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UNIFORM STABILITY AND BOUNDEDNESS

OF SOLUTIONS OF NONLINEAR DELAY

DIFFERENTIAL EQUATIONS OF THE THIRD ORDER

ADEMOLA, A.T. and ARAWOMO, P.O.

Abstract. In this paper, a complete Lyapunov functional was con-
structed and used to obtain criteria (when p = 0) for uniform asymptotic
stability of the zero solution of the nonlinear delay differential equation
(1.1). When p 6= 0, sufficient conditions are also established for uni-
form boundedness and uniform ultimate boundedness of solutions of
this equation. Our results improve and extend some well known results
in the literature.

1. Introduction

Many works have been done by several authors on the properties of so-
lutions of ordinary differential equations of the second, third, fourth, fifth
and higher order in which the unknown functions and its derivatives are
all evaluated at the same instant, t, see for instance Reissig et. al., [10], a
survey book and Ademola et. al., [1], Ezeilo [6], Omeike [8], Tejumola [12],
Tunç [17] and the references cited therein to mention few. A more general
type of differential equation often called a functional differential equation is
one in which the unknown function occurs with various different arguments.
This means an equation expressing some derivatives of x at time t in term
of x (and its lower order derivative if any) at time t and at earlier instants.

With respect to our observation in the relevant literature, interesting re-
sults have been obtained on the properties of solutions of these classes of
equations see for examples Burton [4, 5], Hale [7] and Yoshizawa [18] which
contain general results on the subject matter. Notable authors that have
contributed immensely to the qualitative properties of solutions (in partic-
ular stability and boundedness of solutions) of nonlinear third order delay
differential equations include Afuwape and Omeike [2], Omeike [9], Sadek
[11], Tunç [13, 14, 15, 16, 17] and Zhu [19]. These authors dealt with the
problems by constructing Lyapunov functionals and obtain criteria for sta-
bility and boundedness of solutions.

The purpose of this paper is to obtain criteria for uniform stability, uni-
form boundedness and uniform ultimate boundedness of solutions for a more

Mathematics Subject Classification. Primary 34K12; Secondary 34K20.
Key words and phrases. Uniform stability, Uniform boundedness, Uniform ultimate

boundedness, Lyapunov functional, Delay differential equation.

157

IB
ADAN U

NIV
ERSITY

 LI
BRARY



158 A.T. ADEMOLA AND P.O. ARAWOMO

general third order nonlinear delay differential equation

(1.1)
...
x+f(x, ẋ, ẍ)ẍ+g(x(t−r(t)), ẋ(t−r(t)))+h(x(t−r(t))) = p(t, x, ẋ, ẍ)

or its equivalent system given by

ẋ = y, ẏ = z, ż = p(t, x, y, z) − f(x, y, z)z − g(x, y) − h(x)

+

t
∫

t−r(t)

gx(x(s), y(s))y(s)ds +

t
∫

t−r(t)

gy(x(s), y(s))z(s)ds

+

t
∫

t−r(t)

h′(x(s))y(s)ds

(1.2)

where 0 ≤ r(t) ≤ γ, γ > 0 is a constant which will be determined later,
the functions f, g, h and p are continuous in their respective arguments and
the derivatives fx(x, y, z) fz(x, y, z), gx(x, y), gy(x, y), h

′(x) exist and are
continuous for all x, y, z with h(0) = g(0, 0) = g(x, 0) = 0 for all x. The
dots, as elsewhere, stands for differentiation with respect to the independent
variable t. Also, as usual, condition for uniqueness of solutions of (1.2) will be
assumed. The results obtained in this investigation improve, generalize and
complement existing results on the third order nonlinear delay differential
equation in the literature.

2. Preliminaries

Consider the general autonomous delay differential system

(2.1) Ẋ = F (Xt), Xt(θ) = X(t+ θ), −r ≤ θ ≤ 0. t ≥ 0

where F : CH → R
n is a continuous mapping , F (0) = 0, we suppose that

F takes closed bounded set of Rn. Here (C, ‖ · ‖) is the Banach space of
continuous function φ : [−r, 0] → R

n with supremum norm, r > 0, CH is an
open ball of radius H in C; CH := {φ ∈ (C[−r, 0],Rn) : ‖φ‖ < H}. It has
been shown by Burton [5], that if φ ∈ CH , and t ≥ 0, then there is at least
one continuous solution X(t, t0, φ) satisfying (2.1) for t > t0 on the interval
[t0, t0 +α), such that Xt(t, φ) = φ and α is a positive constant. If there is a
closed subset B ⊂ CH such that the solution remain in B, then α = ∞.

