number of ballinthe 1st Urn is (P + ¢)
Total number of ball in the 2nd Urn is (¢ + d)
Total number of ball in the 2nd after the first
draw isc+d + 1

P(white ball in the 2nd urn)
P(W)P(W/B) + P(W)P(W/W)
q
c+d+l(p+d) c+d+l p+q)
c(p+9)

(e+d+1)(p+4q)

c+d+1

1.8 Total Probability rule and Baye’s Theorem: If there are two or
more causes of an outcome, it is often desirable to determine the probability
that the outcome was due to a particular one of the possible causes. Even
though this kind of problem can be solve by merely applying the addition
and multiplication rule, much compact procedure has been developed called
the Baye's theorem.
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1.9 Baye’s Theorem

Iet a sample space S of an experiment be partitioned into n mutually
exclusive and exhaustive events Ay, Az,...,An. Let B be an arbitrary évent
that occurred when the experiment was performed. Such that P(A;) #
R s=1,2,...,7n:then,

P(B) = Y P(A)P(B/A)

1=1

and

P(A)P(B/A)
P(B)
Proof: Let the events A; and B be depicted as in Fig.'.'g’

P(A,/B) =

Fig 1.3

By definition of conditional probability, we have

P(o/4) = Zp?)
P(A;n B) = P(A;)P(B/A:) (1)

We know that P(A.NB
P(A:/B) = %—) (2)

But total probability is

P(B) = P(A, n B) { P(AgﬁB)"l’P(AzﬂB'} +...+ P(A.D B) (3)
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Using (1) in (3) we have
P(B) = P(A)P(B/A))+ P(A2)P(B/As) + ...+ P(A,)P(B/A,)

= Z:IP(A-)P(B/A-) (3)

Using (3) in (2) we have

P(A:)P(B/A)
P(A;/B) = ——2UZ 2100 _ payes
(Ai/B) " P(A,)P(B/A) Baye’s formula
Example: Suppose 15% of apple and 10consignment- were toxic. If the
consignment consist of 60% apple and 40% mango, what is the probability

that a fruit selected at random is toxic?

Solution: Let B be the event of toxic fruit-and A, A; be events of se-
lected fruit being an apply and a mango respectively.

60 4
P(A|) — _100 - 0.6: P(A:) = ]T:) = 0.4
15 10
P(BfA1) = 1507 0% P(B/As) = 175.=01

P(B) = P(AyP(B/A;) + P(A))P(B/Aq)
= 0.6 x 0.15) + (0.4 x 0.1) = 0,13
Example: Every Saturday a fisherman goes to the river, the sea and a
lake to catch fishes with probabilities ;.% and % respectively. If he goes to

the sea, there is’an 80% chance of catching fish, the corresponding figures
for the river and the lake are 40% and 60% respectively.

(a) Find the probability that he catches fish on a given Saturday.

(b) What is the probability that he catches fish an at least three of the
fire consecutive Saturdays?

(c) Ifon a particular Saturday, he comes home without catching anything,
where is it most likely he has been?

(d) His friend, who is also a fisherman, chooses among the three locations
with equal probabilities. Find the probability that the two fishermen
will meet at least once in the next three weekends? (Any assumptions
made should be clearly stated).
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Solution: Let S, R and L denote the event that he goes to the sea, the
river and the lake respectively and F denote the event that he catches fish.

P(S) = HP(F/S)=3%
P(R) = i;P(F/R)-g
P(L) = %P(F/L)=3

(a) Using the idea of total probability,

P(F) P(S)P(F/S) + P(R)P(F/R) +P(L)P(F/L)

I . e .
= =i i g X

2: 5 4 8§ 4 O
13
—E=O.65

(b) Let the number of Saturdays on which he catches fish be a random
variable X with B(S,g :

P(X>3)= P(X=8)%P(X=4)+ P(X=5)

( ; ) (0.65)°(6:35)*+ ( g ) (0.65)4(0.35)"+ ( : ) (0.65)°(0.35)°

= 0.3364 +0.3124 +0.116
= 0.765

¢ Here we meed to calculate the probability that he goes to each of the
locations without catching fish

P(SNF'
P(S/F) = —(P(+,))
P(S)P(F'/S) _Ax} 2 _
7 TR T
Similarly,
J 13
P(R/F') = w = 1_:(_[ = g = 0.429

P(F") 3%
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P(L/F) = }—)(—L-Z;%%—/—R—) = i—?_;-% = ; = 0.286

So it is most likely that he has been to the river.

(d) Let S;,S; denote the event that the first and second fisherman goes
to the sea respectively, and define Ry, R, L,, Ly similarly.

The probability that they meet on a given Saturday (assuming inde-
pendence) is

P(S;ﬂS,) #P(RIHR:)*'P(L]”L’)

gl et i S |
N S T T Al v v e
2 BT 4% P45 3
1
= -=033
3

Probatulity that they fail to meet on a Saturday is

2

1 S
(1- 5) —;,-0.666

The probability that they fail to meet on three consecutive Saturda_s

is
§- = 0.296
27 Y

The probability that.they meet at least once in three weekends is

i

)|
1> :-;)’ =

= 1 - Pfailed to meet)
1 - 0.206
0.703

"

Exercises:

1. If A), A; and A; be any three events, prove that
3
P(A[ + Ay + A;) - Z P(Al) o z P(.“.A,) + P(A,AQA;;).
=] =)

It is important to note that addition theorem can be validly applied
only when the mutually exclusive events belong to the same set.
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2. A newspaper vendor sells three papers: the Times, the Punch and the
Commet. 70 customers bought the Times, 60 the Punch and 50 the
Commet on a particular day. 17 bought Times and the Punch and
15 the Punch and the Commet and 16 the Comment and the Times,
while 3 customers bought all three papers, Every customer bought
at least one type of paper. Using Venn diagram or otherwise; find;

(i) how many customers patronized the news agent on that partic-
ular day?

(ii) how many customers bought a single paper?
(iif) how many customers bought Times but not Commet?

(iv) how many customers bought the Punch or Comment, but not
the Times?



Chapter 2

Counting Techniques

In simple experiments such as a roll of two dice or a toll.of three coins, it is
easy to determine the sample space. But when an‘experiments is such that
it can be treated in three or more stage, it becomies tedious to determine
the sample space as well as the number of outcomes in favour of a particular
event.

Counting techniques are those methods developed to solve this problems,

2.1 Tree Diagram

The problem of counting the samiple space and the points corresponding
to various events is simplified by the use of a tree diagram, especially if the
experiment can be treated as not more than three stages. If there are more
than three stages, the tre¢ becomes unmanageable.

Example 2.1: A bag contains 8 balls, identical except for colour, of which
5 are red and 3 are white. A man draws two balls at random, what is the
probability that

a(i) one of.the balls shown is white and the other red.
(ii) both balls are of the same colour

(b) If three balls are drawn at random what is the probability that exactly
2 ball are red.

(¢) What would be the probability in (a) if the first ball drawn is replaced
before the second one is drawn?

24
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~ Solution: Since two balls are drawn without replacement

4y R

<w
< <:

The possible outcomes is easily seen from the diagram with the correspond-

ing probabilities
RW WR
s o] r [27)s
8 7 8 7

= 0.268 + 0.268

= 0.536
RW ww
s A or 372
8 7 e ¢

=_ 0,357 + 0.107
= 0.107 = 0.404

ali) P(RW)

(ii) P(Same Colour)

(b) If three balls'are drawn
R

< R R <
<W

w
R
—w
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P(CX&(‘“Y 2 red balls) = [ ] [ 7 6] [§ X ? X E
J
= 0.178 + 0,178 + 0.178
= 0.534

fc) Balls are drawn with replacement, hence,

(i) P(RW) = RWorWER
5 3135
= = XZFA=-X=
8 R a8
~ 0,234 +0.234

=/ D468

(ii) P(Same-Colour) = RRorWW

. S
= 8o 8 878
= 0.391 + 0.141
= 0.532

2 Multiplication Principle Where the tree diagram is not suitable,
“multiplication rule comes in handy. In a 3-stage experiment, if the first
4o can occur in ny places and the second stage in n, places while the
“d stage can occur in ng stages, then the total number of possible out-

we becomes ny # ny < ng. This can be extended to any number of stages.
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Example 2.2: Two coins and a die are tossed at the same time (i) the
sample space (ii) what is the probability of obtaining a head and an even
sumber?

Solution: Two coins can occur in 4 ways, and one die can occur in 6 ways.

(1) Total number of outcomes is 4 x 6 = 24 ways.

{11} This can be represented in

HH
HT > < X X
TH X > 2 X
HH

X denotes the number of outcomes in favour of our event

P(H and eyen number) = % =0.25

2.3 Permutation The ordered arrangement of n distinct items taking all
or r of them at a time is called permutation. The items are usually assume
to be arranged on a line without replacement such that if two of the r objects
are interchanged, it results into different permutation (arrangement).

The number of permutation of n items taking r at a time is denoted

__n!
T (n—r)!

This is ‘the same as the number of ways in which r spaces can be filled
taking n different items at a time.
The first place is filled in n way, the second (n — 1) ways ... and r place if
filled in (n+r+1) ways. This r places is filled in n(n—1)(n—2) ... (n—1r+1)!
ways.

. np, =nn=1)(n-2)...(n-r+1)

The number of permutations of n distinct items taking all at a time is

np, =n(n - 1)(n - 2)...3.2.1 = n! ways
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The symbol n! is called n factorial and we define 0! = 1.

Example 2.3: Evaluate 5p,

Solution:

Sp,

5!
(5-3)!
5x4x3x2!

2!
5x4x3

= 60 ways

Example 2.4: If 13p, = 17160, find r.

Solution:

135, = 13(12)(11)...(12 =+ + 1) = 13(12)(11)(10)

= 13—r

Y08
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Example 2.5: How many different words of three letters can be formed

with letters A, B, C, D, E and F no letter is being repeated?

Solution: The first letter can be arranged in 6 ways
the second letter can be arranged in 5 ways

the third letter can bé arranged in 4 ways.

Total number of arrangement is 6 x 5 x 4 x 3.

Alternatively
6

(A) Permutation of n things, not all of which are distinct.

6!

%= 6=a)

=6 x5 x4 =120 ways.

The number of permutations of n things taking all at a time where p
of them are alike of one kind, ¢ are alike of another kind and r alike

of the third kind is

n!
plg'r!

Example 2.6: In how many ways can the letters of the word STATIS-

TICS be arranged.
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(B)

Solution:

T occurs 3 times

I occurs 2 times

S occurs 3 times.

So the number of possible arrangement are

10!
312131 = 50400 ways

When certain things always or never occur:

(i) Given n items to arrange taking r at a timeout of which § of
themn will always occur, keep aside the S items and arrange the
remaining (n — s) items taking (r — s) at a time.

The S items can be arranged taking S at a time in r,, ways.
The total number of permutations isn — sp,_, X rp,.

(ii) Never occur: Leave out the S items and find the number of
permutation of (n — s) items taking r at a time, i.e.,

32 L =)
" (n—-s-1)!

Example 2.7: A committee of 7 representative of a class consist of
class captain and his deputy. On a visit to the Head-teaching there
are four seats. How many ways can the committee be seated it:

(i) there is no restriction

(ii) the class captain and his deputy must sit.

(iii) one of the students committed a crime and can not sit down
even if there were enough seats.

(iv) determine the probability of the event in (ii) and (iii) above.
Solution:
(i) When there is no restriction

n=T, r=4¢
il

7P‘=(7_—4)!

=Tx6x5x4=840 ways



Counting Techniques 30

(i1) keep aside the class captain and his deputy:

5! 4!
G-3)  [a-2)
= 5x4x3x12
= 12x 60
= 720 ways

4'!3 . (ﬂ s 2)P,_2 = SP; X 4P) =

‘iii) Leave out the criminal then we have

n-lP -6 P, = _6!_
st apcan( =4)
= 6x3x4x3
= 360ways
" oy 120 _
(iv) P(event (i)) = 8516%- 0.857
P t (ii)) = — =0.
(event (ii)) 510 0.428
(C) Permutation when two things are not to occur together:

Procedure

(2) Find permutatjon without restriction
(b) Find permutation when two things occur together.

(c) The difference between (z) and (b) gives the number of arrange-
ment when two things do not occur together.

Example 2.8: In how many ways can 10 different books be arranged
on a shelf if two particular books are not to stand together?
Solution:

If the two books are to stand together, regard the two books as one,
then the number of arrangement is 219F; = 2 x 9! = 72560 ways.
Number of arrangement without restriction is '°Py, = 10! = 3628800
ways so the permutation when the two books are not to stand together
1S

100 -2 x 9!
3628800 — 725760
= 2903040 ways
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Example 2.9: Letters of the word “ARRANGE” are to be arranged.
Find the probability if:

(i) two r’s do not occur together
(ii) if the two R’s and two A’s do occur together

Solution:

7!
(i) Without restriction, number of arrangement is AL 1260 ways.
s 121

6!
When two R's occur together is = = 360 way-When two R's do
not occur together is 1260 — 360 = 900 ways.

P(two R’s not occur together) = % =0.714

(i1) If two R's and two A’s do occur together we have (A,A)(R,R)N
G Eie., %P, = 5! = 120 ways.

120
P(R’ ) gl g L
(R's and A’s occur together) T 0.095
(D) When the number of items not occurring together is more

than two

Some kind of logic would have to be applied here. It is better illus-
trated with an example.

Example 2:10: In how many ways can 5 blue cars and 4 red cards
be arranged in a straight car park two red cars are not to stand to-
gether.

Solution: First, the first 5 cards are positioned as indicated below

XBXBXBXBXBX

The blue cars can be arranged in 5! ways. Now there are 6 vacant
positions (marked X). The remaining 4 red cars can be arranged in
8P, = 360 ways. The required number of ways of parking 5 blue cars
and 4 red cars is 5! x® P,

120 x 360
43200 ways
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(E) When items are repeated:

32

The number of permutation of n different items taking r at a time,
when each item may occur an number of times is n'.

Example 2.11: A die is rolled 4 times what is the sample space.

Solution:

A die has six faces, hence may occur in 6 ways.

The sample space is

6' = 1206

(F) Formation of numbers with digits:

The idea of permutation can be applied in the formation of numbers
with digits, This is particularly useful in a raffle draw. Let us illus-

trate with a simple case.

Example 2.12: Suppose the five digits 1, 2, 3, 4, 5 are given. To
find the total number of numbers which can be formed under different

conditions

(a) Without restriction = *P; = 5! = 120 ways.

(b) Suppose 5 always occur in the tenth place. Now the tenth place
is fixed, then the remaining four places can be fitted with four

digits as ‘P = 4! = 24 ways. i.e.

N2
2
1 3
3
!
1 4

3

2

=

5
5

5

o

£

2
2

3

()

[~

2
2

2

[y

3
4

4

oW

o

4
1

3

oy o

o

5
5

5

L0

-

1
3

1

X2 = 24ways

(c) Suppose we have to form a number divisible by 2. Then the
unit’s place must be occupied by 2 or 4 which can be arranged

in 2 ways.
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(d)

(e)

(f)

The remaining 4 digits can be fitted in
‘Pi=4'=24

So, the total number of numbers divisible by 2 = 24 x 2 = 48,

Suppose we have to form numbers which begin with 1 and end
with 3. Here the first and the last places are fixed.
Then, the remaining 3 digits can be filled in

3Py = 3! = 6 ways

ie.

= 6 ways

ek
L= LB SR N
a0 Y O
BN BN
W W W

5

Suppose we have to form a number where 1 or 3 is in the be-
ginning or the end. Then the two digits can be arranged among
themselves in 2! ways. Hence total number of arrangement will
be Py x 2 =12 ways.

Suppose we have to form numbers greater than 30,000. Here
there should be 3 or 4 or 5 in ten thousand’s place which can be
filled in8 ways.

The remaining 4 digits filled in 4! ways.

Therefore, we have, i.e.

B <1 B L4 S
3 2 1 4 5 etc
i.e., total number of numbers
3 x ‘P|

= 3Ix24=T2
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Example 2.13: How many numbers can be formed with digits 1, 2,
4, 0, 5 when any is not repeated in any number?

Solution: There are 5 digits in all including zero. The number of
single digit numbers is *P;. The number of two digit number is *P,.
Out of this, some have zero in the tenth place and so reduces to one
digit number. Hence the number of two digit numbers is 5P, -4 P,.
Similarly, the number of three digit number is * Py —* P,.

The total number of numbers is

‘P, + (CA-'R) + (B-'P) + (Pi—'@N + (h-‘F)
4 + 16 + 48 + 96 + 96

260 numbers.

Example 2.14:
(i) Find the sum of all the numbers that can be formed with digits
1, 3, 4, 7, 5, 9 taking all at a time,
(ii) Find the probability of havirig a number with 3 in the tenth
place.

Solution:

(i) We need to consider when each digit occupy a particular place.
The number of permutation when 1 is in the unit place is *Py =
5! = 120. The number of permutation when any of the given
numbers occupy the unit place is also 5! = 120 ways.

Hence we can sum all the numbers in the unit place as 120(29) x
1 = 3480 x 1.
Similarly the sum of numbers in the 10th place is also

120(1 +3+4+5+7+9) 3480 x 10
= 34800

In the same manner, the sum of all the numbers is
3480(100,000 + 10,000 + 1,000 + 100 + 10 + 1)
= 3430(111111) = 386666280
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(ii) The number of numbers taking all at a time without restriction

18
P, = 6! =720

The number of numbers when 3 occupy the tenth place is *P; =
120

120
Pr(a number 3 in the tenth place) = 50 = 0.1667.

(G) Formation of words with letters:

This is similar to what we illustrated in Formation of numbers with
digits.

Example 2.15: Suppose the letters of the word STAPLER is given
to form words.

(a) If there is no restriction, the:number of words is

(b)
(c)

()

(e)

TP; =71 = 5040 words.

Suppose all words to be formed begins with S. The remaining
6 places can be filled in 6! = 720.

Suppose all words to be formed begins with S or ends with E.
The two positions can be filled in ?P; = 2 ways. The other 6
digits can be filled in ®P; = 6! = 70 ways.

Hence total number of words is 2 x 120 = 240 words.

If all words formed must begin with § and end with E. The two
places are now fixed. Then the remaining 5 places can be filled
in 5! = 120 ways. Hence, 120 words are formed.

Suppose two vowels A and E are to stand together. Regard A
and E as one

a,E,STPLR

STPLR can be arranged among themselves in 6! = 120 ways.
The two vowels can be arranged in 2 ways.
Hence the total number of words is 2 x 120 = 240 words.
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(f) If three particular letter are to occupy the even places. The first
letter can be filled in 3 ways, the second in 3 ways and the third
in 1 way, a total of 6 ways.

Then, the remaining 4 letters can be filled in 4! = 24 ways.
Hence, the total number of words is 6 x 24 = 144

(H) Ordered:
Arrangement of items round a circle:
Things can be arranged round a circle in (i) clockwise and (ii) anti-
clockwise direction.

Example 2.16: In how many ways can 7 people sit round a circular
dinning table

1
=\=(7-1)!

5(7-1)
= 360 ways

(i) The number of arrangements when the direction (clockwise or
anticlockwise) is specified is (n — 1)! This is because one of the
items can be used as a starting point.,

(ii) When the direction of arrangement is not specified is %(n - 1)!
ways:

Example 2.17: How many ways can 20 different beads be arranged
to form a necklace?

1
= E(n -1)!
= %(19!) ways

Example 2.18: A round table conference is to be held by 10 persons
such that 2 particular person may wish to sit together.
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Solution: Regard the 2 people as one. We now have 9 persons.
The two persons can be arranged in 2! ways. The 9 persons can be
arranged in (9 — 1)! ways. The total number of arrangement is

8! x 2! = 80640 ways
2.4 Combination
The number of arrangement or ‘selection’ of n different-items taking
some or all of the number of things at a time irrespectivé of -the order is

referred to as combination.
The number of combination n things taking r(r — n) is‘denoted by

n TN
(r) % c'_(n—r)!r!

Most of the problems on selection without replacement can be solved using
combination approach.

Example 2.19: In how many wayscan a committee of 5 be selected from
amongst 6 boys and 7 girls; if the committee must consist of (i) 2 boys and
3 girls, (ii) at most 3 boys?

Solution: There are a total of 13 persons.
(i) The total number of combination is 2 boys can be selected from 6
»(3)
boys in ways.
| 2
3 girls can be selected from 7 girls in ( ; ) ways.

Total number of combination is

6\/[7
(2)(3)-15x35—525wnys

(ii) There could be 0,1,2 and maximum of 3 boys. Hence the total number
of combination is

ROIORHIBROILEOIH
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Example 2.20: A box contains 20 balls all of which are of the same size.
15 of them are Red and 5 Black balls. 4 balls are selected at random from
the box, find the probability of having:

(i) exactly 2 black balls.
(i1) at least 1 red balls.
Solution:
(i) The first thing to do is to find the combination of any 4 balls out of
¥ 20
20 (i.e. sample space) ( 4 )
Number of ways of choosing 2 black from 5 is 2
Number of ways of choosing the remaining 2 from 15 red balls is
15
(%)

Number of outcomes of favour.of the event is 2 ) ( )
15
2
(ii) The probability of having at least 1 red ball is
15 H ; 15 5 15 5 i} 15 o
BN ! 3 2 g} T\l 1 4 0
N 20
40

75 4 1050 + 2275 + 1365
4845

P(2 black and 2 red balls) = —= =0.217

= 0.983
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(A) Combination when a particular thing must be included or
not included

(i) The number of ways of choosing r things out of n in which k
particular thing always occur is ( ::: )
(ii) The number of ways of choosing r things out of n which k par-

. s . [ =k
ticular thing never occur is & :

Example 2.21: 15 players were invited for a crucial match. In how
many ways can 11 players be chosen if

(i) the skipper must be included
(i1) a particular player is injured and must not be included.
(iii) player A must be included and player B must not be included.

Solution:

(i) If the skipper is selected first, we have 14 players left to select
the remaining 10 playeérs:

The required number is ( :; ) = 1001 ways,
(ii) Remove the injured player, now select 11 from the remaining 14

players.

The required number is ( :: ) = 364 ways.

(iii) If'we remove B and select player A.

13
10 ) = 286 ways.

Then required number is (
Example 2.22: A certain examination consist of 12 questions di-
vided into two parts of 6 questions each. How many ways can a
student choose any 8 questions if he must attempt exactly 5 ques-
tions from the first part?

Solution: From the first part, questions are selected in ( g ) =6



Counting Techniques 40 ‘

ways.

In the second part, 3 questions are selected ( g ) = 20 ways.

The required number is ( g ) ( g ) = 120 ways.

(B) When all items are alike and each of them may be disposed
off in 2 ways:

In this situation, the item may be included or rejected. The total
number of ways of disposing all things is 2 X 2 x --« %X n times = 2",
This include a case where all the items are rejected.

Hence, the total number of ways in which oné or more things are
included is 2" — 1.

it X n n n
ThlSlsequwalentto(n)+(n_l)+'--0 (1)

P (I P )\ P

Example 2.23: In how many Ways can a student solve one or more
questions out of 8 in a paper?

Solution: The student/may either solve a question or leave it (i.e.
2 ways). The total namber of ways of solving one or two or all the

" )+ (3)++ (%)

2" -1

= 256 —1

= 255 ways
Note:
If it must include a case where none of the questions is solved, then
the required number is

(6)+(1)+(3)++(3)

Example 2.24: How many different products can be formed ' ith
the letters a,b,¢,d,e and f.

2I

= 256 ways
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(C)

(D)

Solution: The number of ways in which one or more of the six letter
= |

But this include a single letter which is not a product. Hence the
number of products i.e. 2° —6 — 1 = 57,

When some items are alike and each of them can be disposed
in a way:

Givenn = [p+q+r + s+ ---| items out of which p,g,r,s of them are
alike and

p can be chosen in (p + 1) ways

g can be chosen in (g + 1) ways

r can be chosen in (r + 1) ways.

then the total number of combinationsis (p+1)(¢+1)(r+1)(s+1)—1
ways.

