

Units of Burnside Rings of Elementary Abelian 2-Groups

Michael A. Alawode

Department of Mathematics, University of Ibadan, Ibadan, Nigeria

Communicated by Walter Feit

Received June 7, 1999

INTRODUCTION

Let G be a finite group. Then the set S(G) of G-isomorphism classes of all finite (left) G-sets forms a semi-ring under addition and multiplication induced, respectively, by the disjoint union and cartesian product. The Grothendieck ring of S(G) is called the Burnside ring of G and is denoted by $\Omega(G)$. Let $\Omega(G)^*$ be the group of units of the Burnside ring of G.

Let G be an elementary Abelian 2-group. In Section 1 of this paper, we study subgroups of the character group

Char(G) =
$$\{\chi \colon G \to \{\pm 1\} | \chi(a_1 \cdot a_2) = \chi(a_1) \chi(a_2) \ \forall \ a_1, a_2 \in G\}$$

and prove the following main result:

If

$$\overline{\underline{X}} \subset \operatorname{Char}(G)$$
 and for $a_1, a_2, \dots, a_k \in G$,

put

$$\underline{\overline{X}}(a_1, a_2, \dots; a_k) := \{ \chi \in \underline{\overline{X}} | \chi(a_1) = \dots = \chi(a_k) = 1 \};$$

then the following are equivalent:

- (a) $\#\{\chi \in \underline{X}|^{\chi}|_{U} = 1_{\operatorname{Char}(U)} \text{ for all subgroups } U \leq G \text{ with } |U| \leq 2^{k}\}$ $\equiv 0 \mod 2$.
- (b) $\#\{\chi \in \overline{X} | \chi(a_1) = \cdots = \chi(a_k) = 1 \ \forall \ a_1, \dots, a_k \in G\} \equiv$ $0 \mod 2$.
- (c) $\#\underline{\overline{X}}(a_1, a_2, \dots, a_k) \equiv 0 \mod 2$ for all $a_1, a_2, \dots, a_k \in G$ with $l(a_i) \le 1$ for all i = 1, 2, ..., k.

In Section 2, we study $\Omega(G)^*$ as a Burnside ring module. First we identify the group $\rho(\operatorname{Char}(G))$ (formed by the power set of $\operatorname{Char}(G)$ under symmetric difference) with $\Omega(G)^*$ as a subgroup of $\{\pm 1\}^{\text{Sub}(G)}$, where Sub(G) = conjugacy classes of subgroups. This is done through a map

$$\eta: \rho(\operatorname{Char}(G)) \to \Omega(G)^* \subseteq \{\pm 1\}^{\operatorname{Sub}(G)}$$

given by $\eta(\overline{\underline{X}}) = M_{\overline{X}}$, where $M_{\overline{X}}$: Sub $(G) \to \{\pm 1\}$ is given by

$$M_{\overline{\chi}}(H) = (-1)^{\#\{\chi \in \underline{\overline{\chi}}|_{\chi}(h) = 1 \ \forall \ h \in H\}}.$$

We then obtain a filtration of $\Omega(G)^*$ for $|G| = 2^n$:

$$\Omega(G)^* = \Omega_{-1}(G)^* \supset \Omega_0(G)^* \supset \cdots \supset \Omega_n(G)^*.$$

1. SUBGROUPS OF CHARACTER GROUP (Char(G)) OF ELEMENTARY ABELIAN 2-GROUPS G

Let

$$N := \{1, 2, 3, \dots\}, \ N_0 := \{0\} \cup N, \qquad n \in N_0.$$

Let

$$G := \{\pm 1\}^n = \{(\epsilon_1, \dots, \epsilon_n) | \epsilon_i \in \{\pm 1\}\}$$

be the elementary Abelian 2-group of order 2^n . Note that G is a group relative to componentwise multiplication with $1_G = (1, 1, ..., 1)$ and

$$G \cong \underbrace{\mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{n \text{ times}}.$$

$$l: G \to N_0$$

by

$$l((\epsilon_1,\ldots,\epsilon_n)) = \#\{i \in \{1,\ldots,n\} | \epsilon_i = -1\}.$$

Call *l* a length function on *G*.

