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Abstract: In this paper, we establish the existence of positive solutions for eigenvalue
problem of fractional differential equations with integro-differential boundary conditions. We
determine the intervals of parameter \ for which the existence of positive solutions is guaran-

teed. An example is also presented to show the application of our results.
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1. Introduction

In this paper, we discuss the existence of positive solutions to the following
eigenvalue problem of fractional differential equation:

D%u(t) + Aw(t) f(t,u(t)) = ), te(0,1),
u(0) =0, u(l)+D"u(l) = /0 p(s)u(s)ds,

where 1 < a <2, 0<r <1, D¥and D" are the standard Riemann-Liouville
fractional derivatives, w € C([0,1], IR"), f € C([0,1] x R",IR"), p € £[0,1]
is non-negative and A\ is a positive parameter.

Due to the rapid development and wide applications of fractional calculus
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in many fields of engineering and applied sciences, the study of the existence of
positive solutions to boundary value problems(BVP) of fractional differential
equation has caught the attention of many researchers, see [1], [7], [8], [15], [22],
[23], [24], [26], [29], [30] and the references cited therein.

In 1997, J. Henderson and H. Wang[14] established the intervals of the
values of parameter \ for which there exist positive solutions to their eigenvalue
problem. Since then, many papers have focused in this direction and the study
of existence results for eigenvalue problems of fractional differential equations
under various boundary conditions has been on the increase, see [3], [4], [9], [10],
[11], [12], [13], [15], [16], [20], [25], [27], [28], [31] and the references therein.

In particular, M. El-Shahed in [9] discussed the existence and nonexistence
of positive solutions to the following boundary value problem:

DRu(t) + Aa(t) f(u(t)) = 0, ¢ € (0,1),
u(0) = u"(0) =0, vu'(1) + pu”(1) =0, } (1.2)

where 2 < o < 3, D¢ is the standard Riemann-Liouville fractional derivative
and A is a positive parameter.

The authors in [31] studied the existence of positive solutions to the follow-
ing boundary value problem:

D*u(t) + Mh(t)f(u(t)) = 0. t € (0,1)

u(0) = /(0) =0, u(1) = /0 g(s)u(s)ds,

where 2 < o < 3, D¢ is the standard Riemann-Liouville fractional derivative
and A is a positive parameter.

Inspired by the works in [9] and [31], the aim of this paper is to determine
the intervals for the values of parameter A such that the existence of at least one
positive solution to the BVP(1.1) is guaranteed. Here, our boundary condition
is allowed to depend on the fractional derivative D"u(t) of the unknown function
u(t) which the authors in [3], [4], [9], [11], [12], [13], [14], [20], [25], [31] did not
consider. However, to the best of our knowledge, the existence of positive
solutions to the BVP(1.1) has not been discussed so far. Our approach is based
on the well-known Krasnosel’skii fixed-point theorem in a cone and we have
different results.

Throughout this work, we assume the following conditions hold:

(1.3)

Cy. f:]0,1] x [0,00) — [0, 00) is continuous.
Cy. w: (0,1) — [0, 00) is continuous with w(t) # 0 on any closed subinterval

1
of (0,1) and 0 < / w(t)dt < 0.
0
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1 1
C3. p:(0,1) — [0, 00) is continuous and 0 < b, = —/ p(t)t*tdt < 1.
@, Jo

f(t,w)

Cy. lim = L, exists.
u—0t U
t,u
C5. lim ftw) = M, exists.
U— 00 u

The rest of the paper is outlined as follows: In section 2, we recall some basic
definitions and some known results. We also present the expression and some
basic properties of the integral kernel G, (¢,s). In section 3, our main results
are stated and proved. Finally, we give an example in section 4 to illustrate the
practical application of our main results.

2. Preliminary Results

In this section, we recall some basic definitions and results. Further, we give
the expression and basic properties of the kernel G, (¢, s) associated with the
BVP(1.1).

Definition 2.1([6], [19], [21]) - The Riemann-Liouville fractional integral
of order av > 0 for a given continuous function f : (0,00) — IR is defined to be

1 t
I8 f(t) = =—— [ (t—s)*""f(s)d
B0 = g [ (=9 s
provided the right side is pointwise defined on (0, 00).