Example 2.25: How many factors has 21607
Solution: The factors of 2160 are i.e.

16 x 27 x5
24 x 3% x 5!

2160

But

2% can be formed in 5 ways.

3% can be foruied in 4 ways.

5' can be formed in 2 ways.

Hence the total number of factors are 5 x 4 x 2 = 40.

When Sharing (Dividing) in items into different groups:

A number of items can shared among a group of people equall)\r or in
given proportion.

(i) HFn=p+qg+randp=gqg=r.
'
Then the number of ways of sharing n things equally is 2.

(p!)?
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(ii)) fn =p+g+rand p# g # r, then the number of ways of

sharing n things proportionally is 'n'
plgir!

Example 2.26:

(a) In how many ways can a deck of 52 cards be shared among 4
players equally?

e
Solution: TEI 5.36 x 10°

(b) If the group of 13 cards are to be arranged(in how many ways
can this be donc‘:

Solution: 4'(1532!)‘ = 1,28 x 110™

Example 2.27: How many ways can 18 books be divided?

(i) equally or
(i) in ratio 1:2:3

Solution:

(i) 18 books can be cﬁvided into 3 groups of 6 each. Then the
required numbeér is

18!
(T!)i = 17,153,136 ways
(ii) To.divide 18 books in ratio 1:2:3 each group would consist of

3.6,9 respectively. '

18!
369!
., Permutation and Combination Occurring Simultaneously

Some problems requires the application of the permutation and com-
bination approaches simultaneously. We shall give a theory which
may no! be proved.

“Heénce the required number is ——— = 4,084,080 ways.

Theorem: if there are m different things of one kind, n different
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thins of the 2nd kind and k different things of the 3rd kind. The
number of permutation which can be formed containing r of the first,
s of the second and j of the third is

Lo Jl s Yl ateeansy

Example 2.28: How many ways can 5 boys and 4 girls selecved from
among 12 boys and 9 girls be arranged on a bench?

Solution: 5 boys are selected from 12 in ( l: ) ways.

4 girls are selected from 9 in ways.

9
4
but the 9 people can be arranged among themselves in ap; = 9! ways.
The required number is

12 9
D 10
(5)(4)9. 3.62 x 10

(2) How many words each containing 2 vowels and 3 consonants can
be formed with-5 vowels and 8 consonants?

Example 2.29:

(b) How many words can be formed if
(i) ‘a’ must-be included
(ii) thewords must contain at least two consonants?

Solution:
(a) 2 vowels can be chosen from 5 in ( ; )

3 consc ‘»nts can be chosen from 8 in 2
the 5 let* s can be arranged among themselves in 5! ways.
The requ red number is

5 8
| =
(2)(3)5. 560 x 120
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(b) ‘a’is a vowel = 67200 ways.
(i) if ‘a’ must be included, we need one more vowel. The required

number is
(i)(g)5!=33600way8

(ii) If the word must contain at least 2 consonant, then it could
contain 2 or more consonants.
The required number is

Jaleas

(F) Combined with repetition

Sometimes we are interested in the number of combinations of items
when each of the items may be repedted. Given n items, the number
of combinations taking r at a“timie then repetitions are allowed is
denoted by nHr where

ntr-NY  (n+r-1)!
r T (ntr-1-r)r!
jnsr>1)n+r—2)--+(ntr—-r—1)(n-1)n
r!
(r4r—1)(n+r-2)---n
r!
Example 2.30: How many combinations of 4 digit numbers can be

formed-from the digits 2,, 4, 5, 7, 8 9 if the digits may be repeated
at least once?

nHr

-

Solution: There are 6 digits, to take any 4 at a time, the required
number is
6+4-1 9!
o = (S
= 126

Example 2.31: I an experiment, 2 dice are rolled once. Find the
total number of outcomes if
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(3)

(4)
(5)

(6)

(7)

(i) they are distinct
(ii) they are ot distinguishable

Solution
On a single die there are 1, 2, 3, 4, 5, 6 (6 numbers)

(i) If they are distinct, the total number of outcomes is 6* = 36

(ii) If they are not distinguishable, then any number on the die may
be repeated. Hence the required total number of outcomes is

Exercises:

(1) Showthat(:)r(n'ir)

(2) If *Cn-¢ = 15; find n.

An examination question is'divided into three sections A, B, C with
3,4 and 5 question respectively. A student is required to answer two
questions each from. Sections A and B and 3 from Section C. In how
many ways can he write the examination?

In how many ways can he solve one or more question in Section C.

If the paper’is one of the professional examination papers where can-
didates are required to attempt as many questions as possible, find
the total -number of ways a candidate can write the examination if he
must attempt at least one question?

In how many ways can a person purchase two or more items out of
57

A nursery school pupil learning simple arithmetic is given 5 counters
with digits 2, 1, 3, 0, 4, 5 to form numbers. Find the probability that
the pupil is about to form a

(a(i)) 3 digit number

(ii) a number greater than 100,000
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(b) Using all the digits except 0, how many numbers can be formed
and what is their sum?

(8) How many ways can the letters of the sentence “Daddy did a deadly
deed” be formed?

(¥, A boy found a keylock for which the combination was unknown, but
correct combination is a four digit number d,, d;, ds, dy where d;,7 =
1,2,3,4 is selected from 1,2,3,4,5,6,7,8.

How many different lock combinations are possible results in such
keylock?

(10) Ten children are to be grouped into two clubs in such a way that five
will belong to each club. If in watch club a secretary and a president
is to selected, in how many ways can this be done?

(11) A shelf contains Chemistry, Mathematics and Economic text books.
In how many ways can 5 books be selected?



Chapter 3

Random Variables and Their
Distributrions

3.1 Introduction

In a statistical experiment, the set of all possible outcomes is termed the
sample space. Some experiments yields sample spaces whose elements are
numbers, but some other experiments donot yield numerically valued ele-
ments. For mathematical convenience, it is often desirable to associate one
or more numbers (in addition to probabilities) with each possible outcomes
of an experiment.

In this chapter we shall study the integer-valued random variables which
is known as discrete random variables, continuous random variable and
their distribution.

Definition: Random Variable

A random variablex X on a sample space S is a function X : X — B
that assigns a real number X (s) to each sample point s € S.

Capital letters, such as X, Y and Z will be used to denote random
variables. The lower case letters z,y, 2,... will be used to denote possible
values that the corresponding random variables can attain.

47
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Example 1: A fair coin is tossed three times. The sample space
S = {TTT, HTT, TTH, THT, HHT, HTH, THH, HHH}
Let X denote the number of heads which appears. Then
X(s) = {0,1,2,3}.

The tree diagram is shown in figure

Sample Points  X(s)

H HHH 3
H <
T —— HHT 2
H <u HTH 2
T —  HTT |
H THH 2
H <
T THT 1
T H —a&TTH |
T <
T TTT 0

If the outcome of one performance of the experiment were S = THT,
then the resulting experimental value of the random variable X be 1 - that
is,
X(THT) =1

Note that two or more sample points might give the same value for X (i.e.,
X may not be a one-to-one function), but that two different numbers in the
range cannot be assigned to the same sample point (i.e., X is a well-defined
function). For example

X(HTT) = X(THT) = X(TTH) =1

Discrete Random Variables

Random variables that arise from counting operations, such as the ran-
dom variable in example 1 are integer-valued. Integer-valued random vari-
ables are examples of an important special type known as discrete random
variables.
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Definition
If the set of all possible values of a random variable, X, is a countable
set, Ty, Za,**+,Z,, OF Iy, Ta, -+, then X is called a discrete random variable,
The function
J(z) = P|X = z| T =Ty,Tg,-"" (1.1)

that assigns the probability to each possible value z will be called the
discrete probability density function (discrete pdf).

Another common terminology is probability mass function (pmf), and
the possible values, z,, are called mass points of X.

Sometmes a subscribed notation, fx(z), is used. The following theorem
gives general properties that any discrete pdf must satisfy.

Theorem 1.1
A function f(z) is a discrete pdf if and.only if it satisfies both of the
following properties for at most a countably infinite set of reals z;,z;,- -+

/(220 (1.2)

for all z,, and
N flm) =1 (1.3)
all 7
Proof
Property (1.2) follows from the fact that the value of a discrete pdf is
a probability and must be non-negative. In case of property (1.3), since
Iy, x3,+ - - represefitall possible values of X, the events [X = zy,[X = z,]---
constitute an exhaustive partition of the sample space. Thus,

2 flm)=) PX=gz|=1.
3“'- all:.
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Example 2
Returning to example 1,
7(0) = PX =0] = 3
3
f)=PX=1]=2
3
fQ)=PX=2=¢
f(3) = P[X = 3] = %
Here
f(zi) 20 for z; =0,1,2,3
and

2 flm) = SO+ f(1) + £(2) + £(3)

+ .

— 00|00 oo| -
oo
+
| W
00 | -

Definition: Cumulative distribution function (CDF)
The cumulative distribution function (CDF) of a random variable X is
defined for any real z by

F(z) = P[X < 1 (1.4)

The function F(z) is often referred to simply as the distribution funclion
of X, and the subscripted notation, Fx(z), is sometimes used.

For brevity, we will often employ a short notation to indicate that a
distribution of a particular form is appropriate. If we write X ~ f(z) or
X ~ F(z), this will mean that the random variable X has pdf f(z) and
CDF F(z).

The general relationship between F(z) and f(z) for a discrete distribution
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is given by the following theorem.

Theorem 1.2
Let X be a discrete random variable with pdf f(z) and CDF F(z). If
the possible values of X are indexed in increasing order, z, < 73 < z3 < -+,

tuen
f(z,) = F(z,), and for any 1 > 1

(1.5)
fzi) = F(z) = F(zi-1)
Also, if z < z; then F(z) = 0, and for any other real z
F(z) = }_ () (1.8)

z,<z

Expectation and Variable of Random Variable Definition
If X is a discrete random variable with pdf f(z), then the ezpected value

of X is defined by

E(X) =3 zf(z) (1.7)

z
The sum (1.7) is understood to be over all possible values of X. Also, it is
an ordinary sum if the range of X is finite, and an infinite series if the range
X is infinite. In the latter case, if the infinite series is not convergent, then
we will say that E(X) does not exist. Other common notations for E(X)
include yu, possibly with a subscript, uy. The terms mean and expectation
are also often used:
The varianceof X is given by

var(X) = E|(X — u)? (1.8)

Other common notations for the variance are ¢?, 0%, or V(X), and a related
quantity, called the standard deviation of X, is the positive square root of

the variance, o = ox = /var(X). It is possible to express the variance in
terms of u = E(X) and E(X?).
In particular

var(X) = E|(X - u)’] = ¥lz - u)*/(2)

z

= D(@* = 2uz + ) [ (2)
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=.Zfﬂﬂ mi}ﬂﬂ+#2ﬂﬂ

= E(X’) - ZuE(X) + u*(1) by eqn. 1.3
E(X?*) —2u- u+ ul

E(Xz) _“2

= B(X’) - [E(X)]*

I

Example
A discrete random variable X has a pdf of the form

f(z) = k(8 — z) for x = 0,1,2,3,4,5, and zero otherwise.

(a) Find the constant C.

(b) Find the CDF, F(z)

(c) Find P[X > 2]

(d) Find E(X)

(e) Find var(X).
Solution

(a) If f(z) is a pdf,-then

> 1l

z=0

5
Wy k(8—z)=1
z=0
5
kY (8-z)=1
=0
k8 +7+6+5+4+3]=1
33k =1
1
“=
1
- f(z) = 3z(8-12).
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(b) F(z)

I

(¢) PIX > 2|

(d) E(X)

(e) E(X7)

. var(X)

53

P(X < z)

1

a(8—-12)
i,,:ss
= 1-F(2)
= 1-P(X<2)

% |

= - —(8 -

-2 g2
= 1_[£+1+£]
i 35733 " 83
- p M
v 33
-
3
= 0.636

5
> zf(z)
=0

8 7 6 5 4 3
0x3—3+1x§+2x§+3x§+4x§§+5xﬁ
0 7 12715 16 15
T Y ol R T IR
65
33
1.9697

8 7 6 5 4 3
| RS . SR 3y 2 - .
0x33+l x33+2 x33+3 x33+4 x33+5 x33
_9_+l+.21+£+6_4.+7_5.

33 "38 "3898 "' ¥3

215

33
6.5152
E[X?] - [E(X)]?

6.5152 — [1.9697]*
2.6355
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Example
A distribution of positive integers has probability function

D LR % 3
P(z)zﬁ(z) for x=1,2,3,4,5
P(z)=0 for z>5

. 80
Prove that the expected mean value is N and that the variance is

Solution
X=z[1]21374 5,
S TI0 10 (N
PE) Jarlan lar St e

5 10 10 5 1
— 42X~ +3IX —+4—+5%X —

5

Mean = E(X) = ) zf(z)
z=1
1x

31 31 31 31 31

5,290 20 5
31 Q1> 31 " R’1 31

_ 80
T oa
5
E(X?) & 3 *f(z)
=]
5 10 10 5 1
2 2 2 2 2
= — — BTN — ¥ =
Lixg T4 gt st td Xy

5 40 90 80 25

-_— ~ iy — | R

31 31 31731 "3
240

31

Var(X) = E(X°) - |[E(X)]?
uo_ (ony:

31 .31

1040

961

040

54
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3.2 Bernoulli Distribution

Suppose that, on a single trial of an experiment, there are only two
events of interest, say F and its complement E'. For example, £ and E'
could represent the occurrence of a “*head” or a “tafl” on a single coin toss,
or, in general, “success” or “failure” on a particular trial of an experiment.
Suppose that E occurs with probability P = P(E) and consequently E'
occurs with probability ¢ = P(E") = 1- P,

A random variable, X, that assumes only the values 0 or 1 is known
as Bernoulli variable, and a performance of an experiment with only two
types of outcomes is called a Bernoulls trial,
f(0)=(X=0)=g¢
M)=P(X=1)=p
where p+ ¢ = 1.

The pdf can be expressed as

J(z) =p¢"* z=\01 (1.9)
The corresponding CDF is given by

0 for'z<0
F(z) =8 g for 0<z<1 (1.10)
1 for z>1

Expectation And Variance of Bernoulli Distribution

E(X) 0:g+1:p=p
E(X}) = 0*-q+1*:p=p

so that
Var(X) =p-p* = p(1 - p) = pq
3.3 Binomial Distribution
In a sequence of n independent Bernoulli trials with probability of suc-

cess p on each trial, let X represent the number of successes. The discrete
pdf of X is given by

b(z;n,p) = ( : )p‘q"" S0 L0 8 (1.11)
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The general properties (1.2) and (1.3) are satified by equation (1.11) since
0<p<1and

,Z::ob(z;"’p) . ,Z::o( 3 )p‘q""‘
(p+4q)"
2 “qn

=1

The CDF of a binomial distribution is given at integer values by
B(z;n,p) = Xb(k;n,p) z=0,NN,n (1.12)

A short notation to designate that X has the binomial distribution with
parameters n and p is
X ~ B(zinyp)

or an alternative notation
X% BIN(n,p)

The Mean and Variance of BIN(n,p)
E[X] .2/ (z)

- Ee{2)urs

5 "x).( — p)"

since the term when z = 0 contributes zero to the sum,

- (n_l)! n=1)=(z=1)_z-1
ﬂpz = l)'[n i (i_ < 1)]!(1 [ P)( = )P

= anR,(N T
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writing N =n -1, R =r — 1 in the summation,
= np|(1-p) +p"
= np.

We could have shortened this work a little by using the notation ¢ = 1 — p,
and we use this when finding var(X).

) = $0(% )

= g[:(z - 1) + z] ( ) <55

Since the term for which r = 0 contributes zero to the summation,

. iz((::l)‘" ""‘*Z’( ) "

= z)!z!
= n(n-1)p? i (z _(:),(:)_ z)!‘l“-'l"nz +np

Since the term for which £ = 1 contributes zero to the summation, and
we have already shown, when finding E(X), that the second summation is
equal to np.

If we put N =n—2, R=r — 2 in the first summation;, we have

E[X?’) &n(n-1)p* ) R'(NL'R)"JN Rp® + np

R=0
= n(n-1)p'lg+p|" +np
= n(n—1)p* + np, since p+qg=1
Var(X) = n(n—-1)p®+ np—n?p?
= np(1-p)
= npq
3.4 Useful equality
In a problems on the binomial distribution where we have to calculate

more than one probability, a useful equality connects consecutive terms in
a binomial expansion. It is

plz+1) = p( ).

z+l l
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For example, the value of P(2) can be obtained from that of (P(1) by using

the equality
n-—1

2
where n and p will be given in the problem.

P(2) =

: ,—ﬁ-;p(l)

3.5 Hypergeometric Distribution

Suppose a population or collection consists of a finite number of items,
say N, and there are M items of type 1 and the remaining N — M items are
of type Il. Suppose n items are drawn at random without replacement, and
denote by X the number of items of type 1 that are drawn. The discrete
pdf of X is given by

f(z;n,M,N) = (t{)(ﬁ:f) (1.13)

()

The underlying sample space is takén to be the collection of all subsets
of size n, of which there are (I:) , and there are (A:)(N—M)

n—z
outcomes that correspond to the event [X = z|.

A short notation to designate that X has the hypergeometric distribution
with parameters n, M, and N is

X ~ HYP(n, M, N)

An ldentity
M
For a hypergeometric distribution we must have )_ P(z) = 1, because

z=0
P(z) represent all the possibilities that can occur; it follows that

(%) (%)= ()

“ean and Variance of HYP(n, M, N)
M
z

Z M
B(X) = fz()(

= ()
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(x)am - £a(2)(%:2)

n—=zx

B z t (z - 1)'(M - z)!

A P (M -1)! N-M
P ME!'(M—t—l)'(n—t—l

- 1)! (N M)

)

59

(setting t = z — 1, that is, z = ¢ + 1, so that, as z goes from 1 to M, t goes

fromO0to M - 1)

N-1-(M£))
sy (M TS
N -1
w(3)

Using the identity given above, it follows that

s = (3% )/(2)

(N-1)! _ nl(N-n)

, the same

= MR- e N
M
Ag N
Note: &
If we were sampling with replacement, P = N would be the appropriate
binomial parameter and the binomial mean would be np = n%’
as for the hypergeometric distribution.
Variance We first find E[X(X - 1))
N i M\(N-M
( & )E[X(X—l)] = xgo:l:(:z:—-l)( - )( Er1g )
-4 (M —2)! N-M
= MM=1) L T =y ( n-z

)
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Nowsett =z — 2

B M2 (M-2) N-M
-“‘““"Zm(n-z_:)

t=0 **
(use the identity)

MM-1)S ( ) ( N“f_‘,}f’" 2 )

t=0

M(M-x)(f 2)

Thus :
EX(X-1)] = M(M—l)(N :)/(1:)

nn-1)

N(N-1)

MM < 1)

It follows ghat

V) = Xl -1+ 51X~ B00P
n 2
- M(M—l);EN )) ’x,

If we are sampling with replacement, p = ¥ would be the appropriate
hinomial parameter and the binomial variance would be

M M
- o301
s is slightly greater than the hypergeometric variance because of the
or (N = n)/(N —1) in the latter. As N becomes very large compared
with n (the number of trials), the hypergeometric distribution tends to the
binomial distribution.
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Theorem _
If X ~ HYP(n, M, N), then for each value z = 0,1,...,n and as N —
oo and M — oo with M/N — P, as a positive constant,

k4 (2)sa-om a9

lim =
T

N—co N
n
Note:

The binomial distribution is applicable when we sample with replacement,
while the hypergeometric distribution is applicable when we sample with-
out replacement. If the size of the collection sampled from is large, it shoud
not make a great deal of difference whether or not a particular item is re-
turned to the collection before the next one is selected.

3.6 The Geometric Distribution

This distribution can arise in an experiment which fulfils the conditions
which are required to be satisfied for the binomial distribution except that,
instead of counting the number of ‘succeses’ which occur in-the n.trials,
as we die for binomial, we carry on with the trials only until we get one
‘success’.

If we denote by X thé number of trials required to obtain the first
success, then the discrete pdf of X is given by

z:p) =pa*'; z=1,2,8,... (1.15)

A special notation to designate that X has geometric distribution is X ~Geo(P).
The general properties of (1.2) and (1.3) are satisfied by (1.15), since
0<p<1and

}i_:,ll(z;p)=l’§q'“‘ = Pl+qg+¢*+--)

-l )

Landl W s -
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3.7 Mean and Variance of GEO(P)
The mean of X ~GEO(P) is obtained as follows:

E(X) = g‘xm"‘
. g,gq.
=p quq
- Pd‘a(qu)

i -
(1-gq)?

=

N -

In other words, if independent trials, having a common probability p of
being successful, are performed until the first success occurs, then the ex-
pected number of required trials equals :.

To determine the Var(X) let us first compute E[X?|. With ¢ =1 - p:

E[x!l = ilzlpqs-l
= f_::‘%(zq')
e W [
= Pl (Z‘,"")
= v (55)
= p%lq(l-q)"l

- o5
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‘“IN
|-

Hence, since E|X| = i

Var(X) = e

3.8 Negative Binomial Distribution

In repeated independent Bernoulli trials, let X denote the number of
trials requird to obtain r successes. Then the probability distribution of X
is the Negative binomial distribution with discrete pd{ given by

J(z;r,p) = ( S i )p'(l - )" (1.16)

A special notation, which designates that-X has the negative binomial
distribution is
X ~ NB(r,p).

The general properties (1.2) and (1,3) are satisfied by (1.16), since0 < p < 1

z(::;)p.q,.r = P'i(ijt_ll)‘l'

z=r =0
— pf(l = q) r
= 1

Note that ) ( ; 1 i; ! ) ¢' is the series expansion of (1 — ¢) .
’ =0
3.9 Mean and Variance of NB(Y, P)
k = z-1 r z-r
Bt < %ot (221 )pa-n)
= :iz*‘l % p (1 —p)*" since z| T : el *
Paer r 1 r
> (m—-1)*? ( m;— - )p"'(l - p)™ "1 by setting m =z + 1

r
P m=r+1

= TE|v -1
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where Y is a negative binomial random variable with parameters r + 1, p.
Setting k = 1 in the preceding equation yields

E[X] = i..

Setun g k = 2 in the preceding equation, and using the above formula for
the expected value of a negative binomial random variable, gives that

E[X?Y] = iE[Y -1
g (r+ 73 l)
p\ p
Therefore,
2
Var(X) = - ('* I 1) e (I)
p\ »p P
_ r(1=p)
=73

3.10 Poisson Distribution
A discrete random variable X with probability function

e
z!

Jzin) =

, £=0,1,2,... (1.17)

where u > 0 is said to have a Poisson distribution with parameter u.
A special notation that designates that a random variable has the Pois-
son distribution with parameter y is

X ~ POI(y)

The properties given by (1.2) and (1.3) are clearly satisfied, since u > 0
implies f(z;u) > 0 and

i/(zﬁl) = c"‘i“—: =e~leb = |
z=0 T

z=0



Random Variables and Their Distributions

3.11 Mean and Variance of POI(u)

Mean = E[X]|

I
10
1]
e
8ls
®
L]

Next,

I
N
s
L]
|
—
-
|
3
U

EX(X -1)]

Hence

E(X?) =p* 4 p

so that
Var(X) = pu® + u—u* = .

