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Abstract. In this paper, Lyapunov direct method was employed. We
present criteria for all solutions x(t) its first and second derivatives of
the third order nonlinear non autonomous differential equations to con-
verge to zero as t — oo. Sufficient conditions are also established for
the boundedness and uniform ultimate boundedness of solutions of the
equations considered. Our results revise, improve and generalize existing
results in the literature.

1 Introduction

Nonlinear differential equations of higher order have been extensively studied
with high degree of generality. In particular, boundedness, uniform bounded-
ness, ultimate boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions have in the past and also recently been discussed by
remarkable authors, see for instance Reissig et al. [18], Rouche et al. [19],
Yoshizawa [26] and [27] where the general results were discussed. Authors
that have worked on the qualitative behaviour of solutions of third order non-
linear differential equations include Ademola et al. [1, 2, 3, 4, 5, 6], Chukwu [7],
Ezeilo [8, 9, 10, 11, 12], Hara [13], Mehri and Shadman [14], Omeike [15, 16],
Qian [17], Swick [20, 21, 22], Tejumola [23] and Tung [24, 25]. Complete and
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incomplete Lyapunov functions were constructed and used by these authors
to establish their results. The nonlinear differential equations considered are
the types where the restoring nonlinear terms do not depend explicitly on the
independent real variable t, except in [1, 2, 4, 13] and [14] where the restoring
nonlinear terms depend or multiplied by functions of t.

Till now, according to our observation from the relevant literature, the prob-
lem of boundedness (where the bounding constant depends on the solutions
in question), uniform ultimate boundedness and asymptotic behaviour of so-
lutions of the nonlinear non autonomous third order differential equation con-
sidered, have so far remained open. In this paper therefore, using Lyapunov
direct method, a complete Lyapunov function was constructed and used to ob-
tain criteria for boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions of the third order nonlinear differential equation

X WO x" XX+ d(t)g(x,x7) + @(tThix, X', x") = p(t, x,x',x") (1)
or its equivalent system

x'=y,y' =z2 =p(t,x,y,z) —b(t)f(x,y,z)z— d(t)g(x,y) + <p(t)h(x,y,2))
(2
in which p € C(R* x R3 R); f,h € C(R3R); g € C(RALR); d,9, €
C(RT,R); R = (—o0,00); RT = [0, 00); the functions ¢, @,\,f,g,h and p de-
pend only on the arguments displaced explicitly. The derivatives %f (x,y,z) =
f,,2), mflxy,2) = fulyy,z), £fxy,2) = falxy,2), &elxy) =
9x(x, 1),
2h(x,y,2) = hx(x,Y,2), s5hi(x,Y,2) = hy(x,y,2), 5h(x,y,2) = ha(x,v,2),
%ﬂ)(t) =1’(t), d%d)(t) = ¢'(t) and %(p(t) = @’(t) exist and are continuous
for all x,y,z and t. As usual, condition for uniqueness will be assumed and
x',x",x"as elsewhere, stand for differentiation with respect to the indepen-
dent variable t. Motivation for this studies comes from the works of Hara [13],
Omeike [15, 16],Tung [24, 25] and the recent work of Ademola and Arawomo
[4] where conditions for stability and uniform ultimate boundedness of solu-
tions of (1) were proved. Our results revise and improve the results in [4] and
extend the results in [13, 14, 15, 16, 24] and [25].

2 Preliminaries

Consider the system of the form

X'(t) = F(t, X(t)) (3)
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where F € C(RT x R",R™) and R™ is the n—dimensional Euclidean space.

Definition 1 A solution X(t;to,Xo) of (3) is bounded, if there exists a 3 >
0 such that [|[X(t;to, Xo)|| < B for all t > to where B may depend on each
solution.

Definition 2 The solutions X(t;to, Xo) of (3) are uniformly bounded, if for
any o > 0 and ty € R, there exists a B(x) > 0 such that if || Xo| < «
[X(t; to, Xo)|| < B for all t > to.

Definition 3 The solutions of (3) are uniformly ultimately bounded for bound
B if there exists a B > 0 and if corresponding to any & > 0 and to € R™, there
exists a T(«) > 0 such that if || Xo|| < & implies that ||X(t;to, Xo)|| < B for all
t>to+ T(x).