Define a function

Let

$$\operatorname{Char}(G) \coloneqq \big\{ \chi \colon G \to \{\pm 1\} | \, \chi(a_1 \cdot a_2) = \chi(a_1) \cdot \chi(a_2)$$
 for all $a_1, a_2 \in G \}.$

Then Char(G) is a group relative to argumentwise multiplication with identity character

$$1_{\operatorname{Char}(G)} \colon G \to \{\pm 1\}, \quad a \mapsto +1.$$

The map

$$\operatorname{Char}(G) \to G$$

$$\chi \mapsto (\chi(e_1), \dots, \chi(e_n))$$

with

$$e_i := (1, \dots, 1, -1, 1, \dots, 1)$$

$$\uparrow$$

$$ith position$$

for all i = 1, ..., n is a group isomorphism.

For $\underline{X} \subseteq \operatorname{Char}(G)$ and $a_1, \ldots, a_k \in G$ for some $k \in N_0$, put

$$\overline{\underline{X}}(a_1,\ldots,a_k) := \big\{ \chi \in \underline{\overline{X}} | \chi(a_1) = \cdots = \chi(a_k) = 1 \big\}.$$

LEMMA 1.1. For all $a_1, \ldots, a_{k-1}, b_1, b_2 \in G$ and all $\overline{\underline{X}} \subseteq \operatorname{Char}(G)$ one has

$$\underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1b_2) = \underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1) \triangle \underline{\overline{X}}(a_1,\ldots,a_{k-1},b_2)$$

$$\triangle \underline{\overline{X}}(a_1,\ldots,a_{k-1}),$$

where for arbitrary sets $\overline{\underline{Y}}$, $\overline{\underline{Z}}$ one puts

$$\underline{\overline{Y}} \triangle \underline{\overline{Z}} := (\underline{\overline{Y}} - \underline{\overline{Z}}) \dot{\cup} (\underline{\overline{Z}} - \underline{\overline{Y}}),$$

noting that

$$(\underline{\overline{Y}} \wedge \underline{\overline{Z}}_1) \wedge \underline{\overline{Z}}_2 = \underline{\overline{Y}} \wedge (\underline{\overline{Z}}_1 \wedge \underline{\overline{Z}}_2).$$

Proof. Because

$$\underline{\overline{X}} = \underline{\overline{Y}} \land \underline{\overline{Z}} \Leftrightarrow \underline{\overline{Y}} = \underline{\overline{Z}} \land \underline{\overline{X}},$$

it is enough to verify that

$$\underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1\cdot b_2) \triangle \underline{\overline{X}}(a_1,\ldots,a_{k-1})$$

$$= \underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1) \triangle \underline{\overline{X}}(a_1,\ldots,a_{k-1},b_2).$$

But

L.H.S. =
$$\{ \chi \in \overline{X}(a_1, ..., a_{k-1}) | \chi(b_1 \cdot b_2) = -1 \}$$

and

R.H.S. =
$$\{ \chi \in \overline{X}(a_1, ..., a_{k-1}) | \chi(b_1) = 1 \text{ and } \chi(b_2) = -1 \text{ or } \chi(b_1) = -1 \text{ and } \chi(b_2) = 1 \};$$

hence,

$$L.H.S. = R.H.S.$$

LEMMA 1.2. For arbitrary subsets $\underline{\overline{Y}}_1, \underline{\overline{Y}}_2, \dots, \underline{\overline{Y}}_n \subseteq \text{Char}(G)$ one has

$$\#\left(\underline{\overline{Y}} \triangle \underline{\overline{Y}}_2 \triangle \cdots \triangle \underline{\overline{Y}}_n\right) = \sum_{\substack{\phi \neq T \subset \{1, 2, \dots, n\}}} (-2)^{(\#T)^{-1}} \cdot \#\left(\bigcap_{i \in T} \underline{\overline{Y}}_i\right).$$

Proof. We shall supply a proof of this by induction. First let us check the formula for two sets, say \overline{Y} , \overline{Y}_2 (see Fig. 1). We have

$$\begin{split} \#\overline{Y}_1 &= \#\big(\overline{Y}_1/\overline{Y}_2\big) + \#\big(\overline{Y}_1 \cap \overline{Y}_2\big) \\ \#\overline{Y}_2 &= \#\big(\overline{Y}_2/\overline{Y}_1\big) + \#\big(\overline{Y}_1 \cap \overline{Y}_2\big) \\ \#\overline{Y}_1 &+ \#\overline{Y}_2 &= \#\big(\overline{Y}_1/\overline{Y}_2\big) + \#\big(\overline{Y}_2/\overline{Y}_1\big) + 2\#\big(\overline{Y}_1 \cap \overline{Y}_2\big) \\ \#\big(\overline{Y}_1/\overline{Y}_2 \cup \overline{Y}_2/\overline{Y}_1\big) &= \#\overline{Y}_1 + \#\overline{Y}_2 - 2\#\big(\overline{Y}_1 \cap \overline{Y}_2\big), \end{split}$$

and so we have

$$\#(\underline{\overline{Y}}_1 \triangle \underline{\overline{Y}}_2) = \#\underline{\overline{Y}}_1 + \#\underline{\overline{Y}}_2 - 2\#(\underline{\overline{Y}}_1 \cap \underline{\overline{Y}}_2);$$

hence, the formula is true for n = 2.

