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INTRODUCTION

Let G be a finite group, Q(G) the Burnside ring of G, that is, the
Grothendieck ring obtained from the semi-ring of G-isomorphism classes
of finite G-sets under addition and multiplication induced respectively by
the disjoint union and the Cartesian product. The goal of this paper is to
give the connection between the structure of the group Q(G)* of units of
Q(G) and the associated Exterior Algebra, where

G=27,%x X1,

n-times

is an elementary abelian 2-group of order 2".
In Section 1 we discuss the condition (UB) and show how an element of
Q(G)* can be identified. In Section 2, we show that the map

w;:G' - Q(G)TH/Q(GY?
is multilinear and that

;(g,.--,8) =0
if
#{g,,...,8} <i.

Finally, we show that w; induces an isomorphism between A’(G) and
UG, , /UG
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1. CONDITION (UB)

1.1. Let
G:=17,X X1,

n-times
be an elementary abelian 2-group of order 2" and let Sub(G) denote its
subgroup lattice. It is well known that the group Q(G)* of units in the
Burnside ring Q(G) of G is canonically isomorphic to the group of maps

e:Sub(G) — {+1}

satisfying the following condition:
(UB) For all U,U,,U,, U,V € Sub(G) with (VV: U) = 4 such that
(U,,U,,U;} = {W € Sub(G)|Uc WcV},
we have
e(U) -e(Uy) - e(Uy) -e(Uy) = 1.
1.2. THEOREM. For every H < G, the map

ey Sub(G) = {1}
1, if H-U+G
-1, tH-U=G
satisfies (UB) and hence represents an element in Q(G)*.

Proof.  Assume that U,V,U,,U,, U, are as in (UB). We distinguish the
following cases:

Case 1. 1If
ey(U) = ey(U)) = ey(Uy) = e, (U;) = 1
there is nothing to prove.

Case 2. If

U 1=28; gy = {

ey (U) = —1, thatis, H-U = G,
then
G2H-U2H-U=GaG,
so H-U = G for i = 1,2,3 and therefore e, (U,) = —1 for i = 1,2,3. So
also in this case
en(U) ey (U)) - ey (U,) ey (Us) = (_1)4 = 1.
Case 3. If
ex(U) =1, ex(U) = —1
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for at least one i € {1,2,3}, say i = 1, then we argue as follows. We have

U-H+G
and

UH=G.
We have to show that we can neither have

U-H=U;-H=G
nor
U,-H#G, U,-H#G.

To this end we prove first the following.

1.3. LEmMA. If G is a group, H a normal subgroup, and W,W, are
subgroups of G with W, C W,, then

(W, W)
(H-W,:H-W,)’

Proof.  Given that W, € W, and H 4 G, then we have
HW, < HW, < G, W, NHJW, and W,NHd W,.
Consider
W, NH.

Let a be an arbitrary element of W, N H. Then o« € H and « € W,. But
W, C W,; this implies a € W,. Now a € W, and « € H; this implies
a € W,NH.

So we have

aeW NH=>a€W,NH.
Hence,
WinHCW,nH
and as both intersection are subgroups
WinH<W,NH.
In particular,
|H N W,|
|Hnw,|

is a positive integer. We now consider

|H W2| n (|H||W2|)/|Hﬂ Wzl = |I/Vz||l-1ﬁ W1|
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which implies that
Wy W) =(HnNW,:HnW))(H-W,: HW,).

This implies that (HW, : HW,) divides (W, : W), since (H N W, : H N W,)
is a positive integer.
Hence
(W)
(H-W,:H-W,)’

It also follows from this result that if
(Wy:w,) =2, then(H-W,:H- -W,) <2.
Next, we show that with G, H,U, U,, U,, U;, V' as above.
1.4. LEmMMA. If (G:U-H) = 2, then one has
U-H=G<UgU-H forj=1,23.

Proof.  Assume first that U, - H = G. Then since U - H # G, we obtain
that U-H c U, - H, and this implies that U;- H ¢ U- H, so we have that
UgU-H,since HCU-H. Thus, UH=G = U ¢ U-H.