3.12 Poisson as a Limiting Form of the Binomial

. 65

If X ~ BIN(n, p), then for each value z = 0,1,2,..., and as P — 0 with

(% = 1 constant,
Jim BIN(n,p) = POI(u)

m
lim ( ? )P‘(l s p)ra=2 K
I I

(o) P=armas CF-0)

(1.18)
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-5 (1) ()= (-5 (-0

=, -u n
. lim ( : ) P11~ P)** = “: since "ll_g.lo (1 - ‘-‘-) =¥

=00 ! n

and, forf fixed z, Jim (1-%) " =1

Theorem 1.3
A function f(z) is a continuous pdf if and only if it satisfies kboth of
the following properties for all z € S, the sample space

(i) f(z) >0 (1.19)
(i) [ f(@)dz=1 (1.20)

Eq. (1.20) means integration over the sample space.
For any zp < z; in S,

P(zo < X <.11) = / " f(z)dz (1.21)

Equation (1.21) represents the area of the region under the graph of the
probability density function f(z) between the limits z = z; and z = =,

Definition
The probability {cumulative) distribution function, F(z) is defined by
the relation

Flzo) = P(X < z5) = / " f@)ds (1.22)

-0
This represents the area of the region under the graphy of the pdf, f(z),
from z = =00 to z = zy. The function F(z) obviously increases from zero

at the bottom of the range to unity at the top of the range.
From Eq. (1.22)

_ dF(z)

flz) = dz

3.13 Expectation and Variance of a Continuous Random Variable
We define

(1.23)

u=EX= [ ™ 2f(2)dz
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the expected mean value of X, and
ot =var(X) = [ (2w f(e)dz= [ 2*f(z)dz—

the variance of X,

Proof
400 400 +0o0
[ e-w@ds = [ 2 (e -2 [ eflz)d=
+pu /:: f(z)dz
= /:: 7' f(z)dz = 21° + u?
- /fm z* f(z)dz — p*
Since ey 9
/_w zf(z)dz = p, /_w f(z)dz =1,
op +00
Var(X) = /_ * f(z)dz — pu® = E(X?) - u.
Example 1

The pdf of the continuous random variable X is given by

f(z) =kz?, 0<z<1
f(z) =0, elsewhere
Find (a) the value of &
(b) P(Xl;eq%)

€ Pl;<X<3)
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Solution
@ [ fadz =1
=O/lk.t’d.t=-;-=l
= k°=3
) Px<3)=[* sz = [Fostae =}
(c) P(%<X<%):/ﬁs::’a:::g_‘l

Example 2
A random variable X has cumulative distribution function

F(z)=0, z<0

F(z)=kz‘s 0L 2,

F(z)=1,{/)®>2.
Solution

(a) f(=) = = 4kz’
F(z) must be unity at.z = 2,
= 16k=1, k= —l-

R )

s 16
giving x
[(z) = ZT 0<z<2,
f(z) =0, elsewhere.
@ vt = [[#Fe ()

e *“'_(?_)’_‘E_ﬁ_i
|24 5/ 24 25 75

o
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3.14 The Continuous Function Distribution
A continuous random variable X whose probability density function
(pdf) is given by

f(zia,b) = B

4 forf a < x < b, where a.b are finite
— 8 (1.24)

f(z;a,b) = 0 otherwise,

has a continuous uniform distribution over the interval (a 6]
A notation that designates that X has pdf of the form, (1.24) is

X ~ UNIF(a, b).

We can see that this is a valid density function, sifice f(z) > 0, and

/_:of(:)dz = /: a—j-:;"d1:= 1.

Mean and Variance of UNIF(a,b)
The mean of X is obtained as féllows:

ERS [z(bia)dz

»

{ b?__a’

Furthermore,

E(X?) /'.-.’ (bia) dz

;’ - a*

3(b—a)

(b* + ab + a*)(b - a)
3(b—a)

b +ab+a’

= —a-
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Thus,

I

Var(X) = E[X*| - [E(X)]?
b*+ab+a*" (a+b)?

3 4
(b— a)?

12

3.15 The Exponential Distribution
A continuous random variable X" whose pdf f() is given by

I

f(z) = Ae™** for z > 0, where A is a positive constant

(1.25)
J(z) = 0 otherwise

has an exponential distribution with parameter A. Since
+00 o Py
dz = / A —A:d = —amAT
/_ _ fa)z= [T aedide = (-]
= 1, forA>0

The notation that designate that X has an exponential distribution with
parameter A is X ~ Exp(}). Mean and Variance of Exp())

E(X) = /“ Aze™**dzr

[—ze “’] / e~*dz, integrating by parts,

-A:
[ ,forA>0

BlXx?Y = /o Aze ‘iz

oo
[—z’e'“’]: +2 _/; ze **dz, integrating by parts,

2
= JE(X)

2
Y]

2 1 1

=2 Var(X) = = - ===
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3.16 Weibull Distribution
A continuous random variable X is said to have the Weibull distribution
with parameters # > 0 and # > 0 if it has a pdf of the form

f(z:0,8) = 0%1"":“”"". >0

and zero otherwise. .
A notation that designates that X has Weibull distribution with parameters
3 and @ is

X ~WEI8,53).

It is a distribution that lhas been successful used in reliability theory.

3.17 The Mean and Variance of WEI(f.3)

o

B [Eat4m ~taie)?
il ~{=/#)
a5, JO\Y e dr

Following the substitution ¢ < (2/8)”, and some simplification.

E(X) < 0/::“‘ M e tdt = o1 (1 o 1})

Similarly,

E(X*) =0T (l + ;2—3) ;

) 5 "\ — pe g 12 r]_
Var(X) =0 [l‘(1~3) | (I ﬁ)]'

and thus



Chapter 4

Moment-Generating Functions

4.1 Introduction

In this chapter, we shall define the moment-generating function of a
random variable. Specifically, we shall consider both discrete and contin-
uous random variables, We shall also show how the mean and variance of
a distribution can be determined using theunethod of moment-generating
function.

Definition
Let X be a random variable of\the discrete type with p.d.f. f(z). If
there is a positive number h sueh that

Biet| = 3" e f(z)
exists for ~h < t < h,the the function of ¢ defined by
M(t) = Ele"]

is called the moment-generating function of X.
For any positive'integer r,

MU(t) = 3" 2"e* f(2)

Thus, it ¢an be shown that for —h < t < h, the derivatives of M(t) of all
orders exist at t = 0.

M(t) = Y ze*f(z)
M'(t) = Y 2ef(z)

72
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Setting ¢ = 0, we have
M'(0)

S 2f(x) = EIX]

M"(t) = Y 2*f(z) = BIX7|
and in general
MIN(0) =) 2" f(z) = E[X"]
Therefore, if the moment-generating function exists,
= M'(0) and o* = M"(0) - [M'(0)}*

The definition of moment-generating function remains the same for continuous-
type random variables except that integrals replace summations. So for a
continuous random variable X with p.d.f. f{z); the moment-generating

function is
M) = [

o

e*f(z)dzy ~h<t<h.
Example 1: Let X be a binomial distribution with p.d.f.

n

i )p‘(l Ep)Tt , 2=0,1,2. .40

f(z) = (
0 ,elsewhere

The moment generatitig function of X is

#t) = Ele*]| =) e*f(z)
- z'l:eu ( ’Iz ) p.(l = p)n-x

z=0
n

= (1) e

= |

(1= p) + pe'”
4.2 Mean and variance of binomial distribution

Since M(t) = [(1—p)+ pe'l"
M'(t) = npe'l(1—-p)+ pe|*!
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and

E[X] = M'(0)=np|(1-p) +p"" =np
M"(t) = n(n—1)[(1 - p) + pe|""?(pe")? + npe'[(1 — p) + pe'|"”!
M"(0) = n(n-1)p* +np

It follows that
M"(0) — [M'(0)}*

= n(n-1)p* + np— (np)?
= n’p® = np’ + np-nipt

V(X)

= np-np’
= np(1-p)
= npq where ¢ =1-p
Example 2: Let X have a poisson distribution with p.d.f.
AEe~4
Ha) =4, 2

0 , elsewhere

,2%0,1,2,... and A>0

The moment generating function of X is

MO s B = T e f(2)
o0 C"/\'C-A

2=0

I
~
o

=1 for all real values of ¢
Mean and variance of Poisson distribution

Since M(t) = -1
M'(t) = M=1(Ae!)
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and
M'(0) =
and
M"(t) = eM =N (Aef) + Mt (Net)?
then
M"(0) = A+ A2
Therefore
V(X) = M"(0) - [M'(0)
= A+2*=-(2)?*
= A

That is, a poisson distribution has
c Agde )
p=0°"=A>0

Example 3: Let X have a gamma distribution with p.d.f.
Ia-xe-:/a

——— z>0;a>0,4>0
B Na)

fx)={ A

0 , otherwise

where a and 3 are the parameters of the distribution.
The moment-generating function is

M) = B(e) = [T e gt s
s 1 a=1 tz—-z
- L B"]"(a)z Yetz=2/Bgy

s s 1 a-1, s 3
= /(; ﬂ"l‘(a)r dz

281 e-x(l-—ﬂ!)/ﬂdz

T ()

If we set

y = z(1 — Bt) /8, t<%

75
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or

z = fy/(1- Bt

We obtain
M = [ (l-ﬂt)H -'d”
o= )/ SR Q’
- (=) @ / 2 '\Q%
- ('Tl‘t) @ "
I ek
4.4 Mean and mhnee(:f m) z;tributlon

see MO (5)
;@) (~a)(1~ B)"*-(~4)
N\

then %
M'(0) = a8
Q/Q—

M'(t) = (-a)(-a-1)(1 - Bt)™*7*(-p)?

and

then oé

M"(0) = a(a + 1)5*

Therefore,

V(X) = M"(0) - |M'(0)*
ala +1)8° - (aB)?
ala + 1)#* - o*4?
0283 3 032 Y 0,8’
ad?

U=n " " "
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Example 4: Let X have a Normal distribution with p.d.f.

.07121,“"’?-,‘5"3) =00 < < o0
J(z) =

0 , otherwise

We can find the moment-generating function of a normal distribution as

follows.
= gax sl om: A _(I“#),
M(t) = Ef(e )-/_me a\/i;exp 297 dz
_ = 1 —20%tz + 1 —2pz -

We complete the square in the exponent. Thus

M(t)

exp {——L(u’ ~(u+ O’t)’} S —exp {——'—(r = 0")°} dz
202 oo a\/f;r 20:

1
= exp{— (" - 4’ - 2u0%t’ (0)*t*}dz
because the integrand of the last integral is equal to 1
a't?
= exp{ut + —2—}

4.5 The Mean and variance of Normal distribution

Since
o't
- M(t) = explut + )
Now,
ot?
M'(t) = exp{ut + -2—} x (u+ o't)

80,

M'(0) = p = mean
and

aztz a‘lti
M"(t) = o®exp{ut+ T'} + exp{ut + = } % (1 + a*)

M'0) = o*+u®
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Thus
Variance = M"(0) - (M'(0))?
SRR P [l
A
Thecrem

The moment generating function of a sum of two independent random
vari ibles is the product of their moment generating functions.

if X and Y are independent random variables, the - moment generating
function of the sum X + Y

Alx.,)‘(t) E(et(X*Y)) = E(ctxe!)’)
E(c‘x)E(c‘Y)

M (t) - My (1)

Where My (t) is the moment generating function of X and My (t) is the
moment generating function of Y.

Proof: The joint p.d.f. of X ¥.is f(z,y)

Mx.y (& E[e'**7)
[ [ =01 (= v)dzdy
[, [, #ee st v)dady
/y /x e'* e fx(z) - fy (y)dzdy

(since X and Y are independent)
= /x e fx(z)dzx /} e fy(y)dy
= My(t) - My(t).

Finite induction extends this theorem to the sum of any finite number of
independent random variables: if Xy, X3,..., X, are independent, then

"!.\'.*x:*f ?x-.(t) = HMJ\'I{‘)'
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If the random variables have identical distributions, say, with common mo-
ment generating function Mx(t), then

Mx, ix:s +X.(t) = lMx(‘)r‘

4.6 Moments

Moments has its origin in the study of Mechanics. It is one of the devices
for measuring the characteristics of a distribution.

There are three different kinds of moments.

(i) Moment about the origin
(ii) Moment about the mean
(iti) Factorial moments
Each of these shall be treated separately.
(i) Moment about the origin is defined as U’ = E(X")
= f: X"P(X) for a discrete random variable

=1
o0
and / X" f(z) -+ - for acontinuous random variable.
-00

(ii) The r** moment about the mean is defined as u, = E(X — p)"
cd
Iy = 2( X )" P(X) for discrete random variable.

1=0

Yy = /_ % (X # u)"f(X) for continuous random variable,

For a-simple series:
r'® mpment about the origin is given by

1L
pe==> (X-0)
Nl

wo= 15x -0 = X - X (mean)

n

1 l o~y PR 1
% n,z;,(‘\ O)-—n.z;:‘X

-
=
|
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o= S (X-oP=1x

Hy = :—‘ij(x—O)’ ZX'

1=l
Cf(XxX-0)?
of

The r** moment about the mean is given by

For grouped data puj =

be =23 (X - XY

n =l |

Note that the first moment about the mean is zero and the second
moment about the mean is the variance.

. M = —Z(X X)'—O

1-1

py = —Z(X X)? = (variance)

":1

It is otherwise known as the central moment. However, the central
moment can be expressed as a function of the moment about the
origin as follows:

K2 = %ZX’—nX’

- Swil (X X)*
_in_ =

n

[ p2 = pi — (W))7]

uy = %Z(X—X’)a
= lz[xt3)(=)i*+:'.x-ﬂt’—Jt-"]

= ZX’ 3X2X 3X’ZTX—J?3=%X’—2X3-3§—X:

nn

s X
= 1x +2x’+2x’ g X2
n nn
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| ps = g+ 2p7 — 3pqp |

(iii) Factorial Moment
The r** factorial moment is defined as u(,) = E[X(X —1)(X - 2)(X -
r+1)]

upy = E(X)
The second is factorial moment is w2y = E[X(X —1)]

3rd factorial moment = E[X(X — 1)(X - 2)]

4.7 Mean and Variance of a Random Variable Mean of a random
variable can be defined as E(X).

E(X)

n
Z X P(X) for close variable
i

/ g [(z)dz for continuous variable
-00

The variance of a random variable is défined as

V(X) = E(X) - (E(X))
ur = (13)*

Il

The moment coefficient of skewness is defined as 3, = “: = g/ py
o

By = muy/ l‘g -3
Ilustration: The probability distribution function (pdf) of a continuous

random variable
2z + 1

flzy=| ©

0  otherwise

0<X<2

Find the 3rd moment about the mean.
Solution:

ps = [[ (X~ ) (z)de

where p* is not given.

[but s = py + 2(w3)” — 3w |
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w o= f: zf(x)dz
jl’ S2(22 + 1)dz = %/"1(21 +1)dz

63 "2

2z° z’]’ ] i 1[32+ 12

0

And,

e (2 - 0)f(2)dz

2
- 4 d

4 312
1 [2z z] 1[:2_2_'_%]:1.78

=
»
I

6| 4 30
w o= [ (@-0Pf(a)iz

= 1/:‘;1:3(2::+ Hdz
- 6o

_1F£+£r
6| 50#],
1764 16
- a3 7]=2s
 ds =iy 207 — By
=)2.8 +2(1.22)* - 3(1.22)(1.78)
= 2.8+ 2(1.816) — 3(2.172)

= 2.8+ 3.632 - 6,516 + 6.432 — 6.516
= =—0.084

4.8 The Mode and Median of a Distribution

Just like it is possible to find the mean of a probability distribution, it is
also possible to obtain the median and mode of a distribution.

Given probability mass function (pmf), the median is defined as the value
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of M such that = A £
Y P(X)>= or ) Px(z)>

r=x 2 r=m

0| -

Mode:

For a discrete distribution the mode is the value of X for which the prob-
ability is maximum. For a continuous function, the mode can be obtained
by method of calculus,

INustration 1: The p.m.f. of a random variable X is given by

¢

2 z=-1

g z=0
Px(z) = {

2 o

8 =

1

ké r=2

Find the (i) mode and (ii) median.

Solution:

(i) The mode of the above distribution is X = 0, since Py(z) is maximum
at this point:

(i) Medidn= i Px(z) >05 =0

=00
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Illustration 2: Given the p.m.f. for a random variable Y

g: y=-—1
Py(y) = | %: y=1
g; y=2
{g; y=3

Find the (i) mode and (ii) median.

Solution: (i) The above is a Multimodal distribution.
m
(ii) Median: > Py(y) >05=1ie y=1
y=-00
The mode and median for a continuous random variable with the pdf. f(z)
is
1 o 1
< = S =
/_m f(z)dz < 5 and /m [(z)dz > 2
Illustration 3: Given a random variable X with pdf.
Xe™® 0<o0o<o0
J(z) =

0 elsewhere

Find (i) the mode, (ii) the median (iii) 1st Quartile (iv) 3rd Quartile and
(v) Semi-interquartile range.

Solution:

{i) Mode
f(z) = Xe™*
fiz) = +(Xe)
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fllz) = —ze*+e*=0
B T = AT

1 X mode
(if) [o " f(z)dr > %

Il

= [—Xe" - e"]m =0.5
Substitute for m and 0
[- Xe™ c"J =0.5

-me™™ — e~™ — (0.1) = 0.5
-me™ —e™+1=U%
~(m+1)e™ 4+ V=05
—(m+1)e™=-05

e ™(m¥1) = +05
Solve for m
log,.e ™ = log,0.5
-m = log 0.5
m = -\log/0.5= 0,693
3¢ 0<z<oo

f(z) =

0 otherwise

Find the median Q, and Qs and hence the interquartile range.

Solution:
Median: /omj'(z)d:c = 05
["se*dz = 05

0
“® = 08

85
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=> - —[-1]=05
1'-e™ =05
- =05 . e™=05
Solve m
log,e™ ™™ = log, 0.5

0-3m = log,0.5

1
m = --3-log,0.5 =0.23

Qy = /o " f(2)dz = 0.25

= 1= =025
e = 0.75
G = —% log, 0.75
q = 0.10
Qs = ["f(z)dz =015
= 1=-¢% =075
e 3 =0.25

gs = —%log,o.zs = 0.46

Qs — @, _ 0.46 ~0.10

Semi-interquatile Range = 2 S ~0.12
ile : Q:-@
uartile Deviation = ————
" Qs+ @

4.9 Limit Theorems
The important results in probability theory are those that involve the limit

theorems. Some of these are:
(i) Chebyshev’s inequality
(ii) Central limit theorem

(iii) Law of large numbers.
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Before we prove the Chebyshev » .ucquanty let us consider the Markov’s
inequality.

Markov’s inequality: If X is a continuous random variable that takes
only non-negative values then for any value a > 0
P(X >a) < E(X)

Proof:
If X is continuous with f(z) as the density function

E(X) = [0 * f(z)dz
/o " 2f(z)dz + / ® zf(z)dz
/. * zf(z)dz
/a ” af(z)dx
a /ﬂ ” flz)dz

aP|X >a| => P(X'Z a) =

n wv W I

E(X)

Chebyshev's inequality
If X is a random variable with finite mean u and variance ¢, then for any

value k£ > 0 "

P{X-ul 2k} < 55
Proof: Since (X — u)? is a non-negative random variable, we can apply

Markov’s inequality (with a = k?) to obtain

P(X —upt > k) < EE 0] (+)

but since E(X — u)* = o? and
~u)? 2K (X —p| >k
then » is equivalent to

E(X - p)?

P{IX - p| 2 K} < =3

o
k2
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2
P{IX-uIZk}S%

and equivalently g

. a
P{IX-MS}ZI-F

The above theorems enables us to derive bounds on probabilities when only
the mean or both the mean and variance of the probability distribution are
known.

The central limit theorems: is one of the most remarkable results in
probability theory. It states that

“Let X, X3,... be a sequence of independent anduidéntically distributed
random variable each having mean u and variance 0%/ Then the distribution

f
o X|+Xg+ +)L -

\ n
tends to the standard norma as n — oc\l.€.

P{X1+X2+'/": Xn-'WSG}_‘ 1/” ey
o/yn V27 )

asn— o0
i.e. the distribution of nearly all variables tends to be normally distributed
(i.e. X ~ N(0,1)] as the sample size becomes large.

Examples (Chebyshev’s inequality)
If it is known that bags of pure water produced in a factory during a month
is a random variable with mean 50 litres.

(i) What'can be said about the probability that this month production
willexceed 80 litres?

(ii) If the variance of the month’s production is 36, what can be said
about the probability that this month’s production will be between
35 and 65 litres?

Solution:
If X represent the number of items in a month by Markov’s theorem
E( X) _50 5

< - = (.
P(X 80) 80 80 8 0.625
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by Chebvshev’s theorem.

1 36
P{|X - 50| > 15} < 2"75 = - =0.16

=> P{|X -50| <15} >1-0.16 =0.84
4.10 Chebyshev’s inequality

o' = E(X-u)? =2 (X~-un)'f(z)
ek

YUX—pu)if(z)+ 2 (X —u)if(z) )VAER

zEA A
and
A= z:(X —u) 2 ko}

but

Y (X—u)if(z)20

TEA’

= (X -u)’flz)= X (X —n)f(z)

€A €A’

. 02 3 (X - u)f(z)

zEA
However in A, | X — u| > ko.

21X —ulf(z) 2 Ko™ f(z) = k'a* 3 f(2)

ZEA EA =EA
d* >k’ P{|X — pu| > ko}
— KoP{|X —u| > ko} < o

3
2
P|X —p| 2 ko'} £ 72— k’a’

- P{IX*uIZkG}S;;
Exercise:

(1) Express the forth moment about the mean as a function of the mo-
ment about the origin.
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(2) For a continuous random variable X

O<z<4

Wi

(=) =
0

(i) Find the expectation and variance of X
(ii) Find the 4th moment about the mean.

(3) The table below is the Probability distribution of random variable
table

t
/()

IR B

b
b
3

-

Given that a = 3b and a + b = 8, find (i) the value of a and b, hence
or otherwise find (ii) mean and variance of t. (iii) The 3rd moment
about the mean.




Chapter 5
Sampling Theory

5.1 Sampling Theory

Sampling theory deals with the study of relationships between a pop-
ulation and samples drawn from the population. It is important in most
applications. For instance, it is used in the estimation of population pa-
rameters from a knowledge of the corresponding sample statistics.

In statistics, sample data are observed in order to make inferences or
decisions concerning the populations from which the samples are drawn.
Hence, statistical inference deals with the question of how inferences can
be made about population characteristics from information contained in
sample, However, il the statistician knew the population values, there
would be no need to make inferences about them! A value such as X, that
is, a number computed from sample data, is referred to as statistic. Thus,
the sample mean X is a statistic which may b2 considered as an estimate
of the population mean from which the sample was drawn. A statistic may
be used as an estimate of an analogous population measure, xnown as a
parameter.

5.1.1 Populations and Samples

Population is the term used to describe a large number set or collection
of items that have something in common. That is, universe or population
consists of the total collection of items or elements that fall within the
scope of a statistical investigation. The purpose of defining a statistical
population is to provide very explicit limits for the data collection process
and for the inferences and conclusions that may be drawn from the study.
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The items or elements which comprise the populationmay be individu
animals, families, employees, schools, etc.

A sample on ¢he other hand, is a subset of the population, selected &
such a way that it is representative of the larger population. The ter
population and sample are relative. An aggregate of elements which cons
stitutes a population for one purpose may merely be a sample for another.

5.1.2 Fundamentals of Sampling

Purpose

There are a wide variety of reasons why sampling is important. In m
situations, a study of an entire population is impossible; hence sampli
may represent the only possible or practicable method to obtain the desi
information. For example, in the case of processes, such as manufacturi
where the universe is conceptually infinite including all future as well
current production, it is not possible to-aceomplish a complete enumerati
of the population. Also, in destructive sampling of a finite population,
is possible to effect a complete enumeration of the population but it wo
not be practical to do so.

Sampling procedures are often employed for overall effectiveess if prop-
erly selected. The results from samples are often more accurate than resu13

based on a population/"A study of a sample is also less expensive than
study of an entire population, because a smaller number of items or su
jects are examined. Samples can be studied more quickly than populations.

5.2 Random and Non-random Selection

Samples.¢an be drawn or selected from statistical universes in a variety
of ways. It\is therefore, important to distinguish random from non-random
method#-of selection. In this book, attention is focussed on random sam-
pling or probability sampling, that is, sampling in which the probability of
inclusion of svery element in the population is known. Non-random sam-
vling methods are referred to as “judgement sampling”, that is, selection
mnethods in which judgement is exercised in deciding which elements of &
iniverse to include in the sample.

