Journal of Algebra 237, 487-500 (2001)
d0i:10.1006 /jabr.2000.8589, available online at http: //www.idealibrary.com on ||lE}l®

Units of Burnside Rings of Elementary
Abelian 2-Groups

Michael A. Alawode

Department of Mathematics, University of Ibadan, Ibadan, Nigeria
Communicated by Walter Feit

Received June 7, 1999

INTRODUCTION

Let G be a finite group. Then the set S(G) of G-isomorphism classes of
all finite (left) G-sets forms a semi-ring under addition and multiplication
induced, respectively, by the disjoint union and cartesian product. The
Grothendieck ring of S(G) is called the Burnside ring of G and is denoted
by Q(G). Let Q(G)* be the group of units of the Burnside ring of G.

Let G be an elementary Abelian 2-group. In Section 1 of this paper, we
study subgroups of the character group

Char(G) = {X3 G - {£1}Ix(a, ay) = x(a))x(a,) VY ay,a, € G}

and prove the following main result:
If

Xc Char(G) and for a,,a,,...,a; € G,
put
X(ay,ay,...5a;) = {X€X|X(al) = =x(a) = 1};
then the following are equivalent:
(@ #HxeX|My= Lcharw) for all subgroups U < G with |U] < 2%}

= Omod?2.

b)) #xeXlxa)= - =xla)=1VYa,,...,a, € G} =
Omod?2.

(o #X(a,,a,,...,a,)=0mod2 for all a, a,,...,a, €G with
l(a) < 1foralli=1,2,...,k.
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In Section 2, we study Q(G)* as a Burnside ring module. First we
identify the group p(Char(G)) (formed by the power set of Char(G) under
symmetric difference) with Q(G)* as a subgroup of {+1}%**%) where
Sub(G) = conjugacy classes of subgroups. This is done through a map

n: p(Char(G)) - Q(G)* C {i_l}Sub(G)
given by 77(2_() = MX’ where MX: Sub(G) — {+1} is given by
Mz(H) = (—1)#{X€X\X(h):1 Y heH)
We then obtain a filtration of Q(G)* for |G| = 2™:
QG)*=0_,(G)* 2Q,(G)* D -+ 20,(G)*.

1. SUBGROUPS OF CHARACTER GROUP (Char(G)) OF
ELEMENTARY ABELIAN 2-GROUPS G
Let
N:={1,2,3,...}, N,:=={0} UN, n€N,.
Let
G={x1)" ={(e..... &)l € {£1}}

be the elementary Abelian 2-group of order 2”. Note that G is a group
relative to componentwise multiplication with 1, = (1,1,...,1) and

G=7,X7,%X X1Z,.

. . n times
Define a function

I: G —>N0
by
l((el"”’en)) = #{l € {1"--7n}|6i = _1}

Call / a length function on G.
Let

Char(G) = {x: G = {+1}Ix(a,-a,) = x(a,) - x(a,)
for all a,a, € G}.

Then Char(G) is a group relative to argumentwise multiplication with
identity character

Lehary: G = {+1}, a— +1.
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The map
Char(G) - G
X (X(el)""’X(en))
with
e;=(1,...,1,—-1,1,...,1)
1
ith position
forall i = 1,...,n is a group isomorphism.

For X c Char(G) and a,...,a, € G for some k € N,, put
X(ay,...,a,) = {xeXlx(a) = - = x(a) =1}.

LEmMA 1.1. For all a,,...,a,_,,b,,b, € G and all X C Char(G) one
has

X(“la---aak—lablbz) =X(a1""7ak—1’b1)AX(al"“’ak—l’bZ)
AX(al,...,ak,l),

where for arbitrary sets Y, Z one puts

noting that

Proof. Because

it is enough to verify that
X(ay,..o.ap_1,b,by) s X(ay,....a,_y)
=X(ay,...,a,_,b)) s X(ay,...,a,_,,b,).
But

LHS.= {x€X(ay,...,a,_ ) x(b,-b,) = —1}
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and
RHS.= {)(EX(al,...,ak_l)l)((bl) =1land x(b,) = —1lor
x(by) = —land x(b,) = 1};

hence,
LHS.= R.H.S.

