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Abstract In this paper, we use Lyapunov second method. A complete Lyapunov function
was constructed and used to obtain criteria for boundedness, uniform ultimate bounded-
ness and asymptotic behaviour of solutions of a nonlinear differential equation of the third
order. Our results revise, improve and extend existing results on boundedness, uniform ulti-
mate boundedness and asymptotic behaviour of solutions of third order nonlinear differential
equations in the literature.
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1 Introduction

Nonlinear ordinary differential equations of the second, third and higher order have been
vastly studied with high degree of generality. In relevant literature, interesting results have
been obtained concerning, stability, instability, boundedness, periodicity and asymptotic
behaviour of solutions of these nonlinear differential equations. Outstanding authors that
have contributed immensely to the qualitative behaviour of solutions include Reissig et al.
[17] and Yoshizawa [26,27] which contain general results on the subject matter, Ademola
et al. [1-4], Afuwape [5] Chukwu [7], Ezeilo [8-11], Hara [12], Ogundare et al. [13,14],
Omeike [15,16], Swick [18] and Tung et al. [19-25] which contain results on the qualitative
behaviour of solutions of third order nonlinear differential equations.
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262 A. T. Ademola, P. O. Arawomo

Some of these works were done with the aid of Lyapunov functions which are either
incomplete or contain signum functions. These we find unconvincing. However, the problem
of boundedness, uniform ultimate boundedness and asymptotic behaviour of solutions of
nonlinear, ordinary differential equations, in general, and those of third order, in particular, is
not still solved for general nonlinearities. Using a complete Lyapunov function, the purpose
of this paper therefore is to obtain criteria for boundedness, uniform ultimate boundedness
and asymptotic behaviour of solutions of the third order nonlinear differential equation

X+ f, X, DX+ gx, X) + h(x, %, %) = pt, x, %, %) (1.1)
or its equivalent system of first order differential equations

X=y,y=z,z2=plt,x,y,2) — f(x,y, 20z —gx,y) —h(x,y,2), (1.2)

where f,h € C(R},R), g € C(R%, R), p € C(RT x R}, R), R = (—o0, 00), RT = [0, 00)
and the dots denote differentiation with respect to the independent variable 7. The deriva-
tives fx(x,y,2), fz(x,y,2), hx(x,y,2), hy(x,y,2), h;(x,y,z) and g (x, y) exist and are
continuous. Moreover, the existence and uniqueness of solutions of (1.1) will be assumed.
Motivation for this study comes from the works of Tunc [25], Omeike [16] and Ademola and
Arawomo [2] (the generalization of the works in [16] and [25]) where criteria for uniform
stability and uniform ultimate boundedness of solutions of (1.1) were proved.

2 Preliminaries

The following lemmas are every important in the proofs of our results. Consider the system
of differential equation

X =F@ X) (2.1)

where X is an n—vector. Suppose that F(¢, X) is continuous on R* x R” and R” an
n—dimensional Euclidean space.

Lemma 1 [27]Suppose that there exists a Lyapunov function V (t, X) definedon R™, | X|| > p
where p > 0 may be large which satisfies the following conditions:

1 a(IXh < V(t,X) < b(|X|), where a(r), b(r) are continuous increasing and
q(r) — fooasr — o0;
() Vo, X) <0, forall (t,X) € Rt x R".

Then the solutions of (2.1) are uniformly bounded.

Lemma 2 [27] If assumption (i) of Lemma 1 holds and V(z_l)(t, X) < —c(|IX]]), c(r) is
continuous and increasing for all (t, X) € RT x R". Then the solutions of (2.1) are uni-
Sformly ultimately bounded.

Lemma 3 [26] Let Q be an open set in R". Consider the system
X=HX)+G@, X) (2.2)

where H is continuous on Q, G is continuous on R™ x Q and for any continuous and
bounded function X (t) on t € [0, 00)

oo
/||G(t, X)ldt < .
0
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Boundedness and asymptotic behaviour of solutions 263

Assume that all solutions of (2.2) are bounded, and that there exists a nonnegative continuous
function V (t, X) which satisfies locally, a Lipschitz condition with respect to X in Q such
that

Voo (t, X) < —W(X),

where W (X) is positive definite with respect to a closed set Q in Q. Then all the solutions
of (2.2) approach, the largest semi invariant set contained in Q2 of the equation

X = H(X)

on 2.

3 Statement of results

We have the following results.

