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Abstract

The paper is concerned with the uniform asymptotic stability for all solutions

of a third order nonlinear differential equation (1.1). Sufficient conditions

under which all solutions x(t), its first and second derivatives tend to zero

as t→∞ are given.
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1 Introduction

Stability analysis of nonlinear systems is an important area of current re-

search and many concept of stability analysis have in the past and also

recently been studied, see for instance Reissig et. al., [11], Rouche et. al.,

[12] and Yoshizawa [16]. The study of the qualitative behaviour of solutions

to third order nonlinear differential equations has been discussed by many

authors in a series of papers, see for instance Afuwape [1], Afuwape and

Adesina [2], Andres [3], Bereketoǧlu, and Györi [4], Ezeilo [5, 6], Ezeilo and

Tejumola [7], Hara [8], Ogundare [9], Qian [10], Tejumola [13] and Tunc [14,

15]. These works were done with the aid of Lyapunov functions except in [2],

where frequency domain approach was used. With respect to our observa-

tion in the relevant literature, works on the uniform asymptotic stability for

third order nonlinear differential equation (1.1) using a complete Lyapunov

function are scarce.

The purpose of this paper is to study the uniform asymptotic stability

of the third order nonlinear autonomous ordinary differential equation

...
x + f(ẍ) + g(ẋ) + h(x) = 0 (1.1)

or its equivalent system of differential equations

ẋ = y,

ẏ = z,

ż = −f(z)− g(y)− h(x),

(1.2)

where f, g, h ∈ C(R, R) and R = (−∞, ∞). In what follows, we assume that

the functions f, g and h depend only on the arguments displayed explicitly.

The dots, as usual, indicate differentiation with respect to t. Furthermore

we shall require that the derivative h′(x) =
dh(x)
dx

exists and continuous

and the uniqueness of solutions to (1.1) or (1.2) will be assumed. We shall

use Lyapunov’s second (or direct) method as our basic tool to achieve the

desired results.

The results obtained in this work complement existing results on third

order nonlinear differential equations in the literature.
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2 Main Results

We have the following results:

Theorem 2.1 Suppose that a, b, c, δ0 are positive constants and that

(i) h(0) = 0, δ0 ≤ h(x)/x, for all x 6= 0;

(ii) h′(x) ≤ c for all x;

(iii) b ≤ g(y)/y ≤ b1, for all y 6= 0;

(iv) a ≤ f(z)/z, for all z 6= 0;

Then the zero solution of the system (1.2) is uniformly asymptotically stable.

Remark 2.2 Hypotheses (ii), (iii) and (iv) of the theorem imply the exis-

tence of arbitrary positive constant α, satisfying

0 < α < b− c

a
(2.1)

Remark 2.3 If (1.1) is a constant coefficient differential equation
...
x+aẍ+

bẋ + cx = 0, then conditions (i)-(iv) of Theorem 2.1 reduce to the Routh-

Hurwitz conditions a > 0, ab > c and c > 0. To show this, we set f(ẍ) =

aẍ, g(ẋ) = bẋ and h(x) = cx.

For the proof of Theorem 2.1 our main tool is the continuous differen-

tiable function V = V (x, y, z) defined by

2V = 2a
∫ x

0
h(ξ)dξ + 2

∫ y

0
g(τ)dτ + 2yh(x) + αbx2

+(α+ a2)y2 + z2 + 2αaxy + 2αxz + 2ayz
(2.2)

where α is defined in (2.1).The following lemmas are used for proving that

the function V defined in (2.2) is a Lyapunov function for the system (1.2).

Lemma 2.4 Suppose that all the conditions of the Theorem 2.1 hold. Then

there are positive constants Di = Di(a, b, c, δ0, b1), (i = 0, 1) such that for

all (x, y, z) ∈ R3

D0(x2 + y2 + z2) ≤ V ≤ D1(x2 + y2 + z2) (2.3)
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Proof. We observe that the function V defined in (2.2) can be rewritten

as follows:

2V = V1 + V2

where

V1 = 2a
∫ x

0
h(ξ)dξ + 2

∫ y

0
g(τ)dτ + 2yh(x)

and

V2 = αbx2 + (α+ a2)y2 + z2 + 2αaxy + 2αxz + 2ayz.

