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ABSTRACT

Sufficient conditions are established for the
uniform ultimate boundedness of solutions of a
third-order nonlinear differential equation (1).

When p(t, x, X', x") =0, criteria under which all
solutions X(t),its first and second derivatives
tend to zero as t — o0, are given.

(Keywords: third-order, differential equations, stability,
uniform-bounded, ultimate boundedness)

INTRODUCTION

Nonlinear third-order differential equations have
been extensively studied with high degree of
generality. In particular, there have been
interesting works on asymptotic behavior,
boundedness, periodicity, and stability of
solutions for nonlinear differential equations of the
third-order. Authors that have worked in this
direction include Ademola et. al, [1, 2, 3],
Afuwape [4], Bereketoglu and Giyéri [5], Ezeilo
[6], Omeike [7], and Swick [9], to mention a few.

All the above mention works were done by using
the Lyapunov’'s second method except in [2] and
[4], where Yoshizawa function and frequency
domain technique were used.

In this paper, we shall investigate uniform ultimate
boundedness and stability of solutions of the
third-order  nonlinear  ordinary  differential
equation:

X"+ f(t,x X, X)X +qt)g(x,x") +h(x, x', x")

or its equivalent system:

The Pacific Journal of Science and Technology
http://www.akamaiuniversity.us/PJST.htm

X'=y,

y' =z,

Z'=p(t,x,y,z)— f(t,x, x",x)x"—=q(t)g(x, x")
—h(x, x',x") (2)

where f,g,h,p and g are continuous in their

respective arguments, and X', X" and X" denote
the first, second and third derivatives of the
function Xx(t) with respect to t. The derivatives:

aexyg/a=1ftxyz),

adt.xy.)/x=ftxy.2, atxy.2)/a=1txy.2)
axy)/x=g,(xYy),hxy,2)/x=h(xY,2),
oh(x,y,2)/dy =h (xy,2), dxY,D/a=h(xy,2)
and dq(t)/dt=q'(t)

exist and are continuous. Moreover, the existence
and uniqueness of solutions of (1) will be
assumed.

In 2005, Tung¢ [10] discussed criteria for
boundedness of solutions of a third-order
nonlinear differential equation:

X"+ £ x, X)X+ g(x, X)) +h(x, x',x")
= p(t’ X’ X” X”) (3)

In 2008, Ademola et. al.,, [2] and Omeike [7]
established conditions for the ultimate
boundedness of solutions of a third-order
differential equation (3) using a complete
Yoshizawa and a complete Lyapunov functions,
respectively.

problem  of

However, the stability and

boundedness of solutions of third-order
differential equations where the nonlinear,
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specifically the restoring, terms depend on the
independent variable t and multiple of the
functions of t are scare. Motivation for this study
comes from the works of Ademola et. al, [1, 3],
Omeike [7] and Swick [9].

The purpose of this paper, therefore, is to
investigate criteria under which all solutions

X(t),its first and second derivative, when
p(t, x,x’,x") =0, tend to zero as t — 0.

Sufficient conditions were also obtained for
uniform ultimate boundedness of solutions of a
third-order differential Equation (1). Here, the
Lyapunov second method is used to achieve the
desired results. Our results do not only
generalize, to third-order equation, the results in
[1, 3, 9] but also include and extend the result in
[7]. Some existing results on third-order nonlinear
differential equations, which have been discussed
in [8], are also generalized.

MAIN RESULTS

In the case p(t,x,x,x")=0, Equation (2)

becomes:

X'=vy,

y' =1,

' =—1(t,x, X, X")X"=q(t)g(x x") —h(x,x’, x")

(4)
with the following result.

THEOREM 1. In additon to the basic
assumptions on the functions f,g,h,p andq,
suppose that there are positive constants
a,a,,b,by,c,0,,, f,0and g such that for all

t > 0, the following conditions are satisfied:
(i) h(0,0,0) =0, 6 <h(x,0,0)/x x=0;

(i) g(0,0)=0,b<g(x,y)/y<h, forall
X,y #0;

(i) a< f(t,x,y,2) <q, forall x,y,z;

(iv) #<q(t), q't)<0;
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(v) f(t,x,y,2)<0, ¥f (t,x,Yy,2) <0,
g,(x,¥)<0, h(x,0,0)<c forall X,y #0;

(vi)h, (x,y,0) >0, h,(x,0,2) >0,
yf, (t,X,y,2) >0 forall x,y,z.