Theorem 4 Further to the basic assumptions on the functions f, g, h and p appearing in
(1.2), suppose that a, b, c, ay, by and 8o are positive constants such that:

(i) a< f(x,y,2) <ayforallx,y,z;

.. g(x,y) .

(i) b<="—=<biforallxandy # 0,

h(x,0,0)
(iii) h(0,0,0) =0,860 < —— forall x #0;
X

(V) yfi(x, y,0) =0, 8x(x,y) <0, hc(x,0,0) < cforallx,yandc < ab;
V) yfe(x,9,2) =0,hy(x,y,0) >0,h,(x,0,2) >0 forall x, y, z;
(Vl) f()oo|p([sx7yvz)|dt < 00,
then the solutions x(t) of (1.2), its first and second derivatives are uniformly ultimately

bounded.

Theorem S If all the hypotheses of Theorem 4 are satisfied and in addition g(0,0) = 0,
then every solution (x(t), y(t), z(t)) of (1.2) is uniformly bounded and satisfies

lim x(z) =0, lim y(r) =0, lim z(r) =0. (3.1)
t—00 t—00 1—00

Theorem 6 Suppose that a, b, c and 8y are positive constants such that:
(1) hypotheses (iii)—(vi) of Theorem 4 hold;
() f(x,y,2) = aforallx,y,z;

(iii) 8. y) >bforallx,y #0,

then any solution (x(t), y(t), z(t)) of the system (1.2) with the initial conditions
x(0) = x0, y(0) =yo, z(0) =20 (3.2)
satisfies
lx(@®)| = Do, |y(®)| = Do, |z(1)] < Do (3.3)
for all t > 0 where the constant Do > 0 depends on a, b, c, 8y as well as on ty, xg, Y0, 20

and the function p appearing in (1.2).

@ Springer



264 A. T. Ademola, P. O. Arawomo

Now if p(t, x, v, z) in (1.2) is replaced by p(t), p € C(R™, R), we have

Xx=y,y=221=pt)— fx,y, )z —gx,y) —h(x,y,2). 3.4

Corollary 7 If assumptions (i)—(v) of Theorem 4 hold and fooo |p(t)|dt < oo, then the
solution (x(t), y(t), z(t)) of (3.4) is uniformly ultimately bounded.

Corollary 8 If the hypotheses of Corollary 7 hold, then every solution (x(t), y(t), z(t)) of
(3.4) is uniformly bounded and satisfies (3.1).

Corollary 9 Assuming assumptions (iii)—(v) of Theorem 4, (ii), (iii) of Theorem 5 are sat-
isfied and in addition fooo |p(t)|dt < oo, then any solution (x(t), y(t), z(t)) of the system
(3.4) with the initial conditions (3.2) satisfies (3.3) for all t > 0.

Remark 10 (i) The situation when f(x,y,2) = f(2), g(x,y) = g(y) and h(x, y,z) =
h(x), system (1.2) reduces to that discussed by Ademola et al. [3,4] and Tung [25].
The assumption on the function p(t, x, y, z) in [3] Theorem 3.5 for the solutions x (¢)
its first and second derivatives to be uniformly ultimately bounded and the hypothesis
that fox h(é)dé — +o00 as |x| — oo assumed in [4] Theorem 2.6 for solutions to
converge to zero as t — oo are not required here. Furthermore, the basic assumptions
that the functions f, g and & are not differentiable for the solutions to converge to zero
as t — oo and ultimately bounded for all # > 0 in [25] are also not applicable here.
(ii)) Whenever f(x,y,z) = a a > 0 is a constant, g(x,y) = by or yg(x) and
h(x,y,z) =c¢ ¢ > 0isaconstant or 2(x), system (1.2) reduces to that studied by
Ezeilo [8—11] and Swick [18]. Thus some of our hypotheses and conclusion coincide
with those discussed in [8—11] and [18].

(iii) Also, when f(x,y,z) = ¥(x,y) and h(x, y,z) = 0 or cx ¢ > 0 is a constant or
h(x), system (1.2) specializes to that discussed by Omeike [16] and Tung [22] and the
references cited theirin.

(iv) Finally, our result in Theorem 4 revises and improves the most recent results given
by Ademola and Arawomo [2], generalizes and extends the results of Omeike [15],
Tung [21] and all results on boundedness and asymptotic behaviour of solutions of
nonlinear third order differential equations discussed by Reissig et al. [17].