Conversely, suppose that U & U-H. Then U;- H ¢ U - H. It also follows
that U-H c U, - H, since U C U, and therefore U-H c U;-H but U-H #

U-H. Now, as U-H # G, we get that U-H c G. We know also that
U -H c G. So it follows that

U-HcU-HcG.
Hence
2=(G:U-H)=(G:U-H)(U-H:U-H)
together with (U;- H:U - H) # 1 and therefore (by Lemma 1.3)
(U-H:U-H)=2.
This implies

or

So we must have that
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FIG.1. Stepl.

Thus,

UgU-H=U"H=QG,
and so
U-H=G=U ¢ U-H.

]
Now we continue with the proof of Case 3.
Consider the stepwise diagrams shown in Figs. 1-3 with the motive of
getting a final result for Case 3.
Step 1. Consider H - U, = G (see Fig. 1).
Step 2. See Fig. 2.
(iii) To show that U-H NV # U,, assume U-H # G. We must
show that
(i) H N U, C U by first showing that
@ H-UNnU =U.
Proof of (). 1In the first place, it is evident that

UcU-HNU,
G
UH
H/ Uy
AN U
HNU1

1
FIG. 2. Step 2.
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since
UcCcU-H, Uucu
To prove
U-HNnU cCU,
consider
U-HnNU,.

By definition of intersection,

U-HNnU cU,.
So,

UcCU-HNU cU,.

But since (U, : U) = 2, it then follows that either

U=U-HnYU
or

U-HnU =U,.
But then, by our assumption that

U-H # G; U-H=0aG,
which also implies
U ¢U-H  (see Lemma 1.4)

we obtain that
U-HNnU # U,

841
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because U+ H N U, = U, would imply that U; € U - H which in turn gives
a contradiction to our assumption. Hence
U-HNU =U.
Step 3 (see Fig. 3). Since we obtain from Step 2 that
U=U-HnU # U,
this implies U, ¢ U - H and therefore
U-HnV=+U,.
Observe that
UcCcU-HnVcV.
Step 4. See Fig. 4.
Step 5. See Fig. 5.

Without loss of generality, say, U- HN V=U, and U-H NV # U,.
We must show first that

U-HnVe{U,U,).

Proof. As
U-H<U-H- V=G
and
VAaU-H-V,
we obtain

U-HNVQU-H,
U-H-V|=IG|=2".

FIG. 4. Step 4.
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FIG.5. StepS5.

We also have that
U-H| < 2",
since U-H # G, and U, - H = G for any i together implies
1<(G:U-H) <2.

This implies

(G:U-H) =2
and hence that

U-H|=2""1.

Next, we consider the equation

UHoy - UHIW]
|(U-H)nV]|
which implies that
n 2n_]‘|V| n—1
2 =m=2 (V(UH)OV)
This implies
(V:(U-H)nV) = =2,

2n71
and since U C U-H and U C V implies U C U-H N V, because
(V:(U-H)ynvV)y=2=+V:V),(V:U)

843
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we obtain
U-HnNnV=+V,U
and also by Step 3,
U-HnV=+U,.
Hence
U-HnNnVel{l,,U}.

We shall finally prove Step 5.
Since

U-HnVel{l,,U}
by Step 4, we may then assume without loss of generality that
U-HNV=U,; U-HnV=+U.
This implies
U,cU-H,; U, ¢ U-H,since U; C V.
This implies
U,-H C UH # G; U;¢U-H.
Hence,
U,H # G; U,-H = G (by Lemma 1.4).
Therefore the proof of Case 3 is complete.
So we conclude by Case 1, Case 2, and Case 3 that the map
ey :Sub(G) — {£1}

satisfies condition (UB).

2. MULTILINEARITY CONDITION

2.1. Now for each i = 0,1, 2,..., we define
Q(G); ={e € Q(G)" |e(U) = 1forall U < G with [U| < 2"~}
and observe that
ey € QUG);  if|HI<2"',H<G.

2.2. THEOREM. Define the map

w1 G' > Q(G)111/(G);

by

(8155 &) = €ig.., g,)Q(G)?-
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Then

22.1. w; is multilinear, and
222, wfg,....8)=01if #{g,,...,8} <i.