Definition 1. [5]. A continuous function W : R+ → R
+ with W (0) = 0,

W (s) > 0 if s 6= 0, and W strictly increasing is a wedge. (We denote wedges
by W or Wi, where i is an integer).

Definition 2. [5]. The zero solution of (2.1) is asymptotically stable if it
is stable and if for each t0 ≥ 0 there is an η > 0 such that ‖φ‖ ≤ η implies

IB
ADAN U

NIV
ERSITY

 LI
BRARY



UNIFORM STABILITY AND BOUNDEDNESS OF SOLUTIONS 159

that

X(t, t0, φ) → 0 as t→ ∞.

Definition 3. [4]. An element ψ ∈ CH is in the ω−limit set of φ, say
Ω(φ), if X(t, 0, φ) is defined on R

+ and there is a sequence {tn}, tn → ∞ as
n→ +∞, with ‖Xtn(φ)−ψ‖ → 0 as n→ ∞, where Xtn(φ) = X(tn+θ, 0, φ)
for −r ≤ θ < 0.

Definition 4. [19]. A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the
solution X(t, 0, φ) of (2.1) is defined on R

+ and Xt(φ) ∈ Q for t ∈ R
+.

Lemma 2.1. [5, 7, 19]. If φ ∈ CH is such that the solution xt(φ) of (2.1)
with x0(φ) = φ is defined on R

+ and ‖Xt(φ)‖ ≤ H1 < H for t ∈ R
+, then

Ω(φ) is nonempty, compact, invariant set, and

dist(Xt(φ),Ω(φ)) → 0, as t→ ∞.

Lemma 2.2. [4, 19].) Let V (φ) : CH → R be a continuous functional
satisfying a local Lipschitz condition. V (0) = 0 and such that

(i) W (|φ(0)|) ≤ V (φ) ≤W2(‖φ‖) where W1(r) and W2(r) are wedges;

(ii) V̇(2.1)(φ) ≤ 0 for φ ∈ CH .

Then the zero solution of (2.1) is uniformly stable.

If we define Z = {φ ∈ CH : V̇(2.1)(φ) = 0}, then Xt = 0 of (2.1) is asymp-
totically stable, provided that the largest invariant set in Z is M = {0}.

Next, consider the system

(2.2) Ẋ = F (t,Xt), Xt = X(t+ θ), −r ≤ θ ≤ 0, t ≥ 0,

Where F : [0,∞) × C → R is continuous and takes bounded sets into
bounded sets. The following lemma is a well-known result obtained by
Burton [4].

Lemma 2.3. [4]. Let V : R+ × C → R be continuous and locally Lipschitz
in φ. If

(i) W0(|Xt|) ≤ V (t,Xt) ≤W1(|Xt|) +W2

(

t
∫

t−r(t)

W3(Xt(s))ds

)

and

(ii) V̇(2.2)(t,Xt) ≤ −W4(|Xt|) + N, for some N > 0 where Wi (i =
0, 1, 2, 3, 4) are wedges.
Then Xt of (2.2) is uniformly bounded and uniformly ultimately bounded
for bound B.
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160 A.T. ADEMOLA AND P.O. ARAWOMO

3. Main Results

In the case when p(t, x, y, z) ≡ 0. (1.2) becomes

ẋ = y, ẏ = z, ż = −f(x, y, z)z − g(x, y) − h(x)

+

t
∫

t−r(t)

gx(x(s), y(s))y(s)ds +

t
∫

t−r(t)

gy(x(s), y(s))z(s)ds

+

t
∫

t−r(t)

h′(x(s))y(s)ds

(3.1)

where f, g, h and r are the functions defined in Section 1. Let (xt, yt, zt)
be any solution of (3.1), the main tool in the proofs of our results is the
continuously differentiable functional V ≡ V (xt, yt, zt), defined by

2V = 2(α + a)

∫ x

0
h(ξ)dξ + 4

∫ y

0
g(x, τ)dτ + 4yh(x) + bβx2

+ 2(α+ a)

∫ y

0
τf(x, τ, 0)dτ + βy2 + 2z2 + 2aβxy + 2βxz

+ 2(α+ a)yz +

∫ 0

−r(t)

∫ t

t+s

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds

(3.2a)

where α, β are positive fixed constants satisfying

(3.2b) b−1c < α < a;

(3.2c) 0 < β < min

{

(ab− c)a−1, (ab− c)A−1
1 ,

1

2
(a− α)A−1

2

}

,

where A1 := 1+ a+ δ−1

(

g(x, y)

y
− b

)2

and A2 := 1+ δ−1

(

f(x, y, z)− a

)2

;

λ1 and λ2 are also positive constants which will be determined later.We have
the following result.

