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Abstract: In this work, we discuss the existence of positive solutions for a
coupled system of nonlinear boundary value problems of fractional order with
integral boundary conditions.

The existence result is obtained by means of Krasnosel’skii fixed-point the-
orem in a cone.

AMS Subject Classification: 2010, 34A08, 34B15
Key Words: fractional derivatives, integral boundary conditions, positive
solutions, coupled system, cone

1. Introduction

In this paper, we study the existence of positive solutions to the following
coupled system of nonlinear boundary value problems of fractional order
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DCu(t) + w(t)f(t,0(t)) =0, te (0,1),

D(t) + z(t)g(t,u(t)) =0, t e (0,1),

1
l0) = 0. yu(D) + 5/ (1) = [ plejutyat,

1
00) =0, (1) + 501 = [ pltyuct)i

where 1 < a < 2, D¢ is the standard Riemann-Liouville fractional derivative,
w,z € C([0,1], RY), p € £'[0,1] is non-negative, v, f € (0,1) and f,g €
C([0,1] x R, IR™).

In recent years, the study of positive solutions for nonlinear fractional dif-
ferential equations and coupled systems has received much attention from many
authors, see [1-2,4,6-9, 11 - 14, 16 - 17, 21 - 28, 30 - 33| and the references
cited therein for details.

In [23], the authors studied the existence and uniqueness of positive solu-
tions to the following nonzero boundary value problem (BVP for short) for a
coupled system of nonlinear fractional differential equations:

D%u(t) + f(t,v(t)) =0, te(0,1),

DPu(t) + f(t,u(t)) =0, te(0,1),

where 1 < @ <2,1< <2 0<ab<1,1<¢&<2 D*and D? are the
standard Riemann-Liouville fractional derivatives.

In [14], the authors established the existence of a positive solution for the
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singular fractional differential equations with integral boundary conditions

“DPu(t) = Ah(t)f(¢,u(t)), t € (0,1), )

1
W (0) — beDu(1) = /0 g1 (s)u(s)ds,

u”(O) _ u///(o) L u(nfl)(o) =0,

where ©DP is the Caputo fractional derivative, n > 3 is an integer, p € (n—1,n),
0<g¢g<1l,0<a<1,0<b<TI(2-q) arereal numbers.

Further, the authors in [10] studied the existence of positive solutions to the
following integral boundary value problem of nonlinear fractional differential

equation
Da(t) + () f(t,2) = 0, t € (0,1),

1 (4)
2(0) =0, 2'(1) :/0 h(t)z(t)dt,

where 1 < a < 2, D“ is the standard Riemann-Liouville fractional derivative
and h € £1]0,1] is non-negative.

Inspired by the works in [10, 14, 23], we consider in this paper the existence
of positive solutions to the BVP (1). Many papers have dealt with coupled sys-
tems of nonlinear fractional differential equation with integral boundary condi-
tions. However, to the best of our knowledge, the existence of positive solutions
to the BVP (1) has not been discussed. In this paper, we consider an integral
boundary condition which is very different from those in [1 - 4, 10 - 12, 16, 21,
23, 26, 29 - 33|. Our approach is based on compact integral operator and the
application of Krasnosel’skii fixed-point theorem in a cone.

For this work, we make the following assumptions:

Cy. f:]0,1] x [0,00) — [0,00) and g : [0, 1] x [0,00) — [0, 00) are continu-
ous.
Cy. w: [0,1] — [0,00) and z : [0,1] — [0,00) are continuous and w(t) #
0, z(t) # 0 on any subinterval of [0, 1].
The paper is organized as follows: In Section 2, some basic definitions,

preliminary results and properties of the Green function used are presented.
Finally, our existence result is stated and proved in Section 3.
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2. Preliminary Results

In this section, we give some basic definitions and lemmas from the theory of
fractional calculus which will be needed in the sequel. Moreover, we give the
expression of Green’s function associated with the BVP (1).

Definition 2.1. ([5, 19, 20]) The Riemann-Liouville fractional integral of
order a > 0 for a given continuous function f : (0,00) — IR is defined to be

12,7 (t) = ﬁ /0 (t — )21 f(s)ds,

provided the right side is pointwise defined on (0, c0).

Definition 2.2. ([5, 19, 20]) The Riemann-Liouville fractional derivative
of order o > 0 for a given continuous function f : (0,00) — IR is defined to be

g f(t) = ﬁ (%) /O (- s f(s)ds,

n —1 < a < n, provided the right side is pointwise defined on (0,00), where
n = [a] + 1 and [a] is the integer part of the number a.