Definition 4 (i) A function & : RT — R*, continuous, strictly increasing
with $(0) = 0, is said to be a function of class K for such function, we shall
write ¢ € K.

(ii) If in addition to (i) d(r) — +oo as v — oo, ¢ is said to be a function of
class K* and we write ¢ € K*.

The following lemmas are very important in the proofs of our results.

Lemma 1 [27] Suppose that there exists a Lyapunov function V(t,X) de-
fined on R, ||X|| > p were p > 0 may be large which satisfies the following
conditions:

(i) allIX]) < V(£ X) < b(IXI]), @ € K* and b € K;
(i) Vi,

Then the solutions of (3) are uniformly bounded.

(t,X) <0, for all (t,X) € RT x R™

Lemma 2 [27] If in addition to assumption (i) of Lemma 1, V('S)(t,X) <
—c(||X]]), ¢ € K for all (t,X) € RTxR™. Then the solutions of (3) are uniformly
ultimately bounded.

Let Q be an open set in R™ and Q* C Q. Consider a system of differential
equation
X'(t) = F(t,X(t)) + G(t, X(t)) (4)

where F, G are defined and continuous on R™ x Q.
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Definition 5 A scalar function W(X) defined for X € Q 1is said to be positive
definite with respect to a set S, if W(X) = 0 for X € S and if corresponding
to each € > 0 and each compact set Q* in Q there exists a positive number
d(e, Q*) such that

W(X) > 5(e, Q")

for X € Q* —N(e,S). N(g,S) is the € neighborhood of S.
Let Q be a closed set in Q, we have the following lemma

Lemma 3 Suppose that there exist a nonnegative Lyapunov function V(t, X)
defined on R* x Q such that

Vi (£,X) < —W(X)

where W(X) is positive definite with respect to a closed set Q in the space R™.
Moreover suppose that F(t, X) of system (4) is bounded for all t when X belongs
to an arbitrary compact set in Q and that F(t,X) satisfies conditions:

(i) F(t,X) tends to a function H(X) for X € Q as t — oo and on any
compact set in Q) this convergence is uniform;

(ii) Corresponding to each € > 0 and each Y € Q there exists a d(e,Y) >0
and a T(€,Y) > 0 such that if | X=Y| < 8(e,Y) and t > T(e,Y), we have

[F(t,X) = F(t,Y)[| <e.

Then every bounded solution of (4) approaches the largest semi-invariant set
of the system
X'=H(X), XeQ (5)

as t — oco. In particular, if all solutions of (4) are bounded, every solution of
(4) approaches the largest semi-invariant set of (5) contained in Q ast — oo.

3 Statement of Results

We have the following results

Theorem 1 Further to the basic assumptions on the functions f,g,h, &, @
and \p appearing in (2), suppose that a,aq,b, by, c,d0, €,do, b1, @o,91, V0 and
V1, are positive constants such that for all t > 0:
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) a<f(x,y,z) < ay for all x,y,z

i) b<g(x,y)/y <by for all x,y #0;

(iii) o t) <1, do < d(t) < b1, 9o < @(t) < @3;
iv) h(0,0,0) =0, 8 < h(x,y,z)/x for all x # 0,y and z;
)

(v Sup Itb I+ b (V) + e’ (V) < g

(vi) gx(x,y) <0, yfx(x,u,z) <0, hye(x,0,0) < c for all x,y and ab > c;
(Vll) hy(x,yvo) 2 O) hZ(XaOaZ) 2 0) yfz(x,y,l) Z 0 fOT’ a/ll X,U,Z;
(viii) [5 Ip(t,x,y,2)ldt < oo.

Then the solution (x(t),y(t),z(t)) of (2) is uniformly ultimately bounded.