Before we prove Statement 2.2.1, we shall first state and prove the
following useful lemmata:

23. LEMMA. Let G be a group of order 2" and K, H < G, such that
|K|=2"and |H|=2""".ThenK-H=G < KN H = 1.

Proof. As K < G and H 4 G imply
K-H=(K,H) <G,
we consider the equation
|K|-|H]|
|K N H|
9i . gn—i
" KN H|

2i+n~i

K HI=

T KN H|
2'1

KN H|

Hence
|IK-H|=|G|=2"<|KNH|=1.
Therefore
G=K-HeKNnH=1.
2.4. LEMMA. Let

G=17,x7,Xx7,, ACG.

n-times
Then
[<a>| < 274
Proof. Assume #A := i. Label the elements in A as, say, a,,...,a;, SO
that
A= {ay,...,a;}.
Then

(Ay ={as,...,af | €,..., & € {0,1}}.

To see this, let H be the set on the righthand side above. Since (A4) is
closed under multiplication and the forming of inverses, H C {A). But



846 MICHAEL A. ALAWODE

also, by definition, { A) is the unique smallest subgroup of G containing
A in the sense that, for all U < G, whenever A C U < G, then (A) < U.
Obviously, since all the elements of A are used up in the construction of
an element of H, A C H. Now, let h{,h, € H. Then h, :== aj'...aj for
all choices of €,...,¢ €{0,1}, and h, == af...a} for every choice of
M-, € {0,1}. Next we consider

hy-hy' = (af a5 .. a5 - af)(a] - at .. a4}y cam) !,

= g€ .g¢ Ci-1.g€.qg " Mi.g Mi-1 M2 g M
=ay'-axr...a;7caia; a; T eoaay rap Y

=qgflt.g "M .gE €i-1.g€% g Mi.qg~Mi-1 \”
=aif-a;M-a... a7} afi-a; " a N ay T

=qgft.g " M.gf2.q-M €i-1.g€% g Mi.g Mi-1
ai'ra;M-aa, ™. oai afia; Mea L

Continuing in this way, we get

hl . h2—1 = alél—"h . a;z—’ﬂz .. al?,:ll—m—l . aie[*m

af'-as? ... a ) af

i

where in view of the special structure of G, «; is determined by ¢; and 7,
according to the scheme

€|

| 0 1

0 0 1

1 1 0

Hence h, -h;' € H, and this implies that H < G. So we have
(A) < H, and therefore ( A) = H.

Hence, we obtain [{ A)| < 2#4, since

2'=#{(€,..., ) | € {0,1}}.

Proof of Statement 2.2.1. Let r be such that 1 < r < i. For every r and
g, h, € G. Consider

0 (815 81,8 * My 8ri1se -5 81)
= 0(81-- 8- 8) @i(&rse s, 81)
To see this, we must prove that
e(g, ..... grxh,, ..., g,-}(H)e(g] ..... 8rreves gi>(H)e<g, ..... Ry gl-)(H) =1

for all H < G with |H| < 2"".
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Without loss of generality we may assume that r = i, put a == g;,, b = h,,

c=g;*h; sothat a-b-c = 1. Then we can define
A=Lg, ..., 8_1,a)
Bi=<g,....81,b)
C=Ag1,--,8_1,€)-

Note that since
|A| < 2F,
|B| < 2,
IC| < 27,
we have by the above result that
e,y € Q(G)Tﬂa
eB € Q(G)TJrls
and
€c = Q(G)TJrl’

respectively, that is, the following case is obvious. For any H < G with

|H| < 2"~ we get that
e (H) =eg(H) =ec(H) =1

So, we consider the only non-trivial case |H| = 2""".

Next we shall discuss under this case some of the useful consequences

derived for members in the set
{4, B,C}
and with respect to distinguished cases as
(i) Assume |A4| =|B|=|C| = 2.
(ii) Assume |A| < 2', |B| =|C| = 2.
(iii)) Assume |A| < 2% |B| < 2/, |C| = 2.
(iv) Assume |A| < 2% |B| < 2, |C| < 2.
First, we discuss case (iv) as follows: As
|A| <271, Bl <271 IC| <2171,
we obtain
|H-A| <2/~ 120" =271 < |G|,
|H-Bl <2 12071 =271 <G|,
|H-C|< 2" .27 =271 < |G,
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and it follows by definition that
e (H) =eg(H) =ec(H) = 1.