Lemma 2.3. ([18]) Ifu € C(0,1) N £(0,1), then

DOIu(t) = u(t).

Lemma 2.4. ([5, 20]) Let o« > 0 and u € C(0,1)NL(0,1). Then the unique
solution of D*u(t) = 0 is given by

u(t) = et et b et (5)
forc; € IR andi=1,2,...,n.
Lemma 2.5. ([5, 20]) Let a > 0 and u, D% € C(0,1) N £(0,1). Then
I°Du(t) = u(t) + crt™ ' 4 et 2 oo eyt

(6)

forc; € IR and 1 =1,2,...,n, n>a.
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1 /1
Lemma 2.6. Let h € C[0,1] and n = — [ p(t)t* 'dt. Then the unique

ap Jo
solution of the BVP

D%u(t)+h(t) =0, 0<t <1,

1 (7)
u(0) =0, (1) + /(1) = [ pleyu(tyi
0
is given by )
u(t) = /0 G*(t, 5)h(s)ds,
where
G*(t,s) = G1(t,s) + Ga(t, ), (8)
( aorl(a) [5((1 o 1)ta—1(1 . S)(x—2 + ,yta—l(l _ S)a—l
—ap(t — s)*71], s <t,
Gl (ta 8) = 1 (9)
aol (a) [Bla =1t (1 = )" 9t (1 —5)7 7]
\ t < S,
and
Go(t,s) = NoGi(t,s), do = (&) L 0<n<l (10)

Proof. By Lemma 2.5, the BVP (7) can be reduced to an equivalent integral
equation

w(t) = — I%h(t) + et ! + ot 2

1 t
7 T() /0 (t — 5)* 'h(s)ds + et + et 2. (11)

By u(0) = 0, we have co = 0 and

u(t) = — ﬁ /O (t = 5)° Vh(s)ds + ert® (12)
u'(t) = % /0 (t — 8)*2h(s)ds + ¢ (o — 1)t* 2, (13)



278 M.B. Akorede, P.O. Arawomo

o — 1
Bu(1) = — 5(P(a)1) /O (1 )% 2h(s)ds + Bla — 1)er,
1
yu(1) = — ﬁ/o (1 — 5)°h(s)ds + ver.

1
Using the boundary condition yu(1) + Su'(1) = / p(t)u(t)dt, we have
0

1 o 1
Bl — 1) + e — L/O (1= 5)o=p(s)ds — 22 =1 /0 (1 - $)°2h(s)ds

o) I'(a)

1

_ / p(b)u(t)dt,

0
1 o — 1
= = aoflyjoz /0 (1—s)*"1h(s)ds + 5((1 Fal) /0 (1 —5)*2h(s)ds
4 i ' p(t)u(t)dt, (14)
ao Jo

where ag = [B(a — 1) + 4] > 0.
Putting (14) into (12), we have the unique solution of the BVP (7) to be:

——L t —5)* 1h(s)ds T 10‘71 —8)* h(s)ds
u(t) = F(a)/o(t ) 1h(s)d +aor(a)/0t (1— )" h(s)d

a— 1 a—1 pl
+i(of(a(1))/0 t* 11 — 5)* 2h(s)ds + o /Op(t)u(t)dt,
- O\ ta —8)* 1h(s)ds v "o 1 h(s)ds

i ! a—=1/1 _ S a—1 s)ds B(a — 1) ‘ a—1/1 _ S a—2 s)ds
+ aoF(a)/t t* (1 —5)*" " h(s)d +7aof(a) /0 t*7 (1 — s)* “h(s)d
,B(Oé — 1) ! a—=1/1 _ \oa—2 et
+ a0l (@) /t 71 — )" “h(s)ds + o /0 p(t)u(t)dt
/ Gt s)h(s)ds + b / ), (15)
0

where G4 (t, s) is defined by (9).
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Multiplying (15) by p(t) and integrating from 0 to 1, we have

/0 1 p(t)u(t)dt / / G1(t, s)h(s)dsdt

1
il a—1 u
+a0 0 Lot / p(tut)dt

= [ sttt —n [ o= [ ) [ Gt snsiasa,

where
1 1
n=— [ pt)t*tdt
ao Jo

=>(1—77)/01p(t) (t)d / / Gi(t, s)h(s)dsdt
ﬁ/olp(t)U(t)dt / G1(t, s)h(s)dsdt. (16)

