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ABSTRACT 
 
Sufficient conditions are established for the 
uniform ultimate boundedness of solutions of a 
third-order nonlinear differential equation (1). 
When , criteria under which all 
solutions 

( , , ', '') 0p t x x x =
( ),x t its first and second derivatives 

tend to zero as are given. ,t →∞
 
(Keywords: third-order, differential equations, stability, 

uniform-bounded, ultimate boundedness) 
 
 
INTRODUCTION 
 
Nonlinear third-order differential equations have 
been extensively studied with high degree of 
generality. In particular, there have been 
interesting works on asymptotic behavior, 
boundedness, periodicity, and stability of 
solutions for nonlinear differential equations of the 
third-order. Authors that have worked in this 
direction include Ademola et. al., [1, 2, 3], 
Afuwape [4], Bereketoğlu and Giyöri [5], Ezeilo 
[6], Omeike [7], and Swick [9], to mention a few.  
 
All the above mention works were done by using 
the Lyapunov’s second method except in [2] and 
[4], where Yoshizawa function and frequency 
domain technique were used. 
                  
In this paper, we shall investigate uniform ultimate 
boundedness and stability of solutions of the 
third-order nonlinear ordinary differential 
equation: 
 

( , , , ) ( ) ( , ) ( , , )x f t x x x x q t g x x h x x x′′′ ′ ′′ ′′ ′ ′ ′′+ + +
( , , , )p t x y z=                           (1)        

 
or its equivalent system:    
 

,x y′ =  
,y z′ =
( , , , ) ( , , , ) ( ) ( , )z p t x y z f t x x x x q t g x x′ ′ ′′ ′′ ′= − −

( , , )h x x x′ ′′−                (2)  
 
where , , ,f g h p  and q  are continuous in their 
respective arguments, and  ,x x′ ′′ and x′′′denote 
the first, second and third derivatives of the 
function ( )x t with respect to . The derivatives: t
 

( , , , )/ ( , , , ),tf t x y z t f t x y z∂ ∂ =  

( , , , )/ ( , , , ),xf t x y z x f t x y z∂ ∂ = ( , , , )/ ( , , , ),zf t x y z z f t x y z∂ ∂ =
( , )/ ( , )xg x y x g x y∂ ∂ = , ( , , )/ ( , , ),xh x y z x h x y z∂ ∂ =  
( , , ) /h x y z y∂ ∂ = ( , , ),yh x y z ( , , )/ ( , , )zh x y z z h x y z∂ ∂ =   

and ( )/ ( )dq t dt q t′=  
 
exist and are continuous. Moreover, the existence 
and uniqueness of solutions of (1) will be 
assumed.                                                                                          
 
In 2005, Tunç [10] discussed criteria for 
boundedness of solutions of a third-order 
nonlinear differential equation: 
                         

( , , ) ( , ) ( , , )x f x x x x g x x h x x x′′′ ′ ′′ ′′ ′ ′ ′′+ + +                                   
( , , , )p t x x x′ ′′=                               (3)              

 
In 2008, Ademola et. al., [2] and Omeike [7] 
established conditions for the ultimate 
boundedness of solutions of a third-order 
differential equation (3) using a complete 
Yoshizawa and a complete Lyapunov functions, 
respectively.          
 
However, the problem of stability and 
boundedness of solutions of third-order 
differential equations where the nonlinear, 
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specifically the restoring, terms depend on the 
independent variable t  and multiple of the 
functions of t  are scare. Motivation for this study 
comes from the works of Ademola et. al, [1, 3], 
Omeike [7] and Swick [9]. 
 
The purpose of this paper, therefore, is to 
investigate criteria under which all solutions 

( ),x t its first and second derivative, when 
, tend to zero as   ( , , , ) 0p t x x x′ ′′ = .t → ∞

 
Sufficient conditions were also obtained for 
uniform ultimate boundedness of solutions of a 
third-order differential Equation (1). Here, the 
Lyapunov second method is used to achieve the 
desired results. Our results do not only 
generalize, to third-order equation, the results in 
[1, 3, 9] but also include and extend the result in 
[7]. Some existing results on third-order nonlinear 
differential equations, which have been discussed 
in [8], are also generalized.  
 
