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1. Introduction

In recent years there had been an increasing interest in fractional calculus
because of its many applications in Science and Engineering see [5, 6, 9, 13]
and references therein. Several researchers have worked on the oscillation
of second order dynamic, sublinear and superlinear differential equations
but not many have worked on oscillation of factional differential equations
and the few have used Caputo, Riemann-Liouville and Modified Riemann-
Liouville such fractional derivatives see [3, 11, 12, 14, 15]. To the best
of our knowledge only Jessada Tariboom and Sotiris K. Ntouyas [7] have
worked on the oscillation of conformable fractional differential equations.

In this article, with the definition of conformable fractional derivative given
by R. Khalil [8], we consider the establishment of oscillation of solutions to
the generalized forced nonlinear conformable fractional differential equation

Tα[a(t)ψ(x(t))Tαx(t)]+P (t, x(t), Tαx(t)) = Q(t, x(t), Tαx(t)) t ≥ t0 > 0,

α ∈ (1, 2)(1.1)

where Tα(.) denotes the operator called conformable fractional derivative
of order α with respect to variable t, Cα denotes continuous function with
fractional derivative of order α, a ∈ Cα[[t0,∞),R] and P,Q ∈ Cα[[t0,∞)×
R2,R].

2. Preliminaries

For the purpose of this paper, we state the following definitions and theo-
rems without proof.

Definition 2.1. [8]
Given a function f : [0,∞)→ R. Then the ”conformable fractional deriva-
tive” of f of order α is defined by

Tα(f)(t) = lim
�→0

f(t+ �t1−α)− f(t)

�
∀t > 0, α ∈ (0, 1)

If f is α-differentiable in some (0, a), a > 0, and limt→0+ f
α(t) exists,

then define

fα(0) = lim
t→0+

fα(t)

IB
ADAN U

NIV
ERSITY

 LI
BRARY



Oscillation of solutions to a genralized forced nonlinear ... 431

Definition 2.2. [8]
Let α ∈ (n, n+1], and f be an n-differentiable at t, where t > 0. Then the
conformable fractional derivative of f of order α is defined as

Tα(f)(t) = lim
�→0

f (
dαe−1)

Ã
t+ �t(

dαe−α)
!
− f (

dαe−1)
Ã
t

!
�

∀t > 0, α ∈ (0, 1)

where α is the smallest integer greater than or equal to α.

Definition 2.3. [8]
Let α ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b] → R is α-fractional
integrable on [a, b] if the integralZ b

a
f(x)dαx =

Z b

a
f(x)xα−1dx

exists and is finite. All α-fractional integrable function on [a, b] is denoted
by L1α([a, b])

We refer the readers who are not familiar with the properties of con-
formable fractional derivatives to the article of R. Khalil et-al [8] for clari-
fication.

Definition 2.4.
The point t0 is said to be a zero of x(t) if x(t0) = 0.

Definition 2.5.
A solution x(t) of (1.1) is said to be oscillatory if it has arbitrarily large
zeros, otherwise it is said to be nonoscillatory. The equation is said to be
oscillatory if all its solutions are oscillatory.

Theorem 2.6. {Integration by parts [1]}
Let f ,g:[a, b] → R be two functions such that fg is differentiable. Then

Z b

a
f(x)T a

α(g)(x)dαx = fg

¯̄̄̄
¯
b

a

−
Z b

a
g(x)T a

α(f)(x)dαx

where T (.) represent the conformable fractional derivative of order αIB
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432 A. M. Ogunbanjo and P. O. Arawomo

Theorem 2.7. (ChainRule[1], [16])

Suppose f, g : (a,∞) → R be (left) α-differentiable functions, where
0 < α ≤ 1. Let h(t) = f(g(t)). Then h(t) is left α-differentiable and for all
t with t 6= a and g(t) 6= 0 we have

(T a
αh)(t) = (T

a
αf)(g(t)).(T

a
αg)(t).g(t)

α−1

If t = a, we have

(T a
αh)(a) = lim

t→a+
(T a

αf)(g(t)).(T
a
αg)(t).g(t)