Second, we discuss cases (ii) and (iii) by proving the following lemma:

2.5. LEMMA. The following are equivalent

@H A= <g1,---,gi—1>
(i) a€{gy....8 1
Gii) B =C.

Proof. () = (i), ie, A=Cg,...,8_17=>a<c{g,..-,8_1). As-

sume
A={g-, 81
Since
a€A={g,,...,8_1,a) and A={g,..-,8_1)

it follows that a € {g,,...,&_1)-

(i) = (ii), i.e.,

ac{g,.--,8_17=>B=C.
Assume a € {gy,...,&;_,. Then we have
a=gf,...,8" for some choices €,,...,¢_; € {0,1}.
In view of gy,..., g;_, € C by definition, it is enough to observe that
b=ac=g...gf "¢
€ <g1>"'7gi—]7c> = C>

hence, B c C.
Similarly, on the other hand, in view of g,,..., g,_; € B we observe that

c=ab=g...gf b
e€{g,---,8_1,b) = B.

Hence, C C B; therefore, B = C.

(iii) = (i), i.e, B=C=ae€{g,,...,8_,). Assume B = C. Then
there exist €;,...,€_;, € and ny,...,m_, n wWith b =gf' ... g% - c€ and
c=gM...g" - b" Now if € =1, then

a=bc=gf.. . g crc=g80...87 €8s 8i_1)-
Similarly, if n = 1, then
a=bc=cb=gM...g" ' -b-b=gM. .. gl e€lg,....8_1)
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and if € = n = 0 then

belgy, -3 8_1) ce{g,-r8i_1)-
This implies
a=bce{g, . 8_17
hence,
a €81y 8i1)-
() = (), ie,acs gy, .., 8_1) =A={gy--.,8_,7- Assume
a€{g s 8i_1)-
Then we have
(8151 8i-1) €4,
since
a€A={gy...,8_1,a)
also
Acg-8im1)
since by assumption
a € g, r8_17»
hence
A={g-, 81
and the proof of the lemma is complete.

Continuation of the Proof of Statement 2.2.1. By Lemma 2.4, we get that
|<gl""7gi—l>| = 21’7]'
Hence, in this case,
Al <2 e |Al=2""" "o A={g,,...,g_1)

In view of the above considerations we conclude that Case (ii) is possible
and our formula

e (H) eg(H) ec(H) =1
is almost trivially satisfied, since

|H-Al <2727 =271 < |G|, implies e,(H) = 1,
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and either H-B = H-C = G and then we have
|H-B|=2""1-20 - 2" = |G|, implies ez(H) = —1,
and
|H-C|=2""1"20=2" =|G|, implies e.(H) = —1,
or
H-B=H-C#G.
Then we obtain
|H-B|=2""1.2i"1 =21 <G|, implies ez (H) = 1,
|H-C| <2 1. 2071 =2n"1 <G, implies e.(H) = 1.

But case (iii) is not possible. So we are left to discuss case (i) as follows.
Assume

|4l = 1Bl =|C| = 2'
and consider
A=Lg -, 8_1){a),
B={(g,...,8_1) <b),
C=<g--»8-12 c),
[{a)|
|<g15""gi—1> N <a>|

= (A:<gl""7gi71>) =2.

Since
<81, 80| =271,
this implies
[<a)| =2,|{gp,---»8_1) N{a)| = 1.
Similarly, we obtain
(B:{g1,---»8-10) =2,
(C:Xgys- s 817) =2.