Next, let us assume that the formula holds for n-1 sets; that is,

$$\#\left(\overline{\underline{Y}}_1 \triangle \overline{\underline{Y}}_2 \triangle \cdots \triangle \overline{\underline{Y}}_{n-1}\right) = \sum_{\phi \neq T \subseteq \{1, 2, \dots, n-1\}} (-2)^{(\#T)-1} \cdot \#\left(\bigcap_{i \in T} \overline{\underline{Y}}_i\right).$$

It follows from our previous result (equivalent to the case n = 2) that

$$\begin{split} \#\Big(\overline{Y}_{1} \triangle \overline{Y}_{2} \triangle \cdots \triangle \overline{Y}_{n-1} \triangle \overline{Y}_{n}\Big) \\ &= \#\Big[\Big(\overline{Y}_{1} \triangle \overline{Y}_{2} \triangle \cdots \triangle \overline{Y}_{n-1}\Big) \triangle \overline{Y}_{n}\Big] \\ &= \#\Big(\overline{Y}_{1} \triangle \overline{Y}_{2} \triangle \cdots \triangle \overline{Y}_{n-1}\Big) + \#\overline{Y}_{n} - 2\#\Big[\Big(\overline{Y}_{1} \triangle \cdots \triangle \overline{Y}_{n-1}\Big) \cap \overline{Y}_{n}\Big] \\ &= \#\Big(\overline{Y}_{1} \triangle \cdots \triangle \overline{Y}_{n-1}\Big) + \#\overline{Y}_{n} - 2\#\Big[\Big(\overline{Y}_{1} \cap \overline{Y}_{n}\Big) \triangle \cdots \triangle \overline{Y}_{n-1} \cap \overline{Y}_{n}\Big)\Big], \\ &= \sum_{\substack{\phi \neq T \subseteq \{1, 2, \dots, n-1\}\\ -2\#\Big[\Big(\overline{Y}_{1} \cap \overline{Y}_{n}\Big) \triangle \cdots \triangle \Big(\overline{Y}_{n-1} \cap \overline{Y}_{n}\Big)\Big]. \end{split}$$

The first term can be rewritten as

$$\sum_{\substack{\phi \neq T \subseteq \{1, 2, \dots, n-1, n\}, \ n \notin T}} (-2)^{(\#T)-1} \cdot \#(\bigcap_{i \in T} \overline{Y}_i)$$

and the second and third terms together can be rewritten as

$$\sum_{\substack{\phi \neq T \subseteq \{1, 2, \dots, n\}, n \in T}} (-2)^{(\#T)-1} \cdot \#(\bigcap_{i \in T} \overline{\underline{Y}}_i).$$

The above two results yield

$$\sum_{\substack{\phi \neq T \subset \{1,2,\ldots,n\}}} \left(-2\right)^{(\#T)-1} \cdot \#\left(\bigcap_{i \in T} \overline{\underline{Y}}_i\right);$$

hence, the formula is true for all n, and therefore by the principle of induction we obtain

$$\#\left(\underline{Y}_1 \triangle \cdots \triangle \underline{Y}_n\right) = \sum_{\phi \neq T \subseteq \{1, 2, \dots, n\}} \left(-2\right)^{(\#T)-1} \cdot \#\left(\bigcap_{i \in T} \underline{Y}_i\right).$$

An immediate application of the above formula is as follows. For n = 2,

$$\#(\overline{Y}_1 \triangle \overline{Y}_2) \equiv \#\overline{Y}_1 + \#\overline{Y}_2 \mod 2$$

For n = 3,

$$\begin{split} \# \big(\underline{\overline{Y}}_1 \triangle \underline{\overline{Y}}_2 \triangle \underline{\overline{Y}}_3 \big) &\equiv \# \underline{\overline{Y}}_1 + \# \underline{\overline{Y}}_2 + \# \underline{\overline{Y}}_3 \\ &- 2 \Big[\# \big(\underline{\overline{Y}}_1 \cap \underline{\overline{Y}}_2 \big) + \# \big(\underline{\overline{Y}}_1 \cap \underline{\overline{Y}}_3 \big) + \# \big(\underline{\overline{Y}}_2 \cap \underline{\overline{Y}}_3 \big) \Big] \mod 4. \end{split}$$