α−1

3. Main Results

In this section, we establish sufficient conditions for equation (1.1) to be
oscillatory. We also introduce some functions h,H ∈ C([t0,∞),R) satisfy-
ing H(t, t) = 0, H(t, s) > 0, t > s ≥ t0 with H having continuous partial

derivative ∂H(t,s)
∂t and ∂H(t,s)

∂s on [t0,∞) such that

∂H(t, s)

∂t
= −h1(t, s)

√
H(t, s)

∂H(t, s)

∂s
= −h2(t, s)

√
H(t, s)

Theorem 3.1. Assume that:
β1 : xf(x) > 0, x 6= 0
β2 : f

0(x) ≥ µ > 0, x 6= 0
β3 : 0 < ψ(x) ≤M

β4 :
P (t,x,Tαx(t))

f(x) ≥ p(t) and Q(t,x,Tαx(t))
f(x) ≤ q(t) for x 6= 0

Also, suppose ∃ ((t) and g(t) ∈ Cα[[t0,∞), (0,∞)] such that

lim sup
t→∞

1

H(t, t0)

Z t

t0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds =∞(3.1)

where

((s) = exp(−2µ
Z s

g(v)dv)(3.2)

Φ(t) = a(t)Mµg2(t) + p(t)− q(t)− Tα[a(t)ψ(x(t))g(t)](3.3)

then every solution of (1.1) is oscillatory.IB
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 on [τ0,∞) for some τ0 ≥ t0.

Define

u(t) = ((t)

"
a(t)ψ(x(t))Tαx(t)

f(x(t))
+ a(t)ψ(x(t))g(t)

#

Tαu(t) = ((t)Tα

"
a(t)ψ(x(t))Tαx(t)

f(x(t))
+ a(t)ψ(x(t))g(t)

#

+

"
a(t)ψ(x(t))Tαx(t)

f(x(t))
+ a(t)ψ(x(t))g(t)

#
Tα((t)

=
((t)Tα[a(t)ψ(x(t))Tαx(t)]

f(x(t))
− ((t)[a(t)ψ(x(t))x

02t2(1−α)]f 0(x(t))

f2(x(t))

+((t)Tα[a(t)ψ(x(t))g(t)]+

"
a(t)ψ(x(t))Tαx(t)

f(x(t))
+a(t)ψ(x(t))g(t)

#
t1−α(

0
(t)

(3.4)
Using β1 − β4 and (3.2) in (3.4), we have

Tαu(t) ≤ −
u2µ

a(t)((t)M
− ((t)Φ(t)(3.5)

for t ≥ τ0. It follows that for all t ≥ τ ≥ τ0, we multiply (3.5) through by
H(t, s) and integrate both sides w.r.t dαs from τ to t

Iα[H(t, s)Tαu(s)] ≤ Iα

"
−H(t, s)

u2µ

a(s)((s)M
−H(t, s)((s)Φ(s)

#
Z t

τ
H(t, s)s1−αu0(s)dαs ≤

Z t

τ
−
"
u2µH(t, s)

a(s)((s)M
+ ((s)H(t, s)Φ(s)

#
dαs

Z t

τ
((s)

H(t, s)Φ(s)

s1−α
ds ≤ −

Z t

τ
s1−αH(t, s)u0(s)dαs−

Z t

τ

u2µH(t, s)

s1−αa(s)((s)M
ds

(3.6)
Using Theorem 2.6 on the first integral at the right hand side of in-

equality (3.6) above we haveIB
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434 A. M. Ogunbanjo and P. O. Arawomo

−
Z t

τ
s1−αH(t, s)u0(s)dαs = −

"
H(t, s)u(s)

¯̄̄̄
¯
t

τ

−
Z t

τ
Ḣ(t, s)u(s)ds

#

= H(t, τ)u(τ)−
Z t

τ

h
− ∂

∂s
H(t, s)u(s)

i
ds

= H(t, τ)u(τ)−
Z t

τ
h1(t, s)

q
H(t, s)u(s)ds(3.7)

substitute (3.7) into (3.6) to get

Z t

τ
((s)