 
MAIN RESULTS 
 
In the case , Equation (2) 
becomes: 

( , , ', '') 0p t x x x =

 
,x y′ =  
,y z′ =
( , , , ) ( ) ( , ) ( , , )z f t x x x x q t g x x h x x x′ ′ ′′ ′′ ′ ′ ′′= − − −      

      (4) 

with the following result. 
 
THEOREM 1. In addition to the basic 
assumptions on the functions , , ,f g h p  and ,q  
suppose that there are positive constants 

0 0 0, , , , , , , ,a a b b c q α β δ andμ such that for all 

the following conditions are satisfied: 0,t ≥
 
(i) (0,0,0) 0,h = ( ,0,0) /h x xδ ≤   0;x ≠
 
(ii)  for all 

 

(0,0) 0,g = 0( , ) /b g x y y b≤ ≤
, 0x y ≠ ;

 
(iii)  for all 0( , , , )a f t x y z a≤ ≤ , , ;x y z  
 
(iv)  ( ),q tμ ≤    '( ) 0;q t ≤
 

(v) ( , , , ) 0,tf t x y z ≤   ( , , , ) 0,xyf t x y z ≤
( , ) 0,xg x y ≤   for all ( ,0,0)xh x c≤ , 0x y ;≠  

 
(vi)

 for all 

( , ,0) 0,yh x y ≥ ( ,0, ) 0,zh x z ≥

( , , , ) 0zyf t x y z ≥ , ,x y z .  
 
Then every solution ( ( ), ( ), ( ))x t y t z t of (4) is 
uniform-bounded and satisfies:  
 

( ) 0,x t →     as . 
     (5)  

( ) 0,y t → ( ) 0z t → t →∞

 
 
REMARK 2.  Observe that the hypotheses: 

( , , , ),a f t x y z≤  ( , ) /b g x y y≤  0y ≠ , 

( ,0,0) /h x xδ ≤  0x ≠ , ( ,0,0)xh x c≤ and 

( )q tμ ≤  of Theorem 1 imply the existence of 
arbitrary positive constants α and β satisfying:  
 

c a
b

α
μ
< <                       (6a) 

 
and                    

1 2
10 min{ ;( ) ; ( )
2

b ab c a }β μ μ η α η≤ ≤ − −
 

(6b)                                   

 
where,  
 

1 2 2 1
1 [1 [ ( , ) / ] ]a g x y y bη δ μ− −= + + −  

and 1 2
2 [1 [ ( , , , ) ] ]f t x y z aη δ 1− −= + −  

for all , ,x y z and  0.t ≥
 
 
REMARK 3.     
 
(i) Note that 

( , , , ) ( ),f t x y z f z≡ ( ) ( , ) ( )q t g x y g y≡  
and ( , , ) ( ),h x y x h x≡ system (2.1) reduces to 
that investigated by Ademola et. al, in [3].                                        
 
(ii) Also, whenever 

( , , , ) ( , , ),f t x y z f t x y≡ ( , ) ( )g x y g y≡ and 
( , , ) ( ) ( )h x y z r t h x≡ system (2.1) specializes to 

that studied by Swick in [9].                                              
 
(iii) Furthermore, the hypotheses on (4) are 
considerably weaker than those in [3] and [9]. 
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Hence, our result generalizes the results in [3] 
and [9].  
 