The main tool employed in the proofs of our results is the continuously differentiable function
V=V(, x(), y(t), z(t)) defined as

V= B0y, (3.5a)

where
t
Py (1) = / [p(, x,y,2)|dp (3.5b)
0

and the function U = U (x(t), y(t), z(t)) is given by

x y
2U = Z(a—i—a)/h(%',o, O)d5+4/g(x,r)dr +4yh(x,0,0)
0 0

y
+2(a + a)yz + 222 + 2(a + a) / f(x, 7,0)dt + By + bBx>

0
+2aBxy + 2Bxz (3.5¢)
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Boundedness and asymptotic behaviour of solutions 265

where o« and B are positive fixed constants satisfying
ble<a<a (3.5d)

and

1
0 < B < min [(ab —o)at, (ab - e)dorg ' Sl a)aole] (3.5¢)

where Ao := (1 + )8 + (552 — b)2, (1 4+ a)sp # (K52 — )2, L83 o p oy £ 0,

A oi=60+ (f(x,y,2) — a)2; 80 # (f(x,y,2) —a)? and f(x,y,z) # a. We have the
following results.

Remark 11 Tf t = 0 in (3.5b), (3.5a) reduces to that employed in [2].

Lemma 12 [fall the hypotheses of Theorem 4 are satisfied and Py > 0 is a constant, then for
the function V defined in (3.5a) there exist positive constants D1 = D1 (a, b, c, «, B, S0, Po)
and Dy = Dj(a, b, c, ay, by, o, B) such that

Di(x*(0) + X (1) + 22(1) < V(t,x, ¥, 2) < Da(x*(1) + y> (1) + 22(1))  (3.62)
and
V(t, x(1), y(1), 2(1)) = 400 as x2 4+ y> + 22 — oo. (3.6b)

Furthermore, there exist positive constants D3 = D3(a, b, c, «, B, 89), D4 = Da(a, b, c, «,
B, d0) and Ds = Ds(a, o, B) such that a solution of (1.2)

V< —e_P*(’)‘Ds(x2 +y2+ 22+ [sz(x2 +y2 +2%) — Ds(Ix| + |y + IZI)}
x|p(t, x, y,z)I] (3.6¢)

Proof Since h(0, 0,0) = 0, (3.5¢) can be recast in the form

2U = 267" [[(a + a)b — 2h¢ (€, 0,0)1h(E, 0, 0) d&

\x

+4
T

2
(g(x’ 9 _ b)rdt +2b7! (h(x, 0,0) +by)

o\\< -

2
+(/3x +ay +z) + B(b — B)x* + (ay + 2)

,
+2 / (o +a) f (x, 7. 0) — (@ + a®)]r dt + By>.
0

Using the hypotheses of Theorem 4, we have the following estimate

1
U > 5[[(01 +a)b —2c1b~ 80+ B(b — ﬂ)]xz + %(ay +2)?
2
+%[a(a — )+ /3]y2 + bfl(éox + by)2 + %(ﬁx +ay + z) . (3.7)
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266 A. T. Ademola, P. O. Arawomo

In view of estimates (3.5d) and (3.5¢), the quadratic in the right hand side of (3.7) is positive
definite, hence there exists a constant Ap = A2(a, b, ¢, @, B8, §¢9) > 0 such that

U=+ +2%) (3.8)

for all x, y and z. Equation (3.5b) and hypothesis (vi) of Theorem 4, imply the existence of
a constant Py > 0 such that

0<P.() <Py (3.9)

for all + > 0. From (3.9) and estimate (3.8), Eq. (3.5a) yields
V=8x2+y 4+ (3.10a)
forallt > 0, x, y and z, where 81 := e~ Po. Furthermore, from estimate (3.10a), we have
V(t,x,y,z) = 4+0o0as x> + y> + 22 — oo. (3.10b)

Next, since 7(0,0,0) = 0, h,(x,0,0) < ¢ for all x implies that i(x,0,0) < cx for all
x # 0. This inequality, the hypotheses of Theorem 4 and the fact that 2gr < g% + r2,
Eq. (3.5¢) becomes

U <&h&2+y> +2%) (3.11a)

for all x, y and z, where

& = %maX{aJra +2c+B(1+a+b),(@+a)(l+ar)
+B8(1+a)+2(b1+0).24+a+ B +a}.
Using estimates (3.11a) and (3.9), Eq. (3.5a) yields
V<&h?+y +7H) (3.11b)

for all x,y and z. Moreover, the derivative of V with respect to ¢ along a solution
(x(1), y(1), z(1)) of (1.2) is