LEMMA 1.2.  For arbitrary subsets Y,,Y,, ...,Y, C Char(G) one has
Z (—2)(#”_1'#(ﬂierl—’,«)-

#(_?AEZA Afn) - b+Tc{l1,2,...,n}

Proof.  We shall supply a proof of this by induction. First let us check
the formula for two sets, say Y, Y, (see Fig. 1). We have

#Y, = #(Y,/0,) + #(Y, 0 Y,)
#Y, = #(X,/Y,) + #(Y, N Y,)
#Y, + #Y, = #(Y, /%) + #(Y,/Y,) + 2#(Y, 0 Y,)
#(Y, /Y, UY,/Y,) = #Y, + #Y, - 2#(Y, n 1),

and so we have
#(_)..—/1A_?z) = #Y, + #Y, - 2#(21 N fz);

hence, the formula is true for n = 2.

FIGURE 1
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Next, let us assume that the formula holds for n — 1 sets; that is,

#(zAfz A Afn—1) = )y (_2)(#”71 ) #(nieTz)'
¢#T<{1,2,...,n—1)

It follows from our previous result (equivalent to the case n = 2) that

#(ZAZA AZ*IAZ)

= #[(zﬂfzﬁ AXn—l)Afn]
= #(Zﬁfzﬁ Afn—l) + #Y, - 2#[(1_71A o aY, ) mfn]

#(LA Afn—l) + #Y, — 2#[ Y, ﬁZz)A e AY, mfn)]a

= Y (=27 # (N ) + #Y,

$+Tcfl,2,...,n—1}

N
|
3

—2#[(T,nT)a - a(T_,nT).
The first term can be rewritten as

Z (—2)(#T)71'#(nieTz)

¢+Tc{l1,2,....,n—1,n}, n&T

and the second and third terms together can be rewritten as

Z (_2)(#T)f1.#(ni€TZ).

$+Tc(1,2,...,n}, neT

The above two results yield

Y (=" # (N Y

¢p+Tc{1,2,...,n}

hence, the formula is true for all n, and therefore by the principle of
induction we obtain

#(zA"'AZq): )y (_2)(#T)_1'#(nieTZ‘)-
6+Tc{l,2,...,n}

An immediate application of the above formula is as follows. For n = 2,

#(Y,0Y,)=#Y, + #Y, mod2.
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For n =3,
#(Y, 0, aY:) = #Y, + #Y, + #Y,
- 2[#(2’1 NY,)+#Y, nY,) +#(¥,n f@)] mod 4.

For n sets,

Moreover, since

#YaZ)=#Y+#Z mod2

for all sets Y, Z, Lemma 1.1 implies the following corollary:

COROLLARY 1.2.  For all X ¢ Char(G) and a,,...,a,_,,b,,b, € G one
has

#X(a,,...,a,_,bby) = #X(a,,...,a,_,15)
+ #X(ay,...,a,_, b))
+ #X(ay,...,a,_,,b,) mod 2.

THEOREM 1.3. If X C Char(G), then the following are equivalent.

(@ #x € Xl|xlv = leyawy for all subgroups U < G with |U| < 2%}
= Omod?2.

b)) #xeXlxa)= - =xla)=1, for all a,...,a, €G}=
0 mod?2.

() #X(ay,...,a,)=0mod2, for all a,,...,a, €G with l(a,) <1
foralli=1,... k.

Proof.  Since a subgroup U < G of G can be generated by k elements
a,,...,a, from G if and only if |U| < 2%, (a) < (b). It is also clear that
(®) = (0.
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To show that (c) = (b) one may proceed by induction relative to

I(a)) + - +l(a;).