Put (16) into (15) and simplifying, we have

1 1
/Glts ds—l—— p(taldt—/Glts
0

1
/ Cult.s) ds+ﬁ G (t, 5)h(s)ds

S /O [Gl(t s)+1—G1(t s)} h(s)ds

_ /O G* (. 5)h(s)ds

G*(t,s) = Gi(t,s) + Ga(t,s) and Gi(t,s), Ga(t,s)
are defined by (9) and (10) respectively. This completes the proof. O

where

Lemma 2.7. The function G1(t, s) defined by (9) is continuous and satisfies
the following conditions:

(i) Gi(t,s) >0 Vt,s€[0,1] and Gi(t,s) >0, Vi, se (0,1);

521 [Ba— (1 = )2 4 9(1 = 5)°
apl' () '

(H) Gl(tvs) < Gl(S,S) -
for all t,s € [0,1];
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(1ii) %r;u?% Gi(t,s) > m(s) Jnax Gi(t,s) = m(s)Gi(s,s),
for 1 <t<3 s€(0,1) and 0<m(s) <1,
where m(s) € C((0,1), R") and

(D Bla=1)(1 =5)* 2+ (1 = 5)* ] —a, (] —5)"
So‘_l[,@(a _ 1)(1 _ 8)0‘_2 + 7(1 _ S)a—l] 37
m(s) = s € (0,9],
1 3
st S €l Y
Proof.

(i) It is standard and omitted.
(ii) For t < s, we have

Gi(t,s) Bla— Dt (1 — 8)272 =1
G1(s, ) Bla—1)s*"H1 — s)=2 4+ ysa—1(

! Bla = 1)(1 = ) + (1 — )]
1[5l (I = 5)* 2 + (1 =)o ]

tafl
- go—1 =1
Gyt
Similarly, for s <t, we have 1(t5) <1
G1(s,s)
s*HBla—1)(1 —5)* % +4(1 —s5)*]

Hence, Gi(t,s) < Gi(s,s) =

for all t,s € [0, 1].
(iii) The proof of (iii) is similar to that of Lemma 2.4 in [5] and so omitted. [

apl' () ’

Lemma 2.8. Suppose 0 < n < 1. Then Go(t,s) defined by (10) is contin-
uous and satisfies the following conditions:

(i) Ga(t,s) >0 for all t,s € [0,1] and Ga(t,s) >0 for all t,s € (0,1).

(i) Ga(t,s) < AoGi(s, s)
— Aos@HBla—1)(1 — 5)* 2 + (1 — 5)* 1]
apl’(@) ’

Vt,s € [0, 1], where \g = <1L> > 0.
-
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Lemma 2.9. The Green function G*(t, s) defined by (8) is continuous and
satisfies the following conditions:

(i) G*(t,s) >0 for all t,s € [0,1] and G*(t,s) > 0 for all t,s € (0,1);

(i) G*(t,s) < 0Gi(s,s) = 05” ! [Bla = D)1 _Fs()a)2 +y(1 - s)o‘fl]}
a [0

Vt,s €|0,1], where o = (1 + Ag) > 0; (17).

(iii) mlil G*(t,s) > om(s)G1(s,s), for 1 <t <3, s€(0,1).

—4

Proof. (i) It is standard and omitted.
(ii) In view of Lemmas 2.7, 2.8 and equation (8), we have
G*(t,s) = Gi(t,s)+ Gal(t,s)

= Gi(t,s) + XoGil(t,s)

G1(s,s) + AoGi(s,s)

(14 Xo) Gi(s,s)

o5 H[Bla = (A = 5)* 2 +9(1 — 5)*7]
apl' () ’

VANVAN

IN

where o = (14 A\g) > 0.
(iii) By the standard argument of [5], we have

[nax Gi(t,s) = Gi(s,s) and Jnax Ga(t,s) = MNGi(s,s).

Also,

o G*(t,s) = [nax (G (t,s) + Ga(t, 5)]

= max Gi(t,s) + nax Ga(t,s),

=G1(s,s) + MoGi(s,s),
=1+ X0)Gi(s,s) = 0G1(s,s).
min G*(t,s) = mi? [G1(t,s) + Galt, s)],
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In view of Lemma 2.6, (u,v) € C[0,1] N £'[0,1] is a solution of the BVP (1)
if and only if (u,v) solves the system of integral equations

1
_ /0 G*(t, s)w(s) f (s, v(s))ds,

(19)
/ G (1,5)2()g(s. u(s))ds.
where G*(t, s) is defined by (8
The system of integral equauons (19) can be written as
/ G*(t,s) ( / G*(s,r)z(r)g(r ,u(r))dr) ds,
te(0,1). (20)
Let B* = C[0,1] be a Banach space with norm |ju|| = max |u(t)|. Define a

0<t<1
cone K, C B* by

K, = {u € B*:u(t) > 0and min wu(t) > m(s)HuH} .
1<i<3

Define an integral operator A : K, — B* by

/ G (t, s)w ( / G*(s,7)2(r)g(r ,u(’r))dr) s, (21)
for v e K,.