In view of hypotheses (ii) and (iii), and the fact that h(0) = 0, we obtain

V1 ≥ (ab− c)b−1δ0x
2, (2.4)

for all x. V2 can be rewritten as

V2 = XQXT

where X =
(
x y z

)
, Q =


αb αa α

αa α+ a2 a

α a 1

 and detQ = α2(b −

α) > α2, since b− α > 0 from (2.1). Hence for all (x, y, z) ∈ R3, we obtain

V2 ≥ α2(x2 + y2 + z2). (2.5)

On combining the estimates (2.4) and (2.5), we obtain the first inequality in

(2.3) for all (x, y, z) ∈ R3. To establish the second inequality, let us observe

that hypothesis (ii) of the theorem implies that h(x) ≤ cx for all x, since

h(0) = 0. It follows from hypotheses (ii) and (iii) that

V1 ≤ c(a+ 1)x2 + (b1 + c)y2 (2.6)

V2 ≤ α(a+ b+ 1)x2 + (a+ 1)(α+ a)y2 + (α+ a+ 1)z2. (2.7)

On gathering the estimates (2.6) and (2.7), we obtain the upper inequality in

(2.3) which proves the lemma. 2

Lemma 2.5 Under the hypotheses of the Theorem 2.1, there exist positive

constants Di = Di(a, b, c, δ0), (i = 2, 3, 4), such that if (x(t), y(t), z(t)) is

any solution of the system (1.2) then

V̇ ≡ d

dt
V (x, y, z) ≤ −(D2x

2 +D3y
2 +D4z

2). (2.8)
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Proof. Along any solution (x(t), y(t), z(t)) of the system (1.2), it follows

from the system (1.2) and the equation (2.2) that

V̇(1.2) = −αxh(x)− (ayg(y)− y2h′(x))− α(g(y)− by)x

− (αx+ ay + z)(f(z)− az) + αY Q1Y
T ,

where Y =
(
y z

)
, Q1 =

 a 1

1 0

 and detQ1 = −1. On applying

conditions (i)-(iv), we have

V̇(1.2) ≤ −1
2
αδ0x

2 − 7
8
(α+ ab− cα)y2 − 1

2
αz2 −Wj , (j = i, 2, 3) (2.9)

where

W1 = α

(
1
4
δ0x

2 + (g(y)− by)x+
1

16α
(α+ ab− c)y2

)
, (2.10)

W2 = α

(
1
4
δ0x

2 + (f(z)− az)x+
1
4
z2

)
, (2.11)

W3 = a

(
1

16a
(α+ ab− c)y2 + (f(z)− az)y +

1
4a
αz2

)
. (2.12)

On using the following inequalities

(g(y)− by)2 <
δ0(α+ ab− c)

16α
y2, (2.13)

(f(z)− az)2 <
δ0
4
z2, (2.14)

(f(z)− az)2 <
(α+ ab− c)

16a2
z2, (2.15)

we have respectively,

W1 ≥ α

4

(
2
√
δ0|x| −

√
α+ ab− c

α
|y|

)2

≥ 0 for all x, y (2.16)

W2 ≥ α

4

(√
δ0|x| −

√
α

a
|z|

)2

≥ 0 for all x, z, (2.17)

W3 ≥ a

4

(√
α+ ab− c

a
|y| − 2

√
α

a
|z|

)2

≥ 0 for all y, z. (2.18)

On gathering the estimates (2.16)-(2.18), the inequality (2.9) becomes

V̇(1.2) ≤ −1
2
αδ0x

2 − 7
8
(α+ ab− c)y2 − 1

2
αz2
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which proves the lemma. 2

Proof of Theorem 2.1. To prove the Theorem 2.1, we shall use the usual

limit point argument as is contained in [16] to show that when Lemma 2.4

and Lemma 2.5 hold, then V (t) ≡ V (x(t), y(t), z(t)) → 0

as t→∞. In view of the fact that from Lemma 2.5,

V (x, y, z) = 0 if and if only if x2 + y2 + z2 = 0,

V (x, y, z) > 0 if and if only if x2 + y2 + z2 6= 0,

V (x, y, z) →∞ if and if only if x2 + y2 + z2 →∞.

Now assume that ϑ = (x, y, z) is any solution of the system (1.2), and

consider the function V (t) ≡ V (x(t), y(t), z(t)) which corresponds to this

solution. By Lemma 2.5 (inequality (2.8))

V̇ ≤ −(D2x
2 +D3y

2 +D4z
2) ≤ V (0) ∀t ≥ 0.

Furthermore, V (t) is non-negative and non-increasing, and thus tends to a

non-negative limit, V (∞) as t→∞. The Theorem 2.1 will be proved if we

can show that V (∞) = 0. Therefore, suppose V (∞) > 0 and consider the

set

S = {(x, y, z)|V (x, y, z) ≤ V (0)}.

It follows from the properties of the function V that S is bounded and

hence the set ϑ ⊂ S is also bounded. Also, the non-empty set of all limits

points of ϑ consists of whole trajectories of the system (1.2) lying on the

surface V (x, y, z) = V (∞). However, if P is a limit point of ϑ, then there

exists a half trajectory, say ϑP , issuing from P and lying on the surface

V (x, y, z) = V (∞). Since for every point (x, y, z) on ϑP , V (x, y, z) ≥ V (∞),

we deduce at once that V̇ = 0 on ϑP . It follows from Lemma 2.5 (inequality

(2.8)) that x = y = z = 0.