The ba«ic reason random sampling is preferable to non-random sampling

hat in judgement = ‘vction, there is no objective method of measuring
(e precision or reliability of estimates made from the sample. On the other
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hand, in random sampling, the precision with which estimates of popula-
tion values can be made is obtained from the sample itself.

5.3 Simple Random Sampling
A random sample or probability sample is a sample drawn such that
every element in the population has a known, equal probability of inciusion.
Suppose we have a finite population of N elements, a simple random
sample of N elements is a sample selected in a way that every combination
of n elements has an equal chance of being included. If the sampling is
drawn without replacement, then every element in the population has an

equal probability of % of being selected on the first draw; each of the re-

maining N — 1 elements has an equal probability of

1
N1 of being selected
on the second draw and so on until the last.sample item is drawn. There

are ( l’\: ) possible ways in which the samples of n items can be drawn,

1
N
n
For example, let a population consist of five letters, A, B, C, D and E.
Here N = 5, suppose a simple random sample of size n = 2 is drawn. The
possible number of sample is

5 5!
(z)-m-"’

these ten possible samples are
(A, B), (A, C):(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C, E)and (D, E).

The probability that any one of these ten samples will be chosen is —

For sampling with replacement, since it is possible for the same item to
appear more than once in the sample, it is not always used for practical
purposes, hence we shall not discuss it here.

A simple random sample may be drawn by the method of “Drawing
slips from a Bowl|” where the population is usually finite and the elements
or items easily identified and numbered.

Another method is the use of “Tables of Random Numbers”. This
‘method is preferred especially when the poplation is very large, the preced-

then the probability that any sample of size n will be drawn is -
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ing method becomes quite unwieldy and time consuming. Bias may also
be introduced if the slips are not properly mixed.

5.4 Stratified Random Sampling

In stratified random sampling, the population is first divided into mu-
tuslly exclusive subgroups called strata and probability samples are then
drawr. independently from each stratum. Samples may be drawn from
each stratum by simple random sampling or cluster sampling or system-
atic sampling. The objective may be to combine sample statistics from each
stratum to obtain an overall estimate of a population paramecter or to make
comparison between strata to investigate strata differences.

There is an increase in precision i.e., a reduction in'sampling error when
this method is employed. This reduction in sampling error is achieved by
minimizing differences among elements within strata and maximizing dif-
ferences among strata. This method is most effective when the elements
within each stratum are homogeneous (elements within each stratum are
alike with respect to the characteristics being studied) and when difference
of elements among strata are heterogeneous.

5.5 Cluster Sampling

In cluster sampling the population is divided into groups called clus-
ters and then a probability-sample of the clusters is drawn and observed.
Cluster sampling is used to achieve a reduction in cost of sample design.
Sampling error is also.-reduced in clustering especially when the elements
within each clusters are heterogeneous and the elements among cluster are
homogeneous. The advantages of cluster sampling from the point of view
of cost arise from the fact that collection of nearby units is easier, faster,
cheaper, and more convenient than observing units scattered over a region.

5.6 Systematic Sampling

Systematic sampling is often used in place of simple random sampling
as a procedure of obtaining random selection in most practical applications.
In a systematic sampling, every kth element is taken from the population
arranged in some specified order. The first sample which is the starting
point is drawn randomly from the first k elements. The value k is obtained
by dividing the number of items in the sampling frame (a list of all elements
in the population) by the sample size. The results of systematic sampling
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are similar to those of simple random sampling if the elements in the popu-
lation occur in random order. A population can be assumed to be random
when for instance, items contained in this population are thoroughly mixed.
However, the results of this method is not reliable when there is a cyclical
variation in the way the elements of the population are arranged.



Chapter 6

Introduction to Statistical
Inference

6.1 Introduction

We have been exploring some basic principles and applications of proba-
bility in the preceding chapters. A few of the probability distributions that
have been found by experience to be particularly useful in solving certain
classes of problems have also been carefully examined. We have seen that
probability theory is a useful and coherent framework for dealing with the
problems of uncertainty. We now introduce one of the key areas to which
probability is applied-statistical inference. This field called statistical in-
ference, which is the subject matter of this chapter and the next chapter,
uses the theory of probability for making reasonable decisions concerning
a population on the basis.of the samples drawn from it.

Statistical inferencedeals with two different classes of problems: (1)
Estimation, which is discussed in this chapter and (2) hypothesis testing,
which is examined in the next chapter.

In both cases, the problem is structured in such a way that inferences about
relevant population values can be made from sample data.

6.2 Estimation

The subject of estimation is concerned with the methods by which pop-
ulation characteristics are estimated from sample information. The objec-
tives are

(i) to present properties for judging how well a given sample statistic

96
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estimates the parent population parameter,
(ii) to present several methods for estimating these parameters.

Very often we know or are willing to assume that a random variable X fol-
lows a particular probability distribution but we do not know the value(s)
of the parameter(s) of the distribution. For example, if X is assumed to
follow a normal distribution we may be interested in obtaining the values
of its two parameters, namely, the mean and the variance svhich are un-
known. In this problem of parameter estimation, the usiial.procedure is
to assume that we have available a random sample of €ize-n of a random
variable X, whose probability distribution is assumed known, and use the
sample data to estimate the unknown parameters, Let us take a closer look
at this problem of estimation. This estimation problem can be broken into
two major categories: point estimation and interval estimation.

6.2.1 Point Estimation

The basic reasons for the need to estimate population parameters from
sample information as earlier noted in. the previous chapters are that it is
ordinarily too expensive or simplyinfeasible to enumerate complete popu-
lations to obtain the required information. The cost of complete censuses
may be prohibitive in finite_populations while complete enumeration are
impossble in the case of infinite populations, Hence estimation procedures
are useful in providing the means of obtaining estimates of population pa-
rameters with desired degrees of precision.

A point estimation'is a single number which is used as an estimate of the
unknown population parameter. For instance, let X be a random variable
with p.d.f. f(z,0), where @ is the parameter of the distribution which is
unknown. Suppose also that a random sample of size n is drawn from this
distribution; then a function of the sample values such that

é: f(IhIz.“"In)

provides an estimate of the true 0. 8 is called a statistic or an estimator (a
function or rule that is used to guess the value of a parameter) and a partic-
ular numerical value taken by the estimator is known as an estimate (that
i«, a particular value calculated from a particular sample of observations).

Note that @ can be treated as a random var able because it is a function
of the sample data. # provides us with a ruje or formular, that tells us how
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wo estimate the true 0. Thus, if
P |
§= ;(z1+zz—---+zn)=f

then X (the sample mean) is an estimator of the true mean value, x. So if
X = 25, then this provides an estimate of u. The estimator f obtained is a
point estimator because it provides only a single estimate of 6.

3.2.2 Interval Estimation

For most practical purposes, it would not suffice to have merely a sin-
zle value estimate of a population parameter. Any single point estimate
will be either right or wrong. Therefore, instead of obtaining only a single
estimate of 6, it would certainly seem to be extremely useful, and per-
haps necessary, to obtain two estimates of § by constructing two estimators
8,(zy, 22, -+, z,) and 92(1:1,1'2, -++,Z,), and say with some confidence that
the interval between #, and é, includes the true . Thus, an interval es-
timates of a population parameter is-a statement of two values between
which it is estimated that the parameter lies.

We shall be discussing the construction of confidence intervals as a
means of interval estimation in our subsequent discussion.

6.3 Properties of Estimators

Sometimes we are faced with questions such as, how good are some es-
timates? what makes them good? can we say anything about the closeness
of a particular estimate to an unknown parameter? Suppose the arithmetic
mean, %, the median, Z, and the mid range, r, are calculated from a random
sample drawn from a given population. Which method would be the best
estimator for obtaining the population mean? Your answer probably would
be the sample mean, Z. Why do you think the sample mean represents the
best estimator? These and many more questions will be answered in this
section.

6.3.1 Unbiasedness: If 4 is to be a good estimator of 6, a very desir-
able property is that its mean be equal to 4, that is, E(f) = 0.
Definition: Let X, X3,...,X,, be identically independently distributed
random variables with p.d.f. f(z;6) and b= (X,,Xz,. ..y Xn) be a statis-
tic. Then we shall say that 6 is unbiased for 8 is E(6) = 0.
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An estimator T of an unknown parameter # is unbiased if E(6) = 6, for
all values of 8. The difference

B|0) = E|6 — 0] is called the bias of 6

If B[O'] # 0 then @ is said to be a biased estimator. Thus, an unbiased es-
timator is a random variable whose expected value is the parameter being
estimated.

Example 6.1: Let X, X3,...,X, be a random sample from a nromal
distribution N(u,0*). Show that X is an unbiased estimator of u.

Proof: X = %ZX.

E(X)

=

S| Sr= 3 |-

Example 6.2: Show that 5% = -}‘- > (X;—X)? is not an unbiased estimator
1

of the population variance o*.

Proof:
ElSY) = E %g(x‘ = X)’]
= {506 - 0 - (X -}
E [% i(xi - i) =(X= n)’]
23 B(X = )~ B(%

LS (x) - v(x)
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1
=4e3 Y lo* - &*/n]
= a*-0o*/n
(n-1)o*

n

This shows that S? is not an unbiased estimator of ¢®, However, an unbi-
ased estimator can be constructed by multiplying the sample variable, S*,
by the factor n/(n — 1). Thus

E[(n-l)s:]=nil

n
S~ %2
1
n-—1 né&él
Note that it is possible for an estimator not-to satisfy some of the desirable
statistical properties especially in small sample cases as above. But as the
sample size increases indefinitely, the estimator possesses several desirable

properties. These are large-samplé‘or asymptotic properties.
An estimator 0 is said to bean asymptotically unbiased estimator of #

)=0"

since

if : .
lim E(d,) =0

where 4, impies that the estimator is based on a sample size n.
That is,  is an asymptotically unbiased estimator of @ if its expected ap-
proaches the true'value as the sample size increases. For example,

B(st) = B NE ‘n””’ =o*(1-2)

n

then 1
: B =i X VR
W) =l el o) = o

6.3.2 Efficiency: This concept refers to the sampling variability of an esti-
mator. The most efficient estimator among a group of unbiased estimators
is the one with the smallest variance. Thus, if §, and #; are two unbiased
estimators of 6, and the variance of 8, is smaller than the variance of fy,
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then 5; is an efficient estimator.

Fig'6:1

Of the two unbiased estimawnjl and @y in fig 3.1, 6, is best unbiased or
efficient. Their relative efficiency is measured by the ratio

vid) _%
V@)

where a;. is the’sialler variance.

Example.8.3: A simple random sample of size n is drawn from a nor-
mal popiilation with mean s and variance o®. If the sample mean X and
the sample median X are two estimators of the population mean u. Obtain
the relative efficiency.

Solution

o
n

the variance of the sample mean, X, is 0% =

. 2
the variance of the sample median, X, is 0% = 1.51%
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Thus, the relative efficiency of X with respect to X is

g"g _ 1.57¢%/n
oy  a¥n

= 1.57

6.3.3 Minimum Mean-Square-Error (MSE) Estimator
Definition: Let X;, Xj,..., X, be a random sample of size n from a
tribution with p.d.f f(z;#) and let 6 = A(X),, X3,..., X,) be-any stati
Then, the mean square error of ¢ (estimator of 0) is

MSE(8) = E(0 - 6)*
If 6 is unbiased for 0, then E(f) = 0 and it implies\that

B(f) = E(8) <6>0
MSE(6) E(0.N\D)?
= L6/ E0)
<) Vear(0).

The difference is that, V ar(6) igasures the dispersion of the distribution
6 around its mean, whereas M?E(O) measures dispersion around the
value of the parameter. This relationships shows the following;

MSE(6)

E(6 0)°
= B4 E(0) + E(6) - 0]
<, E|0 - E(0), + E|E(6) - 0]* + 2E[d — E(6))|E(d) - 0)

- .
since the lashterm is zero.

MSE(f) Elf - E(0)]* + E|E(0) — 0
var(f) + B*(0)

= variance of 8 plus square bias

)

If the bias is zero, MS E(0) = var(d).

Definition: The statistic § = h(X,, Xa,...,X,) that minimizes E[(0 —6)*]
is the one with minimum mean square error. If our attention is restr”
to unbiased estimators only, then var(§) = E(6 — )%, and the + iased
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statistic # that minimizes this expression is said to be the unbiased mini-
mum variance estimator of .

6.3.4 Lower Bound for the Variance of an Estimator
A method of finding minimum-variance unbiased estimator of a param-
eter is to find the Cramer-Rao lower bound for an unbiased estimator.

The Cramer-Rao lower bound (Regularity conditions).

The Cramer-Rao lower bound is obtainable under the following regularity
conditions.

Let X,,...,X, be independent random variables each having the density
function f(z:0) absolutely continuous with respect to‘a o-additive measure

.
An estimate o(zy,...,7,) not necessarily unbiased is wanted for the pa-
rameter 0.

(1) 36 log [(x;8) exists for all 8.

@) o [ o [ i), f(zfB) dmy - do
= [ [ i) 1 i e

(iii) ;oj /o(r, . ,rn)f (21;8) -+ f (23 0)dzy -~ dz
/ /o(:l. .r,, f(z1:0) -+ f(zn; 0)dzy,+ + ydz,y

(iv) 0<E([:0logf(x ]) < o0

where o(z;,...,2,) is a statistic satisfying
Eo(Xy,...,X,) =0+ b(0)

where b(0) is the expected bias,
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Theorem: Cramer-Rao inequality
If the regularity conditions (i) to (iv) above are satisfied, then

1+ 6(0))?
¥ Xy i R o —
ar(a( 1 )) nE [53_5 logf(z; 0)]2
Proof: Let b
Vi = 25108 f(z:0)
and ) y
=L V=2 5 loe S (=i}
Then
E(VI) — / % ]08 f(r,;ﬂ) 9 f(I\;o)dI‘
- / f(-’rl.;ﬂ'a%f(x‘;o) « f(zi;0)dz;
= [ ol O)da
. %/f(ri;o)dx‘ =0
so that E(V) =

Consequently,
Var(V) = nE(V?) = n].‘)(%f(:t:;ﬂ))2
note thatEa(r;,...,z,) = 0 + b(f) that is
[ [ olzs, - yza) T £(ze:0)dzi = 0+ b(6)
=1
Differentiating with respect to 0, we get

ao/ f"(’" ; "")Hf(xno)dz.—l+b'(0)

i=1

/.../g(;,-_,,...'z,‘)ga1][(:.;0)(1:.- =1+b'(0)
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[/a (g b%fTrl.’;o') 5%[(:.:0)) 1 £(zi; 0)dz; = 1+ 5(6)

=]

//a (}_j 535 log f(z.:o)) ‘I:I'I(x.':O)dz.- =1+ b(0)

/.../a(z Vo) T /(z: 0)dzs = 1+ 6(0)
i=1
E(eV) =1+ b(0).

Note that p?, < 1, where p,, is the correlation coefficient of @ and v.

Thus .
[eova;v)? &0

var(cjvar(v) ~ \
ie. [E(ov) - E(0) B < var(o) - var(y)
ie [1+0(0))? < var(o)-var(v)
since E(v) = 0 nd E(av)'= 1:+ b'(0)
o Vi) — et
nE (2 log f(z::6))

Remark: It can be shown that™,

a . *
E 5!,(:.:0)) =-E (W!(z‘w))
which gives a Cramer-Réo lower bound as

(1+8'(9))°
—nE (%3 /(x.:9))

e-Ooz

Example 1: Let X,,..., X, be a random sample from f(z;0) = =

z2=01,2,...
Obtain the Cramer-Rao lower bound for the unbiased estimator of 0.

for

-'0‘
Solution: f(z;6) = ‘—z,— £=0,1,2,...

log f(z;0) = =0 + zIn0 — Inx!
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° log f(z;0) == -1
| =L _gp=Yorle) _ @ _1
[ logf(z,,ﬂ)] = 0,E,z 0]* = TR TR
thus,
1 Syl B9
nE[&logf(z:0)] n/6 n
Hence, X is the UMVUE of 6.
Example 2: Let X3, X3,..., X, be a random samplefrom the exponential

distribution having a p.d.f. of f(z;8) = %e"/', 0>0,0<z<o0.
Obtain the Cramer-Rao lower bound for the variance of an unbiased esti-
mator for 8.

Solution: f(z:0) = -:/0

logf(z,&) —In0—-z/0
dlog f(z;0) 1 z

& 4 @
hence,
dlog f(z:8)]° I [ S
E[ a0 i '5*0‘21
P
- me[z o]
N [/ |
The Cramer-Rao lower bound is
- 1
Var(0) =
,‘.E[el_oxbgm]’
ol
~ nf0?
2
- & _var(X) _ var(X)
n n

Fo(".), <t
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6.3.5 Consistency

Knowing that an estimator is unbiased gives little information as to the
goodness of the method of estimation. It would seem that closeness of the
estimator to the parameter is of importance. The concept of consistency
is slightly sharper than the variance of an estimator which gives a better
idea of how close the estimate of the parameter is to the actual parameter.
Roughly speaking, if an estimator, #, approaches the parameter § closer and
closer as the sample size n increases, # is said to be a consistent estimator
of 6.

Definition: Let # be an estimator for 0, based on.arandom sample of
size n. If .

lim P(|/@ — 8| > ¢) = 0, for anine > 0,

=00

then @ is a consistent estimator for 0.

Thus, an estimator is consistent if as'the sample size becomes larger,
the probability increases that the estimates will approach the true value of
the population parameter. Alternatively, 8 is consistent if it satisfies

(i) V(@) w0asn — o

(i) @ becomes unbiased as n— oo

Fig 6.2: Sampling distribution of 0 as the sample size increases
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From Chebyshev inequality (chapter?) we know that

P(l6 6| > ¢

IA

l ~ b 3 2
£—2L!(0—‘0) I
- 1
o 2@

MSE(6)

It follows that if MSE() — 0 as n — oo, then 8 is consistent.

6.3.6 Sufficiency

A sufficient statistic is an estimator that summarizés from the sample
data all information contained in these data, and p6 other estimator can
provide additional information.

Definition 1: A statistic, T'(X,, Xs,..., X, )18 said to be sufficient for
. @ if the conditional distribution of X,, X;,.., X,,, T = t, does not depend
on @ for any values of &.

Definition 2: Let X;, j = 1,2,..% ”/be iid random variables with p.d.f.
f(z;0), and let & = (0,,0,,..40,) € 2 C R" be a vector, let T' =
(T, T2y...,Ty) where T; = t{{X;; X3,...,X,), 7 = 1,2,...,m are statis-
tics. We say that T is an m-dimensional sufficient statistic for the family
F = {f(z:0);0 € 0} or for 0, if the conditional distribution of (X, X3, ...,
given T' =t is independent of # for all values of ¢.

6.3.7 Factorization Criterion

The above definitions of sufficiency are difficult to work with, since they
give no information about how the sufficient statistic may be calculated,
and for a given statistic, T, it would be difficult to conclude whether it was
sufficient because of the problems involved in evaluating the conditional
distribution. Thus, the following factorization theorem is relatively easy
for examining a statistic or set of statistics for sufficiency.

Theorem 1: Let X, X3,..., X, denote a random sample from a distribu-
tion that has p.d.f. f(z;0), 0 € 0. The statistic T' = t(X,;,...,X,) is a

fficient statistic for # if and only if we can find two non-negative functions,
.+ and k; such that

f(21:0)f(x2;0) - - [(70;0) = k1[t(z1, - -+, Z); Olk2(Z1y - -, 2]
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where ki(z,,...,T,) does not depend upon .

Theorem 2: Let Xy, X»,- -+, X, be iid random variable with p.d.f. f(z;0),0 =
(0y,...,0,) € 1. An m-dimensional statistic

T = f(Xl,Xz,...,X") = (tl(X,.....X,.)_...,t.,.(X,....,X,,))

is sufficient for @ if and only if the joint p.d.f. of Xl....,mactors as
follows:

f(z1, 22,0023 0) = glt(x21,22,...,Z0n); Olh(Z1, ,?7, Zn)
where g depends on z,, 73,...,z, and h is entirely '\@ondent of #.

6.3.8 Completeness %
Let X be a t-dimensional random variab?;t pd.f. f(z;0),0€NC
t

R and let g : R* — R be measurable, s g(z) is a random variable. -
We assume that Flg(x)| exists for all # dset F={f(r:0):0 € N}.
Definition: We say that the fams' y ¥ Y(or the random variable X) is com-

plete if for every g, Elg(z)| = all # € N implies that g(z) = 0 except
possibly on a set NV of X’s such that P(X € N) = 0 for all 0.

6.3.9 Uniqueness
Let X, X3,..., X
from a distribution
be a sufficient stati
be complete. re is a conditional function of ¥ which is an unbiased
function fo \hen this function of Y is the unique best statistic for 6.

ExampleQ

(1) Let Xy, X3,....X, be a random sample of a random variable with
mean p and finite variance . Show that X is a consistent estimator

ra

re n is a fixed integer, denote a random sample
asp.d.f f(z;0),0€ 0. LetY = y(Xy,Xs,...,X5)
for 6 and let the family [g(y;0); 0 € 7] of the p.d.f.

Proof: X is an unbiased estimator for u and its variance is o%/n

ince
S 2

MSE(X) = % —~0 as n - 00

. X is a consistent estimator for u.
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(2) Let Xy, X;...., X, denote a random sample from a distribution with
p.d.l
02! 0<z<l

J(x;0) =l

0 , elsewhere

vhere 0 < 0. Prove that the product u(X;, Xs,...,X,) = X; -
Xz+++ X, is a sufficient statistic for 0.

Solution

The joint p.d.f. of X}, X3,.... X, is @Q"
- N
f(x;0) H‘ f(z:6) é\/
= ozt AN
2

= 0"(1.'11!3
i " ¢ 1
¥ s K( z")](zx.zz.--.,rn
where 0 < z; < 1,1 = 2 .yn. In the factorization theorem let

knlt%'\s 2 Zn)il] = 0" (24,21, 24)'

and Q‘
A ks(Z), T, - oo 8a) = (zhzz. ...z,.)

since %,.z,. .+Z,) does not depend upon @, the product X, -
X;. «» 15 a sufficient statistic for 0.

(3) Let Xy, X3,... X, be a random sample from a distribution with p.d.f.
f(z;0) =6F(1-0)"*,2=0,1,0<0< 1

n
Show that )_ X, is a sufficient statistics for 0.
1
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Solution

I

f(z;0) 0*(1-9)'=
L(z;0) = [If(x.—;ﬂ)

"

[16(1—-0)=

08:. (l AL o)n-!::.

(e o-rjg

This function is of the form ky|u(zy,z3,.5,27);0lks (24, 25,...,2,)
where

g T
k;[u(zg,xg,....zn)] - (]_—7) (l — 0)"

and kg(I‘.Iz, e ,I") =1.
- Z X, is a sufficient statistic for @

(4) Assume X is uniform dn the interval (0,7). Based on a random
sample of n observatins, the maximum likelihood estimator
I‘ max(r;,:rg, ~,Zn) whereas the method of moments estimator is
I'=2X. Compite
(i) E[I‘] andvE[I‘]
(ii) the miean square errors of the estimators
(iii) «Are they consistent?

Solution: Let X ~ u(a,b), f(z) = b—;a'a <z<b
If X is uniformly distributed over (0,4), the p.d.f. of
Y = max(X;, Xz,..., Xp) is n[F(y)" " f(v)

or
Mw=n(V' , 0y <
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The expected value on this density and hence the estimates of I

I’ are
- R k] b y"-l l
(i) ET| = /0 yg(y)dy fo Ul e ,7dy

o Vo o WY
5 ‘Y‘/ony dy—n+1
E[f| = E(2X) = 2E [2-;’-‘-]
2
B ;ZE(Xt)
= 7

Note that in the limit lim E(T) = #, the estimate of [’ is asymptoti-
cally unbiased. i )
(ii) MSE[T] = Var(I') + (.B(I‘))z
but Var(l') = B[] - (EIT])?

S0

7 /I | & n 7
Ef”=/ 2 (Y12 g S _/ nily
(r? Y (1) 1@ M

~\ PR, 7

I\  n+2

3 ;n,,z ni.,l
~n

(n+2)(n+1)

B(f) = E[f]-~
. S e

n+1 K n+1

Ver(l') + B(T))?