The proofs of our results depend on some certain 
fundamental properties of a continuously 
differentiable Lyapunov function ( , , , )V V t x y z=  
defined by: 
      

0 0

2

0

2 2

2 2( ) ( , 0, 0) 4 ( ) ( , )

4 ( , 0, 0) 2 2

2( ) ( , , , 0) 2( )

( ) 2

x y

y

V a h d q t g x d

h x y z xz

a f t x d a yz

y b q t x a xy

α ξ ξ τ τ

β

α τ τ τ α

β β β

= + +

+ + +

+ + + +

+ + +

∫ ∫

∫

                                                       (7) 
                 
whereα andβ are defined in (6). Namely, this 
function and its time derivative satisfy some 
fundamental inequalities which are discussed in 
the following lemmas. 
 
 
LEMMA 4. Subject to the hypotheses of Theorem 
1, and there are positive 

constants 

( ,0,0,0) 0V t =

0 0 ( , , , , , , )D D a b c α β δ μ=  and 

1 1 0 0 0( , , , , , , , , )D D a b c a b q α β δ=  such that:   
 
(i)  

                              

2 2 2
0 ( ) ( , ( ), ( ), ( ))D x y z V t x t y t z t+ + ≤

2 2 2
1 (D x y z≤ + + );                                   

 
(ii)  as 

                                         

( , ( ), ( ), ( ))V t x t y t z t →∞
2 2 2 .x y z+ + → ∞                                                

 
Furthermore, for any solution ( ( ), ( ), ( ))x t y t z t  of  (4)  
 

(iii)     ( , ( ), ( ), ( ))dV V t x t y t z t
dt

′ ≡   

                                                                       2 2 2
0 (D x y z≤ − + + ).

,t

 
 
 
PROOF. It is clear that . Since 

and we observe that 
the function V defined in (7) can be rearranged 
as follows: 

( ,0,0,0) 0V t =
(0,0,0) 0h = 0 ( )b q≠ ≠

0

2 2

0

22 [( ) ( ) 2 ( ,0,0)] ( ,0,0)
( )

4 ( ) [ ( , ) / ] [ ( ) ]

x

y

V a bq t h h d
bq t

q t g x b d y bq t x

ξα ξ ξ ξ

τ τ τ τ β β β

= + −

+ − + + −

∫

∫
 

2 2

0

2 2

2 [( ) ( , , ,0) ( )] ( )

2( ) [ ( ,0,0) ( ) ] .
( )

y

a f t x a d y z

x ay z h x bq t y
bq t

τ α τ α τ α

β

+ + − + + +

+ + + + +

∫ 2

                                   (8) 
 
 
Now, since ( ), ( ,0,0)xq t h x cμ ≤ ≤ and 

( ,0,0) /h x x δ≥  0,x ≠ if follows that , 
 

0

2 [( ) ( ) 2 ( ,0,0)] ( ,0,0)
( )

x

a bq t h h d
bq t ξα ξ ξ+ −∫ ξ  

           
     (9a) 

1 1 2[( ) ( )] .b c ab c b xα μ μ δ μ− −≥ − + −

 
Also, ( , ) /g x y y b≥  0,y ≠ implies that, 

 

0

4 ( ) [ ( , ) / ] 0.
y

q t g x b dτ τ τ τ− ≥∫  (9b)              

 
Furthermore, from the inequalities in condition (iii) 
of Theorem 1, we obtain: 
 

 2 2

0

( ) ( , , ,0) ( )]a f t x a d2 [
y

τ α τ α τ+ − +∫
.

  

                        (9c)   2( )a yα α≥ −
 
Combining estimates (9a) - (9c) with (8), we 
obtain: 
 

1 1 2

2 2

2 1 1 2

1 1{[( ) ( )] ( )
2 2

1[ ]} [ ( ) ]
2

1 ( ) ( ) .
2

V b c ab c b y

b x a y

x ay z b x b y

α μ μ δ μ α

β μ β α α β

β μ δ μ

− −

− −

≥ − + − + +

+ − + − +

+ + + + +

z

 

IB
ADAN U

NIV
ERSITY

 LI
BRARY



The Pacific Journal of Science and Technology               –190– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 10.  Number 2.  November 2009 (Fall) 