Theorem 2 In addition to the assumptions of Theorem 1, g(0,0) = 0, then
every solution (x(t),y(t),z(t)) (2) is uniformly bounded and satisfies

lim x(t) =0, lim y(t)=0, lim z(t)=0 (6)

t— o0 t— oo t— o0

Theorem 3 Suppose that a,b,c,dg, €, Po, Po, ©1 and Vo are positive con-
stants such that for all t > 0:

(i) assumptions (iv)-(viil) of Theorem 1 hold;
(i) a < f(x,y,2) for all x,y,z

(iii) b < g(x,u)/y for all x andy # O;

(iv) do < d(t), o < @(t) < @1, o < Y(t).

Then any solution (x(t),y(t),z(t)) of (2) with initial conditions
x(0) =x0, y(0) =yo, z(0) =z, (7)

satisfies
x(t) <D, i) <D, [z(t) <D, (8)

for allt > 0, where the constant D > 0 depends on a,b,c, dg, €, do, ©o, ©1, Vo
as well as on to, X0, Yo, 20 and on the function p appearing in (2).
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If the function p(t,x,y,z) = p(t) # 0, (2) reduces to

X' =y, y' =2,z =p(t) —V(t)f(x,y,2)z — b(t)g(x,y) + @(t)h(x,y,2z) (9)
where p € C(R*,R), with the following results:

Corollary 1 If hypotheses (i)-(vii) of Theorem 1 hold true, and in addition
fgo Ip(t)|dt < oo, then the solution (x(t),y(t),z(t)) of (9) is uniformly ulti-
mately bounded.

Corollary 2 If in addition to assumptions of Corollary 1, g(0,0) = 0, then
every solution (x(t),y(t),z(t)) of (9) is uniformly bounded and satisfies (6).

Corollary 3 Suppose that a,b,c,dg, €, o, o, P1 and Yo are positive con-
stants such that for all t > 0:

(i) assumptions (iv)-(vii) of Theorem 1 hold;
(i1) assumptions (ii)-(iv) of Theorem 3 hold;
(iti) [3 [p(t)dt < oo,

Then every solution (x(t),y(t),z(t)) of (9) with initial conditions (7) satisfies
(8) for allt > 0 where D > 0 is a constant depending on a, b, c, dg, €, o, @o, @1,
Vo as well as on to, X0, Yo, 20 and on the function p appearing in (9).

Remark 1 (i) The results in [5],[10]-[13] and [21] are special cases of The-
orem 1. Also, if d(t) = @(t) =UV(t) = 1, system (2) specializes to that
discussed by Ademola and Arawomo [3] (the generalization of the results
of Omeike [15] and Tung [24]). Moreover, in [4] Ademola and Arawomo
studied stability and uniform ultimate boundedness of solutions of (2).
Theorem 1 revises Theorem 6 in [4]. In particular, the main tool used
in this investigation weaken the hypothesis on the function p compared
with the result in [4].

(i) If f(x,y,2) = p(t), g(x,y) = g(y), h(x,y,z) = h(x) and p(t,x,y,z) =
0 system (2) specializes to that discussed by Swick [22]. His result in
Theorem 1 is a special case of Theorem 2. Moreover, if f(x,y,z) = a
a > 0 is a constant or p(t), g(x,y) = yg(x) or g(y), p(t,x,y,z) = e(t)
and @(t) = P(t) = 1 system (2) reduces to that discussed by Swick
[20]. Moreover, when p(t,x,y,z) = 0 in (2) conditions under which all
solutions x(t), its first and second derivatives converge to zero as t — oo
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had been discussed by Ademola and Arawomo [4]. Furthermore, whenever
f(x,y,2) = ¥(x,y) or $(x,y,2), h(x,y,z) = 0 and p(t,x,y,z) = p(t)
system (2) specializes to that studied by Omeike [16], Qian [17] and Tung
[24]. Hence, Theorem 2 revises, improves and generalizes the results in
[4, 16, 17, 20] and [24].

(iii) The results of Ademola et al. [5], Mehri and Shadman [14] and Swick
[22] Theorem 5 are all special cases of Theorem 3.