A ¥ [ =5 1
(n+2)(n+1)? In+1

+n+(n+2)y

(n+2)(n+1)?

. MSE()
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(5)

4

2y
(n+1)(n+2)

MSE(T) = Var(T) + (B(D))?
But

Var(T) = Var(2X) = 4E(X?) - (E(D))?
o’
12n
= 49" | - -

~ MSE(l) = Ton Since B(T)=E(T)-~=0
". TR s, «
(iii) As n — 00, MSE(T) = TER YY) 0

. T is a consistent atlm:tgr
Asn—ooo,MSE(I‘) -—— —-0

. T is a consistent estlmator

Let P* = {b(6,n), 0 < @ < ¥} be the family of binomial distribution
corresponding to n indepéndent trials with constant probability 8
with

P(X = z)’= ( - )o=(1 — )™=, 2=0,1,...;n
Then P is complete.

Proof: We have to show that

n

@ 2 ( '; ) 0*(1-0)"%g(z) =0

z=0

implies g(z) =0for z =0,1,...,n
We can write + as

(+) Yale)et =0,

where
[}

dﬂ“(:)ﬂﬂaﬁw—Iji
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Equation (**) is a polynomial of degree n in @ and vanishes for ev
value of ¢ which is true only when
a(z) =0forzr =0,1,...,n.

Hence g(z) = 0for z = 0,1,...,n.

6.4 Methods of Finding Estimators
6.4.1 Method of Moments
The oldest method of determining estimators is the method-of mome
This is derived by equating sample moments to population. mements.
Let X, Xs,...,X, be a random sample from a population which
pends on unknown parameters &,,...,0;. Assume that.the first £ mo
about the origin exist as function &,(6,,...,0;) of the parameters, (wh
r=1,2,---,k). The expectation E(X") is frequently called the rth
n

2 X

ment of the distribution, r = 1,2,3,.... The sum M, = - is the
TL

moment of the sample about the origin, v = 1,2,3,.... The method

moments can be described as follows.

Equate E(X") to M, to obtain K ¢quations in k unknown parame
Thus one can get an estimate of & parameter.

6.4.2 Method of Least Sguares
Generally the method of least squares is used to estimate parameters in
linear model.

Let Y},...,Y, be iridepéndent random variables such that E(Y;) = a+ 3
where z, is a known constant and « and 3 are unknown parameters.
Consider the quadratic function

Q(z1y-. -1 Tnja,B) = Y (% — @ — Bz,)?

Let & and ﬁ be the values of a and # that minimizes Q.
Then

aQ
dax
Q
ap

-2Y (w-é&—-Bz)=0
-—2Z(y. o ﬂAI.‘).’t.’ =0
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Solving the two equations simultaneusly, we get

):(!h = ﬂ)(l‘. - 2)
Iz —z2)?
= g-p=

6.4.3 Minimum Chi-Square Method

This method is applicable where observed values of the random variables
themselves are frequencies of a finite number of mutually efclusive events
with probabilities Py,..., P, which are functions of K unknown parameters

B

-

to be estimated. The data consists of n;,...,n; frequencies for the m
mutually exclusive events.
Let ¥ n; =n.

Obviously, nPy,nPs,...,nP, are the expected frequéncies of the m events,
Then, a measure of discrepancy

I m (J.‘,"-ﬂ}).‘),
X “2“’“'"9 (+)

may be used.

The values of the unknown /parameters that minimize + are referred to
as minimum chi-square estimates.
Usually non-linear equations result in minimizing + therefore, computa-
tional methods are usually employed. However, an approximation to the
chi-square expression was obtained by Berkson where

P. o “ 4 c-(a#Bx,)}-l

is the logistic curve used often for analysing bioassay data.
The resulting approximate chi-square expression which he called logit chi-
square is given as

m

Q=Y (k-a-px)

=1
where |, = log Pi/q;, P, is the proportion responding in a dose response
experiment.
It is important to note that, it is usually very difficult to obtain minimum
chi-square estimators thus, most statisticians use maximum likelihood for
estimating the parameters.
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6.4.4 Method of Maximum Likelihood

Let z;, z4,...,2, be the observed values of a random sample X, X3,...,

Then if X;,....X, are discrete, random variables, the likelihood function

the sample denoted by L is defined as the joint probability of z;, z3, ...,
Such that

L(O) = P(zlv 8:..-.,2..;0) —\
= ' P(z1;0)P(%3:0)y. .., P(%n;0). \¢—
If X,...,X, are continuous random variables, the lik{ﬁhgod L, is de
to be the joint density evaluated at zy, x5,...,2,. ‘:(')
L) = [f(z1,...,%Tn:0) .
f(2::0)f (3 0) S F(z0:0)

The value of 0 that maximizes L(#) will‘hg‘},\sken as the estimate 6.
In general, let X,... X, be indcggn f random variables with densig
function f(xz;:0y,...,0;). The likelfhooll function is defined as

L(zy,- .., 2ai 0NN 0) = [T (200, -, 00)
=1

This gives the |lkellhood'§£;3taining the particular sample values, (5;. e
is said to be the maxj likelihood estimate of (8,,...,0,) if it maxi

the likelihood fungfjon-
Examples

1. Letﬁé;th ..+ +Xp be a random sample from each of the distributi
h\gfiﬁ the following probability density functions:

(a) f(z;0) =0z, 0<f<o0,0<z<]
(b) f(z:0) = 3:-*". 0<2<00,0-<8<00

o ya-1,-8X
(¢) f(z,e,8) = _ﬂ_){f(a_';__‘ z>0,a<0,8>0

(i) Find the moment estimates for the unknown parame
in (a-c).
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(ii) Find the maximum likelihood estimator for the unknown
parameters in (a) and (b).

Solution:
1 1
: o -1 = ¢
() B(X) = [ 202"z /;01: dz
OIGH 1 0
T o0+1), 6+1

The corresponding 1st sample moment is

M=~ z=2

Equating the corresponding moments and solving for the unknown
parameter 4, we get

1-X

(b) f(z;0) = ;-e"”. 0kl<o0<t<o
Solution: u} = E(X) =40
The first moment is

ln
oy g
L2

Setting m; = E(X) we have

=%

ﬂa Xa-t c-.-;x
I'(a)

Solution: Since we seek estimators for two parameters a and 3, we

equate two pairs of population and sample moments.
Then

(¢) f(z,a,B) = ,2>0,a>0,>0

a

, _ ala+1)
3 e et &

E(X) = uy = § and B(X") = 4 = 5
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Given a random sample of size n, the first two moments are given

n

> ot

m=-—==z2andmy = -
n
We set m; = E(X) and m; = E(X?) and solve for a and £.
That is, .
M|=mlEE=£=M|
and

From equation (i)

a a
b= =3
Substituting this into equation (ii) and solving for a, we have
ala+1
(a+1) _ o
M
M,’(c::|I + 1) N
aM}¥mi = oM,
Ml, = QM, - QMlz
g M} X3
ax =

M-M: Ipxi-xe
Substituting a into equation (i)

a M} m

ﬂ = M:-iﬂ =m2_lm?
ok ahdht” WP
L AZX-XB

ii(a) f(z;0) =02, 0<0<,0<z<1

L) = ﬁf@ﬁﬂ



Introductior to Statistical Inference 119

= [Je=t>
=]
= 0%(z;...25)"?
InL(@) = nin@+ (6 —1)Inz
= nlnf +0lnz;, - Inz

dlnL(#) n -
20 = —=+Inz=0
§e =0

In X,

(b) f(z:0) = %r*/', 0% 5<66,0 <0< 6

L) = I1/Gzi0)

<y |
i fadito 77
= ‘-I-]; 5¢

&) 9%.‘_8:‘,’
lnL(6) = nlno-%
dlin L(0) -n Xz
= -—= —-— =0
a0 i

I
I
b



Chapter 7

Tests of Hypotheses

7.1 Tests of Hypotheses

We now discuss the subject of hypothesis testmgs Which as earlier noted
is one of the two basic classes of statistical mfcreqce Testing of hypothesis
involves using statistical inference to test the. validity of postulated values
for population parameter. If the hypothesis specnﬁes the distribution com-
pletely it is called simple, otherwise it ig’called composite. For example, &
demographer interested in the mean agoof residents in a certain local gov-
ernment area might pose a simplg (;ypmhesns such as yu = 42 or he might
specify a composite hypothesis sucﬁ \as u = 42 or u > 12,

A statistical test is usually, su'uctured in terms of two mutually exclusive
hypotheses referred to as the null hy pothesis and the alternative hypothesis
denoted by H, and H, r.nyigrlnel)

Two types of error’oecur in hypothesis testing; these are type | error
and type Il error. T¢peTerror occurs if Hy is rejected when it is true. The
probability of a t¥pe-T error is the conditional probability, P(reject Ho|Hs
is true) and is defioted by o.

Hence,

a P(reject Hy|Hy is true) and
1—-a = Placcept Hy|H, is true)

Type Il error occurs if H; is accepted when it is false. It's probability i
denoted by the symbol 3, where

i} P(accept Hy|H, is false)
1-43 P(reject Hy H, is false) called power of the test

I

120
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Types I and Il error can be explained as follows:

r

H, is true Hy is false
1 a Ie)
Accept Hj | correct devision | Type Il errors
a 1-8
Reject H, Type I error | coirrect decision

Standard format of hypothesis testing: This format involves-5 steps.
Step 1: State the null and alternative hypotheses.
Step 2: Determine the suitable test statistics. This involves choosing the
appropriate random variable to use in deciding to accep? or reject the null
hypothesis.

Test Statistics

Unknown Parameter | Appropriate Test Statistic
" X — uy
&, " Z = ———
4 o/\yn

o known, population normal

X — po
a/yn'’
if n is “large™ usually n > 30

o known, population normal | Z =

“ t = ’i/';/?, with (n — 1)df
o known, population normal
% T4 = <
St xt= a:)’ , (n = 1)df
population normal
= S, X=F
P“-P!

n

population normal

Step 3: Determine the critical region using the cumulative distribution
table for the test statistic. The set of values that lead to the rejection of
the null hypothesis is called the critical region. A statistical test may be
one one-tail or two-tail test. Whether one uses a one- or two-tail test of
significance depend upon how the alternative hypothesis is formulated.
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Types of H, H, Decision Rule
hypothesis Rejected Hy if
Two-tail | p=po | 4 # lo | 2 < 237200 2> Za/2
Right-tail | p < po | 4> po | 2> 2ap2

Left-tail | pu 2> po | p <o | 2 <22

Step 4: Compute the value of the test statistic based on the sample inf
mation, e.g. Z.,t., x>.

Step 5: Make a statistical decision and interpretation. H, is rejected
the computed value of the test statistic falls in the critical region othe
it is accepted.

Example 1. An Emir from the north belives that the mean mon
income of messengers in the north is #1,000. Suppose a random sam
of 144 workers is taken and a mean income of ¥ 1,200 found. If the
ulaiton standard deviation is known to be ¥300. Check the claim of t
Emir based on the sample information at a = 0.10 level of significance.

Solution:

Step I:  Hj: po =N1,000
H; s Mo #NI.OOO

" " X — uo
Step II:  The test statistics to use is Z = 0—/\7_’:

since uo and o are known.
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Step III: /
/
/
/
%4
W
A
777/ c 0,
= 1 . -
& + 1,
Step IV: X = 1,200, uo = 1000, n = 144, o = 300
7 - 1200 - 1000
°” 7300/v/144
=8

Step V: Since the computed value Z, = 8lies in the critical region, we reject
the null hypothesis, H,, that u = 1000,

7.1.1 One-sample test about u(e¢ known)
The standardized normal random variable, Z, is the test statistic to use
when the population variance is known. The two cases are:

1. For a sampling/with replacement or an infinite population, the ap-
propriate test statistic is

Z

X - uo
n

T ol/m

2. For a)sampling without replacement or a finite population, use

Z = ._x:.“i_
=
E-:ample: Suppose a counsellor in a local government area believes
that the teachers in that area are working at most 35 hours a week.
A random sample of 64 teachers yields an average of 38 hrs of work
per week. The population standard deviation is known to be 4 hrs.
Determine whether the claim is correct at a = 0.05.



Tests of Hypotheses

Solution
Hy : pg <35
Hy:p>35
X =38 o=4, puy =35 n=064
_X-p_38-3_ 3 _
T o/yn  4/V/61  4/8
I

Z. 6

———
———

. ; J -
Since Z. (calculated value) is greater than the tabulated value (Z; = 1.
reject Hy and conclude that the counsellor’s claim is not true.

7.1.2 One-sample tests about u (¢ unknown)
If sampling is drawn from a ©iermal population and the population
ance is not known, then the test statistic to use is

_ X

t

with n — 1 degrees of freedom.

Example: A production company decided to examine the weights of ¢
products. The manager believes the mean weight is 3.0 pounds. Sup
the company took a sample of 25 items from their production and f
the meai weight was 3.6 pounds, with a sample standard deviation of
pounds. Using & = 0.05, can this company’s claim be regarded as cor

Solution:
Ho Mo = 3.0
Hy:p+#3.0

X=36, 8=22 n=25
X—p 36-30
slyn —  22/5

fo= = 1.363
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it
.-1\’1‘\' *tv:
Since ¢, = 1.363 is less than ¢, = 2.064, then H, is accepiéd.

7.1.8 Tests on the Population Variance, o*
The following test statistic is used to test hypotheses about an unknown
population variance
s (n—-1)s
Py M
of N\
where o is the hypothesized value of the population vairance, and n — 1 is
the degrees of freedom for this test statistic.

Example: A government wage review board claims that the wages of
some cooks across the country show a variance of at least A120 per year.
A random sample of 25 workers revealed a sample variable of #40/year.
What is your conclusion about the review board’s claim using a = 0.01?

Solution: H, : oj > 120 against H, : 0§ < 120
n = 25, 3 =40 X:to”“ = 10.86

2__24)(40
Xe = 120

=8

. Ku
Since x? < x3},},, the hypothesis is rejected.
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7.2 Best Critical Regions
We want to consider the properties a satisfactory test or (critical regi
should possess.

Definition: Consider the test of the simple null hypothesis H; : § =
aygcinst the simple alternative hypothesis H, : § = 0,. Let C be a criti
region of size a; that is @ = P(C:6,). Then C is a best critical region
size « if, for every other critical region R of size a = P(B;6), we have

P(C:8,) = P(B;0,)

That is, when H, : § = 0, is true, the probability of rejection Hy : 8
0y using the critical region C is at least as great as the correspondi
probability using any other critical region B of size a.

Thus a best critical region of size o is the eritical reigon that has
greatest power among all critical regions of size «. The Neyman-Pe
lemma provides sufficient conditions for-a best critical region of size a.

Theorem (Neyman-Pearson Lemma): Let Xy, X3,---,X, be a r
dom sample of size n from a distribution having p.d.f. f(z;0), where
and #, are two possible values of §. Denote the joint p.d.f. of X;, X3, -,
by the likelihood function

L(#) = L(6;z,,z73,...,2,)
f(21:0) f(22:0) - f(zn;0)

I f(z:6)

=1}
=1

il

If there exists a positive constant k and a subset ¢ of the sample
space 2

(a) Pl(Xy,:-+,Xn) € Ci0y) = a.

(6) T3 <k for (z1,+-+,2n) €€

L(e)

(c) Ld) > k for (z1,---,z,) € C'
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then C is a best critical reigon of size a for testing the null hypothesis
H, : 8 = 8, against the simple alternative hypothesis H, : § = 6,

Proof: For random variables of the continuous type; replace the integrals
by summation signs for discrete type.

/L(ﬂ) =[---/L(0;zl,zg,---,z,,)dz,,dz:,,---,d:c,.

If there exists anothe:r critical region of size o, say B, 3

[ £60) = [, L6
L0 - [ Lie)

Since C is the union of the disjoint sets € ™ B and C N B' and B is the
union of the disjoints sets BN C and BN.C'

= [ 16+ [ Lo [ L)+ [, L(6)

cnB'

I

(e

0

hence,

o=y L)+ [ Loy
By hypothesis (b), KL(#,) > L(#,) at each point in C, and C N B' in

particular, thus,
b 20002
cnB' L{y) = cnp' L(OO)

By hypothesis (c), KL(f;) < L(#) at each point in C' and C' N B in
particular, thus
X Cc'nB L) < /(:'nB L{%)
® 0= C'nB L{6a) = /C'nB L{bo) < K {/;'nB' Lty = /c-na L(al)}
o<k{[ Lo - [ Lo}

[zey = [ Lo

or

thus,
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that is, P(C;#,) > P(B;#). C is a best critical region of size a, since
result is true for every critical region B of size a.

Example 1: Let X, X3,+--, X, be a random sample of size n from a P
=on distribution with mean A. A best critical region for testing Hg : A
ageinst Hy : A = 5 is given by
M 2 3!::.6 3n 1“! -
L(5) 5Ere-fn = !
= (3)22' e <k
5

Zz,lng + 2n <Nnk
Ink —2r

(D et =
252 In(3/5)
The best critical region is {(zy,---,z,) 3 Xz > C}
Example 2: Let z;,---,X, be a random sample from a normal di
bution N(u,64).

(a) Show that C = {(z),@2,".Z,) : = < c} is a best critical reigon
testing Hy : u = 80against Hy : u =76

(b) Find n and ¢ so that a = 0.05 and 3 = 0.05 approximately.

Solution:
(a) Ho:p 7 80against Hy :p =76
L0 _ (129 expl—h Klx~ 5
L(76) B (128)-n/2 exP['r;—gE(:ti-M)z]

= exp-— -I;S[Z(z; ~ 80)* = Y (z; — 76)%]
= exp[—l—;s(—SZI. + n80* — n76%)| < k

= 8) z, - 624n < 128Ink
ZI, ~78n < 16Ink

6
78 4 -l—lnk
n

N 8
IA A

c
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where C = 78 + L In k.

129

u .
According to N.P. lemma, the best critical region is

o €= {(21,007,2,) : 2 S e}

(b) Find n and ¢ so that a = 0.05 and 8 = 0.05

a = P(X <c;u=80)
= P(X.—f-osc_s_o:u=80)
8/vn 8/\n A
c— 80
2 é(S/\’fﬁ)
B = (X >¢in=16) '
X-76_c<38
= P(s,/\/'ﬁ >8/\/ﬁ'“—76)
- l ¢(C,-7
: S0
¢ (577%) = 0.05 (i) = R =-1645
¢ (557%) =095 o (i) > 58 = -1645
c—80 _ -1645 |
c=176"*" 1645
¢c—80 = —¢c+T76
e = T8
andn = 43

7.2.1 Uniformly Most Powerful (UMP) Tests
We now consider testing a simple hypothesis H; against a composite

hypothesis H,

Definition: The critical region C is a uniformly most powerful critical
region of size a for testing a simple hypothesis H, against an alternative
composite hypothesis H, if C is the best critical region of size a for testing
H, against each simple hypothesis in H;. A test defined by this critical
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region C is called uniformly most powerful test with significance level a
testing a simple hypothesis H, against a composite hypothesis H,.
UMP tests do not always exist, however when they exist the N — P le
can be used to find them.

Example 1. Let X,,---, X,, be a random sample from a distribution wi
density function
f(zA)=2Ae, 22>0,1>0

Show that there exists a uniformly most powerful test for testing the si
ple hypothesis H; : A = ), against an alternative composite hypothess
Hy: A > X

Solution: Let A, > A,.
Consider testing Hy : A = g against H; : A = Ay
By N — P lemma,

L(Ho) _ (%" s Da
L(Hy) (,\,) Co it

that is,
nlog (%) + (A - a\o)Zz.f < logk
1

(Al - ,\o)zz. S logk -— logO (Aﬁ)

zx, < llogk — log (?) /(A1 = o)’
1
This inequality holds for all A; > A;. Thus UMP critical reigon exists
is
C={{(zm 2032 wiLe)

where

¢ = [logk - log ('—;%) /(A1 = Ad)]

Example 2. Let Xj,...,X, be a random sample from N(u,25). S
that there exists a UMP for testing H, : u = 40 against the cor.posi
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hypothesis H, : u > 40 (H, : u = p, > 40).

Solution:
L(H,) A L(40) _ (ww)gexp[-é > (z; — 40)?|
L(H,) L(I‘l) (507")? exp[—g% (=i~ #1)’]
= exp [~ (X (e~ 10)* ~ Tl — )]
= exp{—5—10[2(m — 40) 3"z, + n(40® @)} < k

—%[2(;11 —40) > " z+; + n(40* < 4j)| € Ink

2(uy —40) 3 7 +n(40* = u}) > —50Ink

2(p, — 40) Zz. > —50lnk — n(40® — pi)
~50Ink

2 S e
2> 2———-——’1(“1 _40) + (40+[£1) ¢

The best critical region of size o for testing Hy : u = 40 against H, : p = py
where p; > 40 is given by

C={(zy--z3): 2> ¢}

C is selected such that P(X >c¢: Hy: u=40) = a.

Exercises:

1. Let X,--- X\ be a random sample from N(#,1). Show that there
exists no UMP test for testing the simple hypothesis Hy : § = 8,
against-an alternative composite hypothesis I, : 0 # 0,.

2. Let X have an exponential distribution with a mean of 8; that is, '’

p.d.f. of X is f(z;0) = éc“/'; 0<z<oo.

(a) Show that a best critical region for testing Hy : # = 3 against
n

H, : 8 =5 can be based on the statistic Z X;
1

(b) If n = 12, find a best critical region of size a = 0.10 for testing
Hy:0 =3 against H,:0 =17.
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3. Let Xy, X3,+--, X, denote a random sample from a normal distri
tion N(0,100).

(i) Show that ¢ = {¢: ¢ < f)} is a best critical region for t
Hy:0 =75 against H, : 0 =78

(ii) Find n and ¢ so that
P[(Xy, X3.+++, X,) € ¢: Hy| = P(2 > c; Hy).= 0.05
and
Pl(X1, X2+, X,) €Ec: Hy| = P(2 2 C 7T H,) =0.09
approximately.

7.3 Likelihood Ratio Tests
A gencral test-construction method that is applicable when both
null and alternative hypotheses, say H;.and H,, are composite shall
considered here. The functional form of the p.d.f. is assumed known
depends on an unknown parameter or parameters. That is, assume
p.d.f. of X is f(X;0), where # répresents one or more unknown param
Lev 11 denote the total pafameter space i.e. the set of all possible
of the parameter # given by either H, or H,.
Consider the following lypotheses

H,:60 € w against H,:0 € w'

where w is a subses 'of 1 and w' is the complement of w with respect to

Definition .l The likelihood ratio is the quotient

A= ﬂlﬂ
L(N)

L(w) is the maximum likelihood function with respect to # when 4 € w
L(}) is the maximum likelihood functin with respect to 8 when 8 € 1.
Since A is the quotient of non-negative functions, it implies that A >
And since w < 0, then L(@) < L(?) and hence A <1, Thus0< A < L.
If the maximum of L in w is much smaller than that in (2, then the
Ty, ..., I, do not support the hypothesis.
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L(w)

L(f)
H,. However, a value of the ratio A that is close to 1 supports the null
hypothesis Hy.

Hy : 0 € w. That is, a small value of A = leads to the rejection of

Definition 2: To test Hy : 0 € w against H, : # € w', the critical re-
gion for the likelihood ratio test is the set of points in the sample space for
which

L(w) _

L@ =

where 0 < k < 1 and k is selected so that the test has a desired significance
level a.