From estimates (6a) and (6b), we 
have 0,b cα μ − > 0,ab cμ − > 0a α− > and

0.bμ β− >   It follows that the V defined in (7) is 
positive definite. Hence, there exists a positive 
constant 0 0 ( , , , , , , )a b cδ δ α δ μ=

)V x y zδ≥ + +

β such that: 
 

2 2 2
0 ( .                         (10)  

 
It is clear from (10) that: 
 

( , , , )V t x y z →∞  as 2 2 2 .x y z+ + → ∞   
     (11)   
 
Let us observe that   implies, ( ) 0q t′ ≤

0( ) (0)q t q q≤ = and since  then 

 implies  

These together with  

,

(0,0,0) 0h =

( ,0,0)xh x c≤ ( , 0,0)h x cx≤

0.x ≠ 0( , ) /g x y y b≤
0y ≠ 0( , , , )f t x y z a≤ and Schwartz inequality 

Equation (7) becomes: 
      

2 2 2
0 0

2 2 2 2
0

2 ( ) 2 2 (

( ) 2 ( )( )

V a cx b q y c x

a a y z a y z

α

α α

≤ + + + +

+ + + + + +
2 2 2 2 2

0 ( ) (y b q x a x y x zβ β β β+ + + + + +

2 )y

2 ).                                                       
 
Rearranging the terms, there exists a positive 
constant 1 1 0 0 0( , , , , , , , )a b c a b qδ δ α= β

.

such 
that: 
 

2 2 2
1 ( )V x y zδ≤ + +            (12)      

 
To deal with hypothesis (iii) of Lemma 4, let 
( ( ), ( ), ( ))x t y t z t be any solution of (4) and 
consider the function ( , ( ), ( ), ( ))V V t x t y t z t= . 
By an elementary calculation using (4) and (7), 
we have: 
 

2
(2.1) 1 2 3 4 2

( )[ ( , )/ ] [ ( , , , ) ]

V W W W W a y yz

q t g x y y b xy f t x y z a xz

β β

β β

′ = + − − + +

− − − −
     

     (13)                                       
 
Where,          

2
1

0

12 ( ) ( , ) ,
4

y

W q t g x d b xτ τ β
⎡ ⎤

′= +⎢ ⎥
⎣ ⎦
∫                       

2
0 0

0

( ) ( , , ,0) ( , , ,0)

2 ( ) ( , ) ,

y y

t x

y

x

W a f t x d y f t x d

q t y g x d

α τ τ τ τ τ τ

τ τ

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦

+

∫ ∫

∫
 

[ ]2 2
3

2

( , , ) 2 ( , , , ) ( )

( , )( ) ( ) 2 ( ,0,0) ,x

h x y zW x f t x y z a
x

g x ya q t h x y
y

β α

α

= + +

⎡ ⎤
+ + −⎢ ⎥
⎣ ⎦

z+

2
4

2

2

( , , ) ( ,0,0)( )

( , , ) ( ,0,0)2

( , , , ) ( , , ,0)( )

h x y z h xW a y
y

h x y z h xz
z

f t x y z f t x ya yz
z

α

α

⎡ ⎤−
= + ⎢ ⎥

⎣ ⎦
−⎡ ⎤+ ⎢ ⎥⎣ ⎦

−⎡ ⎤+ + ⎢ ⎥⎣ ⎦

        

 
By hypothesis (iv) '( ) 0q t ≤ for all  If 0.t ≥

'( ) 0q t = then W1 0= . For those t’s such that 

'( ) 0,q t < we have, 
               

2
1

0

12 ( ) ( , ) 0
4

y

W q t g x d b xτ τ β
⎡ ⎤

′= +⎢
⎣ ⎦
∫ ≤⎥                                       

 
since, 
 

2 2 2

0

1 1 1( , ) 0
4 2 2

y

g x d b x b x yτ τ β β⎛ ⎞+ ≥ +⎜ ⎟
⎝ ⎠∫ ≥ f 

 
or all x and y . Thus, on combining the two cases, 
we have:    
 