For n sets,

$$\#(\overline{\underline{Y}}_1 \triangle \cdots \triangle \overline{\underline{Y}}_n) \equiv \sum_{i=1}^n \#\overline{\underline{Y}}_i - 2 \sum_{1 \le i < j \le n} \#(\overline{\underline{Y}}_i \cap \overline{\underline{Y}}_j) \mod 4.$$

As a consequence of the above analysis we have

$$\#(\overline{\underline{Y}}_1 \triangle \cdots \triangle \overline{\underline{Y}}_n) \equiv \sum_{i=1}^n \#\overline{\underline{Y}}_i \mod 2.$$

Moreover, since

$$\#(\underline{\overline{Y}} \triangle \underline{\overline{Z}}) \equiv \#\underline{\overline{Y}} + \#\underline{\overline{Z}} \mod 2$$

for all sets \overline{Y} , \overline{Z} , Lemma 1.1 implies the following corollary:

COROLLARY 1.2. For all $\overline{X} \subseteq \operatorname{Char}(G)$ and $a_1, \ldots, a_{k-1}, b_1, b_2 \in G$ one has

$$\#\underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1b_2) \equiv \#\underline{\overline{X}}(a_1,\ldots,a_{k-1},1_G)$$

$$+\#\underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1)$$

$$+\#\overline{\overline{X}}(a_1,\ldots,a_{k-1},b_2) \mod 2.$$

THEOREM 1.3. If $\bar{X} \subseteq \text{Char}(G)$, then the following are equivalent.

- (a) $\#\{\chi \in \underline{\overline{X}} | \chi|_U = 1_{\operatorname{Char}(U)}, \text{ for all subgroups } U \leq G \text{ with } |U| \leq 2^k\} \equiv 0 \mod 2.$
- (b) $\#\{\chi\in\overline{\underline{X}}|\ \chi(a_1)=\cdots=\chi(a_k)=1,\ \ for\ \ all\ \ a_1,\ldots,a_k\in G\}\equiv 0\ \mathrm{mod}\ 2.$
- (c) $\#\underline{\overline{X}}(a_1,\ldots,a_k) \equiv 0 \mod 2$, for all $a_1,\ldots,a_k \in G$ with $l(a_i) \leq 1$ for all $i=1,\ldots,k$.

Proof. Since a subgroup $U \le G$ of G can be generated by k elements a_1, \ldots, a_k from G if and only if $|U| \le 2^k$, (a) \Leftrightarrow (b). It is also clear that (b) \Rightarrow (c).

To show that $(c) \Rightarrow (b)$ one may proceed by induction relative to

$$l(a_1) + \cdots + l(a_k)$$
.

If

$$l(a_1) + \dots + l(a_k) = 0,$$

then

$$l(a_1) = \cdots = l(a_k) = 0$$

and therefore the claim

$$\#\{\chi \in \underline{\overline{X}} | \chi(a_1) = \dots = \chi(a_k) = 1\} \equiv 0 \mod 2$$

follows directly from our assumption.

Now assume that our claim is true whenever

$$l(a_1) + \dots + l(a_k) \le n$$
 for some $n \in N$

and assume that

$$l(a_1) + \dots + l(a_k) = n + 1$$
 for some $a_1, \dots, a_k \in G$.

If $l(a_i) \le 1$ for all i = 1, ..., k, our assumption implies directly that

$$\#\{\chi \in \underline{X} | \chi(a_1) = \cdots = \chi(a_k) = 1\} \equiv 0 \mod 2.$$