H(t, s)Φ(s)

s1−α
ds ≤ H(t, τ)u(τ)−

Z t

τ
h1(t, s)

q
H(t, s)u(s)ds

−
Z t

τ

u2µH(t, s)

s1−αa(s)((s)M
ds

simplifying, we have

Z t

τ
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds ≤ H(t, τ)u(τ)(3.8)

This implies that for every t ≥ τ0,

Z t

τ0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds ≤ H(t, τ0)u(τ0)

≤ H(t, t0)|u(τ0)|

Therefore, Z t

t0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds

=

Z τ0

t0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds
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Oscillation of solutions to a genralized forced nonlinear ... 435

+

Z t

τ0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds

≤ H(t, t0)

Z τ0

t0

¯̄̄̄
¯((s)Φ(s)s1−α

¯̄̄̄
¯ds+H(t, t0)|u(τ0)|

= H(t, t0)

" Z τ0

t0

¯̄̄̄
¯((s)Φ(s)s1−α

¯̄̄̄
¯ds+ |u(τ0)|

#

lim sup
t→∞

1

H(t, t0)

Z t

t0
((s)

"
H(t, s)Φ(s)

s1−α
− s1−αa(s)M

4µ
h21(t, s)

#
ds

≤
Z τ0

t0

¯̄̄̄
¯((s)Φ(s)s1−α

¯̄̄̄
¯ds+ |u(τ0)| <∞

which contradicts (3.1). The proof is complete. 2

Example 1. For t ≥ 2, consider the nonlinear forced fractional differential
equation

Tα[2(x(t)+5)Tαx(t)]+[
1

2
t−5/2+Tα(t exp(x))]x(t) = t−1/2x(t) sin t+

x2(t)Tα(cosx)

t3(x3(t) + 1)
(3.9)
We set ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x(t)) = x(t), f 0(x(t)) ≥ µ = 1, a(t) = 2
x(t) = t+ 1, x0(t) = 1

ψ(x(t)) = x+ 5 ≥ 5 =M, g(t) = t−5/4

H(t, s) = (t− s)λ, λ = 2, α = 4
3 , ((t) = t

3
2 , t0 = 2

(3.10)

Using β4 in (3.9), we deduce that

P (t, x(t), Tαx(t))

f(x)
=
1

2
t−5/2 + (t2−α + t1−α) exp(t+ 1)

≥ 1
2
t−5/2 + t2/3 + t−1/3 = p(t)(3.11)

and
Q(t, x(t), Tαx(t))

f(x(t))
= t−1/2 sin t+

1

t3

Ã
−x2−α sinx(t)

x3(t) + 1

!

≤ t−1/2 sin t = q(t)(3.12)IB
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436 A. M. Ogunbanjo and P. O. Arawomo

Also(
Tα[a(t)ψ(x(t))g(t)] = Tα[2(t+ 6)× t−5/4] = −12t−19/12 − 15t−31/12

h21(t, s) = [λ(t− s)λ/2−1]2 = λ2(t− s)(λ−2)

(3.13)
substitute (3.10) - (3.13) into LHS of (3.1), we have

lim sup
t→∞

1

(t− 2)2
Z t

2

"
(t−s)2

Ã
21

2
s−2/3+s5/2+s9/6−s4/3 sin s+1

2
s1/4+

15

2
t−3/4

!#
ds

− lim sup
t→∞

1

(t− 2)2
Z t

2
10s11/6ds =∞

This shows that (3.1) is satisfied and thus, equation (3.9) is oscillatory.

Theorem 3.2. Assume that β1 − β4 in Theorem 3.1 hold. Let λ > 1
be a constant. Suppose (3.1) does not hold such that ∃ a function g ∈
Cα[[t0,∞), (0,∞)] satisfying

lim sup
t→∞

1

tλ

Z t

t0

"
(t− s)λ((s)Φ(s)

s1−α
−λ

2

4µ
(t−s)λ−2((s)a(s)Ms1−α

#
ds =∞

(3.14)

where ((s) and Φ(s) are the same as equations (3.2) and (3.3) respectively.
Then, every solution of (1.1) is oscillatory.