Theorem 3.1. Further to the fundamental assumptions on f, g, h and r

appearing in (3.1), suppose that a, a1, b, c, δ, γ and M are positive constants
and that:

(i) a ≤ f(x, y, z) ≤ a1, yfx(x, y, 0) ≤ 0, yfz(x, y, z) ≥ 0 for all x, y, z;

(ii) g(0, 0) = 0 = g(x, 0), b ≤
g(x, y)

y
for all x, y 6= 0, |gx(x, y)| ≤ L for

some L ≥ 0 and |gy(x, y)| ≤M for all x, y;

(iii) h(0) = 0,
h(x)

x
≥ δ (x 6= 0), h′(x) ≤ c for all x and ab > c;
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UNIFORM STABILITY AND BOUNDEDNESS OF SOLUTIONS 161

(iv) 0 ≤ r(t) ≤ γ, r′(t) ≤ β0 0 < β0 < 1.

Then the trivial solution of (3.1) is uniformly asymptotically stable, provided
that

(3.3) γ < min

{

δA−1
3 , 2(1 − β0)(αb− c)A−1

4 , (a− α)(1 − β0)A
−1
5

}

where A3 := c+L+M, A4 := (α+ a)(1− β0) + (c+L)(2 + α+ β + a) and
A5 := 2(1 − β0)(c+ L+M) +M(2 + α+ β + a).

Remark. Whenever f(x, ẋ, ẍ) ≡ a (a > 0 is a constant) and g(x(t −
r(t)), ẋ(t − r(t))) ≡ g(ẋ(t − r(t))), Eq. (1.1) reduces to that discussed by
Sadek [11] and Tunç [14]. Also, if f(x, ẋ, ẍ) ≡ f(ẋ) (1.1) specializes to that
discussed by Afuwape and Omeike [2]. Besides, an incomplete Lyapunov
functionals were constructed and used to obtain stability results in [2, 11]
and [14] compared with a complete Lyapunov functional used in this inves-
tigation. Hence our result includes and generalizes theirs.

Proof of Theorem 3.1. Let (xt, yt, zt) be any solution of (3.1), the time
derivative of the functional defined in (3.2) along a solution of (3.1) is sim-
plified to give

V̇(3.1) = (α + a)y

∫ y

0
τfx(x, τ, 0)dτ + aβy2 + [βx+ (α+ a)y + 2z]

×

∫ t

t−r(t)

(

gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

)

ds

+ r(t)

(

λ1y
2 + λ2z

2

)

+ 2βyz + 2y

∫ y

0
gx(x, τ)dτ − β

(

g(x, y)

y
− b

)

xy

− β

(

f(x, y, z)− a

)

xz − β
h(x)

x
x2 −

[

(α+ a)
g(x, y)

y
− 2h′(x)

]

y2

−

[

2f(x, y, z) − (α+ a)

]

z2 − (α+ a)yz

[

f(x, y, z)− f(x, y, 0)

]

− (1− r′(t))

∫ t

t−r(t)

(

λ1y
2 + λ2z

2

)

ds.

IB
ADAN U

NIV
ERSITY

 LI
BRARY



162 A.T. ADEMOLA AND P.O. ARAWOMO

On applying the hypotheses of the theorem and the fact that 2pq ≤ p2 + q2,

we obtain

V̇(3.1) ≤
1

2
(c+ L+M)(βx2 + (α + a)y2 + 2z2)r(t) + λ1y

2r(t)

+ λ2z
2r(t)−

1

2
βδx2 − (αb− c)y2 −

1

2
(a− α)z2

−

{

ab− c− β

[

1 + a+ δ−1

(

g(x, y)

y
− b

)2]}

y2

−

{

1

2
(a− α)− β

[

1 + δ−1

(

f(x, y, z)− a

)2]}

z2

−
β

4δ

[

δx+ 2

(

g(x, y)

y
− b

)

y

]2

−
β

4δ

[

δx+ 2

(

f(x, y, z)− a

)

z

]2

−

[

λ1(1− r′(t))−
1

2
(c+ L)(2 + α+ β + a)