Definition 2.2([6], [19], [21]) - The Riemann-Liouville fractional derivative
of order o > 0 for a given continuous function f : (0,00) — IR is defined to be

D310 = s () [ =1 s,

(n—a)

n —1 < a < n, provided the right side is pointwise defined on (0,00), where
n = [a] + 1 and [a] is the integer part of the number a.

Remark 2.3 If u e C(0,1) N L(0,1), then

DTu(t) = u(t).
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Lemma 2.4(see [5]) - Let a > 0. If we assume u € C(0,1) N L(0,1), then
the fractional differential equation D%u(t) =0 has

u(t) = et et et

forc € IR, i =1,2,...n, as unique solutions, where n is the smallest integer
greater than or equal to c.

Lemma 2.5 (see [5], [6]) - Assume thatu € C(0,1)NL(0, 1) with a fractional
derivative of order a > 0 that belongs to C'(0,1) N L(0,1). Then

I“D%u(t) = u(t) + ert® P4 et 2 4t } (2.6)

forc, e IR, 1=1,2,...,n.
Lemma 2.7(see [18]) - Assume that h(t) € L[0,1] and «, r are two
constants such that o« >1>1r > 0. Then

[ — )% h(s 8:7Foz t —5)* " n(s)ds
o [ €= e = gt = s s

T
Lemma 2.8 - Lletl <a<2 0<b <1, O'Zia, a, = (1+ o)
? MNa—1) °
and h € C[0,1]. Then the unique solution of the BVP
D%u(t) +h(t) =0, 0<t<1,
r 1 (29)
u(0) =0, u(l)+D"u(l)= [ p(s)u(s)ds,
0
s given by
1
u(t) = / G, (t,s)h(s)ds,
0
where
a—1 _ o\a—r—1 a—1 _ oa—1 _ a—1
ot* (1 —s) +t47 (1 —s) a,(t—s) D s<t,
G (t 8): ao(l_bo)ra
o\ Jtail(l o S)afrfl + tafl(l _ S)afl Lo (2 10)
a,(1-b,)la oo ’

Proof: By Lemma (2.5), the BVP(2.9) can be reduced to an equivalent
integral equation

u(t) = — I%h(t) + c1t® ! 4 cpt® 2
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1 t
= ~Ta ; (t — 5)*  h(s)ds 4+ et + et 2.
Using boundary condition «(0) = 0 with a < 2, we have ¢ = 0 and

1 t

u(t) = — Ta /, (t — 5)* " h(s)ds + 1t L.
1 ! a—1
u(l) = — Ta /, (1 —5)* " h(s)ds + c1. (2.11)
Dru(t) = — ﬁ /O (t—s)a”h(s)qu%twl.
! a
Dru(l) _ ﬁ\/o (1 _ S)Q*Tflh(s)ds —I—Clﬁ'

1
Using boundary condition u(1) + D"u(1) = / p(s)u(s)ds and setting
0
loa

m =0, We have

1 1
ci(l+o)= /0 p(s)u(s)ds + ﬁ /0 (1—s)*""1h(s)ds

1 1
- 1— a—1
e [ = s
1 /1 1 .
= — 1 — a—
— 0 /0 p(s)u(s)ds + aoFa/o (1 —s)*""h(s)ds
+ ! /1(1 )* " h(s)ds.  (2.12)
T =1 )y s s)ds. .
where a, = (1 + o).
Putting (2.12) into (2.11) gives
1 t 1 ta—l 1
u(t) = — Ta /, (t—s)* "h(s)ds + 0 /0 p(s)u(s)ds

/ L1 9 (s ds
0

a,l'a

; ' a—1lr1 _ s a—r—1 s)ds
+ aOF(a—r)/O 71— s) h(s)ds.
(2.13)
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Multiply both sides of (2.13) by p(¢) and then integrate with respect to ¢

from 0 to 1, we have

1 1 t
/ ptyu(t)dt = — — [ p() / (t — )2~ h(s)dsdt
0 0

T
o / (£t Lt - /lp(s)u(s)ds

1 1
+—/pt°‘1dt—/ $)*1h(s)ds
a, Jo

1
a—1 _Sar—l s)ds.
+m/p()t dt/o( ) h(s)d

If we set / p(t)u(t )dt = §; and —/ (t)t* 'dt = b, then we have

f-b) == [ e /0 (t - 5)° h(s)dsdt

1
+ b, /0 (1—s)*"1h(s)ds

T

bo ! _Sa—r—l s)ds
+F(a—r)/0(1 Ja=m1y(s)ds.