It
I(a)) + - +l(a,) =0,
then
l(a)) = =1l(ay) =0
and therefore the claim
#{xeXix(a)= " =x(a)=1=0 mod2

follows directly from our assumption.
Now assume that our claim is true whenever

[(a)) + - +l(ay) <n for some n € N
and assume that
I(a)) + - +l(a,) =n+1 for some a,,...,a;, € G.
If I(a;) < 1foralli=1,...,k, our assumption implies directly that
#{xeXlx(a) = =x(a)=1=0 mod2.
Otherwise /(a;) > 1 for some i € {1,..., k}, say, i = k, so that
a,=b,-b, for some b, b, € G, with [(b,),[(b,) <I(ay)

and therefore
k-1
Y l(a) +1(b)<n forj=1,2.
i=1

Hence
#X(ay,...,a,_,,b)) =0 mod 2,
#X(ay,...,a,_,,b,) =0 mod 2,
as well as

#X(a,,...,a,_,15) =0  mod2,
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by our induction hypothesis, and therefore
#X(a,,...,a,_,a,) = #X(a,,...,a,_,,b,b,)
= #X(a,,...,a;_,b))
+ #X(ay,...,a,_,,by)

+ #X(ay,...,a,_1,15)

=0 mod 2 as claimed.

2. THE UNIT GROUPS OF BURNSIDE RINGS OF
ELEMENTARY ABELIAN 2-GROUPS G
AS BURNSIDE RING MODULES

Let G be an elementary Abelian 2-group and let
p(Char(G)) == {X | X C Char(G)}

be the power set of Char(G).

It can be shown that p(Char(G)) is a commutative finite group—more
precisely an elementary Abelian 2-group under the symmetric difference
A as group multiplication.

For every subset X C Char(G), define

Mgz:Sub(G) - {+1}
by

H > ( _1)#(X6X|x(h):1,for all ke H}

9

where Sub(G) denotes the set of subgroups of G.
Let

A(G)* = {Mg| X c Char(G)}.

Then A(G)* is a subgroup of the (multiplicative) group of all maps from
Sub(G) into {+1}.
For all X,Y < Char(G) we have

and
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Moreover, A(G)* can be identified with
Q(G)* c {il}Sub(G);
we henceforth make this identification so that

Q(G)* = {Mg | X C Char(G)}.
THEOREM 2.1. The map
p(Char(G)) = Q(G)*

defined by

is an isomorphism!
Proof.  First, we note that the map
p(Char(G)) - Q(G)*
is a well-defined homomorphism.

Second, p(Char(G)) and Q(G)* are both of the same order, 22", since
IChar(G)| = |G| = 2" and since by definition of p(Char(G)) as the power
set of Char(G) we have

| p(Char(G))| = 2%,
and moreover by standard results of Matsuda [20]

10(G)* = 2%".

We now prove injectivity as follows.
We know that

Mg =14 ifandonlyif X = ¢.

Mg = 1q ;) implies that Mz(H) = 1 for all subgroups H of G. Mx(H)

= 1 if and only if
#{)(EZ(I)((h)=1,f0rallh€H}EO mod 2

and if and only if X = .
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We assume that
#{xeX|x(h)=1,forallh € H} =0  mod2

to show first that the trivial character is not in X!
Let x, be the trivial character. We choose for this case the subgroup

H=G.

By definition of a trivial character we have for an arbitrary character y
that y(h) = 1 for all h € G if and only if y = x,. Hence,

{xeXIx(h)=1,forall h € G} =X n { x,}
and therefore
#{x €XIx(h) = 1,forall h € G}

— 1, if x, €X
= #(AXO {Xl}) = . =
0, if y; € X.
It follows that
Xl $X9

and so the trivial character is not in X.
Finally, we must show that no non-trivial character is in such an X!
Let y be a non-trivial character. For such a non-trivial character y
consider

H={geGlx(g) =1},

a subgroup of G. For any other non-trivial character y’, y'(g) = 1 for all
g € H if and only if y = x'. Hence,

{x' eXIx'(g) =1forall ge H} =X N { x}
and therefore
#{x' €Xlx'(g) =1,forall g € H}

1, forye X

—#X0 ) = 0, if y¢X



UNITS OF BURNSIDE RINGS OF 2-GROUPS 497

and so we have
X €X.