Then every solution (X(t), y(t),z(t))of (4) is
uniform-bounded and satisfies:

X(t) >0, yt)—>0, z(t) >0ast—> .
)

REMARK 2. Observe that the hypotheses:

a< f(t,xvy,z), b<g(x,y)/y y=#0,
0 <h(x,0,00/x x=#0, h(x0,0)<cand
1 <q(t) of Theorem 1 imply the existence of
arbitrary positive constants « and £ satisfying:

i<oc<a (6a)
bu

and
0< < minfous(abyu—c)ni (@~} (6D)

where,

m=M+a+5 1*[g(x,y)/y-bIFT*
andn, =[1+5'[f(t,x,y,2)—a]]™"
forallx,y,zand t >0.

REMARK 3.

(i) Note that

ft.x,y,2) = f(2), a(t)g(x,y) = g(y)

and h(x, y, x) = h(x), system (2.1) reduces to
that investigated by Ademola et. al, in [3].

(i) Also, whenever

ft,x,y.z) = f(t,xy), g(x,y) = g(y) and
h(x,y, z) = r(t)h(x) system (2.1) specializes to
that studied by Swick in [9].

(iii) Furthermore, the hypotheses on (4) are
considerably weaker than those in [3] and [9].
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Hence, our result generalizes the results in [3]
and [9].

The proofs of our results depend on some certain
fundamental properties of a continuously

differentiable Lyapunov function V =V (t, X, Y, )
defined by:

2V = 2(a + a)jox h(£,0,0)d¢& + 4q(t)j0y g(x,7)dz
+4h(x,0,0)y + 22° + 28xz
+2(a + a)joyr f(t,%,7,0)d7 + 2(a + 2) yz

+4Yy? +bpq(t)x* + 2apxy
(7

where & and S are defined in (6). Namely, this

function and its time derivative satisfy some
fundamental inequalities which are discussed in
the following lemmas.

LEMMA 4. Subject to the hypotheses of Theorem
1, V(t,0,0,0)=0and there are positive

D, =D,y (a,b,c,a, S,0, 1)
D, =D, (a,b,c,a,,b,,0,, @, B,6) such that:

constants and

(i) Do (x* +y* +2%) <V (£, x(1), y(t), 2(t))
<D,(X*+Yy* +72°%);
(i) V (t, X(1), V(1) Z(t) = o as
X +y>+7° > o

Furthermore, for any solution (X(t), y(t),z(t)) of (4)

iy V'= %V (t, x(t), y(t), z(1))

—D, (x* +y* + 7).

PROOF. It is clear that V(t,0,0,0)=0. Since
h(0,0,0) =0and b = 0 # q(t), we observe that

the function V defined in (7) can be rearranged
as follows:
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=5 (t)j[(a+a)bGI(t) 2h.(¢,0,0)]h(£,0,0)d &

+4C1(t)f[g(><, 7)/ 7 =blrdr + y* + ploa(t) - Ix*

+2_y[r[(a +a)f(t,x,7,0)—(a’ +a®)]dr + (ay + 2)°

+H(px+ay+12)° +

(8)

Now, since u<q(t),h(x00)<cand

h(x,0,0)/ x> ¢ x = 0,if follows that ,

2 X
(o (@ 090~ 20, (5000, 0.0)0¢

> [(etb i —¢) + (ab — €)]ob ™ 17X
(9a)

Also, g(x,y)/y>Db y = 0,implies that,

y
4q(t) j [9(x,7)/ 7 —b]zdz > 0. (9b)
0

Furthermore, from the inequalities in condition (iii)
of Theorem 1, we obtain:

2}2’[(6{ +a)f(t,x,7,0)— (o +a)]dr
>a(a—a)y’. (9c)

Combining estimates (9a) -
obtain:

(9¢c) with (8), we

V> %{[(ab,u —¢)+(abu—c)lob ™ u™ +%(ay +12)?
+plbu— A+ [aa-a) + A1y’

+= (,Hx+ay+z) +b 7t (Ox+buy)’.
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From estimates (6a) and (6b), we
haveabu—c>0,abu—c>0,a—a >0and

bu— £ >0. Itfollows that the V defined in (7) is
positive definite. Hence, there exists a positive
constantd, = J,(a,b,c,a, B,0, 1) such that:

V > 65, (x* +y? +12%). (10)
It is clear from (10) that:

V(t,X,y,z) > as X +y° +2° - o,
(11)

Let us observe that ¢'(t) <0 implies,

q(t) <q(0) = q,and since h(0,0,0) =0 then
h,(x,0,0) < c implies h(x,0,0) < cx

X # 0. These together with g(x,y)/y <b,

y =0, f(t,x,Y,2) < a,and Schwartz inequality
Equation (7) becomes:

2V| < (a +a)ex? + 2byq, Y% + 2¢(X* + y?)
+Ha+a)a, Yy’ +22° +(a +a)(y’ +2°)

+BY? +bB, X +aB(x? +y?) + B(X* +2°).
Rearranging the terms, there exists a positive

constant 9, = ¢;(a,b,c,a,,b,,q,,, ) such
that:

V <8 (XP+y*+2%). (12)

To deal with hypothesis (iii) of Lemma 4, let
(x(t), y(t), z(t)) be any solution of (4) and
consider the functionV =V (t, x(t), y(t), z(t)) .

By an elementary calculation using (4) and (7),
we have:

Viey =W +W, =W, —W, +afy’” +23yz

=Aa®Ig(x y)/y—by - A f(t. x,y.2)-alx
(13)

Where,

y
W, = 2q'(t) j g(x,r)dr+%bﬂx2 ,
0
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W, = (c)cﬁLa)D(rft (t,x,7,0)dz + yjrfx(t, X,T,O)dT:|

0 0

+2q(0)y[ g, (x7)dz,

W, :ﬂwxz +[2f(t,x,y,2) + (e +a)]Z°

{(a + a)q(t)w —2h, (x,0, 0)} y?,

W, = (o +a)y? {h(x, y,2) ; h(x,0,0)}

1272 |:h(X, Y, 2) ; h(x,0, O):|

f(t,x,y,z)— f(tx y,O)}
z

+(a+a)yz{

By hypothesis (iv) q'(t) <Oforall t>0. If
q'(t) = 0then W, = 0. For those t's such that
q'(t) < 0,we have,

y
W, = 2q'(t){jg(x,r)dr +%bﬁx2} <0
0
since,
y
J‘g(X,T)dr+1bﬁx2 > lb(iﬁx2 + yzj >0f
. 4 2 \2
or all Xand y . Thus, on combining the two cases,
we have:

W, <Oforall t >0, Xandy .

In view of condition (v) of Theorem 1, since aand
o are positive constants andq(t) > ¢ >0, we

have W, <0.

Moreover, h(x,0,0)/ x > &
x#0,9(x,y)/y>b y=0,h(x0,0)<c,
f(t,x,y,2) >aandq(t) > u, we have

W, > B6X° +[(a +a)bu —2c]y* +[a—a]z%.
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Also, from hypothesis (vi) of Theorem 1, we have
the following inequalities:

h(x,y,z) - h(x,0,0)}
y

=(a+a)y*h,(x,6,y,0) >0,

y#00<60<1 aand «a are positive constants,

butW,, = Owheny = 0.Hence, W,;, >0 for
allXandy .

W, = (a"‘a)yz{

Similarly, when z # 0, we have :

W, = 27° [h(x, Y, 7) - h(x,0,0)}

z
=212%h,(x,0,6,z) >0,
0<6, <1butW,, =0whenz =0.

Hence, W,, >0 forall Xandz.

Finally, when Z # 0, we have:

[f(t,x, Y,Z)— f(t,x,y,O)}
z

W,, = (a+a)yz’

=(a+a)z°yf,(x,0,6,2) >0
0<6, <1 but W, =0whenz =0. Thus
W,; >0forall x,y,zandt>0.