A=

Example. Let Xj,---, X, be a random sample from N(6,,6;). Consider
testing the hypotheses

Hy:0,=0,0, >0, —o0c <ly'< 00

Hy:0,#0,0,>0, 0<8; <co ﬂ={0,,0,}

Solutiown
flz;01,00) = (21r_0,) k(-0
1 T 2
Llw) = (m) e "Lz
2
n n Lz}
lnL(w) = —EIBZI’-EIBOQ 202
dlnL(w) _ -n Iz}
R T kT
0
P Ozt
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- (aa) "

Ln) = (_l_) P oS-

21’0,
InL(n) = —2-ln21..._[n0’-____8(=‘ ol)t
dIn L(0)
80, "Jz' l)
- EI.'—nél=
b, =
M) o S S
& 25,+253~(r. 2)?=0
= n5;+8(z.-—2)’=0
263
2 E(:‘_z)l
0, £ -
2 _1E ~2)%
L(f) = ( 81T ) Sy
2r ==
_ il |
" 2:5{5-—1-:” ¢
Taking the ratio,

wo) _ () +<F (ze=2r)?
HY) (o) Tt | B=
Note that £z} = E(x; — 2)? + nz?

0] ¥ ( Z(z +2)° )=
L(f) Lz —2)? + n2?
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H
= (-—lr—) <
1+ 56,-9

= -——-—l < Ag"n

s 1+ ofiis ~

Converting, we have

nz? A
TR
nz? ' "
2———‘(3'_2)z2A~1=A y
Taking the square root,
\/-M A’"

\/2(31 - ) o
Multiply through by An — 1

PN M.
— C— = / (I
J).-_'.'.’.'_' —
n-1l
Divide through by \/n
z
= o~ e
s/yn e

135

Thus, the test €¢an be based on the t distribution with n — 1 degrees of

freedom.

Exercise: Let X;,...,X, be a random sample from N(u,5). Find the
likelihood ratio for testing the hypothesis. Hy : p = 72 against I, : u # 72

7.4 Sequential Probability Ratio Test

The two assumptions made on the previous methods of hypothesis test-

ing are:
(i') thas “xph of fixed size is taken

(ﬂ) choice IW to be made in favour of one or two possible outcomes
> N °
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However, in sequential sampling, samples are taken one at a time
a decision is made at any point in time. At each stage of the sampling
of three decisions is made:

(i) accept
(ii) reject
(iii) continue sampling.

Sequential analysis refers to techniques for testing hypothesis or
mating parameters when the sample size is not fixed in advance but
determined during the course of the experiment by ¢riteria which d
on the observations as they occur.

Consider testing a simple null hypothesis against a simple alter
hypothesis. That is, suppose a sample can be drawn from one of two di
butions and it is desired to test that the samplé came from one distributs
against the possibility that it came from the other. If X;,X3,... d
the random variables, we want to test

Hy: X; ~ fo(-) against Hy : X; ~ fi()
the simple likelihood-ratio-test was of the following form;
Reject Hy if A = %3 < k for some constant ~ > 0.
7
the sequential test employs the likelihood-ratio sequentially.
Define

LO(II""’IM)
Ll(l’l,"'..’tm)
Lo(m) _ I1%, fo(z:)
Ly(m) =TI, fi(2)

for m = 1,2,... and compute sequentially A;,Az,.... For fixed k; an
satisfying 0 < kg < k;, adopt the following procedure:
Take observation z, and compute Ay: if Ay < kg reject Hy,
If Ay > ky accept Hq: but if kg < A; < k, take observation z; and com
Ao 3
If Ay < ko reject Hp; if Az > ky accept Hp and if ko < A3 < k; take zy,
The idea is to continue sampling as long as ko < A; < k; and stop as
as Am < ko or A, > k) where you reject or accept H,.

An'S Am(zl-"'w’:m)

.
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The critical region is defined as

where
Co={(z1: - Zn)iko < Aj(Z1---7j) < k1,7 = 1,..,n—1, An(zq: - 2p) < ko}

i.e. a point in C, indicates that Hj is to be rejected for a sample of size n.
Similarly, the acceptance region is defined as

An = {(z1° zn)i ko < Aj(zy: 0 25) < ky3 ) =5 yn=1, Au(zy+-2p) 2 ki)

Definition: For fixed 0 < ky < ky, a test as described above is defined to
be a sequential probability ratio test,

Determining ko and k; so that the sequential probability ratio test will
have pre-assigned a and J for its respective sizes of Type I and Type II
errors,

a = P|reject Hs[H, is true|] = i/c Ly(n) (1)
n=1 »
and =
B =-Placcept HolH, is false] = Z/A Ly(n) (2)
n=] "

For fixed o and f3; (1) and (2) are two equations in the two unknowns ko
and k;. Solutions to equations (1) and (2) would give the SPRT having the
desired preassigned error sizes a and /.

Theorem I: Let k; and k; be defined so that the SPRT corresponding

to ko and k, has error sizes a and f; then k; and k; can be approximated
by kj and k| where

kaﬁl—:lg and k‘lwl—;?
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Proof:

a = Plreject Hy|Hj; is true|

= g/c.. Lo(n)
i/c koLa(n) Skoifo. L(n)

< koPlreject HolH, is true) _(‘.;
< ko[l - 8| I
and hence k; > et

1-8
. ky=a/l-f

IA

~ X

Also, \

Pf[uc’:ﬂﬂ”olﬂo is tme]
21, Laln)

.‘h ): / Li(n)

ky Pr[ucepl HolH,y is “‘0"
kS

ky a

—
|

]
]

"Va

\

N\

\
S
~»
”x

-

vV ViV

o

hence,.- 3
: \_‘ V4
That is &} H¢—§,—‘-g
Theorem)II: Let o and ' be the error sizes of the SPRT defined
% and k.
Then o' +8' < a+ 8.

Y oof: Let A' and C' denote the acceptance and critical regions of
5. AT deifned by k; and k). Then

o i/c;“"" s&}'lf/c: L) = 7251~ #)
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and

1-o=3 [ L 243 [ L) = =5
Combining the two results, we have:

o' <i——(l-—ﬁ')mdl—a >——(,8')

or al-f)<eal-F)andf(l-a')2(1-a)f
a'(1 - 8) <afl - F)and f'(1 - a) <B(1-4q)

o &(1-8)+801-a)<all-fF)+p01-4d)
o+ <a+ B

7.4.1 Approximate Expected Sample Size of SPRT
Select two numbers &, and &, and continue sampling as long as kg <

A, < ky and stop as soon as A, < kyorid,, > k. If

tog, Jo(xd

fn(z')
anquivﬂmtenisduuibdilfollow:‘:
Continue samping as long-as log, ko, <D 2, < log, k,and stop as soon as

H=1

3=z <llog ko
1
Myoumjad #,
ZZ. > log, k
1

when you accept H,.
Let N be the random variable denoting the sample size of the SPRT, and

let
R 10,9
Z IO& fl(xn)

Theorem: Wald’s equation: Let Z, Z3, <+, Zn++ be independent identi-
cally distributed random variables satisfying E[|Z;|] < co. Let N be an
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integer-valued random variable whose value n depends only on the values
of the first n  Z;’s.
Suppose E(N) < co. Then E[2; + «++ + 2,| = E(N) - E(Z,).

Proof.
d L alog, ko + (1 — a) log, k,
BN Huletrue]. = = e e

alog,lal(l - 8)] + (1 — @) log,/{1—a)|B]
E|Z,|H, is true]

and

(1 - B)log, ko + B log, 'k,
E|Z| Hy is false]
(1—5)log.|a/(1=B)| +Blog,[(1 ~ B8)/8]
E[Z.|H, is false|

E[N|H, is false] =~

Example 1: Let X have a Poisson distribution with mean . Find the
sequential probability ratio test for testing H, : 0 = 0, against H, : 6 = 0,.
n

Show that this test can be based upon the statistic Y z,. If 8, = 0.02,
. =1
6, = 0.07, a= 0.2 and § = 0.1, find k; and k,.

Solution:
e
L o= Het
on.e-M
- yx,!
225 s
¢ ¢ " z,
L(oo) - z,! = (&)Z c—n(‘u";)
L(6,) il il 0,
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0,

ln( )<Zz. (—)—n(&o 0;)<ln(1;a)
ln( )+n(ao-0,)<zz.ln(:)<ln( 3 )+n(00—0,)

In (,—;L’) + n(ﬁo = 01)

POER
kO < (00) -ﬂ('n—‘l) < kl

—
1L

In ('—E‘) + n(0, < 8,)

w@ T m
i.e.

In (152) + (8, - 6,) Sy In( 125) + n(do — ;)

In (%) ‘ In (%)

ln((gff) - 0.05n In (g—;) - 0.05n
<& .
In (3) X <— (o22)
In8 — 0,050 2 In 0.22 — 0.05n
-1.2§ ; -1.25

ko =.—1.66 + 0.04n

K, = 1.20 + 0.04n

Example 2: Consider testing the hypothesis Hy : u < po Vs Hy : p =
Wy > po, where u is the mean of a normal density with known variance ol.

Here the Jikelihood ratio

Ly _ exp|-z (2 — m)’]
Lo~ exp|—3m= Z(zi = o)’

= exp r—z—l;!Z(z. - m) =Y (zi - uo)'l]
exp | - L[2(uu — ) Yz + nfuf - ué)!]

n 8L
g “'OMLI-‘*‘(—”‘;‘GTEQ
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The critical reigon C will be determined by the inequality
- [:_u_a—’io T n(p] - uo)] S &

~ i5 non-negative constant.

Taxuy logarithms
My~ do € = y >
hotoy e > ink < 2048 — 8D &
Ak mix +
raie et ‘J%‘;%-,

O\
s
by <212 “—‘;“zag@<h‘l—?

1 a

Since yuy > g, then

5 n(uom) —é[x&kx'- u(m #3)

=
a? 8 ﬂ’) S [ -8 mlu - g]
m—uo[ml-a ’ ] Lac - o log
o* 4/ ) nlud +u3) o2 . 1-8  nlu +p)
- Iog‘l—w 1"—9——2 <z:,<“ i log = - 2

Suppose w¢ Have chosen a = 005, § = 0.10, and that we are testing u, = 10
against\uy = 10.5 with ¢ = 1, then

-4.50 + 10.25m < ¥_ 1, < 5.78 +10.25n

and the sequence test proceeds as follows:

(i) 3"z < —4.30 - 10.25n accept 4 = 10
(i) f Tz, > 5.78 ~ 10.25n accept u = 10.5
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(iii) If neither inequality is satisfied, take another observation.

Suppose 15 values of X; obtained in sampling are as follows:
10.91, 8.88, 10.35, 9.84, 10.42, 10.05, 9.94, 11.15, 9.92, 10.23
10.53, 8.61, 9.70, 8.83, 8.96

143

[ n 1 2 3 4 5 3 7 8 9 10
b | 5.75 | 16.00 | 26.25 | 36.50 | 46.75 | 57.00 | 67.25 | 77.50 | 87.77 | 98.00
[ £z | 10.91 [ 19.79 | 30.14 | 30.98 | 50.40 | 60.54 | 70.39 | 81.54 | 91.46 | 101.69
b, | 16.03 | 26.28 | 36.53 | 46.78 | 57.03 | 67.28 | 77.53 | B7.78 | 98,03 | 108.28 |

n 11 12 13 14 15

bo | 109.25 | 118.50 | 128.75 | 139.00 | 149.25

S x; | 112.22 | 120.83 | 130.53 | 139.36 | 148.32

5, | 118.53 | 128.78 | 139.03 | 149.28 | 159.53

The decision to accept u = 10 which is the correc decision occurred at the

15th sample.
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Chapter 8 :
Probability ms and Limit

Theorems

.x B TON
; E'._._a N
8. The Probability C*h - <=5
8.1 Space of Events and Class of
Events arising out of ax 2ot be predicted with

thas others, so that there
can be described by

5o e called probabilities) to events.
should satisfy some consistency

certainty; but certain evenis scour are
is a natural enquiry as to
attaching precise measures of
These quantities, to be useful &
conditions based on intuitive

The calculus of Sewnted 3o the comstruction and study of
such quantities. Their apgicaliity % peoblems of the real world, that is,
as examination of the réowince of Sypothetical probabilities in a contigent

situation or the estigfative of sppespriate probabilities and prediction of
events based om them comstimate the sabiect matter of statistical theory

and methods to which this part of the textbook is all about. As a first
step, we mﬁﬁ the st of o sutcomes of an experiment which are
distinguishable in scome semse. W s2all call them elementary events for
some practical reasons demandmg the definition of an event as a more
general statement governing &= slementary event.

Consider the heights of mdwfsals drawn from a population, the obser-
vations can theoretically sssemse ssstisnously values on the entire real line,
or if height is measured in intervals of 0 5cm, the elementary events will
be confined to a countable set of peints on the real line. Events of interest
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in such cases may be the occurence of individuals with heights in specified
intervals.

Let the set of all elementary events be S, also called the sample space
with elements or points A representing elementary events. If an event A,
is defined by a property # possessed by an element, it is natural to consider
the event where n does not hold. Some basic fundaments of calculus have
been discussed earlier. Our class C of sets on which probabilities are to
be defined should at least have the property that if A, and A; € C, then
Af, AU Ay and A; N A; € C. Such a class of subsets js ¢alled Boolean
field and is represented as ¥, we shall discuss more on this later in this part.

8.2 Probability Set Function

For each set A € 7 we have to assign a value P[A) (called probability
of A) or we define a set function P over thesmembers of 7. The proba-
bility function has to satisfy some intuitive requirements. First, its range
shoud be [0, 1], the value 0 for impossibility ‘and 1 for certainty. Second,
let Ay,...,A;y (A; € 7) be disjoint sets whose union is §, which means
that any elementary event that occtir has one and only one of K possible
descriptions A,,...,A;. The relative frequencies of the events Ay,..., A,
must then add up to unity whichrsuggests, the following requirements stated
in form of two fundamental axioms governing the set function P on the cho-
sen field 7;
First Axiom: P(A) >0, A€ 7
Second Axiom:

o«
JAi=8, AnAj=¢ Vi#j
{2l

This implies

f: P(A) =1
1

A set function P defined for all sets in ¥ and satisfying the first and
second axioms is called a probability measure. The consequencies of these
axioms are:

(i) o< P(A) <1, A7

N o0
(ii) P(é) = 01by observingau(| ) 4,) =S = [J A; and the second axiom

(10 | 1
halids Tor A fintte'Gecompodtion B
'
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(iii) P(S) =1 [since SUpUp =+ §]

(iv) P(UA.) L P(A;), for any countable union of disjoint sets in 7, whose
union also belong to 7. [(UA;) U (UA;)] = S = (UA;)U A U A, ]
then (P(UA;) + P[(UA,)‘]) = 1 = P[(UA))* + P(A;) + P(A;) + 1]

(v) Let A; be a non-increasing sequence of sets in ¥ s.t. hm Ai=NA €
7. Then hm P(A,) = P( hm A;). The compliments A,‘ form a non-
decreasmg sequence and

UAS = (NA;)S = AU (A3 — A) U (A ~A%) ..
using the consequence (iv) of the second axiomi, we see that
P{(nA;)] = PlA]]+ P(A3 - Aj) A
= P(Aj) + |P(AS)= P(A‘)l + .

= lim P(A{) ~as 1 — oo.

i.e. l—P(ﬂA)—Inm[l—P(A.)lat—ooo 2
or P(lunA‘) P(n4;) = lim P(A;) as 1 — co. This establishes the
non-increasing sequnce.

Similarly, if A,, i = 1,2,/ .\% a non-decreasing sequence of sets in
such that lim A, = UA} € 7, then

‘llrg P(A;) = P(UA) ='P(.llr2 A)
establishes the-non-decreasing sequence.
Example 8.1: Let A, € 7, 1= 1,2. .. be a countable number of disjoint
sets such that UA, = S. Then what is the behaviour of i P(A;)? From
. 1

the second intuitive requirement that Y~ P(A;) = 1, for any finite decom-
1
position of S it follows that > P(A;) < L.
1
o0
Example 8.2: What are the consequencies of Y P(4;) < 17 Let us con-
1

o0
sider the sequence of events By, = | JA;, the sets By, By,... form a de-

.
creasing sequence tending in the limit (we shall discuss this shortly) to the
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empty set ¢. We may then expect P(B;) to decrease to zero as k increases.
au

This does not happen if Z P(A;) < 1, it appears then that we need as a
1

o0 \
conveniest condition Y P(A;) for a finite or countable decomposition of S.
1

8.3 Borel Field and Its Extension to Probability Measure

A field which contains all countable unions and intersections of se-
quences is called a Borel field or a sigma field (o-field). Given a field 7
there exists a minimal Borel field containing 7 which we denote by B(7),
this we can show as follows:

There is at least one Borel field which contains 7. All arbitrary inter-
sections of Borel fields B are also Borel fields. Hence the intersection of all
Borel fields containing 7 is precisely the minimimal Borel field, 8(F) #.

A set function defined n 7 and satisfying the first and second axioms
can be uniquely extended to all sets in B(¥), that is, there exists a unique
function P* such that:

(i) o< P'(A) <1, A€ B(7)

(i) P*(UAn,) = ZP*(A,) for a countable sequence A, of disj¥nt sets in
B(7) and

(ili) P*(A) = P(A), L AEF.

We define a function P* as follows: &
Consider a set A'ifi 8(7) and a collection of sets 4, in F s.t. A |J 4,

then Lk
P:(A) = izrz P(A;)

It may then be of some advantage to consider the wider field B(7) as
our basic class of sets for defining the probability function, we are then in a
position to build up a calculus of probability based on the basic space S of
element A, a Borel field or o-field 8 of sets (events) in S and a probability
measure P on B. The triplet (S, 8, P) is called a probability space, while
we define S or (S, 8) as the sample space.

Let us consider the following Lemma to substantiate our discussion on
probability measure.
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Lemma 8.1: If P'(S) is a probability measure on 8, with P(S) = F(S).
if $ = (—o0,y), then P(s) = P'(s) ¥s £ 8,.

Proof: Let S = [a,bl; since (~o0,b) = (~o0,a) + [a,b)
F(b) = F(a) + P([a,b)) = F(a) + P'(la,}))
Hence P and P' agree on intervals of the form |a, b).

Let 7, be the class of finite unions of sets of the form |a,b) in [—n,n).
Then 7, is a field and a set § € 7, can always be expressed as union of
disjoint sets of the form S; = |a;,5;). Therefore ~ X

Ps) = X P(lab)) = 5P (lashi P (s)

so that P and P' agree on 7, and therefore qn,ﬁ(f). Now let s € By, then
Sn[-n,n) € B(7,) so PISn|-n,n)= P'|§51{-n,n|] and letting n — oo,
P(s) - P'(S) '\ #.

8.4 Limit Theorems

The distributions of many statistics of interest are too complicated to
derive in useful forms. In many.cases, however, limiting distributins can be
obtained; these may be used ‘ws’approximations to the exact distributions
when the number of observations N is large. In this section we study some
limits theorems of genéral applicability. A conventional method of obtain-
ing the limiting distzibution of a sequence of random variables is to find
the limiting distribution of an approximating sequence discuss as follows:

8.4.1 Convergence of Random Variable
A sequernicé of random variables {X,}, n = 1,2,... is said lo converge
to a randon variable X (applicable to constant c):

(a) Weakly or in Probability (written as X, 1, X) if for every given

€ >0,
Jim P(IX,-X|>¢=0 (8.1)
(b) Strongly or almost surely (written as ..'LTo X, = X with prob 1 or
Xo 25 X) if
P( Jim X, = X) =1 (8.2)
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or equivalently

lim P (sup [ Xn = X| > c) =0 (8.3)
nxN

y

N—=2
for every ¢.
(¢) In quadratic mean (written as X, ey ) if
lim E(X, - X)*=0 (8.4)
or in r-th mean it

JH&E(]X,\ - X[)=0, ¥ r>0

A sequence of random variables {X,(-)}yn = 1,2,... is said to con-
verge to a constant ¢ is sense of equatiori (8.1) through (8.4) according as
the sequence {X,(:) - t},n = 1,2,... converges to zero in the sense of (8.1)
through (8.4),

8.4.2 Relationship Among Various Types of Convergence

(A) Claim 1
Convergence in quadratic mean (when r = 2) implies convergence in
Probability.
Proof: ;
P(| X~ X| > §) < GE(|Xa - XF|

o e a
lim P{IX, - X|> €] < —E;,,h_rg(lxu -X[) =0

and by virtue of P(-) > 0, then L.H.S. takes zero only as its value, #

(B) Claim 2
Convergence almost surely implies convergence in probability.
Proof:
Recall that in almost surely

lim P[sup|. nw— X| >€] =
N 'l?,N
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Then
Xo-X|>€E=>sup|X,—X|> €
n>N
LA, X -{)SP(WPIX-“X|>€)
n2N
i PN = X5 E) < i P[sup!.\'. - X| > i]\=° #
4~ = nN 2
(c) ! 2 Xin ~urh & way that [E[Xo— X)? < ‘?ﬁ Xn 25X
Prool: Since L EILX ")' < 0o, the lnﬁn'“s Q.
> N
?(X.'-X')’ v/ (8.5)

nverge except for a set of e of measure zero in R™,
oo v 1 hat (1.5) divergeson a§~ measure P, let Ay be the set

S wuch shat
Sy > 2

rauence { An} i ccreu ng and hence b

<$q~ ) = £'JimAn) > P,
v dive Q_@rm o sntuaily exceeds any gl o0 vaive A Conse-
QQ/- E(X, - X)* = [Z(x } CAP

W @gnuadlcu the assumption,

Z(X‘ — X)* < oo for sufficiently large A
1

Hence P|E(X,— X)® converges| = 1, but if an infinite series converges
the n-th term tends to zero as n increases to infinity. Hence

P(|Xa - X]| = 0-as n— co) Zp[i(xn-x)’] conv: _es) =1
1
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This is almost surely, but incidentally we have proven that if x
n=1,2,... is a sequence of random variables then

E (i:j x,.) = i:js(x..)

A
provided ¥ E|Y,| < oo, which ensures the convergence of z X witl
J

probability one.

(D) Claim 4
The convergence in r-th mean implies convergénce in Prol '\,
Proof: Let ¢(:) be a positive function of X and select ¢

Fla(@) = [ a(@)dF(z) = [ sa)f(z)dz
> [‘ o IEVF(2) 2 f' L LCRY: /':m dF ()
= §Plg(z) > ¢

?—‘lf‘ﬁ > Pla(z) > 4]

Set g(r) = X, = XV, then
Pl - x> 8) < %Eux.. XI") =0

I{ there i« X\MVergence in r-th mean.

We shgitehdeave o study some useful 1) an limits of random

N
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The X, converges in probability to zero, that is,

s
Proof:
BE(X.) = 0
V(x) 2 By =Ltga=-G A
n L L S

For every £ > 0, by Chebychev's inequality we have

PMu>aseymn)

Jlim P(%| > §) < g lim V(%)
= ?l,-hmg —'.9 Y #
Theorem 8.2

If {R.} is a sequence of random variables which converges in Probability
to (i) S and (ii) 7', then 5 and T ére equivalent random variables.

Proof: Suppose we have

P : S{g)-1(9)| > ¢)
= P(8 +/|(5.(8) - T(8) - (Sa(0) - S(0))| > €)

Let K, K; and K¢ pespectively denote the set of points in % for which
|(Sa(8) — T'(6) — (Sa(0) — S(0))

=1§-T|> ¢ =K,
(S0 = 51> 51 = Ky and
1S Tpml_m

Searching through we see that K C KUK, implies P(K) C P(K,)+P(K,),
then

1 1 1 ’
P(lS-T|)>-ﬁsP(ls,,—Sl)>ﬁ+P(|S,,—T|)>-F [8.6)
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For n sufficiently large, equation (8.6) tends to zero.

Let Hy denote the set in R for which |S — T| > L is true for N
1,2,...,s0 that H, € H; C Hy... is also true. The set o( points in K™ for
which S is not equal to T is therefore given by

H = lim H, = UH,

and so
P(S #T) = P(UH;) < EP(H;)
But i \
P(H)=P(S-T| > ?) =0 (byR§)
Therefore, '
PS#T)=0 < #
Theorem 8.3

A function f : s — R is said to beAiniformly continuous if for every
€ > 0, there exist a é such that for exeryvT € S, P& S, f [T -P| < S
then |f(T) - f (P)I < €. Then glven AT, } sequence of random variables
such that T, = T, let g(T) be a conlinuous function of T on R, then

'(T..) £, o(T).