The proofs of our results depend on the function V = V(t,x(t),y(t),z(t))
defined as
V=eTPMy (10a)

where

P.(t) = | (v, 2)d (10b)

and the function U = U(t, x(t),y(t), z(t))

X

2U = 2+ a(t)) () L h(£,0,0)dE + 4e(t)yh(x, 0,0)

+4d(t) Jy 9(x, 1)t + 2(& + ab(t) (1) Jy f(x, 7,0)dT (10c)

0 0
+222 4+ By? + bRP(1)x2 + 2aBW(t)xy + 2Bxz + 2(a + ab(t))yz

where o and 3 are positive fixed constants satisfying

@1c
— 10d
Dob < a<Poa (10d)
and
. 1 _
0 < B < min {b(bo, (abpodo —cor)ny’, 2(011)0 - 06)1121} (10e)
where

9(x,y)

2
= 1+a¢1+501@01¢%< _b> andn = 148" 0g Wilf(x,y,2)—al?.

Remark 2 If t = 0 in (10b), (10a) coincides with (10c) and the main tool
used in [4].
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Next, we shall show that (10) and its time derivative along a solution of (2)
satisfy some fundamental inequalities as presented in the following lemma.

Lemma 4 If all the hypotheses of Theorem 1 hold true, then for the function
V defined in (10) there exist positive constants D1 >0, Dy > 0 such that

D1 (x2(t) + y%(t) + 22 (1)) < V(t,%,u,2) < Da(x*(t) +y*(t) + 2*(t)) (1la)
and
V(t,x(t),y(t), z(t)) — +oo as x*(t) + y2(t) + z%(t) — oo. (11b)

Furthermore, there exists a finite constant D3 > 0 such that along a solution

of (2)

V= %V(t,x(t),y(t),z(t)) < —Ds3(x*(t) +y2(t) + 23(1). (11c)
Proof. Since h(0,0,0) =0, (10c) can be rearranged in the form
~20(t) [
2 = T2 | o+ ab()]bo(t) — 20(the(,0,00h(E, 0,0
gl [ (9(?) - b) Tdr+ 26719 (1) (h(x, 0,0) + b(t)ul?
0

+2 Jy[(oc + ap ()P () f(x,T,0) — (o + a?P?(t))]tdt
0

+ (oy +2)2 + (Bx + ad(t)y +2)2 + Blbd(t) — Blx? + Py?.

In view of the hypotheses of Theorem 1 this equation becomes

u> ;{[(ow apo)bdo — 2@ 1c/b by @odo + B(bdo — B)}xz

+ % {Oé(albo — o) + B} Y2+ b by [80@ox + bdoyl? (12)

1 1
o E(cxy +2)2+ E(Bx—l— adoy + z)2.

From (10d) and (10e) abdo > c@q, abdopo > c@q, apo > o and by > B re-
spectively, so that the quadratic in the right hand side of the inequality (12) is
positive definite, hence there exists a positive constant Ag = Ag(a, b, ¢, &, 3, b9,
o, ©o, 1,Po) such that

U > Ao(x% +y? +2%) (13a)
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for all t > 0,x,y and z. From hypothesis (viii) of Theorem 1 and (10b) there
exists a constant Py > 0 such that

0 < P.(t) <Po (13b)
for all t > 0.Now, using (13) in (10a) we obtain
V > 61(x2 +y?+22) (14a)

for all t > 0,x,y and z, where 67 := Agexp[—Pp] > 0. This establishes the
lower inequality in (11a). From (14a), estimate (11b) follows immediately i.e

V(t,x,y,z) — +oo as x> +y? + 22 — . (14b)

Furthermore, h(0,0,0) = 0 implies that h(x, 0,0) < cx for all x # 0, using this
estimate, the hypotheses of Theorem 1 and the inequalities 2/xy| < x* + y?,
2xz| < x? + 2% and 2Jyz| < y? + 22, (10c¢) yields

U < 82(x* +y? +29) (15)

for all t > 0,x,y and z, where &, := Smax{A;,A2,A3} > 0, Ay = (2+ o +
api)epr + (T4 apr + bd1)B, Az = (e + abr)(1 + ardy) + (T + apq)p +
2(b1d1 +ceq) and A3 =2+ &+  + apy. Using estimates (13b) and (15) in
(10a), we obtain
V< 8,0 +y? +27) (16)

for all t > 0,x,y and z. Thus by (16), the upper inequality in (11a) is estab-
lished.