1 0W ≤ for all 0,t ≥ x and y .                                                           
 
In view of condition (v) of Theorem 1, since and a
α  are positive constants and ( ) 0q t μ≥ > , we 

have   2 0W ≤ . 
                                                                                       
Moreover, ( ,0,0) /h x x δ≥  

0,x ≠ ( , ) /g x y y b≥ 0y ≠ , ( ,0,0)xh x c≤ ,

( , , , )f t x y z ≥ a and ( ) ,q t μ≥ we have               

[ ] [ ]2 2
3 ( ) 2W x a b c y aβδ α μ α≥ + + − + − 2 .z                             
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Also, from hypothesis (vi) of Theorem 1, we have 
the following inequalities:      
         

2
41

2
1

( , , ) ( ,0,0)( )

( ) ( , ,0) 0,y

h x y z h xW a y
y

a y h x y

α

α θ

⎡ ⎤−
= + ⎢ ⎥

⎣ ⎦
= + ≥

 
0y ≠ 0 1,θ≤ ≤ a and α  are positive constants, 

but when Hence,  for 
all

41 0W = 0.y = 41 0W ≥
x and y .          

                                                                                          
Similarly, when , we have : 

                     
0z ≠

  

2
42

2
2

( , , ) ( ,0,0)2

2 ( ,0, ) 0,z

h x y z h xW z
z

z h x zθ

−⎡ ⎤= ⎢⎣
= ≥

⎥⎦

,

                                                          

20 1θ≤ ≤ but when .  42 0W = 0z =
 
Hence,  for all 42 0W ≥ x and .                                                          z  
 
Finally, when , we have: 0z ≠
 

2
43

2
2

( , , , ) ( , , ,0)( )

( ) ( ,0, ) 0z

f t x y z f t x yW a yz
z

a z yf x z

α

α θ

−⎡ ⎤= + ⎢ ⎥⎣ ⎦
= + ≥

,

 

30 1θ≤ ≤ but when . Thus 

for all 
43 0W = 0z =

43 0W ≥ , ,x y z and .             0t ≥
 
On combining estimates and , we 

obtain  for all
41 ,W 42W 43W

4 0W ≥ , ,x y z and .             0t ≥
 
On gathering the estimates and  
with (13) and complete the squares to get: 

1 2, ,W W W3 4W

 

 

2 2
(2.1)

2
1 2 2

1 1( ) ( )
2 2

( , )1

V x b c y a z

g x yab c a b y
y

βδ α μ α

μ β δ μ−

′ ≤ − − − − −

⎡ ⎤⎡ ⎤⎡ ⎤⎢

2

− − − + + −⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎣ ⎦⎣⎣ ⎦
⎥
⎥⎦

 

11 ( ) 1 [ ( , , , ) ]
2

a f t x y zα β δ −⎡ 2 2a z⎡− − − + −⎣⎢ ⎥⎣ ⎦
⎤⎤⎦  

2

1

21

( , )2
4

2 [ ( , , , ) ] .
4

g x yx b y
y

x f t x y z a z

βδ δ μ

βδ δ

−

−

⎡ ⎤⎡ ⎤
− + −⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

⎡ ⎤− + −⎣ ⎦

            

Since β and δ are positive constants, it follows 

that 

2

1 ( , )2 0g x yx b y
y

δ μ−⎡ ⎤⎡ ⎤
+ − ≥⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦
212 [ ( , , , ) ] 0x f t x y z a zδ −

and 

⎡ ⎤+ − ≥

, ,
⎣ ⎦ for  

all x y z

2 2 ( , , , , , , )a b c

and  Hence, by (6a) and (6b), 
there exists a positive constant 

0.t ≥

δ δ α β δ μ= such that:   
 

2 2 2
(2.1) 2 (V x yδ′ ≤ + + )z .         (14)   

 
This completes the proof of Lemma 4.       
 