Proof. Without loss of generality, we assume that ∃ a solution of (1.1)
such that x(t) > 0 on [τ0,∞) for some τ0 ≥ t0. Define u(t) as in Theorem
3.1, then we obtained (3.5). Multiply (3.5) through by (t−s)λ and integrate
both sides w.r.t dαs from τ to t

Iα[(t− s)λTαu(s)] ≤ Iα

"
− (t− s)λ

u2µ

a(s)((s)M
− (t− s)λ((s)Φ(s)

#
Z t

τ
(t− s)λs1−αu0(s)dαs ≤

Z t

τ
−
"
(t− s)λu2µ

a(s)((s)M
+ ((s)(t− s)λΦ(s)

#
dαsZ t

τ
((s)

(t− s)λΦ(s)

s1−α
ds ≤ −

Z t

τ
s1−α(t− s)λu0(s)dαs

−
Z t

τ

(t− s)λu2µ

s1−αa(s)((s)M
ds
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Oscillation of solutions to a genralized forced nonlinear ... 437

Using Theorem 2.6 on the first integral at the right hand side of the above
inequality, we have

Z t

τ
((s)

(t− s)λΦ(s)

s1−α
ds ≤ (t− τ)λu(τ)− λ

Z t

τ
(t− s)λ−1u(s)ds

−
Z t

τ

(t− s)λu2µ

s1−αa(s)((s)M
ds ≤ (t− τ)λu(τ)

−
Z t

τ

"
(t− s)λµ

((s)a(s)Ms1−α
u2(s) + λ(t− s)λ−1u(s)

#
ds

Therefore, for every t ≥ t0

lim sup
t→∞

1

tλ

Z t

t0

"
((s)

(t− s)λΦ(s)

s1−α
− λ2(t− s)λ−2((s)a(s)Ms1−α

4µ

#
ds ≤ u(t0)

< ∞

which contradicts (3.14). The proof is complete. 2

Theorem 3.3. For sufficiently large τ ≥ t0, ∃ η2, η1 and η3 with τ ≤ η2 <
η1 < η3. Assume that β1 − β4 hold with (3.1)- (3.3) not holding. Also, if
there exist ((t) ∈ Cα[[t0,∞), (0,∞)] such that

1

H(η3, η1)

Z η3

η1
H(η3, s)

((s)

s1−α
[p(s)− q(s)]ds

+
1

H(η1, η2)

Z η1

η2
H(s, η2)

((s)

s1−α
[p(s)− q(s)]ds

>
1

4H(η3, η1)

Z η3

η1

M((s)a(s)s1−α

µ
χ22(η3, s)ds

+
1

4H(η1, η2)

Z η1

η2

M((s)a(s)s1−α

µ
χ21(s, η2)ds(3.15)

where ⎧⎨⎩ χ1(t, s) = h1(t, s)− (0(s)
((s)

p
H(t, s)

χ2(s, t) = h2(s, t)− (0(s)
((s)

p
H(s, t)

(3.16)

then, every solution of equation (1.1) is oscillatory.IB
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438 A. M. Ogunbanjo and P. O. Arawomo

Proof. Suppose the contrary, that is, x(t) is a non-oscillatory solution
of equation (1.1) on [τ0,∞).
Define

u(t) = ((t)
a(t)ψ(x(t))Tαx(t)

f(x(t))
t ≥ τ0 ≥ t0

Tαu(t) = Tα
h
((t)

a(t)ψ(x(t))Tαx(t)

f(x(t))

i
(3.17)

Then, by using β1 − β4 in Theorem 3.1 on (3.17), we obtain

((t)[p(t)− q(t)] ≤ −t1−αu0(t)− µ

M((t)a(t)
u2(t) +

(0(t)t1−α

((t)
u(t)(3.18)

Multiplying both sides of (3.18) by H(t, s) and integrating with respect
to dαs from η1 to t for t ∈ [η1, η3), we haveZ t

η1
H(t, s)

((s)

s1−α
[p(s)− q(s)]ds ≤ −

Z t

η1
s1−αH(t, s)u0(s)dαs

−
Z t

η1
H(t, s)

µ

M((s)a(s)s1−α
u2(s)ds

+

Z t

η1
H(t, s)

(0(s)

((s)
u(s)ds

Using Theorem 2.6 on the first integral at the right hand side, we haveZ t

η1
H(t, s)