Otherwise $l(a_i) \ge 1$ for some $i \in \{1, ..., k\}$, say, i = k, so that

$$a_k = b_1 \cdot b_2$$
 for some $b_1, b_2 \in G$, with $l(b_1), l(b_2) < l(a_k)$

and therefore

$$\sum_{i=1}^{k-1} l(a_i) + l(b_j) \le n \quad \text{for } j = 1, 2.$$

Hence

$$\#\underline{\overline{X}}(a_1,\ldots,a_{k-1},b_1)\equiv 0 \mod 2,$$

$$\#\overline{\underline{X}}(a_1,\ldots,a_{k-1},b_2)\equiv 0 \mod 2,$$

as well as

$$\#\underline{\overline{X}}(a_1,\ldots,a_{k-1},1_G)\equiv 0 \mod 2,$$

by our induction hypothesis, and therefore

$$\begin{split} \# \underline{\overline{X}}(a_1, \dots, a_{k-1}, a_k) &= \# \underline{\overline{X}}(a_1, \dots, a_{k-1}, b_1 b_2) \\ &\equiv \# \underline{\overline{X}}(a_1, \dots, a_{k-1}, b_1) \\ &+ \# \underline{\overline{X}}(a_1, \dots, a_{k-1}, b_2) \\ &+ \# \underline{\overline{X}}(a_1, \dots, a_{k-1}, 1_G) \\ &\equiv 0 \quad \text{mod 2 as claimed.} \end{split}$$

2. THE UNIT GROUPS OF BURNSIDE RINGS OF ELEMENTARY ABELIAN 2-GROUPS G AS BURNSIDE RING MODULES

Let G be an elementary Abelian 2-group and let

$$\rho(\operatorname{Char}(G)) := \{ \underline{\overline{X}} \mid \underline{\overline{X}} \subseteq \operatorname{Char}(G) \}$$

be the power set of Char(G).

It can be shown that $\rho(\operatorname{Char}(G))$ is a commutative finite group—more precisely an elementary Abelian 2-group under the symmetric difference \triangle as group multiplication.

For every subset $\overline{X} \subseteq \operatorname{Char}(G)$, define

$$M_{\overline{X}}$$
: Sub $(G) \rightarrow \{\pm 1\}$

by

$$H \mapsto (-1)^{\#\{\chi \in \underline{X} \mid \chi(h) = 1, \text{ for all } h \in H\}},$$

where Sub(G) denotes the set of subgroups of G.

Let

$$A(G)^* = \{M_{\overline{X}} \mid \overline{X} \subseteq \operatorname{Char}(G)\}.$$

Then $A(G)^*$ is a subgroup of the (multiplicative) group of all maps from Sub(G) into $\{\pm 1\}$.

For all $\underline{\overline{X}}, \underline{\overline{Y}} \subseteq \operatorname{Char}(G)$ we have

$$M_{\overline{X}} \cdot M_{\overline{Y}} = M_{\overline{X} \, \vartriangle \, \overline{Y}}$$

and

$$M_{\overline{Y}} \cdot M_{\overline{Y}} = M_{\phi} := \left\{ 1_{A(G)^*} \right\}.$$

Moreover, $A(G)^*$ can be identified with

$$\Omega(G)^* \subseteq \{\pm 1\}^{\operatorname{Sub}(G)};$$

we henceforth make this identification so that

$$\Omega(G)^* = \{M_{\overline{X}} \mid \underline{X} \subseteq \operatorname{Char}(G)\}.$$

Theorem 2.1. The map

$$\rho(\operatorname{Char}(G)) \to \Omega(G)^*$$

defined by

$$\overline{\underline{X}} \to M_{\overline{X}}$$

is an isomorphism!

Proof. First, we note that the map

$$\rho(\operatorname{Char}(G)) \to \Omega(G)^*$$

is a well-defined homomorphism.

Second, $\rho(\operatorname{Char}(G))$ and $\Omega(G)^*$ are both of the same order, 2^{2^n} , since $|\operatorname{Char}(G)| = |G| = 2^n$ and since by definition of $\rho(\operatorname{Char}(G))$ as the power set of $\operatorname{Char}(G)$ we have

$$|\rho(\operatorname{Char}(G))| = 2^{2^n},$$

and moreover by standard results of Matsuda [20]

$$|\Omega(G)^*| = 2^{2^n}.$$

We now prove injectivity as follows.

We know that

$$M_{\overline{X}} = 1_{\Omega(G)^*}$$
 if and only if $\overline{\underline{X}} = \phi$.

 $M_{\overline{\underline{X}}} = 1_{\Omega(G)^*}$ implies that $M_{\overline{\underline{X}}}(H) = 1$ for all subgroups H of G. $M_{\overline{\underline{X}}}(H) = 1$ if and only if

$$\#\{\chi \in \underline{X} | \chi(h) = 1, \text{ for all } h \in H\} \equiv 0 \mod 2$$

and if and only if $\overline{\underline{X}} = \phi$.

We assume that

$$\#\{\chi \in \underline{\overline{X}} | \chi(h) = 1, \text{ for all } h \in H\} \equiv 0 \mod 2$$

to show first that the trivial character is not in $\overline{\underline{X}}$!