Thus the point (0, 0, 0) lies on the surface V (x, y, z) = V (∞) which

contradicts V (x, y, z) ≥ V (∞). Hence V (∞) = 0. This completes the proof

of the Theorem 2.1. 2
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Theorem 2.6 Suppose that g(0) = 0 = h(0) and that

(i) conditions (i)-(iv) of Theorem 2.1 hold;

(ii) H(x) →∞ as |x| → ∞.

Then every solution (x(t), y(t), z(t)) of (1.2) satisfies

x(t) → 0, y(t) → 0, z(t) → 0 (2.19)

as t→∞.

For the proof of Theorem 2.6 we shall require the following preliminary

lemma. Let

H(x) =
∫ x

0
h(ξ)dξ and G(y) =

∫ y

0
g(τ)dτ

for all x, y then we have the following results:

Lemma 2.7 Subject to the conditions g(0) = 0 = h(0), h(x)/x > 0

(x 6= 0) δ(g(y)/y) − h′(x) > 0 (y 6= 0), where δ > 0is a constant, the

functions h,G,H satisfy the inequality

4δH(x)G(y) ≥ y2h2(x).

Proof. See [5]. 2

Proof. The proof of Theorem 2.6 depends on some fundamental proper-

ties of a continuously differentiable function V = V (x, y, z) defined by:

2V = 2aH(x) + 2G(y) + 2yh(x) + a2y2 + z2 + 2ayz. (2.20)

This function and its time derivatives satisfy some fundamental inequalities.

First, we shall show, under the hypotheses of Theorem 2.6, that the function

V defined in (2.20) is positive definite. It is clear from the equation (2.20)

that V (0, 0, 0) = 0, and in view of hypotheses (i)-(iv) of the Theorem 2.1,

the equation (2.20) becomes

V ≥ 1
2

[
(ab− c)b−1δ0x

2 + (ay + z)2
]
.

The quadratic form on the right hand side of the above inequality is positive

definite, hence there exists a positive constant δ1 such that for all (x, y, z) ∈

R3

V ≥ δ1(x2 + y2 + z2). (2.21)
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Next, we shall show that any solution (x(t), y(t), z(t)) of the system (1.2) is

bounded. To see this, we shall show that the inequality

V (x(t), y(t), z(t)) ≤ K <∞, t > 0, (2.22)

where K > 0 is a constant, necessarily implies (under the present condition)

the boundedness of x(t), y(t) and z(t) for all t ≥ 0. Now, the system (2.20)

can be rearranged as

2V = 2aH(x) + 2G(y) + 2yh(x) + (ay + z)2,

and if the inequality (2.22) holds, then

|z(t) + ay(t)| < K0 ≡ (2K)1/2, Φ0(x(t), y(t)) ≤ K t ≥ 0. (2.23)

This follows since Φ0(x(t), y(t)) ≡ aH(x) + G(y) + yh(x) ≥ 0 from the

inequality (2.4). On following the procedure in [5], we can conclude that the

solutions x(t), y(t) and z(t) are bounded.

In order to prove (2.19), let (x(t), y(t), z(t)) be any solution of the system

(1.2) and consider the function defined in the equation (2.20), then

V̇(1.2) ≡ d

dt
V (x(t), y(t), z(t))

= −1
2
(ayg(y)− y2h′(x))−W − z(f(z)− az)

≤ −1
2
(ab− c)y2 −W,

where

W = a

(
ab− c

2a
y2 + (f(z)− az)y

)
. (2.24)

From the equation (2.24) and on using the inequality

[(f(z)− az)y]2 <
(√

ab− c

2a
|y||z| − 1

4
z2

)2

,

we have that

W ≥ a

(√
ab− c

2a
|y| − 1

2
|z|

)2

≥ 0 (2.25)

for all y and z. Hence, from (2.25), we obtain

V̇(1.2) ≤ −1
2
(ab− c)y2 ≤ 0

for all y. The conclusion of remaining part of the proof follows the steps in the

proof of the Theorem 2.1 and hence it is ommited. 2
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[4] H. Bereketoǧlu, and I. Györi, On the boundedness of solutions of a third-

order nonlinear differential equation, Dynam. Systems Appl., (2) 6

(1997), 263-270.

[5] J.O.C. Ezeilo, Stability results for the solutions of some third and fourth

order differential equations, Ann. Math. Pura Appl. (4) 66 (1964),

233-249.

[6] J.O.C. Ezeilo, A generalization of a boundedness theorem for the equa-

tion
...
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