((s)

s1−α
[p(s)− q(s)]ds ≤ H(t, η1)u(η1)

−
Z t

η1
h1(t, s)

q
H(t, s)u(s)ds

−
Z t

η1
H(t, s)

µ

M((s)a(s)s1−α
u2(s)ds

+

Z t

η1
H(t, s)

(0(s)

((s)
u(s)ds

≤ H(t, η1)u(η1) +

Z t

η1

M((s)a(s)s1−α

4µ
χ21(t, s)ds(3.19)

divide (3.19) by H(t, η1) and let t→ η−3 , then we obtain

1

H(η3, η1)

Z η3

η1
H(η3, s)

((s)

s1−α
[p(s)− q(s)]ds ≤ u(η1)IB
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+
1

4H(η3, η1)

Z η3

η1

M((s)a(s)s1−α

µ
χ21(η3, s)ds(3.20)

In the same way, we multiply both sides of (3.18) by H(s, t) and inte-
grate with respect to dαs for t ∈ (η2, η1] to getZ η1

t
H(s, t)

((s)

s1−α
[p(s)− q(s)]ds ≤ −

Z η1

t
s1−αH(s, t)u0(s)dαs

−
Z η1

t
H(s, t)

µ

M((s)a(s)s1−α
u2(s)

+

Z η1

t
H(s, t)

(0(s)

((s)
u(s)ds

Following the same process in (3.20) with t→ η−2 , we arrive atZ η1

η2
H(s, η2)

((s)

s1−α
[p(s)− q(s)]ds ≤ −u(η1)

+
1

4H(η1, η2)

Z η1

η2

M((s)a(s)s1−α

µ
χ22(s, η2)ds(3.21)

Add (3.20) and (3.21) together to obtain

1

H(η3, η1)

Z η3

η1
H(η3, s)

((s)

s1−α
[p(s)− q(s)]ds

+
1

H(η1, η2)

Z η1

η2
H(s, η2)

((s)

s1−α
[p(s)− q(s)]ds

≤ 1

4H(η3, η1)

Z η3

η1

M((s)a(s)s1−α

µ
χ21(η3, s)ds

+
1

4H(η1, η2)

Z η1

η2

M((s)a(s)s1−α

µ
χ22(s, η2)ds

which contradicts (3.15). The proof is thus complete. 2

Theorem 3.4. Under the conditions of Theorem 3.3, Suppose (3.15) does
not hold such that

1

(η3 − η1)λ

Z η3

η1
(η3 − s)λ

((s)

s1−α
[p(s)− q(s)]ds

+
1

(η1 − η2)λ

Z η1

η2
(s− η2)

λ ((s)

s1−α
[p(s)− q(s)]ds
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440 A. M. Ogunbanjo and P. O. Arawomo

>
1

4(η3 − η1)λ

Z η3

η1

M((s)a(s)s1−α

µ
(η3 − s)λ−2

Ã
λ− (0(s)

((s)
(η3 − s)

!2
ds

+
1

4(η1 − η2)λ

Z η1

η2

M((s)a(s)s1−α

µ
(s− η2)

λ−2
Ã
λ+

(0(s)

((s)
(s− η2)

!2
ds

(3.22)

then, equation (1.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (1.1). Following the
proof of Theorem 3.3, we obtain (3.18). Multiply (3.18) by (t − s)λ and
integrate with respect to dαs from η1 to t for t ∈ [η1, η3) so thatZ t

η1
(t− s)λ

((s)

s1−α
[p(s)− q(s)]ds ≤ −

Z t

η1
(t− s)λu0(s)ds

−
Z t

η1
(t− s)λ

µ

M((s)a(s)s1−α
u2(s)ds+

Z t

η1
(t− s)λ

(0(s)

((s)
u(s)ds(3.23)

By Theorem 2.6, (3.23) becomesZ t

η1
(t− s)λ

((s)

s1−α
[p(s)− q(s)]ds ≤ (t− η1)

λu(η1)−
Z t

η1
λ(t− s)λ−1u(s)ds

−
Z t

η1
(t− s)λ

µ

M((s)a(s)s1−α
u2(s)ds

+

Z t

η1
(t− s)λ

(0(s)