 
PROOF OF THEOREM 1. From hypotheses (i) - 
(iii) of Lemma 4 it follows that the solution 
( ( ), ( ), ( ))x t y t z t of (4) is uniform-bounded (see 
[11] p 38-39). Moreover, from Lemma 4, 

  2 2 2
0 ( )V D x y z′ ≤ − + + .

 
Now, let a positive 
definite function with respect to a closed set 

2 2 2
0( ) ( )W X D x y z≡ + +

{( , , ) | 0,x y z xΩ ≡ = 0, 0}y z= =  and 

( , ) ( ).V t X W X′ ≤ −  From the continuity of 

( , , )h x y z  and  and the fact that the 
functions 

( ),q t
( , , , )f t x y z  and ( , )g x y  are bounded 

above, it follows that the function defined 
as: 

( , )F t X

 

( , )
( , , , ) ( ) ( , ) ( , , )

x
F t X y

f t x y z z q t g x y h x y z

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

          

                                                                     
is bounded. Since the 
only set contained in

(0,0) 0 (0,0,0),g h= =
Ω is the origin. Then by 

Theorem 14.1 p. 60 – 61 in [11], (5) follows. This 
completes the proof of Theorem 1. 
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THEOREM 5. Suppose that 0 0 0, , , , , , , , ,a a b b c q α β δ μ 
are positive constants and are such that: 0 0P ≥
 
(i) hypotheses (i) - (vi) of Theorem 1 hold;             
 
(ii)                                                                    0| ( , , , ) | .p t x y z P≤ < ∞
 
Then the solution ( ( ), ( ), ( ))x t y t z t of (2) is 
uniform ultimately bounded.   
 
 
REMARK 6. If ( , , , ) ( , , )f t x y z f x y z≡ and 

then the system (2) reduces to that 
investigated by Omeike in [7]. Moreover, the 
condition required here on

( ) 1,q t ≡

( , , , )f t x y z to imply 
that every solution ( ( ), ( ), ( ))x t y t z t  of (2) to be 
uniform ultimately bounded is weaker here than 
that used by Omeike in [7] for the nonlinear third-
order differential equation (3), since there it was 
required that ( , , )f x y z a> . 
 
 
LEMMA 7. Subject to the assumptions of 
Theorem 5, there exists a positive constant 

2D = 2 ( , , , , , , )D a b c α β δ μ  such that along any 

solution ( ( ), ( ), ( ))x t y t z t of (2)  
2 2 2

2( )V D x y z′≤− + + .
 
 
PROOF. Along a solution ( ( ), ( ), ( ))x t y t z t of (2), 
we have: 
 

(1.2) (2.1) [ ( ) 2 ] ( , , , ).V V x a y z p t x y zβ α′ ′= + + + +

2

}.

3

 
From estimate (14), hypothesis (ii) of Theorem 5 
and the Schwartz inequality, we obtain: 
 

2 2 2 2 2 2 1/
(1.2) 2 3( ) ( )V x y z x y zδ δ′ ≤− + + + + +      

     (15)   
                                          
where Choose 1/ 2

3 03 max{ ; ;2P aδ β α= +
2 2 2 1/ 2 1

4 2( ) 2x y z δ δ δ−+ + ≥ = , inequality  (15) 

becomes 
 

where 2 2 2
(1.2) 5 ( )V x yδ′ ≤ − + + ,z

5
1 .
2 2δ δ=  This completes the proof of Lemma 7. 

 
 

PROOF OF THEOREM 5. From conditions (i) and 
(ii) of Lemma 4, Lemma 7 and Theorem 10.4 in 
[11] p 42, it follows that the solution 
( ( ), ( ), ( ))x t y t z t of (2) is uniform ultimately 
bounded. 
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