— al
0 =- = Fa/pt/ h(s)dsdt

_Sal
b [ hisyas

bo ! — 35 a—r—1 s)ds
" (1—b0)r(a—r)/0 (1=s) h(s)ds.  (2.14)

Puttlng (2.14) into (2.13) gives

:——/ $)2Lh(s)ds

bo ! a—1 _Safrfl s)ds
ey e A AL

b ! 1 1
— t7 N1 — 85)* h(s)d
+ a,(1— bo)Fa/O ( ) (s)ds
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b ! a— 1 ! a— a—
— mA (t — S) 1h(8)d8 + p 110[/0 t 1(1 — S) 1h(8)d8

1 et —r—1
_ 1 —8)* """ h(s)ds.
+ aOF(a—r)/O 71— s) (s)ds

_ ﬁ/o (t — )% h(s)ds + m/o 171 = )2 h(s)ds

=
1
b TTrE T, T e s

_1 t 1 1 ! 1 1
_ e _ 1 e g ned
ao(l—bo)Fa/o o (t—s) h(s)ds+ao(1_bo)m/o (1— 5)°Lh(s)ds

1
g a—1 a—r—1
— N t 1-— h(s)d
" a,(l— bo)Fa/O (1=s) (s)ds

e L T e e (= ) R

+ 1 )Fa /1 [Jta_l(l o S)a—r—l _|_ta—1(1 _ 8)@—1] h(S)dS (215)

a’o(l - bo t
1
:/ G, (t,s)h(s)ds.
0

This completes the proof.

Lemma 2.16 - The function G (t,s) defined by (2.10) is continuous and sat-

1sfies the following properties:
(i) G,(t,s) >0 Vt,sel0,1] and G, (t,s) >0 Vt,sec(0,1).

a=1(1 _ gya—r—1 a—l(] — g)el
(i) G,(t.5) < G, (5.9) = L= T =
for all t,s € [0,1]. ) O

ac+ (a—r)—a,(a—T)

1
(i) guas, [ G (1,05 = SO TRl

0<t<1
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(iv) There exists a positive function n(s) such that
min G, (t,5) > n(s) max G, (t,5) = 7(s)G, (s.5)
4§t§ 0<t<1

for <t <32 5€(0,1) and 0 <n(s) <1, where

i U e ) KRG K LGOI
s o (1 —s)e =14 (1 —s)2—1] ’ 47
n(s) =
1 3
-1
(48)05717 86[47 )
Proof: - (i) It is standard and omitted.
(ii) For t < s, we have
G,(t,s) ot M1—s)* gt (1 —s)t
G,(s,5) 059 1(1 —s)aer—1 4 ga=l(] - g)a-1’
B ta_l[O'(l _ 8)04—7‘—1 + (1 _ S)a—l]
- 80‘_1[0(1 _ s)a—r—l 4 (1 _ S)a—l]’
tafl
- go—1’
< 1L
Similarly, for s < ¢, we have G, (¢, 8)) <1
J(s,s
a—1 1 —g)o—r 1 1— 35 1
for all t,s € [0, 1].
(iii) Let
Jtail(l o S)afrfl + tafl(l o S)afl —a (t o s)afl
t = = 0<s<t
9t ) a,(1—-b,)Ta ’ s=t
O'ta_l(l o 8)@—7‘—1 4 ta_l(l o S)a—l
t = t<s<l.
g2t s) a,(1-5,)Ta e
t
/ g1(t,s)ds =
0
1 R ) e ) N 7t at®
a,(1—-b,)Ta (a—r) o (a—r7) o a |’
1 1 O.ta—l(l _ t)a—r ta_l(l _ t)a
t,s)ds = .
/t galt,)ds a,(1-0,)lTa (a—r) * a }
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1 1 O.ta—l ta—l a t¢
t,s)ds = - =
/0 G, (8, 5)ds a,(1-b)Ta |[(a—r1) L a
aot® L+ (a =)t —a, (o — 7)t*
ala—1)a,(1 —b,)la

ac+ (a—r1)—a,(a—r)

ala—r)a,(1 —b,)la
(iv) The proof is similar to that of Lemma(2.4) in [5] and so we omit details.
This completes the proof. ]