Let χ_1 be the trivial character. We choose for this case the subgroup

$$H \coloneqq G$$
.

By definition of a trivial character we have for an arbitrary character χ that $\chi(h) = 1$ for all $h \in G$ if and only if $\chi = \chi_1$. Hence,

$$\left\{\chi \in \underline{X} \mid \chi(h) = 1, \text{ for all } h \in G\right\} = \underline{X} \cap \left\{\chi_1\right\}$$

and therefore

$$\#\{\chi \in \overline{X} | \chi(h) = 1, \text{ for all } h \in G\}$$

$$= \#(\overline{X} \cap \{\chi_1\}) = \begin{cases} 1, & \text{if } \chi_1 \in \overline{X} \\ 0, & \text{if } \chi_1 \notin \overline{X}. \end{cases}$$

It follows that

$$\chi_1 \notin \overline{\underline{X}},$$

and so the trivial character is not in \bar{X} .

Finally, we must show that no non-trivial character is in such an \overline{X} ! Let χ be a non-trivial character. For such a non-trivial character χ consider

$$H \coloneqq \{ g \in G | \chi(g) = 1 \},$$

a subgroup of G. For any other non-trivial character χ' , $\chi'(g) = 1$ for all $g \in H$ if and only if $\chi = \chi'$. Hence,

$$\left\{ \chi' \in \underline{\overline{X}} | \chi'(g) = 1, \text{ for all } g \in H \right\} = \underline{\overline{X}} \cap \left\{ \chi \right\}$$

and therefore

$$\#\{\chi' \in \underline{\overline{X}} | \chi'(g) = 1, \text{ for all } g \in H\}$$

$$= \#(\underline{\overline{X}} \cap \{\chi\}) = \begin{cases} 1, & \text{for } \chi \in \underline{\overline{X}} \\ 0, & \text{if } \chi \notin \underline{\overline{X}} \end{cases}$$

and so we have

$$\chi \notin \overline{X}$$
.

Hence, no non-trivial character is in such an $\underline{\overline{X}}$; therefore, $\underline{\overline{X}} = \phi$, as claimed. Surjectivity follows from all the above considerations. Thus,

$$\rho(\operatorname{Char}(G)) \to \Omega(G)^*$$

is an isomorphism.

Put

$$\Omega_k(G)^* := \{ M_{\overline{X}} \in \Omega(G)^* | M_{\overline{X}}(H) = 1, \text{ for all } H \le G \text{ with } |H| \le 2^k \},$$

so that

$$\Omega(G)^* = \Omega_{-1}(G)^* \supset \Omega_0(G)^* \supset \Omega_1(G)^* \supset \cdots \supset \Omega_n(G)^*$$

$$:= \{1_{\Omega(G)^*}\} = \{M_{\phi}\}.$$

LEMMA 2.2. $\Omega_k(G)^* = \{M_{\overline{X}} \in \Omega_{k-1}(G)^* | \text{ for all subsets } T \text{ of } \{1,2,\ldots,n\} \text{ of cardinality } k; \text{ the number of } \chi \in \overline{X} \text{ with } \chi(e_i) = 1 \text{ for all } i \in T \text{ is even}\}.$

LEMMA 2.3.

$$\Omega_k(G)^* = \ker \left(\prod_{T \in \binom{\{1,2,\ldots,n\}}{k}} \lambda_T \colon \Omega_{k-1}(G)^* \to \{\pm 1\}^{\binom{\{1,2,\ldots,n\}}{k}} \right),$$

where

$$\lambda_T \colon \Omega_{k-1}(G)^* \to \{\pm 1\}$$

is the homomorphism which maps every

$$M_{\overline{X}} \in \Omega_{k-1}(G)^*$$
 onto $M_{\overline{X}}(\langle e_i | i \in T \rangle)$.

Proof. Given that $T \subseteq \{1, 2, ..., n\}$ with #T = k, consider for each such T the map

$$\begin{split} \lambda_T \colon & \ \Omega(G)^* \to \{\pm 1\} \\ & \colon M_{\overline{\underline{X}}} \mapsto (-1)^{\#\{\chi \in \underline{\overline{X}} \mid \chi(e_i) = 1 \text{ for all } i \in T\}}. \end{split}$$

We contend that λ_T is a homomorphism!