((s)
u(s)ds

= (t− η1)
λu(η1)

−
Z t

η1

"
(t− s)λ

µ

M((s)a(s)s1−α
u2(s)

+ (t− s)λ−1
h
λ− (t− s)

(0(s)

((s)

i
u(s)

#
ds

≤ (t−η1)λu(η1)+
1

4

Z t

η1

M((s)a(s)s1−α

µ
(t−s)λ−2

"
λ−(t−s)(

0(s)

((s)

#2
ds
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Letting t→ η−3 in (3.24) and dividing the result by (η3 − η1)
λ, we have

1

(η3 − η1)λ

Z η3

η1
(η3 − s)λ

((s)

s1−α
[p(s)− q(s)]ds ≤ u(η1)

+
1

4µ(η3 − η1)λ

Z η3

η1
M((s)a(s)s1−α(η3 − s)λ−2

"
λ− (η3 − s)

(0(s)

((s)

#2
ds

(3.25)

Following the same process as above, multiplying both sides of (3.18) by
(s−t)λ and then integrating with respect to dαs from t to η1 for t ∈ [η2, η1),
we have Z η1

t
(s− t)λ

((s)

s1−α
[p(s)− q(s)]ds ≤ −(η1 − t)λu(η1)

+
1

4

Z η1

t

M((s)a(s)s1−α

µ
(s− t)λ−2

"
λ+ (s− η2)

(0(s)

((s)

#2
ds

Letting t→ η−2 and dividing through by (η1 − η2)
λ, we have

1

(η1 − η2)λ

Z η1

η2
(s− η2)

λ ((s)

s1−α
[p(s)− q(s)]ds ≤ −u(η1)

+
1

4µ(η1 − η2)λ

Z η1

η2
M((s)a(s)s1−α(s−η2)λ−2

"
λ+(s− η2)

(0(s)

((s)

#2
ds

(3.26)

Adding (3.25) and (3.26) together we have

1

(η3 − η1)λ

Z η3

η1
(η3 − s)λ

((s)

s1−α
[p(s)− q(s)]ds+

1

(η1 − η2)λ

Z η1

η2
(s− η2)

λ ((s)

s1−α
[p(s)− q(s)]ds

≤ 1

4µ(η3 − η1)λ

Z η3

η1
M((s)a(s)s1−α(η3 − s)λ−2

"
λ− (η3 − s)

(0(s)

((s)

#2
ds
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+
1

4µ(η1 − η2)λ

Z η1

η2
M((s)a(s)s1−α(s− η2)

λ−2
"
λ+ (s− η2)

(0(s)

((s)

#2
ds

which contradicts (3.22). This completes the proof. 2

Example 2. For t ≥ 2, consider the nonlinear forced fractional differ-
ential equation

Tα[2(x
2(t) + 3)Tαx(t)] + t4

x(t)

8
[4t1/2 + exp(

1

α
tα)− 2t−2αTαx(t)]

= t−3/2x(t) + x2(t)Tα(cos
1

α
x(t))(3.27)

We set

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x) = x(t), f 0(x) = 1 = µ, a(t) = 2
x = t+ 1, x0(t) = 1

ψ(x) = x2 + 3 ≥ 3 =M, g(t) = t−5/4

α = 4
3 , ((t) = t3/2, t0 = 2

η1 = 4, η2 = 2, η3 = 5

(3.28)

Using β4 in (3.27), we deduce that

P (t, x(t), Tαx(t))

f(x)
=

t4

8
[4t1/2 + exp(

1

α
tα)− 2t−2αTαx(t)]

=
t9/2

2
+

t4

8
exp(

1

α
tα)− t5−3α

4
x0(t)

≥ t9/2

2
− t5−3α

4
x0(t) =

t9/2

2
− t

4
= p(t)

Q(t, x(t), Tαx(t))

f(x(t))
= t−3/2 − x2−α(t)

α
sin

1

α
x(t)

≤ t−3/2 = q(t)

Also note that

((t)

t1−α
[p(t)− q(t)] =

t19/3

2
− t17/6

2
− t1/3(3.29)

substitute p(t), q(t), (3.28) and (3.29) into (3.15), we haveIB
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