Moreover, the derivative of V along a solution (x(t),y(t),z(t)) of (2), with
respect to t is given by

V(/Q) == _eip* (t) |:u|p(t) XY, Z’)l - ué2) ) (17)

where P, (t) and U are the functions defined in (10b) and (10c) respectively
and the derivative of the function U with respect to t, along a solution of (2)
is after simplifying

3
Ufy = Y Ui — Ugx® — Usy® — Uez? — Uy

1=1
Bl [9(’;”) _ b] xy — B(H)(x,y,2) — alxz

+ [Bx + [ + a(t)]ly + 2zlp(t, x,y, z),
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Jy o(x, T)dT + ;bﬁxz} o'(t) + [[oc +ap(t)] JX h(£,0,0)dE

0

- 24h(x,0,0) + ayz] o[t + [a«o(t) J " h(E,0,0)dE + aBxy
0
Y

+ [+ 2a(t)] J

0
Uz = ap(t)y? + 2Byz;

Tf(x, T, O)dT] P (t);

Us = 26 (t)y j: 0 (. )T + [0+ @ (O] (O)y J: T(x, 7, 0)d;
Uy B@(t)w, (x #0);
a(x,y)

Us = [o + alb(t)]d)(t)T —2¢(t)hx(x,0,0),  (y #0);

U := 2 (t)f(x,y,z) — [ + a(t)]
and

U7 := o(t)[[a+ ad(t)ly + 2z][h(x,y,z) — h(x,0,0)]
+lo+ ap ()b (tyzlf(x, v, z) — f(x,y,0)].
In view of the hypotheses of Theorem 1, we have the following estimates for
U (i=1,2,---,6):
U < ehg(x? +y? +27)
for allt > 0,x,y and z, where A4 := max{A41,A42,A43} > 0, A\g7 = max{%bﬁ, b1, 1},
Ay = %max{(cx + a1 + 2)c,a + 2¢,a} and Ag3 == %max{a({i +c@q),ap +
(e +2ad1)ar, 1k
Uz < BI(T + apy)y? + 27
for all t > 0,x and y;
Uz <0
for all t > 0,x and y;
Uy > Bdo@o

for all t > 0,x # 0,y and z;

Us > (e + ao)bdo — 2cp;

for all t > 0,x and y;
U > apo —
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for all t > 0, %,y and z. Finally by the mean value theorem and the hypotheses
of Theorem 1, we have

Uz = [a+ ap(t) [ (t)yz*f.(x, Y, 012) + [oc + ad(t)] @ (t)y*hy(x, 62y, 0)

+2¢(t)z%h,(x,0,03z) > 0

for all t > 0,x,y # 0 # z where 0 < 0; <1 (i =1,2,3), but Uy = 0 for
y = 0 = z. Using estimate U; (i=1,2,---,7) in (18), we obtain

1
Ufy < —zﬁéo@oxz — [(& + aho)bdo — 2c1 — B(1 + apq)y?

2
~ (@ — a— B)z* - lﬁéo@o[xuw%w <9(’;’”) —b)y]

2 2
+ﬁ¢é65‘<pa‘<g(’;‘y) b) y2 + s, oy’ (f(x,y,z)a> 2 19

1 L 2
— 4 Boo [x + 2hoey '8y (flx,v,2) - a)z] + e +y? +27%)
+ As(Ix[ + [yl + [z)Ip(t, %, y, 2]l

where A5 = max{f3, « + a1, 2}. Since, 3, 8¢, Qo are positive constants,
[+ 209, '8, (9(;” —b>y]2 >0 and [x+ 2Wo@, 85 (f(x,1,2) — a)z12 > 0

for all t > 0,x,y and z, estimate (19) reduces to

1 1
Ufy) < —3B8000x* — (abbo — cpr)y? — 5 (aho — a)z?

2
- {abd)oll’o —cor1—p [1 Ty + ¢35 0; ] (9(’;‘” b> ] }yz
2
- {;(mbo —a) - B [1 035, 0" (f(x,y,z) - a) ] }zz
+ eAg(x? +y? + 2%) + As(Ix] + yl + 2D p(t, %, ¥, ).