For $M_{\overline{X}}, M_{\overline{X}'} \in \Omega(G)^*$, we obtain

$$\begin{split} \lambda_T\big(\,M_{\overline{\underline{X}}}\,\big) &:= M_{\overline{\underline{X}}}\big(\langle\,e_i \mid i \in T\,\rangle\big) := \big(-1\big)^{\#\{\chi \in \overline{\underline{X}} \mid \chi(e_i) = 1 \text{ for all } i \in T\}}, \\ \lambda_T\big(\,M_{\overline{\underline{X}}'}\big) &:= M_{\overline{\underline{X}}}\big(\langle\,e_i \mid i \in T\,\rangle\big) := \big(-1\big)^{\#\{\chi \in \overline{\underline{X}}' \mid \chi(e_i) = 1 \text{ for all } i \in T\}}, \\ \lambda_T\big(\,M_{\overline{\underline{X}}}\,\big) \cdot \lambda_T\big(\,M_{\overline{\underline{X}}'}\big) &= \big(-1\big)^{\#\{\chi \in \overline{\underline{X}} \mid \chi(e_i) = 1 \text{ } \forall i \in T\} + \#\{\chi \in \overline{\underline{X}}' \mid \chi(e_i) = 1 \text{ } \forall i \in T\}} \\ &= \big(-1\big)^{\#\{\chi \in \overline{\underline{X}} \land \overline{\underline{X}}' \mid \chi(e_i) = 1 \text{ } \forall i \in T\}}. \end{split}$$

since

$$\#(\overline{\underline{X}} \triangle \overline{\underline{X}}') \equiv \#\overline{\underline{X}} + \#\overline{\underline{X}}' \mod 2.$$

Hence, by definition, we have

we have
$$(-1)^{\#\{\chi \in \overline{X} \ \triangle \ \overline{X}' \mid \chi(e_i) = 1 \ \forall i \in T\}}$$

$$= M_{\overline{X} \ \triangle \ \overline{X}'}(\langle e_i \mid i \in T \rangle)$$

$$= M_{\overline{X}} \cdot M_{\overline{X}'}(\langle e_i \mid i \in T \rangle)$$

$$= \lambda_T(M_{\overline{X}} \cdot M_{\overline{X}})$$

and therefore

$$\lambda_{T}(M_{\overline{X}'} \cdot M_{\overline{X}}) = \lambda_{T}(M_{\overline{X}}) \cdot \lambda_{T}(M_{\overline{X}'})$$

as claimed. Now, since the number of sets of $T \subseteq \{1, 2, ..., n\}$ with #T = k is $\binom{n}{k}$, we shall have $\binom{n}{k}$ homomorphisms of such λ_T . Thus

$$\prod_{T \in \binom{\{1,2,\ldots,n\}}{k}} \lambda_T \colon \Omega_{k-1}(G)^* \to \{\pm 1\}^{\binom{\{1,2,\ldots,n\}}{k}}$$

is also a homomorphism. Therefore by 2.1 and the construction of $\Omega_k(G)^*$ above, we conclude that

$$\Omega_k(G)^* = \ker \left(\prod_{T \in \binom{\{1,2,\ldots,n\}}{k}} \lambda_T \colon \Omega_{k-1}(G)^* \to \{\pm 1\}^{\binom{\{1,2,\ldots,n\}}{k}} \right).$$

Theorem 2.4.

$$(\Omega_{k-1}(G)^*: \Omega_k(G)^*) = 2^{\binom{n}{k}}.$$

APPENDIX: NOMENCLATURE

Throughout this paper we use the following notations:

G is an elementary Abelian 2-group.

#X or |X| is the cardinal number of a set X.

 $1_{\Omega(G)}$ is the unit element [point] of $\Omega(G)$.

 R^* is the unit group of a ring R.

 \mathbb{Z} is the ring of rational integers.

 $\mathbb{Z}_2 := \{\pm 1\}$ is a set having +1 and -1 as its elements.

 $e_i = (1, \dots, 1, -1, 1, \dots, 1)$ is an element of G, where the *i*th entry is -1.

 $\binom{\{1,2,\dots,n\}}{k}$ is the set of all subsets of order k of the set $A=\{1,2,\dots,n\}$ where k,n are fixed positive integers, $k \le n$.

Sub(G) is the subgroup lattice of G.

 $l: G \to N_0$ is a length function on G_0 , where $N_0 := \{0\} \cup N$ is the set of natural numbers N in disjoint union with the singleton set $\{0\}$, having 0 as its only element.

 \triangle is the symmetric difference.