Proof:

g(T) is uniformly conﬁnuous on a closed interval (—a,al, for £ > 0,
choose a such that 5
. P|IT| > a] < ; (8.7)

for such a and-§ there exist a §(£, a) such that if:
(i) IT|Sa (i) |Tw — T| € &, then

(iii) |9(Tn) — 9(T)| < &.
Let K, K3 and K3 respectively denote the set of points in R™ for which
(i) = K, (ii) = K3 and (iii) = Kj holds then K3 O KN Ks. From K, € Ky
but K, N K; € Ky. Therefore
K;c K\ nK,
Ks ¢ K, u K (By De Morgan's Law)
P(Ks) C P(K,) + P(K:)
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From (iii), we have

P(lg(T,) —¢(T) > £ = P(|T - P(T,-T|<6)
But there exist S(§, £, a) such that for every S '+ ¢, a) sufficiently large,
then P(IT, — T| < §) tends to zero, that
P(IT,—T|<6)>€&/2 (8.8)
Using (8.7) and (8.8) we have
P(lo(Ts) - o(T)| > O < £+ 5 =¢ #

8.4.3 Convergence of a Sequence of Distribulion Functions
Introduction

We shall denote the sequence of distribution functions of the random
variables {T,}, n = 1,2,... by {F.}.2,. The sequence of random variables
{T,} is said to converge in distribution or.in law to a random variable T
with distribution function Fr; if F,, — F as'n — oo at all continuity parts
of F, such convergence is denoted as T, 2, T

The approximating distribution Fis called the limiting or asymptotic
distribution of T,. In statistical applications, limiting distribution plays an
uaportant role. The random variable T, stands for a statistic' computed
frore o sample of size n, whose actual distribution is difficult to find. In

I » case 1L may be approximated by the limiting distribution, at least

- o Meghall examine some results that are important in

' . : P
t QN ., be asequence s of variables. Then |T,—R,| — 0,
R, == IN\is imp [, == T, that is the limiting distribution of T, ex-
and u ame as that

“». == F be the distribution function of T,, and that of R, be Fg.
.y = Tn — Ry and t be a continuity point of Fg, then
{1} = P(TnS?,- :’1“‘:"\ B Rnst)=P(Rﬂ_<.y—Sn)

= P[Ry<t-5./5,> €+ P[R.<t—5./8x < —¢]

< P[Ry<t+ &+ PT,<-§

-~
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as n — o0, P(S, < £ — 0 since
B R0,
liminf Fr, (t) < limsup Fr, (t) < Fr(r + §),
also

PR, <t —5,;5q < €]+ P[Ry < t — S S €]
P[Rnst"sn;sn<€]-P[Rﬂ$t-€l

P[R, <t—§|— PR, <t — &S, 2 )¢

P|R, <t— €| - P[S, 2> ¢

asn—o0o0, P[S,2£)—0
. Fr (t) > Fg,(t - £), since R, £, R and collating these results we have

Fr (t)

AV AV AV |

Fg(t — €) < liminf Fr, (t) <limsup Fr,_(t) < Fr(t + £)

liminf Fr, (t) =litasup Fr,_(t) = Fg(t)

i.e.
FT —_— FR = Yn —_— R #

Theorem 8.5
Let {Ty,, R,}>2, be a'sequence of pairs of random variables, then.

(a) Ty = T, 8-+ 0 = TR, 0
Proof: Consider

P(|TaRn| > €)

Il

P(|TuRn| > &, |Ra| < §/K)
+P(|Tanl > 6' an > 5 K)
= limsup P(|T.R.| > &) = P(|T|>k)

for any fixed k and any § positive, we can choose k sufficiently laige
such that
P(IT| > K) <&, istrue

. Jim P(TaRa| > €) =0
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(b) T = 7, R, L9 0= T+ R, -2 T4 C

Proof: We have that T, =% T, R, -2~ C hence T, + ¢ = T+ C ,
now

(Tn+Rn)_’(Tn T (:} = Tq -C L‘O
and by Theorem (8.4)

T,.-f—R,,L-T‘C since 1, + R, £ 0

and 5
Ta+C ==Y +C ks

(¢) Tk R, -Bv0= TR, -2 CT

Proof: ToR, — CT, = To(Ra - C)B*'T, % T and R, -2 C,
then T, (R. = C) £50 = TLR.=CL. £+ 0, but CT, & CT.
Hence T, R, ~=~ CT #

Theorem 8.6

A sequence {F,}~  of distribution converges weakly to F iff F, — F
at every continuity point of( F.
Proof: .

A seequence £ is said to be dense in B if for every b € B, we can find
a subsequence in. A4 which converges to B. Also a sequence {F,}™, of

n=]

lunctions is said ‘to/converge weakly to a function F if F,, — F at every
t € C(F).

(i) The necessary condition is true because the continuity intervals of F
are dénse in the real line.

1) For the sufficiency condition, let D be a dense set, take 7" and T" ir
D,then T'< T <T" = F(T') < F(T) < F(T"), so

Fo(T') < liminf F,(T) < limsup F,(T) < F.(T")

!hr'n .
T'€ D,F, = F = F,(T') = F(T")
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and since T" € D,
F, — F = F,(T") - F(T")
letT"—= T and T" — T, then
Fu(T') = F(T), F.(T") - F(T)

Then
liminf F(T) — F(T), limsup F,(T) < F{T)

= F,(T) — F(T) which is weakly convergence, #

Theorem 8.7 (Helly's Sequential Extraction)

Every sequence of distribution is weakly compdct, that is, there is a
subsequence which tends to a function (not néeessarily a distribution func-
tion) at all continuity points of the latter,

Proof:

Let D = {r.} be the set of al fationals. Since F,(7.) is bounded,
there exists a convergent subsequénce. Consider the sequence F,, (t)} which
converges for the particular value of t = r;. From the sequence {F, ()} we
can extract another subsequence { F,, (1)} in a similar way, which converges
at t = ry, and of course sich'a sequence will converge at t = ry; and so on.

Let F,,, be the j-thmember of F,,(t) then the sequence
{F,} = {Fa,,sFassoyFn,, ...} necessarily converges for all t € D. Fp is
bounded and non~décreasing for all any 1.

Let F(y) = \ppér bound

Fp(r,), ri <t (8.9)

F is continuous from the left, bounded ard non-decreasing if t € C(f),
there exists a sequence of rational values {¢/,¢/'} such that t{ < ¢ < t and
F(t!) = F(t}) = 0 as i — oo.
Also
F,(t)) € F(t) < F()) (8.10)

For each s, where F,(t) is the sequence that converges to Fp.
Taking limits in (4.10) we obtain

Fp(t!) < liminf F,(t) < limsup F,(t) < Fp(t'}
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end is true for each 1. Then Fp(t]) - Fp(t;) — 0 so that the limit F,(t)
exists and is equal to F(t) defined in (8.9) #

Theorem 8.8 (Helly Bray)

A sequence { £, } is said to converge completely (c) to F, that is, F, 2y
r, il Fo(~oc) = F(—oc) and Fi(oc) = F(o0)

The theorem states that if F, 2y F, then A

/ gdF,, — / gdF for bounded continuous ‘\@C;l g.
Proof:

Take a; =nd a; with a; < a; as two contmu us mts and consider

R=/ng /gdl" [@dr)
= g(dF —-dF)+ @ dl-‘)+ 9(dF..-dF)
R < IS [ (e K%

where OQP,,

A\ = | 8(dF, — dF);
é%, /_.‘ g(dF, - dF);

(3‘ s = [ oldF, - aF)

Since g is ounded there exist C such that {gl < C

|

> bl = | adF; - ap)| < [T ot - dp)
[ @F, - aF) = ¢ {Fifa) + Fla) = f

For n > ny and a, sufficiently small, similarly |Js| < £/5 for n > ny and e,
sufficiently large. g is uniformly continuous in the interval (a,,a,), suppose
we divide the interval (a,,a;) into K parts, that is,

ay =l <h<...<lhxy=0ay
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with ¢; € 5(F); 1 = 1,..., K. Such that |g(t;) — g(t; + 1)| <  for t; < <
t,~1. uniformly for all 1.
Let us define g,.(t) = g(t;), t; <t < tis, then

'/;d'. am(t)dF, = "i:l /‘““ g(‘i)an(l)

r'l:-“l : tit+1 m=1
= o) [ " dFu= T gltd) [Faltipa) > Fa(t)
1=0) : =0

This tends to

mz:,l alt,) IF(lwl) = F(tt)] = fﬂl gm(t)dF

=0 By

as n — o0 we have

/ ou(t)(dF, <dF) < g

Now,
B o= [ g(dF-dF) =g - —dF+ [ ;
2 = [ ) = fs40 =~ 9m)dFy — dF + [ g (dF - aF)

= E'(gm —g)dE

E[ M L 3¢
12§ [ aR 1t [ < %
MRT < [h| + | Ja] + | s
3C
5 :

1

1
8 5 5
Problems 8.1
1(a) Define each of the following concepts:
(i) a o-algebra
(i1) a probability measure
(iii) a probability space

(iv) a random variable
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(b) Show that if A, = 8, then (] 4, € 8, where 3 is an algebra of sets.

1=1

2. Prove that the convergence of a sequence of random variables in
quadratic mean to a constant C in a way that TE(X, - C)? < o0
implies convergence almost surely to C.

3. If Q'(s) is a probability measure on 8; with Q(s) = F(aj for s =
(—o0,x), show that

Qls) =Q'(s) Yse 5

4. If {A,},, be asequence in {,show that if EE(A;.:) < oo then P(A) =
0, where A is the set of elements common to an infinity of these sets

in {.

5. Show that if ¥P(A,) = oo and the évents A, are independent, then
P(A) = 1.

Solutions 8.1

N
1(a) (i) A field which contains 6}}115 of all countable sequences of set (and-
therefore countable intersections) is called a Borel field or o-field.

(ii) A set function K defined for all sets in s and satisfyng the axioms:
(a) P(A) > A K
(b) D *}yaﬁ. A, 7 A, = ¢ forall j # j this implies ZP(A) =1
s Qaﬂed probability measure.

(ili) Suppose we define the space 1 of elements w, a Borel or o-field of
sets in {1, and a probability measure P on 8. The triplet (12, B, P) is
called a probability space.

(iv) A real valued point function X(-) defined on the space (2, 8,P) is
called a random variable of the set {w : X(w) < z} € B for every z
in K.
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oo
2. Since ) E(X, — C)? < o0, then the infinite sum
1

2 (X, -c) (1)

must converge except for a set of sequences of measure zero in B*.
Suppose that (i) diverges on a set of measure P. Let Ay be the set

N
in R* such that ) (X; - C)* = A,
1

The sequence {A,} is non-decreasing and hence'hy the consequence
of the axioms of probability, that is,

P(lim A,) = .lir:lo PAL),

we have
limP(A,) »P(limAy) 2 P

Consequently,

'i‘vjl«:(xi =€) = |3 (X - €)Y > AP

which contradicts the assumption, )~ E(X; — C)* < oo, if ) is chosen
I

sufficientlydarge.

o9
Hence, 2()(" —C)*? converges) = 1, but if an infinite series converges

1
the n-th term — 0 as — oc. Hence

P(|X,—C =0 as n— ) 2 P(Y_(X, - C)* converges) = 1
1

3. see Lemma 4.1

4. A is the set defined as



|
|
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o0
it follows that A € |J A,, for each r and

P(4) < P (D A..) <3 P(a) <

for r — oo since LP(A,) converges, that P(A) =0

5. A° is defined as

4 = YN
. S Mie- PN

using independence of events, sirice TP(A,) = oo, the infinite product
diverges to zero for each r., Hence P(A) = 1.



Chapter 9

Law of Large Numbers

9.0 Introduction to Large Number Concepts

In practical terms, estimates are usually made of anGnknown parameter
by considering the average of the number of replicated observations of the
quantity, each of which may be in error. The properties of the estimate is
of interest, as an initial step, we observe its behaviours as the number of
repeated observations increases and the nature of its convergence.

Let {Y,}>, be a sequence of observations and Y, the average of the
first n observations. Then we ask the ‘question on what conditions can any
of these convergence forms exist:

Yo — € (9.1)

and also
Y- 6 —0 (9.2)

where {£,} is a seqience of constants measured by the sequence of obser-
vations {Y,}oo '

We say that the large law of numbers holds if the convergence is either in
.. form of (9.1) or (9.2). When the convergence is in probability, we say that
the weak law of large numbers (WLLN) holds, and when the convergence
is almost surely, we say the strong law of large numbers (SLLN) holds. In
the next subsections we shall consider some important theorems on both

weak law and strong law of large numbers.
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9.1 Weak Law of Large Numbers
Let us study some situations when the weak law of large number hold
by Theorems and Lemmas:

Theorem 9.1 (Chebychev's Theorem)
Lev E)Y,) = u,, Var(Y,) = o} and Cov(Y,Y;) = 0; i # j. The
lim — Za =0= ¥, - a. %0 ??"
Proof: Q“

Define j,, = — Zp, and by Chebychev’s inequality. we have

P(|% = al > €) < %@)

%—(Za’)

lim P(|P, ~ p,.|>Q> lim f,n,,z:a

n=-00

this implies that ¥, - 4, P
Theorem 9.2 (Khint e’s Theorem)

Let {Y;}, i = 1,2, independent and identically distributed (r.1.d)
and E(Y)) exists, t Q-

AQ/ E(Y)=u<o=¥ 2y
Proof %

Defineé & pair of new raadom variables for 1 = 1,2,...,n and fror fixed

#, we have
w,=Y,.V.=0,if Y, <bn

w =0, V=% i{Y.]>0n
sothat Y, =W, +V,, Let E(W,) = p, for1 = 1,...,n since (Y;) = u then

fig — < £ {9.3)
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For any given £, if n is chosen sufficiently large. Now
S ha T g n
Viw) = [ y'dF(y) - wk < [ [vldF(y) < bon
where b = E(|Y|) exists. Using theorem (2.1), we have
B bo
P (;Ew.' - Ha| 2 f) S @

or by equation (2.3), we have

l P\
P(jaxw -

or) 8

” 1 0
PVi#0)=[  aF@) <z i) < -

by chosen n sufficiently large, we have

since

A n
P(ZV.— f-n) SYPVi£0) <0
) 1
Let us consider

¢ - ' ' - l r - 1
PUSEY a2t Yw -+ L5 v 24
|
/ ‘)_'w. - | 2 2& + Pll—vi"_".'_f
"

wi ) ol
+ PisumV; # €] < =il

=0, by correct choics of 9,

Yo & 7 #
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Theorem 9.3 (Hajeck Renyi Ineguality)

Let {Y,};2, be independent random variables such that E(Y,) = 0,
V(Yn) = 0} < co. If ¢;,¢s,... be 2 non-increasing sequence of positive
constant, then for any positive integers m and n such that m < n, and any
arbitrary £ > 0, we have

P mTkaanle1+Yz+"'*Yal>€] [C” ZU’+ZC~0,]

m+1

Proof
Set A

n-1
Y =Y (C} - CLy)8) v+

k=m

k
where S, = Z Y;. Then

1=1

2
|

E(YY) = Y (¢}~ ¢l )E(s]) +&F(s)
k=m
n-1 } z 2 L\ k
- ll";-C,',,)ld,’}+C§Zo,’
k=m
m n-1
= A3 M c;,,,[z;o -za] - [Zo,’-— Zo,’]
1 1
m /)
= O3/ S Clot (9.4)
A\ m+l
Let ;1 =atym + 1,-+-.n be the event Cy|S,| < € for m: < ;) « 1 and
Pl sz ] =L Pt :
and because ¢; are mutually exclusive. Let ¢; denote the event ', 5.~ £

m < J < n in this sense we shall have from (2.4)

E(Y) = 2": E(Y &) Ple,) if F(Y|e)P(&) >0 (9.6

1=m



-
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We shall consider the case when k > 1 and j > 1 as follows:
Case A
Consider k > 1, we have

E(Skle) = E[{Si+ Y+ + Ye)? 4 28i(Yisr + o+ + Vi) Hei]
> E(S?/&) + 2E[Si(Yisr + -+ Vi) /&)

Case B

Consider j > i, we have E(S,Y;/¢;) = 0, then E(S/¢) > E£57/4,), given
¢ (event C;|S;x| 2 £) then

15| = §ICs

. E(S}&) > €C?

Now,

n-1 "
E(Y/«) = Y E(Si/«)(Ci-Ch )8 GnE(SH/

'E E(S{|e)(C} - Cha) + CRE(Si1¢)

2
k=1
> E[(C’ Cin) + Gl
| k=1
> —(C.-'-C."..x'*C."n +Clsa7Clks +-+-+ O+ Cy)
E!
> C’ Cf ~ (4.7

By using (9:6).in (9.7) gives
n
E(Y) 2 €Y Pl

and by (9.5), we hux

N Ple Pl max G S,
= \msesn
lewv)=2 23S o+ 3 Clo?
x c2 = 23 "\‘.dol VAT o
hd ! mel
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9.2 Strong Law of Large Numbers

When convergence is almost surely we say we have a strong law of
Large nunbers being satisfied. Let us consider the following Theorems and
[emma to study the strong law of large numbers.

Theorem 9.4 (Kolmogorov 1)
o0 (¥, bit = 1,2,... be a sequence of independent random variables
such that E{y,) = u,, and Var(Y;) = a"’ Then -
o0

Zo:/C’<oo=>? -, 22

1=1

[hat s, the seqaence Y, Ys, . .. obeys the strong law of large numbers.

Proo.
l.et us consider the random variables X;= Y; — u, and apply the Hajek-
Rexii’s inequality, we have

P max CiXy+ -+ Xz 5} -‘; (c’ Y ai+ Z
Choosing C, = 1/1, we have
f 11 - 2
""lax‘.?l>€}$-—,(—z +Z°’./t)
‘ m 1 m+l
By letting n ~ o, we see that
l m o0
P{max|X|>E}<—— —,2 + Y d}/d
1 m+1

\since 2o/t converges) it follows that

lim P{maxlX;>€}=

m—oo

[t implies

P{Ji_rgax= }=| #
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Theorem 9.5 (Kolmogorov II)
Let yy,¥s,- .. be a sequence of independent, identically distributed vari-

ables. Then a necessary and sufficient condition that ¥, 35 uisthat E(Y,
exists and is equal to u.

Proof

(A)

(B)

Necessary Condition
Let E, be the event that |Y,| > n. Then

Z2 =Y. - _(n-ll(y =1 3895 (9.8)

since ¥, =5 4. The result (2.8) implies that the probability of in-
finitely many events ¢, occurring is zero. Also'the independence of ¥,
implies the independence of ¢,, and by the following lemma credited
to Borel Cantelli:

If {A,} is a sequence in ¥, then

(a) Y P(A.)" <00 = P(A10)=0
(b) 3 P(A,) = co and A; are independent then = F(A,1.0)
By this lemma we see that

Y P(Ya 2 n) = {j‘ Pla) <o
Let P; = P([¥|Z j), then
E(YIN'ES |(1=P) +2(P, = Py) + -+
= 1+P+P+=1+3 Plen) (9.1

From (9.9), the last expression in (2.10) is less than co. Hence £
exists and from the sufficiency condition it follows that F(}) = &

Sufficiency Condition
Consider the sequence of truncated variables

Yo for [YVal<n
Y, =
0 for [Yo]|2n
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We then obtain

n—-1

V(Y:) < E(Y) = j vidF(y) < E(k +1)°Pk < [Y] < k+1)

and
® Y . o n-l l)
Yy —2 < ZE ———P(k < |Y| < k+1)
n=1 n n=lk-0
< S P(k-1<Y| <.K)E? 2-17
k=1 n=k
o0
< 2 KP(k-1<|Y]<K)
k=1

< 201+ E(|Y|)] &0

By Kolmogorov theorem 1, the sequence Y,’ obeys the law of large
numbers, that is,

zl—-

L NVEr) 240
1

Now as n — oo, E(¥,) E(Y,) = u, hence %ZE(Y,') — p as
n—od ¥ as Z

Also, we have to establish that ¥} and Y, are equivalent sequences,
that is,

P(Y,#Y,;n>2N) =0 as N — co;
whiclcimplies that Y, obeys the S.L.L.N. If ¥,; does and that the
lirnits are the same.

Consider

P(ta#Yan2N) < Y PYa#Y;)= zp(uf|>n)

n2N

Z (n = N+1)P(n 2 |Y,| < (n+1))
n=N

< S nP(n<N<(n+1)),

n=N

v
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since all Y,, have the same distribution function.

. P(Ya#Y:,n>N)< /mzN Y |dF(Y) — 0

as N — oo. #
Problems 9.2
1. Let {X,}>, be a sequence of observations and for which E(Y,) = x..

Var(Y:) = of and Cov(Y,,y;) = 0ij,i # j. Define ¥, = iz Y, and
Bp = ;ll-zu;. Show that
1

m—,Za

=]
implies that Y, converges to f,.

2. Does the strong law of large numbers hold for the following sequence:

() P(Ya=227) =3

(i) P(Ya=n) = ;v P(Ya=0) = 1- ;/ln_]
(iii) P(Ya=F2") = ”P"“ PY,=0)=1- %

3. Show that if {¥,}>" | is a sequence of independent random variables
with E(Y;)'= u, V(Y:) = 0231 =1,2,... then

Y al/i < oo,

it implies that the sequence of random variables obeys the strong law
of large numbers.

4. If Y, has the binomial distribution with parameters k and p, does the
sequence Y}, Y3, Ys, ... obey the strong law of large numbers?

5. Compare the assumptions and results of Khinchine's theorem (WLLN)
and Kolmogorov II theorem (SLLN).
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Solution 9.2

1. Suppose we have
Prob(|¥, — | > &) < ng = i -0
1

#s n — oo, Hence
Jim Prob{(|¥, — &.| > £)} =0
and so ¥, = fi,..

2(1) E(Ya) =0, V(¥,) = é(z’-) + g(z*') =g
Now,
oo o0
Z V(Y,) = E 2% = oo
n=1 n=l
Hence, Y,, does not obey the S.L.L.N.
1 n?
;ﬁ(ﬂ’) & f(ﬂ') oy
> Var(Y,) = 2 n*? = oo
n=l n=]1
Y, does not obey the S.L.L.N.
In n
i) E(V,) =0,%or(Vs) = oo + 13_ =
which is bounded, since t?\” vmmces are uniformly bounded,

5 KE—(—Y—)- < oo and hence Y,, — E(Ym) = 0. Hence the sequence
) ¢ obc‘s the S.L.L.N.

(ii) E(Ys) =0, V(Ya) =
Also

Let {¥.},”, be a sequence of independent random variables, such
hat E(Y,) =0, Var(Y,) = 02 < 00. If C,,C;,... is a non-increasing
sequence of positive constant, then for any positive intefgers m and
., with n < n and arbitrary £ > 0 we have

{max c,,} n|>e] <k [c*;;a +zc=o,] @

--l =1 m+1

F
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Set Y, = X, — u, in (i), we have
ZY] = z Cm 2"&"’20:0&
€ i=1 m+1
Select C; = 1/t as a sequence of non-increasing constants, therefore

Plmx [7]> ¢ < 5 [—,Za +3 '/m] (i)

<
mEisn m+l

P [ma.x Cs
m<i<n

If m is as large as possible Y _ ¢ /mi* — 0, and so for sufficiently large
m the expression on the r.h.s. of (ii) tends to zero. Thus makes the
probability on the L.H.S. to converge in almost surely to zero.

4. Let {Y,} be the sequence of L.I.D. binomial random variables, a suf-

ficient condition that ¥ 25 4 is that E(Y;) exist and is equal to
p = KP. Now assume E(Y,) < oo and E(Y;) = KP, set

W = YN ifIYgl <K
=0, otherwise
But

Var(¥;) < EIGY] = [ vaF
S 2/ ’dF+Z/:+ly’dF

z(n +1)*P(n<|¥Y|<n+1)

IA

ZV—-——-—(Y‘.) iil(""'l) B Pr<|¥|<n+1

&:I n=0

= 2{(!; +1)’P(n < |¥| <n+1) Z k’

k=n+1

= Zn’P(n—l< |Y|<n)2’cz

k=n
ZZnP(n -1<|¥|<n)
2(1 + E(IY]))

IA

IA

IA
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Thatis y_ V(Y,))/K* < co hence the sequence obeys the S.L.L.N.