Applying estimates (10d), (10e) and choosing € < 7\21?\6 where
Ag = min{%ﬁéocpo, abdo— cor, %(cubo — o)}, we obtain

Ufy < —A7(x2 +y%+2%) + As(x| + [yl + [z])Ip(t, %, b, 2)], (20)
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for all t > 0,x,y and z, where A7 := Ag — eAs > 0. Now, using estimates (13a)
and (17), we find

Vig) < —e"*<”{[xo(x2+y2 +2%) = As(x| + [yl + [zDip (t, x, y, 2)]
(21)
+ A7 (x2 4+ y% + zz)}

for all t > 0,x,y and z. Using condition (viii) of Theorem 1, noting the fact
that (|x|—i—|y|—|—|z|)2 < 3(x2—|—y2+22), and choosing (X2+y2+22)1/2 > 31/2?\517\5,
estimate (21) becomes

V(IQ) < _53(X2 + Uz + Zz)» (22)

for all t > 0,x,y and z where 83 = Ay exp[—P.(00)]. (22) establishes estimate
(11c) of the lemma. This completes the proof of the lemma. g

Proof of Theorem 1. Let (x(t),y(t),z(t)) be any solution of (2), in view of
estimates (11) the hypotheses of Lemma 2 hold true. Thus, by Lemma 2, the
solution (x(t),y(t),z(t)) of (2) is uniformly ultimately bounded. O

Proof of Theorem 2. The proof of this theorem depends on the function
V defined in (10). First, by Lemma 4, and the hypotheses of Lemma 1 are
satisfied so that the solution (x(t),y(t),z(t)) of (2) is uniformly bounded.
Furthermore, the continuity and boundedness of the functions f, g, h, ¢, ¢ and
1V imply the boundedness of the function F(t,X) for all t when X belongs to
any compact set in R3,

Next, from estimate (22), let W(X) := 83(x? +y? + z2), clearly W(X) > 0, for
all X € R3. Consider the set

Q:={X=(x,y,z) € R3W(X) = 0. (23)

The continuity of the function W(X) implies that the set Q is closed and W(X)
is positive definite with respect to QO and

V(IQ)(taX) < -W(X)
for all (t,X) € R x R3. System (2) can be rewritten in the form
X' =F(t,X) + G(t,X)

where X = (X)y) Z)T) F(t) X) = (U) z, _lj)(t)f(x)y) Z)Z—d)(t)g(x,y)—(P(t)h(X,y, Z))T
and G(t,X) = (0,0,p(t,x,y,z))". Moreover, from the hypotheses of the theo-
rem we have F(t, X) tends to a function F(X), say, for all X € Q as t — oo, and
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by (23) W(X) = 0 on Q implies that x =y = z = 0. By system (2) and the
fact that h(0,0,0) = 0 = ¢(0,0), the largest semi invariant set of X’ = F(X)
X € Q) ast — oo is the origin. Thus the hypotheses of Lemma 3 are satisfied
and (6) follows. This completes the proof of the theorem. O

Proof of Theorem 3. Let (x(t),y(t),z(t)) be any solution of (2). Under the
hypotheses of Theorem 3, estimates (14a) and (21) hold. To prove (8), since
No(x? +y?2+22)p(t, x,u,2)| > 0, A7(x? +y2+2?) > 0 for all t > 0,x,y,z, the
fact that |x| <14 x2%, [yl <1+ y? and |z| < 1+ 22, estimate (21) becomes

Vip < Ase P03 4% +y?+ 2] p(t, %, v, 2)|

for all t > 0,x,y and z. Now, from estimates (14a) and (13b) this inequality
yields

v(/Q) - 6T1A5|p(t)xyya Z’)|V < 3A5‘p(t>x)y) Z)|
Solving this first order differential inequality using integrating factor
exp[—51_17\5P*(t)] and estimate (13b), we have

Vit x,y,z) < Ag (24)

for all t > 0,x,y and z, where Ag := [V(tg, X0, Yo, 20) +3A5P0] exp[éfl?\5PO] >0
is a constant. From estimates (14a) and (24), estimate (8) follows for all t > 0,
with D = 6]_]?\3. This completes the proof of the theorem. O
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