ACKNOWLEDGMENTS

I am sincerely grateful to my Ph.D. thesis supervisors Prof. Dr. Andreas Dress and Professor Aderemi O. Kuku for their guidance, patience, and generosity.

REFERENCES

- M. A. Alawode, The Group of Units of Burnside Rings of Various Finite Groups, Ph.D. thesis, University of Ibadan, Ibadan, Nigeria, 1999.
- R. Araki, Equivalent stable homotopy theory and idempotents of Burnside rings, *Publ. Res. Inst. Math. Sci.* 18 (1982), 1193–1212.
- 3. H. Bender, On groups with abelian Sylow 2-subgroups, Math. Z. 117 (1970), 164-176.
- C. W. Curtis and I. Reiner, "Methods of Representation Theory," Vols. 1 and 2, Wiley-Interscience, New York, 1981.
- T. Dieck, "Transformation Groups and Representation Theory," Lecture Notes in Mathematics, Vol. 766, Springer-Verlag, Berlin/New York, 1979.
- 6. A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213-217.
- A. Dress, Operations in representation rings, in "Pro Symposia in Pure Mathematics," pp. 39–45, 1971.
- 8. A. Dress, Contributions to the theory of induced representations, *in* "Algebraic *K*-Theory II, Proceedings of the Battle Institute Conference, 1972," Lecture Notes in Mathematics, Vol. 342, pp. 183–240, Springer-Verlag, Berlin/New York, 1973.

- 9. A. Dress, Notes on the theory of representations of finite groups, Bielefeld Notes (1971).
- A. Dress and M. Kuchler, Zur Darstellungstheorie endlicher Gruppen I, Bielefeld Notes (1970).
- 11. W. Feit and J. Thompson, Solvability of groups of odd order, *Pacific J. Math.* 13 (1963), 775–1029.
- 12. D. Gluck, Idempotent formula for the Burnside algebra with applications to the *P*-subgroup simplicial complex, *Illinois J. Math.* **25** (1981), 63–67.
- 13. D. Gorenstein, "Finite Groups," Harper & Row, New York, 1968.
- J. A. Green, Axiomatic representation theory for finite groups, J. Pure Appl. Algebra 1 (1971), 41–77.
- W. H. Greub, "Multilinear Algebra," Springer-Verlag, Berlin/Heidelberg/New York, 1967
- 16. W. H. Gustafson, Burnside rings which are Gorenstein, Comm. Algebra 5 (1977), 1-16.
- 17. R. Keown, "An Introduction to Group Representation Theory," 1975.
- A. O. Kuku, Axiomatic theory of induced representation of finite groups, in "Group Representation and Its Applications: Les Cours du C.I.M.P.A." (A. O. Kuku, Ed.), 1985.
- I. Li, Burnside algebra of a finite inverse semigroup, Zap. Nauchn. Steklov. Inst. 46 (1974), 41–52; J. Soviet Math. 9 (1978), 322–331.
- 20. T. Matsuda, On the unit groups of Burnside rings, Japan. J. Math. (N.S.) 8 (1982), 71-93.
- 21. T. Matsuda, A note on the unit groups of the Burnside rings as Burnside ring modules, *J. Fac. Sci. Shinshu Univ.* **21**(1) (1986).
- 22. T. Matsuda and T. Miyata, On the unit groups of the Burnside rings of finite groups, *J. Math. Soc. Japan* **35** (1983), 345–354.
- 23. H. Sasaki, Green correspondence and transfer theorems of Wielandt type for *G*-functors, *J. Algebra* **79** (1982), 98–120.
- J. P. Serre, "Linear Representation of Finite Groups," Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, Berlin/Heidelberg/New York.
- 25. J. H. Walter, Finite groups with abelian Sylow 2-subgroups, *Ann. of Math.* **89** (1969), 405–514.
- 26. T. Yoshida, Character-theoretic transfer, J. Algebra 52 (1978), 1–38.
- T. Yoshida, On G-functors. I. Transfer theorems for cohomological G-functors, Hokkaido Math. J. 9 (1980), 222–257.
- 28. T. Yoshida, Idempotents of Burnside rings and Dress induction theorem, *J. Algebra* **80** (1983), 90–105.
- T. Yoshida, Idempotents and transfer theorems of Burnside rings, character rings and span rings, in "Algebraic and Topological Theories," pp. 589–615, Kinokuniya, Tokyo, 1985.
- 30. T. Yoshida, On the unit groups for Burnside rings, J. Math. Soc. Japan 42(1) (1990).