Vg = —e 0 [U|p(r, X, y,2)] — U<1.2>] (3.12a)

where U is defined in (3.5¢) and after simplifying

h(.y.2) » _[ g(x,y) ]yz

Uio = —B - (o J””T —2hy(x,0,0)

—2f (. y,2) — (@ +a)* + Wi — Wy — ﬂ(@ - b)xy
—Blf(x,y,2) —alxz+[Bx + (@ +a)y + 2z]p(t, x, y, 2) (3.12b)
where
y y
Wi = aBy® +2Byz + 2y [gx(x, )dT + (@ + @)y [tf:(x,7,0)dT;
0 0

Wy = (a+a)yz[f(x,y,2) — f(x,y, 0]+ [(a +a)y + 2z][h(x, y, 2) — h(x,0,0)].

Now, since g,(x, y) < 0, yfe(x,y,0) < 0 for all x, y and the fact that 2yz < x2 + y2,
we have

Wi < BIA +a)y* + 221 (3.132)
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Boundedness and asymptotic behaviour of solutions 267

for all y and z. Also, applying the mean value theorem and hypothesis (v) of Theorem 4
we obtain

Wy = (@ + @)yz* fo(x, y, 012) +(a+a)y*hy (x, 62y, 0)+22%h.(x,0,632) =0 (3.13b)

forall x,y,z where 0 < 6, < 1(i = 1,2,3) and W, = 0if y = 0 = z. Using estimates
(3.13) and the hypotheses of Theorem 4, we obtain

. 1 1
Uiy < ds(xl+ Iyl + 1zDIp@, x, v, 2)| — §ﬂ80x2 — (ab — ¢)y* — Sla- @)z’

2 2
—|:x+28071(@—b>yi| —|:x+28(;l(f(x,y,z)—a)]
for=e=afraespt (252 -0) I}
—1ab—c—Bl1+a+4§ v —-b y

1 -1 : 2
_[E(a_(l)_ﬂ[l‘i‘(so (f(x,y,z)—a) ]]Z7

where A3 := max{f, o« + a, 2}. Applying estimates (3.5d) and (3.5¢), this inequality yields

Uiz < —ra(x? 4+ 2+ 25 + 2s(lx| + |yl + 1z2DIp(t. x, v, 2)| (3.14)
for all x, y, z where A4 := min{2 B8, ab — ¢, 1(a — @)}. Using estimates (3.8) and (3.14)

in (3.12a), we obtain

Vi < —e B0 [M(x2 + 32+ 2+ G+ +D)Ip, x, v, 2)|

=A3(lx| + Iyl + 1zDIp(, x, y,z)l} (3.15)
forall + > 0, x, y and z. This completes the proof of the lemma. O

Proof of Theorem 4 Let (x(t), y(t), z(t)) be any solution of (1.2). Now, since (|x| + |y| +
1z)? < 3(x? + y% +22), choosing (x? 4 y? +z2)/2 > 31/237 135 estimate (3.15) becomes

Vi < —rge PO 4 y? 4 22
forall + > 0, x, y and z. In view of (3.5b) and hypothesis (vi) of the theorem, we have
Vi < =830+ 32 +2%) (3.16)

for all t > 0, x, y and z where 83 := Age~F*(®) = 0. From estimates (3.10), (3.11b) and
(3.16), the hypotheses of Lemma 2 hold; hence, by Lemma 2 the solutions of (1.2) are
uniformly ultimately bounded. O

Proof of Theorem 5 The proof of this theorem depends on the function defined in (3.5). By
Theorem 4 the solutions of (1.2) are bounded. Now, let W(X) = 83(x2+ y2 +22), obviously
W(X) > 0 for all X € R3. Consider the set

Q={X=(x,y,x) e R¥W(X)=0}.

Since W (X) is continuous, the set €2 is closed and W (X)) is positive definite with respect to
Q2 and

Viay < —W(X) 3.17)
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268 A. T. Ademola, P. O. Arawomo

for all (1, X) € Rt x R3. Moreover the system (1.2) can be recast in the form (2.2)
where X = (x,y,2)T, F(X) = (y,z, = f(x, y, 2)z — g(x, ) —h(x, y,z) Tand G (¢, X) =
0,0, p(t,x, y, z))T. From the continuity and boundedness of the functions f, g and /& the
function F(X) is bounded. Thus, by (3.17) all solutions of (2.2) approach the largest semi
invariant set contained in 2 of the equation

X = F(X) (3.18)

on Q2. Since W(X) = 0 on 2, we have x = y = z = 0, and by hypotheses of Theorem 5
g(0,0) = h(0,0,0) =0, it follows from (3.18) that