On combining estimatesW,,, W,, andW,,, we
obtain W, >0 forallx,y,zandt 2 0.

On gathering the estimates W,,W,,W,and W,
with (13) and complete the squares to get:

' 1 1
Vey < —Eﬂ&(z —(abu—c)y? —E(a—a)zz

—[aby—c—ﬂ{l+a+5l,u2 {_g();, ) —b} ” y?

—E(a—a) —/5’[1+ STt X Y,2) —a]z]} z?
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—ﬁ{x+ 25‘1;{—9()(’ ) —b} y}
4 y

po -1 2
_T[X+ 20 [f(t,x,y,2) - a]z] :

Since Band O are positive constants, it follows
2
that [X+25‘1/¢[M—b} y} > 0and
y

[x+25’l[f t, %Y, z)—a]z]2 > Ofor
allx,y,zand t>0. Hence, by (6a) and (6b),

there exists a positive constant
0, =0,(a,b,c,a, f,0, 1) such that:
Vi <6, (X° +y? +12°). (14)

This completes the proof of Lemma 4.

PROOF OF THEOREM 1. From hypotheses (i) -
(i) of Lemma 4 it follows that the solution

(x(t), y(t),z(t)) of (4) is uniform-bounded (see
[11] p 38-39). Moreover, from Lemma 4,
V'<-D,(x* +y* +2%).

Now, let W (X)=D,(x*+Yy®+2")a positive

definite function with respect to a closed set
Q={(x,y,2)|x=0,y=0,z=0} and

V'(t,X)<-W(X). From the continuity of
h(x,y,z) and (q(t), and the fact that the
functions f(t,Xx,y,z) and g(X,y) are bounded

above, it follows that the function F(t, X) defined
as:

X
F(t, X) = y
—f(t,x y,2)z—-qt)g(x, y) —h(x y,2)

is bounded. Since g(0,0) =0=nh(0,0,0),the

only set contained inQis the origin. Then by
Theorem 14.1 p. 60 — 61 in [11], (5) follows. This
completes the proof of Theorem 1.

—191—
Volume 10. Number 2. November 2009 (Fall)



THEOREM 5. Suppose that a,a,,bh,c,q,a 50 u

are positive constants and P, > 0 are such that:
(i) hypotheses (i) - (vi) of Theorem 1 hold;
(i) | p(t,x,y,2) [< PR, <o

Then the solution (x(t),y(t),z(t))of (2) is
uniform ultimately bounded.

REMARK 6. If f(t,x,y,z)=f(X,Y,2)and
q(t) =1, then the system (2) reduces to that

investigated by Omeike in [7]. Moreover, the
condition required here on f(t,X,y,z)to imply

that every solution (X(t), y(t), z(t)) of (2) to be

uniform ultimately bounded is weaker here than
that used by Omeike in [7] for the nonlinear third-
order differential equation (3), since there it was

required that f(x,y,z)>a.

LEMMA 7. Subject to the assumptions of
Theorem 5, there exists a positive constant

D, =D,(a,b,c,a, f,9, 1) such that along any
solution (X(t), y(t), z(t)) of (2) V'<-D (¢ +y +7°).

PROOF. Along a solution (X(t), y(t), z(t)) of (2),
we have:

’
V(l.2)

:V(’Z_l) +[fx+ (a+a)y+2z]p(t, x,Y,2).

From estimate (14), hypothesis (ii) of Theorem 5
and the Schwartz inequality, we obtain:
Vig S=8,0¢ +¥° +2) +5,0¢ +y +2°)

(15)
where 5, = 32 P, max{; a + a; 2}. Choose
(2 +y° + 222 > 5, = 25,5, inequality (15)

becomes Vi, <=8 (X’ +y* +12%), where

1
05 = 56‘2. This completes the proof of Lemma 7.
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PROOF OF THEOREM 5. From conditions (i) and
(i) of Lemma 4, Lemma 7 and Theorem 10.4 in
[11] p 42, it follows that the solution

(x(t), y(t),z(t)) of (2) is uniform ultimately
bounded.
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