1
= max/ G,(t,s)ds =
0<t<1 J,

By Lemma(2.8), the solution u(t) of the BVP(1.1) has an integral represen-
tation

1
u(t) = A /0 G (1, $)w(s) f(s, u(s))ds. (2.17)

Let B* = ([0, 1] be a Banach space equipped with the norm

|lu]| = max |u(t)] and K, C B* be a cone defined by
0<t<1

K, = {u €B*:u(t) >0 and min_ u(t) > n(s)HuH} .

1
1Sty

Define an integral operator A : K, — B* by
1
Ault) = A / G (t, s)w(s) f(s,uls))ds, uek,. (2.18)
0

Clearly, the solutions of the BVP(1.1) are the fixed points of the operator
equation
u = Au.

Lemma 2.19(see [2])- Let the operator A be defined as in (2.18).
Then A: K, — K, is completely continuous.

We state the Krasnosel’skii fixed-point theorem.

Theorem 2.20(see [17]) - Let B* be a Banach Space and K, C B* be a
cone in B*. Assume 1, Qo are open subsets of B* such that 0 € Q1, 1 C Qs.
If A K,N(Q2\Q1) — K, is a completely continuous operator such that either

(i) || Aul| < |ull, v e K, NI and ||Aul| > ||ul, u € K, NN, or
(i) ||Au|| > ||ul], ve K, N0 and ||Au| < |ul|, ue K, NI holds,
then A has a fized point in IC, N (Q2\21).
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3. Existence Results

Theorem 3.1 - Assume conditions Cy — C5 are satisfied and let

<n(s) 124 G, (s,s)w(s)ds> M, > (/01 G, (s,s)w(s)ds) L,.

Then the BVP(1.1) has at least one positive solution provided

1 1
<A< . (32

<n(s) 124 G, (s, s)w(s)ds> M, </01 G, (s, S)W(S)d'S) L,

Proof: Let X\ be given as in (3.2) and choose € > 0 such that

1

<\ < .
3/4 SAS
s s, s)w(s)ds G, (s, s) L,
(77() [ Gl <>d><Mo ([ )( +2)
(3.3)

By assumption (Y, there exists a constant J, > 0 such that
flt,u) < (L, +e)u, for 0 <u <§,. Let u € IC, such that ||ul| = 0,.
Then we have

1
Aut) = A /0 G (1, s)w(s) f(s, uls))ds.
|Aul| < /G s,8)w(s)f(s,u(s))ds,

(L, + €)uds,

IN
\
Q0
CtJ
CIJ

< 6, =|ull.

= [[Aul < lull.

Setting Q1 = {u € B* : ||lu|]| < 4,}, then [|Au| < ||ul], for u € (I, NINy).
By assumption Cj, there exists a constant x; > 0 such that
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flt,u) > (M, —e)u, for all u > k;.

i} Then for u € I, with ||u|| = d2, we have

Let 09 = max {260 ,
1(s)

min_ u(t) > n(s)||lul| > k1 and
<t<3

=1

N

1
Au(t) = )\/0 G, (t,s)w(s)f(s,u(s))ds,

1
> )\/0 G, (t, s)w(s)(M, — e)uds,
> Ni(s) [ G, (s,5)uls)(M, — puds,
> Mi(s) [ G (s )M, — &) Julds
> ul.

= [[Aul = lu]|.
Setting Qg = {u € B* : ||ul| < 2}, then || Aul| > ||ul|, for u € (K, N OQs).
By the application of part (i) of Theorem(2.20), we conclude that operator A
has a fixed point in K, N (Q2\Q1). O

Theorem 3.4 - Assume conditions Cy — Cs are satisfied and let

<n(s) ! Go(s,s)w(s)ds> c,> < /0 1 Go(s,s)w(s)ds> M,.