5. Both assume i.i.d. random variables and existence of the mean. The
result in Khinchine's theorem is that the assumptions are necessary
for ¥, <= u but not the reverse. That is, consequence in probability
does not necessarily imply finite expectation. However, the result in
Kolmogorov Il theorem is that the assumptions are necessary and

sufficient for ¥, =5 u.



Chapter 10

Generating Functions and
Inversion Theorem
|

10.1 Introduction

The first moment about an arbitrary point « by the Stieltjes integral is
defined as

wo= [ (y=w)aF (10.1)

and the second moment
' i 2
Ha = /_ _(y—a)'dF (10.2)

The generalization of these equations defined by a series of coefficients
phik =1,2,... by the relation

pi = f:(y - a)*dF (10.3)

W}, is called the moment of order k about the point . When a is the mean
1y, we write the moment without the prime as

= [ (- w)*dF (10.4)

called the central moment or moment about the mean. In the specific,
when u; = 0, we may define a moment of order zero as

R
-~ o0

175
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Because of some theoretical reasons, ) exists only when
w=E(Y —af) = [V - af'dF

exists, this is true when the integral defining g} is of Lebesque-Stieltjes
ty pe,

T.e relationships between the central moments and moment about an
arbitrary origin may be verified as follows:

If @ and @ are two variate-values, let #§ — a = r and denote the moments
about a and @ by u'(a) and p'(8) respectively. Then we have, by binomial
theorem

(y—a) = (y-0+0-a)
= (y-0+1)*
= [k g
= ?_-%(1 )(y—ﬂ)" T
Hence
u(8) = (y — a)*dF

( )r’ [ (y— 0)t~IridF
= Z( : )“,_,(a)r’

§=0
=) W) + ¥ (10.5)

This equation is of particular importance if one of the values o and @ is
the mean of the distribution. In this case we shall have

/
/ gj:u( )y 8)~iridF

My = ?:j{, ( f ) ur- gl (10.6)
k
k ! "
Hi = ?:3 ( j ) “k-j(-“l)" (10.7)
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In particular,

3= da +uy (10.8)
wy = ps + 3ppg + u (10.9)
Wy = phy + Ay + 6uy g + uy! (3.10)

Let us discuss a few results concerning the mean and variance of a given
distribution in terms of moments;

Result (A): The second moment p3(a) is 2 min when takes about the
mean . That is,

E(Y-a)) = E(Y-p+pu—a)
E(Y - u)* + (u—a)’ +2(i — a)E(Y — p)

. E(Y —u)?+ (p—a)* > E(Y - a)’.

Result (B): The Chebychev’s inequality discussed in Chapter two is an
important inequality as it is independent of the exact nature of the distri-
bution of the variable, say, Y. By definition, let

Y &7

g /R(Y p)'dF
} 3 2L

[ - uyar+ [° “(¥ - p)tdF
-0 p-Eo

[T (v - urdrF

u+fo

By dropping the middle term and replacing (¥ — #)? by the smallest value
in the first and third terms, we have

£ o0
o’ [" "dF + e’a’[ dF
-0

u+o

al

1V

Ea*pllY - u| > o]

\¥

Result (C): Suppose Y and Y3 are two randorn variables with means p,, u;
variables ¢?,03 and distribution functions Fy, F;, then

Fily+py Fi(-y+m) > Fly+u) — F(-y + p) (10.11)
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Because of some theoretical reasons, u} exists only when
m=E(Y ~al*) = [ |Y - al*dF

exists, this is true when the integral defining u} is of Lebesque-Stieltjes
Ly pe.

T.e relationships between the central moments and moment about an
arbitrary origin may be verified as follows:

If & and @ are two variate-values, let # — a = r and denote the moments
about a and ¢ by u'(a) and u'(0) respectively. Then we have, by binomial
theorem

(y-a)f = (y-0+0-a)

= (y-0+1)"
Hence
() = [ (v-a)dr

[L3(5 )uwarsmar

2( ) F(y 8)*-iridF

k
()
= {u'(0) + 7} (10.5)

This equation is of particular importance if one of the values a and @ is
the mean of the distribution. In this case we shall have

- E ( ) pr- i) (10.6)

= f: (%) sty (10.7

j=0
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In particular,

Wy = g + i (10.8)
wy = ps + B + ¥ (10.9)
wy = pg+ 4 ps + 6y + Y (3.10)

Let us discuss a few results concerning the mean and variance of a given
distribution in terms of moments;

Result (A): The second moment u}(a) is a min when takes about the
mean u. That is,

E(Y-a)® = E(Y —p+p~—a)
E(Y = u)* + (u = @)* +-2(u — a) E(Y — p)

E(Y —p)* + (p— ) > E(Y - o)’

Result (B): The Chebychev’s inequality discussed in Chapter two is an
important inequality as it is independent of the exact nature of the distri-
bution of the variable, say, Y. By definition, let

o /R (Y = u)*dF
/_:ea(}’ — u)'dF + /::o(y — u)*dF

o0
_ A2
+/..+¢,(Y u)*dF

I

By dropping the middle term and replacing (Y - u)? by the smallest value
in the first and third terms, we have

p-fe o
ot > ot / dF + g%* / dF
- 00 utlo
z £d%llY -yl > €al
Result (C): Suppose Y} and Y; are two random variables with means jy, u,
variables af,a;f and distribution functions F, Fy, then

Fify+uy Fi(-v+m) > By +u) - B(-y+u) (10.11)
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for each y impli=s that of < of. To prove this, let G, and G; be the

distribution functions of |y; — x| and |y; — us| respectively. Then integrating
by parts, we have

ol-o} = lim /o " (G, — Gy)
= Jim T*[G\(T) — Ga(T))

y T
-211151;/0 v(G, - Gy)dy
= o-z/"° (Gy — G3)dy <0
= A LARES] 2)aYy =

The condition in (10.11) implies that G, > G;, the converse proposition is
not true, however, if ¢ <,o3, then it implies that for at least one value of
y the inequality (3.11) is true but not necessarily true for all values of y.

10.2 Moment Generating Functions (M.G.F)

The results (A) and (C) in subsection 3.1 show that for some cases
we can derive from the distribution function a function M (t) which, when
expanded in powers of t, will yield the moments of the distribution as the
coefficients of those powers. This function is accordingly be referred to as

a moment-generating function (m.g.f).
The m.g.f of the distribution of a random variable Y is formally defined

OEE) = [ dF(y) = T e f(u)

as

o0
But for many frequency functions the integral / ¢dF or the sum
-0

{z ei f (y;)} does not exist for some or all real values of . When 6(t)
exists, this expectation depends on the choice of ¢, and so defines a function
of t.

Depending on the distribution; ¢(t) # 1 at ¢ = 0 and for other values
of t, ¢(t) may and may not exists. To generate moments, suppose the
exponential function in the integrand of &(t) is replaced by its power series
expansion, then

$(t) = ./mi(t”)*um' 2 dEw)

7oAl
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= f: E(Y*)t*/k! (10.12)

under commutation functions, the k-th moment of a distribution is simply
be coefficiencies of t*/k! in the power series expansion of the m.g.f. The
coefficient t*/k! is the Maclaurin power series expansion, that is, the k — th
derivative at 0 is
E(xk) o ¢(*)(o)'

it is equivalent to

dh

dt*
gives the required coefficients.

E(e") = E(Y*e™)
t=0

Example 10.1

Let us consider a simple random variable ¥ having just two possible
values, 1 with probability P and 0 with probability 1 — P. The moment
generating function is

¢(t) = E(c¢")seP+e-(1-P)
= Pe'4(1-P)
e

= P(l+ﬁ+ﬁ+...)+(l_P)

1+ P(t/11) + P(3//2") + - --

Clearly the coefficients of t*/k! are equal to p (for £ = 1,2,...) and so
E(Y*) = P, exceptfcr k = 0.

The moment generating function of two independent random variables
whose teriiis (Y + Z), is a particular shiuple combination of the moment
yenerating functions of the summands, namely, their product:

¢Y+z(t) E(et(Y+Zl) = E(e"'._-'z)
= E()E('%) = 4v(t)o2(t)

The finite induction extends this result to the sum of any finite number
of independent random variables Y;,Y3,+,,,,,8.Y,, thus

L0

".f*"“" e Ilg: ':“1
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If the summands have identical distributions, with common m.g.f. #y(t),
then

$rv,(t) = [ox ()]

In conclusion, if one obtaines the moment generating function of a dis-
tribution indirectly, he can then calculate the moments of that distribution;
but one puzzle is on the precise density function or probability function of
the distribution. There is a uniqueness theorem (treated later-in this chap-
ter) for moment generating functions, which says that there canonly be one.
distribution leading to a given m.g.f (under certain conditions). Thus, if
themoment generating function of a random variable Y is‘'obtained directly-
but is recognised as themoment generating function of a known distribution,
then that distribution is the distribution of Y.

10.3 The Factorial Moment Generating Function (fmgf)
Another function that is closely associated to m.g.f. is a function that
generates factorial moments. This function is well defined as follows:

py(t) = E(t") = Ble"*¥] = ¢y (logt)

Because log1 = 0, it is the point at ¢ = 1 which might interest us and this
produces the factorial moments from the derivatives. On a formal note we
have

wit) = ('] _ = E(Y) (10.13)

also

Wily= E(v (v -1 )|, = E(Y (Y - 1))
pd =ElY(Y -1)(Y -2)---(Y-K+1)] (10.14)

Equation (10.14) is called the k — th factorial moment.
For a discrete random sequence Y, the FMGF is called probability gen-
erating function

ur(t) = E@) = 3. P(Y = K) (10.15)

Because of the awkwardness in writing out k factors starting with n, we
may write the factorial expression as

y(y — h)(y — 2h)--- {y(k — 1)k}



Generating Functions and Inversion Theorem 181

which is conveniently written as y{"}, a notation which brings out an anal-
ogy with the power y*. Taking first differences w.r.t. y and with unit A,
we have

AgH = (y+m)® -y
= (y+hyly-h){y—(k—2)h} —y(y—h)---{y — (k= 1)k}
ky(k-l)h = ayk/dz
conversely,

(k+1)
}:y( )= G TR0 )
and corresponding to

/yylu-l

Thus the k — th factorial moment about an arbitrary origin may then be
defined by the equation

Wy = 3 Wi Q™ f(y) (10.16)

jHcgo

In statistical theory the f.m.g. functions are not very prominent, but
they provide very concise formulae for the moments of certain discontinuous
distributions of the binomial type. When it is necessary to distinguish
between factorial moménts about the mean and those about an arbitrary
point we may write the former without the prime.

Factorial momients obey the laws of binomial transformation governing
ordinary moments, The expressions are:

k k y
(a + b)¥ = ( , ) alt-1pll
0,
nd so

(y-a)* = (y-b+e)", wherec=b—a

i: ( :‘ ) (y - b)* 71l

=0



(. caerating Functions and Inversion Theorem 182

and hence

k k ;
sialal = 3 (%) bheglre

=9 J

{w'(6) +c}'™ (10.17)

il

Example 10.2
Let Y}, Y3,---,Y, be independent sequence of random variables, each
with the distribution P(Y = 1) = p, P(¥ =0) = ¢ = | - pdthe m.sf. of
this dictribution is
dy(t) = E(e") = 'P + &%

and so the moment generating function of the sum i
oy, (t) = oy (t)]" = (Petg)"

The factorial moment generating function is\then

niy = ollogt)=\(pe's* + g)"
= (pt+ "
also
w3 nln - 1)(pt + )" *p°
whence .

B(ZAY — 1)) = u'(1) = n(n - 15"

10.4 Cumulant Generating Function (c.g.f.)

The moment functions are a set of descriptive constants of a distribution
which are useful for measuring its properties and in certain circumstances,
for specifying-it. They are not the ony set of constants for this purpose,
cumulants have properties which are more useful from the theoretical view-
point.

By definition, the cumulants K, K3, ---, K, are defined by the identity
int

K,t? kit uht? ut”
exp{K;t+—2—!—+---+—r!—+---}=1+p',t+—;!—-+---+—r!—+-“

=305 =40 (10.18)
r=0 2
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Log ¢(t) may then be called a cumulant-generating function and denot !
by c.g.f.

Example 10.3
Consider the discrete Poisson distribution whose frequencies at 0,1,....y

7o A A
oA
(1, l" ey F')
The moment generating Ifunction if exists, is given by
A’

§=0 J'
e exp(Ae)
exp{A(e’ = 1)}
Since the variate is non-negat for any r the absolute moment is the same
as Lthe oridnary momen* « have

T e B

1=0 J

o(t)

and since this converges commulants of all orders exist. Then

I

Ae' —1)
Ait’/j!
1=1

and hence k,'= A for all r. Thus the cumulants of this distribution are
equal to A,

lngdlt)

10.5 Characteristic Functions (c.f.)
The characteristic function of a random variable has many useful and

important properties which gives it a central role in statistical theory, we
shall give an account of some in this subsection.

Formally, the characteristic function ®(t) defined on t of a random var
able Y whose distribution function is F is defined as

Oy (t) = E(e"Y) = /R e MdF(y)
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®(t) always exists, since
1®(t)| = V: edF| < /‘: le| dF = /: dF -1

so that the defining integral converges absolutely. Also ®(t), is uniformly
continuous int and differentiable k& times under the integral of the resulting
expressions exist and are uniformly converges for which it is sufficient that
V, exists. Then

@) = |[7 ytear]

/_:|y‘|dr=u

IA

Example 10.4
Consider the distribution defined by the-density e ¥ for y > 0, the
characteristic function of the distribution i3

oo\/" 1
8(t) = B(e) = e rvdy = —
-0 11—t
The characteristic function génertes moments in such a way as the mo-
ment generating function, except that each differentiation introduces factor
of 1:
E(Y*) = "*¢"(0)

This is possible only-if’ the k — th moment of the distribution exists. If
moments up to a eértain order, say r, exists, then it is possible to express
®(t) as a Maclawrin series. Although the c.f. does generate moments, its
principal use.js-as a too. in deriving distributions, as such it is necessary to
know several facts about characteristic functions by theorems that estab-
lishits facts.

Theorem 10.1

Let ®(t) be the characteristic function of a random variable Y,, whose
distribution function is F,,. Suppose ®(t) is the characteristic function of a
random variable ¥ whose distribution function is F, Then

Yo ==Y iff ®,(t) — $(2).

To prove, we shall consider both the necessary and sufficient conditions.
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Proof

(A) Necessary
Assume Y, - L, ¥. then

/f"‘dF.. - / ¢'"YdF by Helly Bray's theorem.

(B) Sufficiency
Assume ®_(t) —« ®(1). (L5 implies that

"4

[ evdr, ~-o/c“"dF

choose a =i bseg o1, ‘o p which tends to @non-decreasing bounded
function &
" £VYF
B

Taking the damn

Pultp=Solt) = | edF (10.19)
from this we Lave

D) = G(oo) - G(-00) =1,
because ®(0 coan that G is necessarily a distribution
and G = £.\SYoce the detohution function satisfies equation (10.19),
it is unique. All subsequencor necessarily lead to the same distribution
fungtiq;‘)»»for SOME TEA%ONS £

Theorem 10.2

If in theorem (10.1), it is only supposed that ®,(t) — ®(t) for all t, the
limit function is a characteristic function provided only that it is continuous
at t = 0 or if the limit i« uniform in as interval containing zero.
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Proof
Choose a subsequence F,, tending to a non-decreasing bounded function

and consider
fov Sp(t)dt = /Ov (/:: e"’dF..) dt

/_“ (4;‘. /v e"') dt

BBy
/-m o—dFa

Taking limit as m tends to infinity

/o " s(t)dt = / ‘":.y’ Lic

vV &(t)d W=
/' (.)t__/e ldG‘
0 v twy

v wy _
lim/0 ¥&=lim/e, 1dG

V=0 V=0 1wy

o @(o)=/dc

[hen
Jim ®(t) = &(0)

(0) = G(oo) - G(~00) = 1
and by theorem 10.1, ®,,(t) — ®(t), the characteristic function of G. #

' 6 The Inversion Theorem
it orem 10.3
We now state and prove the fundamental theorem of the theory of char-
»ristic functions called Inversion theorem or Uniqueness theorem: The
«cteristic function uniquely determines the distribution function more
siy if

a(t) = / : evdF,
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then

1 [ [1—et
Fly) - F(0) = 5 /_w ( '.t’ )«p(n.u
Proof: Let

e dyy c“"'

: S} | TR ol Bl 2
P - F(n) = ot [ (5 e
Set Y, = Zand Y2 =Y and let z — 0 then
1 e e-ll(O) ty
F(Y)-F(0) = —ll_!.?’rl_l‘lg ( s —) &(t)dt

The last results hold at the continuity point of F<afd the lir
evaluated with respect to any set of points in continbity point o

Theorem 10.4

Let Y be a random variable having characteristic fun: o @

distribution function F(-). If Y] and Ygare/points in ¢(F) 1 .

3 — giti)
F(Y,) - F(Ys) = —n-cl_l_xg (T’) b1
Proof: Set . » -
o (Bl s
Jo= g2 ("—u_—) o(t)dt
Then

1 ¢ =ity  oityz =0 !
Jg =5 -2;-/:‘ [(e——“ g )/_w e“'dF(y)] ot
1 e [ poo [ettlv=vi) — pttly-v2)
LI e

The ‘integral w.r.t. F or y converges absolutely and
is within finite limit (~¢,¢) and so we may need to chung
integration to obtain

J, = E‘;/: [/ (‘."_""_;_"'"_’)dz] dF(y)
= 2i /m [/w (e"l(u-m) — e ty=m) _ it(y-s.
T Jeno LU0
2] et

i

187
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" = cosr-+sinz, then as ¢ —

1 /¢ stnat
-/ dt — ;; ifa>0
wJo t

& (10.20)

— -1/2iifa<0

The convergence is uniform w.r.t. @ in every regiona > § >0Oora < -4

and for |a| < &, and for all values of C. o
Also .
1 f =i ot y
= = dxl <1 (10.21)
|7 Jo t

Take y2 > yre ¢(f) and set

(e, ¥, m.¥2) = %/: [w, ’ﬁ“_(}:- yz)] dt

Then
Jo= [T etvnmdF )

/_v:‘ U(e.y, yx-gx)if:rﬂ)' + /m-:‘ U(:)dF(y) + /::‘ ¢(-)dF (y)

+ [ weEn [T e()aF)

I

with & chosen such that y; + 6 < ys — 6 and gives the interval —oc < y <
& and y =y € =46, for the first integral —o0 < y < y; — § and so
- =5 By < —6 since y, > y; then

yi-¢
/_ U(-)dF =0
nme wav the fifth integral gives
o0
[ star =0
ya+é

ys — &, we have y — y; > & and y — y; < -4, this gives

/v""‘ $(JdF = 1

i+é
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and so
ya=§
[ w()dF = Fly: = 6) = Fu1 +6)
y:
as ¢ — 00.
Sismilarly,

/vm: w(-)dF\ > 2/:1:6 dF(y) = 2(F(y2 +8) = F(vz - 6)]

=
By collating results, we have for § > 0,
lim J. = F(y2— &)~ F(y1+6)+2[F(v1 +6)— F(y1—6) +'¥'y2+6) ~ F(y2—6)]

SO
lim J. = lim J, = F(y;) = F(n) #
This is so because F is continuous and J. does not depend on 6.
Theorem 10.5
If the characteristic function ¢(t) is Lebesque integrable over the entire

line (—o0,00), then the distribution function F(y) that corresponds to it is
continuous and F(y) is also continuous with-

Flly)=1(y) = % [ : e~ (t)dt

Proof
If ®(t) is Lebesque integrable, then

(e—l'lm Ji c-i!vg

=) a0

is Lebesque integrable and the inversion formula may be written in the
form

c-i'u. T c—“m

Fly~ Fly) = 5 [ = (—"——) B(t)dt

select h such that

v = y—-h
y2 = y+h,
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Select A so large such that
“h _1|®(t)dt < £/2
[l - 11 </
and also select h as small as possible, such that

-ith __
/l‘ e =180 < g/2

Then

|F(y+h)—F(y)|S§+§

=£ ==
Problem 10.3

1. The distribution function for ¥ with cumulative distribution function

is
0, if'y<o

F(y) =
1<=06e7v, if y>0
obtain the moment generating function at point ¢ and the k — th
moment of the distribution.

2. Let Y denote the/number of points on a die. Suppose the die is
tossed three times, obtain the probability generating function and its
probability if the total number of points is 7.

3. By considering the characteristic function of thebilateral exponential
distxihitian 4
f(y) = ie"", ~oc <y < oo

and using the inversion theorem or otherwise, show that the charac-
teristic function of the Cauchy distribution is ®y () = ™1

4. Compute the moment generating function of the distribution defined

by the density
f(y) =e?, y>0

Expand it in a power series.
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ther

Fly+h) - Fly-h)= o [

(-.-u-u ; .—-(nu) —

noting that ¢''¥ = costy + isinty, we obtain
F(y+ h) —~F(y —h)= %[_:d-u(am-s.incygi)gz
A = sinth
e :]...T""‘““Q_?“
IFly+h)~Fly=#)) < = [ ioleee Q
Let h — 0, we obtain

F(V*’o)"ﬂ"'q..‘ Fly” ﬁ’() ) =0
which shows that F is continuous, but

F(y+h)-F(y-b) sinth .
2h wT AL

When A — 0, then we ootain

i ,_Qogmu) Fly - h)

L [T
Weneedwshow&) is continuous:
PR -Fo) = o [7 (N - emee

+h)=FE)l < 5o [T 1 - e

= 2% /_:Ie‘“'l e~ — 1]®(t)dt
P+ h) - F)l < o [7 1™ - 1jear
= ,‘,i”[/l‘ e - v

[ " u«p(z)de]
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5. Compute the factorial moment generating function of the discrete
distribution defined by the probability function.

1
(k) = FET k=0: 152505
Netermine the mean and variance of the distribution.

Solution 10.3

1. In this distribution there is a discrete lump to probability, in the
amount 0.2, at y = 0. The moment generating function is

(1) / ®dF(y) = °(0.2) + /g e (0.8e4dy
0.2+ 0.8(1 ~t)' =1%0.8 + 08¢t +...
(0.8)k!(t*/k!); %=0,1,2,...

Hence the k — th moment is

E(Y <0.8K!

2. Let Z = total number of pbins thrown is a random variable Z whose
factorial moment generating function is

E(t") =NE@"™)E(t™)E(t"™)

Slaza
6{(1-1¢)
m(¢)CE(T) -

By writing the expansion for E(t*) as a double deem, as

E(t*) = 21—622}(_1)#&( : ) ( ‘}3 )‘mpa
= = g (o) (7)™
- o 0060
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3. The characteristic function of Y at t is

1 = 1 .
(t) = +— L e T il (?)
1+ ()
Set z = y;a,theny=0+4\zanddy=Adz.
X i it(0+Ax)
. 6(t) = /_ ol ,)Adz
il / et 1+z’) " (%)
but ; 5 e ;
zarbll= . sty
2" T or /_m‘ T
then 4
/_we e z*‘“ e~ (311)

In (ii), set V = —z, then r = —dv &nd

1 RV —iaw_ 1
R

g 0 .
<@Lk

= ié } -1M
o(t) = e = ITe

=5

Let 6 = tv, then

= el sinceA>0
4. Myplt) = /0 % Vevay = /o“ ¥t gy
. [.-v(l-f)|°°
1—-1¢ o
= .l__i_E = (1 P t)"

= 1+z+x +eeotzhten
5. nx(t) = B(t*)=)_t'P(X=K)=) t*/2*"
0



Generating Functions and Inversion Theorem

From S, =

nx(t)

E(X)
E(X(X-1)
Var(X)

=

: = = (sum to infinity), we have

=

-
T,
n"‘+E(X) (E(Q)?
nl2l 4 gl = [4it
2+1-1*= ®

’\/

e "- (7‘1)?