]
∫ t

t−r(t)
y2(s)ds

−

[

λ2(1− r′(t))−
M

2
(2 + α+ β + a)

]
∫ t

t−r(t)
z2(s)ds

Now, in view of estimates (3.2b), (3.2c), the fact that 0 ≤ r(t) ≤ γ and
r′(t) ≤ β0 0 < β0 < 1, this inequality becomes

V̇(3.1) ≤ −
β

2

[

δ − (c+ L+M)γ

]

x2

−

{

ab− c−

[

1

2
(α+ a)(c+ L+M) + λ1

]

γ

}

y2

−

{

1

2
(a− α)− (c+ L+M + λ2)γ

}

z2

−

[

λ1(1− β0)−
1

2
(c+ L)(2 + α+ β + a)

]
∫ t

t−r(t)
y2(s)ds

−

[

λ2(1− β0)−
M

2
(2 + α+ β + a)

]
∫ t

t−r(t)
z2(s)ds.

Choosing λ1 := 2−1(1− β0)
−1(c+L)(2 + α+ β + a) > 0 and λ2 := 2−1(1−

β0)
−1M(2 + α+ β + a) > 0, it follows that

V̇(3.1) ≤ −
β

2

[

δ − (c+ L+M)γ

]

x2

−

{

ab− c−

[

1

2
(α+ a)(c+ L+M) +

(c+ L)(2 + α+ β + a)

2(1− β0)

]

γ

}

y2

{

1

2
(a− α)−

[

c+ L+M +
M(2 + α+ β + a)

2(1− β0)

]

γ

}

z2.
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UNIFORM STABILITY AND BOUNDEDNESS OF SOLUTIONS 163

Applying estimate (3.3), there exists a constant δ0 > 0 such that

(3.4) V̇(3.1) ≤ −δ0(x
2 + y2 + z2)

for all x, y, z where δ0 = min

{

β

2

[

δ − (c+ L+M)γ

]

, ab− c−

[

1

2
(α+ a)(c+L+

M) +
(c+ L)(2 + α+ β + a)

2(1− β0)

]

γ,
1

2
(a− α)−

[

c+ L+M +
M(2 + α+ β + a)

2(1− β0)

]

γ

}

.

By (3.4) V̇(3.1) = 0 and the system (3.1), we can easily obtain x = y = z = 0.
Hence, condition (ii) of Lemma 2.2 is satisfied.
Next, since h(0) = 0, the functional V defined in (3.2) can be recast in the
form

V =
1

b

∫ x

0

[

(α+ a)b− 2h′(ξ)

]

h(ξ)dξ + 2

∫ y

0

(

g(x, τ)

τ
− b

)

τdτ

+
1

b

(

h(x) + by

)2

+

∫ y

0

[

(α+ a)f(x, τ, 0) − (α2 + a2)

]

τdτ

+
1

2
(αy + z)2 +

1

2
(βx+ ay + z)2 +

1

2
β(b− β)x2 +

1

2
βy2

+
1

2

∫ 0

−r(t)

∫ t

t+s

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds.

Now, by hypotheses of the theorem and the fact that the double integrals
∫ 0

−r(t)

∫ t

t+s

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds

are non negative, it follows that

V ≥
1

2b

[

δ(αb− c+ ab− c) + bβ(b− β)

]

x2 +
1

2

[

α(a− α) + β

]

y2

+
1

2
(αy + z)2 +

1

2
(βx+ ay + z)2.

(3.5)

By estimates (3.2b) and (3.2c), the quadratic in the right hand side of (3.5) is
positive definite, hence there exists a positive constant δ1 = δ1(a, b, c, α, β, δ)
such that

(3.6) V ≥ δ1(x
2 + y2 + z2)

for all x, y and z. Estimate (3.6) establishes the lower inequality in condition
(i) of Lemma 2.2.
Furthermore, since g(x, 0) = 0 for all x implies that g(x, y) ≤ My for all
x, y 6= 0 and h(0) = 0 implies h(x) ≤ cx (x 6= 0). These inequalities and the
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164 A.T. ADEMOLA AND P.O. ARAWOMO

fact that 2pq ≤ p2 + q2, the functional V defined in (3.2) yields

V ≤ η1(x
2 + y2 + z2) +

∫ 0

−r(t)