Hence, no non-trivial character is in such an Z( ; therefore, X = ¢, as
claimed. Surjectivity follows from all the above considerations. Thus,

p(Char(G)) — Q(G)*

is an isomorphism.
Put

0, (G)* == {Mgz € Q(G)*IMg(H) = 1,forall H < G with |H| < 2*},
so that
QG)* =0_1(G)*20,(G)*20Q,(G)*D - DQ,(G)*
= {19(6)*} = {M,}.
LEmma 2.2. Q(G)* ={Mz < Q,_(G)*| for all subsets T of (1,2,

...,n} of cardinality k; the number of x € X with x(e;) =1 foralli € T is
eveny.

LEMMA 2.3.
((1,2 ..... n})
0 (G)* = ker I Ars Qi ((G)* = {1} ‘ ,
1,2,...,n}
Te( k )
where

At Qe ((G)* = {1}
is the homomorphism which maps every

Mz € Q, (G)*  ontoMz(e; i €T)).

Proof. Given that T € {1,2,..., n} with #T = k, consider for each such
T the map
Ar: Q(G)* = {£1)

: M,\_’ — (_1)#(XEX|)((e,):lforallieT}‘

We contend that A, is a homomorphism!
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For My, My € Q(G)*, we obtain
)\T(M)_?) — MX(<€, | i e T>) — (_1)#()(€§_’Ix(e[)=1foralliET},
)‘T(M_)?’) — M)_?(<ei lie T>) — (_1)#(XE)_?’|X(e,):1forallieT)’

/\T(MX) . )‘T(MX') _ (_1)#(X€)_?Ix(e[)=1 VieT}+#{xeX'I x(e)=1VYieT}

_ ( _ 1)#()(EX A X'lx(e)=1VieT)

b

since

1>

#XaX)=#X+#X'  mod2.
Hence, by definition, we have

(_ 1)#{XEXA X'|x(e)=1VieT}

=Mz, 3z (e li €T))
=Mz Mz ({e;1i €T))
= A (Mx - My)
and therefore
Ar(Mg - Mg) = Ap(Mg) - Ap(Mx)

as claimed. Now, since the number of sets of T C {1,2,..., n} with #7 = k
is (z), we shall have (Z) homomorphisms of such A;. Thus

{1,2,..., n}
k

I At Qu((G)* = (1)

Te({l,Z,].{..,n})

is also a homomorphism. Therefore by 2.1 and the construction of Q,(G)*
above, we conclude that
{1,2,..., n}
(“#)

0, (G)* = ker Il At Qe ((G)* = {1}

TE((],Z,I.{..,n})

Theorem 2.4.

(Q,_1(G)*: O (G)*) =20,
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APPENDIX: NOMENCLATURE

Throughout this paper we use the following notations:

G is an elementary Abelian 2-group.

#X or | X| is the cardinal number of a set X.

Loy is the unit element [point] of Q(G).

R* is the unit group of a ring R.

Z is the ring of rational integers.

Z, = {+1}is a set having +1 and —1 as its elements.

e, =(,...,1,—1,1,...,1) is an element of G, where the ith entry is
—-1.

(“’2’,;”")) is the set of all subsets of order k of the set A = {1,2,...,n}
where k, n are fixed positive integers, k < n.

Sub(G) is the subgroup lattice of G.

I: G = N, is a length function on G, where N, :== {0} U N is the set
of natural numbers N in disjoint union with the singleton set {0}, having 0
as its only element.

A is the symmetric difference.
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