X = (K1, K2, K3)T

where K1, K> and K3 are constants. For X to remain in 2, K; = K> = K3 = 0. Hence, by
Lemma 3 equations (3.1) follows, this completes the proof of the theorem. O

Proof of Theorem 6 Let (x(t), y(t), z(t)) be any solution of (1.2). We shall use the method
introduced in [6]. Now, since A2 (x2 + y% 4+ z2)|p(t, x, y, 2)| = 0, A4(x%2 + y2 + z2) > 0,
x| < 14+x2, |y] <14 y?and |z| < 1+ z2, estimate (3.15) becomes

Vi < aze OB +x2 + 32 + 2D)Ipt, x, v, 2,
for all + > 0, x, y and z. From estimates (3.9) and (3.10a), this inequality becomes
Vi) = Aslp(t. x. y. 2|V < 3x3lp(t. x. y. 2)|

where A5 := e~ 108 flk3. Solving this first order differential inequality using the integrating
factor exp[—As5 P ()] and estimate (3.9), we obtain

V < ¢ (3.19)
where A¢ := [V (to, X0, Y0, z0)+343 Pyle*s 0. From (3.10a) and (3.19) estimate (3.3) follows

with Dy = § fl)\6 for all + > 0. This completes the proof of the theorem. O

Example 1 As a special case of equation (1.1), consider the following third order nonlinear
ordinary differential equation

X 4 4% + +3x+ —— +5x

1+ [xi| + exp (1/(1 + |5c55|)) I ]

X _ 1
) 12 x4 52452

+

(3.20)
1 +exp (1/(1 + x|+ 1X])

(3.20) is equivalent to the systems of first order ordinary differential equations

1

X=y, V=2 L o

—[4 + 1/(1 + [xy| +exp(1/(1 + Iyzl)))]z

—[3 +1/(1 + Ixyl)]y - [5 + 1/(1 +exp(1/(1 + |y| + IZI)))]x. (3.21)
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Comparing (1.2) and (3.21), we have:

(a) the function f(x, y, z), is

1
4+ . (3.22)
L+ |xy| +exp(1/(1 + |yz])
(i) Since
1
0= <1 Vx,y,z
L+ |xy| 4+ exp(1/(1 + |yz])
it follows that
4<f(x,y,2) <5
forall x, yand z wherea =4 > O0anda; =5 > 0.
(ii)) From (3.22) we obtain
—y2
vk, y,2) = <0
) [1+ [xy| +exp(1/(1 + [yz])?
for all x, y and z.
(iii) Similarly
2
yoexp(1/(1+|yzl))
yf(x,y,2) = 4 5 >0
[(1 + lyzDI1 + |xy| + exp(1/(1 + lyZI))]]
for all x, y and z.
(b) The function g(x, y), is defined as
y
3 3.23
J I+ |xy] ( )
(1) Also, since
1
0< <1
1+ [xy]
for all x and y, it follows that
3 < g(x,y) <4
y
forallx andy # 0, where b =3 > 0 and by =4 > 0 and
(i) By (3.23)
2
-y
X,y) = <0
g&x(x,y) 1+ oyl
for all x and y.
(¢c) The function &(x, y, z) is also defined as
X
S5x + (3.24)
L +exp(1/(1+ |yl +1z]))
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®

(i)

(iii)

(iv)

Since
1
>0
I +exp(L/(L+ |yl +1z])
for all y and z, it follows that

W, y,2) _
=

5

for all x # 0, y and z, where §p =5 > 0.
Moreover, from (3.24), we obtain

he(x,y,2) <6

for all x, y, z where ¢ = 6 > 0 and ab > c implies that 2 > 1.
Furthermore, in view of (3.24), we have

|xfexp(1/(1 + |yl + Iz))

hy(x,y,z)= . >0
[(1 + |y + [zDlexp(1/(1 + |y| + |Z|))]}
for all x, y and z.
Simiarly
1/(1
ho(x,y,2) = Ixlexp(1/(1 + Iyl + 1z1)) -

2
[(1 + (] + [zDlexp(1/(1 + [y| + IZI))]}

for all x, y and z.

(d) Finally, for the function p(z, x, y, z), we have

1
L4124+ x2 4 y2 422

p(t,x,y,2) =

It is not difficult to show that

Hence

7 1

dt < o0.
/‘1+t2+x2+y2+zz
0

, all the assumptions of the theorems are satisfied and the conclusions follow.
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