Also, since it is clear that g,,...,8,_{ €4 and g,...,8,_, € B implies
g1,---,8i_1 €A N B, this implies

{g,---»8&_17 SANBCA,B
and A N B # A or B because A # B by Lemma 2.5.
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Similarly, we obtain
{g,---,8_17 SBNCCcB,C, B=+C
{g1)---,8_17SANCCA,C, A#C
so we must have
(A:ANB) =2, (B:ANB) =2,
(C:BNnC) =2, (B:BnC)=2,
(C:ANnC) =2, (A:ANnC)=2.
Next we consider
(A:ANB) - (ANB:{g,....8 1)) =(A:{g,.- -, 8_17)-
Then we have
2-(ANB:{g,..., 8 1)) =2.
This implies
(ANB:{g,....8 ) =1
hence,
ANB=4g1,---,8_17-
Similarly, we obtain
BNC=Ag,---,8_1»
ANC={gy,---,8_1-
It also follows that
l[ANBl=IBNCl=lAnC|=2""
Also, since
81> 8-, b €Xg1, ., &1, (8,5 8im 1, b,
8is--s8i_1sb,ce{g,. o 8i_1,b) g1y s 8i_15C),
81rr8i1,A,CELG1sees8io1>A) {&g1s>8i_1,C)»
and a-b-c = 1, we get that
D cA-B, because ¢ = a - b,
DcB-C, because a = b - c,
DcA-C, because b = a - c,

where
D = <g15"'7g[—17a7b>5
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and since
ACD,BcCDimplies A-BCD,
BcD,CcDimplies B-C C D,
AcCD,CcDimplies A-CcD,
it follows that
D=A-B=B-C=A4-C.
Now we compute
[AIIBlIBIICI  14lIC]
l[AnBl |BNC| |AnC]

i+1

|D| =

2.6. We are now set to give the proof of non-trivial case: That is, we
must prove that if H < G, |H|=2"""and H-A = G then either H-B =
G and H - C # G or vice-versa.

Note that H-A = G implies H-D = G.

Proof. Since

|H||D|
|H-D| = ———,
|H N D|
we have
2n7i.2i+1
211 — ,
|H N D|
and hence
n—i‘2i+]
|H N Dl — T — 2nfi+i+1fn — 21 =2.

Similarly, we obtain
|[HN{(A-BY|=|HN(B-C)|=|HN{A-C)| =2,
since
D=A-B=B-C=A4-C,

Now as |[H N (A - C)| =2, there exists precisely one element, say u € G,
such that u # 1 and Ku)| =2 with {u) Cc H and {u) € (A -C), since
HnN{A-C) = <{u). Similarly, we get HN{(A-B)y=HN({(B-C)=H
N D = {u). But then by our hypothesis H-A = G implies H N A = 1,
and it follows that {u) ¢ A4, as {u) C H.

Now we know the following:
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H-A =G and HNA =1, and this implies u & A4,
H-B=GeHNB=1,
H-C=GeHNC=1,
HnND=<u)>HNB, HN C 21, and this implies

HNnB=1eoué&¢B and HnNnC#1leueC
or, in other words,

HNnB#1euehB and HNnC=1eu¢&C.
We must show either

u¢B and uecC
or

ueB and uée&C
To see this, we have to show that neither

u<B and uecC
nor

u¢B and uée&C
can hold.

Hence, assume first that on the contrary u € B and u € C. Then we
consider B N C, and use the fact that

(A: g -n8-17) <2, BNC={g,....8 1)
We obtain
BnNnCcA,
and it follows that u € A, a contradiction. So we can’t have

u€eB and uecC.
Assume second that
uéB and u ¢ C.

Then we have

ueB-C=D={g,...,8_1,a,b).
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This implies
u= glfl . giefll -ati- b€z+1

for some choices of €,..., €., € {0,1}.
Now, by hypotheses

u & A implies u # gi'... g5+ -a for every choice of €f,...

{0’ 1}’

u & B implies u # gl ... gff]l - b€ for every choice of €,...
{0,1}, and

u ¢ C implies u # g ... gfgfll - ¢ for every choice of €], ...
{0, 1}.

Now if €, = 0, then we shall have
u=gi...go 1 a €A =4g,...,8_1,a),
hence
€1 70=¢, =1
If ¢ = 0, then we get that
u=gf...go b1 €B:=g,....8_1,.b),

hence

and so we have

Hence we obtain
L 4 i— 1 _ i-1. ol
u=gi...g7 ' (ab) =g...g ¢
e C=1{g,...,8_1,C,acontradiction.
So we cannot have

uéB and u ¢ C.