Lemma 2.10. ([3]) Let the operator A be defined as in (21). Then A :
K, — K, is completely continuous.

In view of the fixed point theory, the existence of positive solutions to the
BVP (1) is equivalent to the existence of positive fixed points of the operator
A in the cone K,. We state the Krasnosel’skii fixed-point theorem, as follows.

Theorem 2.11. ([15, 29]) Let B* be a Banach Space and K, C B* be a
cone in B*. Assgne 04, Q9 are open subsets of B* such that 0 € Qq, Q1 C Qo.

IfA: K.nN (QQ\Ql) — K, is a completely continuous operator such that
either

(1) [|Au|| < ||ul], v € K. N0 and ||Aul| > ||ul], v € K, N 0Ns, or
(i) [[Au| > |jul], v € K, N0y and || Au|| < ||ul], u € K, N 0Ny,
then A has a fixed point in K, N (Q2\Q1).
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3. Existence Result

In this section, we apply the fixed point Theorem 2.11 to establish the existence
of positive solutions to the BVP (1).

Theorem 3.1. Assume conditions C7, Cy and the following hypotheses
hold:

(Hy) There exist positive constants ki, ks and ey such that f(t,u) < kju and
g(t,u) < kou, for (t,u) € ([0,1] x [0, e1]), where ki and ks satisfy

akl/ Gi(s,s)w(s)ds <1 and Jkg/ Gi(r,r)z(r)dr < 1,
respectively.

(H2) There exist positive constants A1, Ay and es such that f(t,u) > \u and
g(t,u) > Mou, for (t,u) € ([3,2] x (0, e2]) with e; > es, where A and Ay

11
satisfy
3/4 1 3/4
)\1/ oG1i(=,s)w(s)ds > 1 and )\2/ om(r)Gy(r,r)z(r)dr > 1,
1/4 2 1/4
respectively.

Then the BVP (1) has at least one positive solution u(t) in the cone K.

Proof. Let u € K, with ||u|| = e;. By hypothesis (H;), we have 0 < u < e;

and
/ G*(t,5) ( / G*(s,7)2(r)g(r ,u(r))dr) ds.
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1 1
[Au|| < /OG*(t,s)w(s)ds-kl/o G*(s,r)z(r)g(r,u(r))dr

< o [ Gilsopuorts b [ a0 u(r)i
< / G1(s, s)w(s)ds - Jk‘l/ G1(r,r)z(r) - keudr

< akl/ G1(s, s)w(s)ds - akg/ Gi(r,r)z(r) - udr

< okl/ G (s, s)w(s)ds - g/@/ G (r,7)2(r) - crdr
<

okl/ G (s, 5)w(s)ds - akg/ G (r,7)2(r) Julldr.
= [|Aul] < [u]|.

If we set Q1 = {u € B*: ||u|| < p1}, then [|Au|| < ||u||, for u € (K, NON).
Next, let u € K, with [|u| = e2. Then for + < ¢ < 2, we have

u(t) > 12}3 u(t) = m(s)|lull = m(s)es,

whenever m(s)es < u < es.
By hypothesis (H3), we have:

=) —/01 G*(%,s)w(s)f (s, /01 G*(s,r)z(r)g(r,u(r))dr) ds

3/4 3/4
> / oG (5 s)u(s)ds - / oG (r,1)2(r) g (r, u(r))dr

/4 1/4

3/4 1 3/4
2/ oGi(=,s)w(s)ds - )\1/ oG1(r,r)z(r) - Agudr
1/4 2 1/4

3/4 3/4
2)\1/ JGl(%,s)w(s)ds-)\g/ oG (r, )2 (r) - m(r)|[udr

1/4 1/4
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3/4 ] 3/4
> / oG (5, 8)uw(s)ds o / om(r)Ga (r, r)2(r) |[ul]dr
1 1

Thus 1
J4ul > 4 (5)| = Tl

Setting Q9 = {u € B* : ||u|| < p2}, then ||Au|| > ||u||, for u € (K, N 0Q2).

By the application of part (i) of Theorem 2.11, the operator A has a fixed
point in K N (Q2\4). This means that the BVP (1) has a positive solution,
say u(t), with es < ||u(t)|| < e;. This completes the proof. O
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