1/4

Then the BVP(1.1) has at least one positive solution provided

1
<A<

1
(n(s) i G, (s, s)w(s)ds) L, (/01 G, (s, s)w(s)ds) Mo'

1/4

(3.5)
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Proof: Let X\ be given as in (3.5) and choose £ > 0 such that
1

<A< .
3/4 ==
s s,s)w(s)ds —¢) G,(s,s) M,
<n<> [ Gl <>d><ao ([ )( +o)
(3.6)

By assumption (Y, there exists a constant J, > 0 such that
flt,u) > (L, —e)u, for 0 < u <4,.

Let u € K, such that ||u|| = J,. Then we have 1mm u(t) > n(s)||ul and
l<p<3

Au(t) = /G (t,s)w(s)f(s,u(s))ds,

o (L, s)w(s) (L, — )uds,

Y
CD

v
>
=
—~
N

G, (s, s)w(s)ds - [Jull,

Y
=

— [ Au| >
Setting 0 = {u € B* : ||ul]| < o } then ||Au| > ||ul], for u € (I, N INy).
By assumption Cj, there exists a constant «; > 0 such that
flt,u) < (M, +e)u, for all u > k;.
We consider two possibilities:

Case 1: Suppose f is bounded. Then there exists a constant A”* > 0 such
that f(t,u) < N*, for 0 < u < oc.

1
Let d; = max {260, )\N*/ G, (s, s)w(s)ds}. Then for u € K, with |lul| =
0

%
S E

52 )
we have

PN
£
IN
\
£
QI)
CIJ
G?
£
N
=
VA

|
\
£
QI)
CIJ
%
oy

IN
\
Q0
CtJ
CIJ

[ IA
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= [[Aul] < lu].
Setting Qo = {u € B* : ||u|| < d2}, then || Au|| < ||ul|, for u € (I, N ONs).

Case 2: Suppose f is not bounded and let do > max{20,, k1} be chosen
such that k1 < u < dy. Then for u € IC, with ||u|| = d2, we have

lAu| < /G 5, s)w(s)f (s, u(s))ds,
< / G, (s,s)w(s)(M, + ¢)uds,
< / G,(s,s)w(s) (M, + €)ds - 52,
< A y GO(S s)w(s)(M, +e)llul|.
= [Aul| < ull

Setting Qo = {u € B* : ||u|| < d2}, then ||Au|| < ||ul|, for u € (I, N ONs).
Therefore, in any of the two possibilities, we have

| Au|| < [Jul|, for uwe (K, NON).
By the application of part (ii) of Theorem(2.20), the operator A has a fixed
point in K, N (Q2\ Q). O
4. Example

Consider the nonlinear eigenvalue problem:

D3u(t) + )\(1 ; 2 (10 45t — 20%e ™) u =0, t € (0,1),
(4.1)
1 1 1
u(0) =0, wu(l)+ Dzu(l) = / tz - u(t)dt.
0
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Here, oz:% 7“:1 w(t):(l_t), p(t) = t2.

2 9
1—-t
Now, condition Cy holds for w(t) = % # 0, for all ¢ € (0,1).
Let u € [0,00) and ¢ € [0,1]. Then f(t,u) = u (10 + 5t — 20t*¢~*) is continuous
and condition C' holds.

D=

r
By simple computation, we have o = 7(1 = g = 0.886226925,
(=)
= (1+0)=1.886226925, b, = —/ )t tdt = 0.265079452,

£ = 1im L8 o5 < / G.(s,5) ds> L, = 0.440244837,

u—0t u

f(t,w) o
M, = lim — = 13.750, n(s)/ G, (s,s)w(s)ds | M, = 0.589140608,

U—r 00 1/4

-1
[</ G,(s,s)w ds> L } = 2.271463322 =~ 2.2715.

3/4 -1
[(77(5) G, (s, 5)w(5)ds> ./\/lO] = 1.697387663 ~ 1.6974.
1/4

By Theorem(3.1), we have 0.589140608 > 0.440244837 and
1.6974 < X\ < 2.2715. Hence, the BVP(4.1) has at least one positive solution
for each A\ € (1.6974, 2.2715).
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