∫ t

t+s

η2

[

x2(θ) + y2(θ) + z2(θ)

]

dθds(3.7)

where η1 :=
1
2 max{(1+a+b)β+(2+α+a)c, (1+a1)(α+a)+2(c+M)+(1+

a)β, 2 + α + β} and η2 := 1
2 max{1, λ1, λ2}. From estimate (3.7) the upper

inequality in codition (i) of Lemma 2.2 follows. By estimates (3.4), (3.6)
and (3.7) the hypotheses of Lemma 2.2 are satisfied. Hence, by Lemma 2.2
the trivial solution of (3.1) is uniformly stable and uniformly asymptotically
stable. �

Next, if p(t, x, y, z) 6= 0, we have the following results.

Theorem 3.2. If the assumptions of Theorem 3.1 hold true and

(3.8a) |p(t, x, y, z)| ≤ p1(t) + p2(t)(|x| + |y|+ |z|)

where p1(t) and p2(t) are continuous functions satisfying

(3.8b) p1(t) ≤ P0

0 < P0 <∞ and there exists ǫ > 0 such that

(3.8c) 0 ≤ p2(t) ≤ ǫ.

Then the solutions of the system (1.2) are uniformly bounded and uniformly
ultimately bounded, provided that the inequality in (3.3) holds true.

If p(t, x, y, z) ≡ p(t) 6= 0, Eq. (1.2) becomes

ẋ = y, ẏ = z, ż = p(t)− f(x, y, z)z − g(x, y) − h(x)

+

t
∫

t−r(t)

gx(x(s), y(s))y(s)ds +

t
∫

t−r(t)

gy(x(s), y(s))z(s)ds

+

t
∫

t−r(t)

h′(x(s))y(s)ds

(3.9)

Corollary 1. If the assumptions of Theorem 3.1 are satisfied and
|p(t)| ≤ P1, 0 < P1 < ∞ then the solutions of (3.9) are uniformly bounded
and uniformly ultimately bounded, provided that the inequality in (3.3)
holds.

Remark. If f(x, ẋ, ẍ) ≡ a, a > 0 is a constant, g(x(t− r(t)), ẋ(t− r(t))) ≡
g(ẋ(t − r(t))) and p(t, x, ẋ, ẍ) ≡ p(t), (1.1) specializes to that discussed
by Sadek [11], our assumptions and conclusion coincide with his. Also, if
p2(t) ≡ 0, (1.1) reduces to the one discussed by Tunç [13]. Finally, whenever
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UNIFORM STABILITY AND BOUNDEDNESS OF SOLUTIONS 165

f(x, ẋ, ẍ) = h(ẋ) and p1(t) ≡ m, m > 0 is a constant, then the hypotheses
and conclusion of Theorem 3.2 coincide with that of Afuwape and Omeike
in [2] except f(x, y, z) ≤ a1 a necessary and sufficient condition for uni-
form boundedness and uniform ultimate boundedness of solutions of (1.1)
which could not be found in [2]. Hence, our result revises and generalizes
the situation given in [2, 11] and [14].

Proof of Theorem 3.2. Let (xt, yt, zt) be any solution of (1.2), the deriv-
ative of the functional V defined in (3.2) along a solution of (1.2) is

V̇(1.2) = V̇(3.1) + (βx+ (α+ a)y + 2z)p(t, x, y, z).

Now, from estimate (3.4) and the fact that q ≤ |q|, this equation becomes

V̇(1.2) ≤ −δ0(x
2 + y2 + z2) + η3(|x|+ |y|+ |z|)|p(t, x, y, z)|

where η3 = max{β, α + a, 2}. In view of (3.8) and choosing ǫ < 3−1η−1
3 δ0

there exists η4 = δ0 − 3η3ǫ > 0 such that

(3.10) V̇(1.2) ≤ −
η4

2
(x2 + y2 + z2) +

3

2
η23P

2
0 η

−1
4 ,

since

η4

2

[(

|x| − η3P0η
−1
4

)2

+

(

|y| − η3P0η
−1
4

)2

+

(

|z| − η3P0η
−1
4

)2]

≥ 0

for all x, y and z. From estimate (3.10), hypothesis (ii) of Lemma 2.3 is
satisfied. Also from estimates (3.6) and (3.7), condition (i) of Lemma 2.3
follows. This completes the proof of the theorem. �

Acknowledgment: The authors would like to thank the referee(s) for
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