Therefore, the proof of the non-trivial case is complete.
Hence

e<g]’“"gr*hr"'~’gi>(H) ‘e<g] )))) gz>(H) .e<gl’~"ahr"'~’gi>(H) =

since abc = 1

e e

>

G-’” e

>l

1
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for all H < G with |H| < 2" and by definition, we obtain
0 (815> & *h 5.0, 8)

= wi(gl"">gi) 'wi(gla""hr""’gi)'

Thus, w; is a multilinear map.
Now, consider again the map

w:G' > Q(G)TH/Q(GY?
:(g17""gi) e e(gl ..... g,)Q’(G)?

If we impose on this map the condition that #{g,,...,g;} <i then we
obtain as follows. As #{g,...,g;} <i — 1, then we obtain by Lemma 2.4
that

SRR M A

and this implies

or

€<g1 ..... g,»)Q(G)T = Q(G)T
So by definition, we get

;(&,---,8) = 0.

Hence, w,(g;,...,8;) =0 whenever #{g,,..., g} <i, and the proof of
Theorem 2.2 is complete.

3. ISOMORPHISM BETWEEN A‘(G) AND Q(G), ,/Q(G)?

3.1. w; induces a canonical map
&1 N\ (G) = QG)i /(G
which maps

g A Ang € N (G)onto
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3.2. CLAIM. @, is an isomorphism.

Proof.  First, we note that @, is a well defined linear map, because of
the universal properties of A’(G) and the particular properties established
above of the map w,.

Second,

i

A(G) and  Q(G)i,1/QG)]
are both of the same order, because
(Q(GYi1: Q(G)F) =20

and by standard results, we know that as dim(G/F,) = n, we have
dim A'(G) = (#), and this implies

A )] =20

Third, we establish injectivity of ®; in the following way. Now assume
that A € A'(G) satisfies

w;(A) =0,  thatis,

yr(@ (X)) =1  forallT e ({1"""”})’
n—1
where v, : 0(G)y1 - (1),

This implies that for every

Te ({1,2,....,n})
n—i
we have
o (M) (e lieTy) =1,
where ¢, = (1,...,1,-1,1,...,D € G
ith position
foralli=1,...,n.
As G = ey,.. and A € A'(G) there are unique coefficients

e,
Gy, .k €F, (1 <k < -+ <k; <n)such that

,,,,,,

A= Y Co, rei, N Aey.

1<k, <k,< - <k;<n I
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Hence, for any

we have
vr(@(2) = & (A)(Ce; i € T))

_ I1 Cer ey € T))
n

1<k <k,< - <k;<

i

Cry ok

=1,

where
. 8F
e<ek1 ,,,,, eki>(<ei|l S T>) = (—1) e ki)
we define with

0, if {ky,....k} "T+Q
8T =
taee, kb 1, if {ky,....k} N T=0.

This means that

8k, . xy =1 ifandonlyif T:={1,...,n}\{k,...,k;}.

,,,,,,

Applying this definition on individual factors of the above products rela-
tion, we obtain for a fixed {k!,...,k"} with T :={1,...,n)\{k},..., &k}
that

Bky,...ky =1 and &,
for
(kyvoo k) # (kY KO
This implies
€legg..... ekp)(<ei|i €T))=-1, €leg,noms eki>(<ei lieT))=1

and substituting this in the above products relation, we get that

1

YT((:)i(/\))zlgk I1 . (=D, k,-})Ckl-“k'

< <k;<n
_ (_1)Ck§'...k,“,

and therefore,
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Hence, for every {k},..., k"} we must have
Ck?...kf.‘ =0,
which implies that

A= Y Co, xex, N Ae =0,

1<k <k,< - <k;<n

hence, o, is injective.
So it is clear from the above considerations that &, is surjective and that
the vectors

[e<ek1 77777 Eki>]’{k1"”’ki} c{1,2,...,n}

generate
Q(G)11 /G

Therefore, @, is an isomorphism.
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