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Abstract In this paper, we consider nonlinear wave equations with dissipation having the
form

utt − div
(|∇u|γ−2∇u

) + b(t, x)|ut |m−2ut = g(x,u)

for (t, x) ∈ [0,∞) × R
n. We obtain existence and blow up results under suitable assump-

tions on the positive function b(t, x) and the nonlinear function g(x,u). The existence result
was obtained using the Galerkin approach while the blow up result was obtained via the per-
turbed energy method. Our result improves on the perturbed energy technique for unbounded
domains.

Keywords Nonlinear wave equation · Global existence · Blow up · Finite speed of
propagation

Mathematics Subject Classification (2010) 35A01 · 35B45 · 35L15 · 35L70

1 Introduction

In this paper, we consider existence and blow up of solution to a nonlinear wave equation

{
utt − div

[|∇u|γ−2∇u
] + b(t, x)|ut |m−2ut = g(x,u) t ∈ [0,∞), x ∈R

n

u(0, x) = u0(x), ut (0, x) = u1(x) x ∈R
n

(1)

with space–time dependent dissipation. u = u(t, x) is an unknown real valued function on
[0,∞) × R

n and the initial data u0, u1 is assumed to have compact support in a ball B(R)
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of radius R about the origin, where R satisfies the condition supp{u0(x), u1(x)} ⊂ {|x| ≤ R}
and such that the solution satisfy the finite speed of propagation property

supp u(t) ∈ B(R + t) t ∈ [0,∞)

Under these circumstances, the expectation is that the spread of the support could hinder
finite-time blow-up of solution that is seen in the case of bounded domains, except for the
case where the damping is absent or linear as blow-up can indeed occur.

In the case of bounded smooth domains Ω ⊂R
n, there is an extensive literature on global

existence and blow up of solutions of non-linear wave equations having negative initial
energy and of the form

⎧
⎨

⎩

utt − �ut − div
[
|∇u|γ ∇u + |∇ut |r∇ut

]
+ |ut |mut = |u|pu x ∈ Ω, t > 0

u(x, t)|∂Ω = 0, t > 0 u(x,0) = u0, ut (x,0) = u1, x ∈ Ω

(2)

that is, when the dissipation being considered, arises from an internal nonlinear damping
term. see [1, 16, 18, 19] to mention but a few

Yang in [17], obtained blow up of solutions to (2) under the condition p > max{γ,m}
and where the blow up time depends on |Ω|.

In [10] Messaoudi and Said-Houari studied a class of nonlinear wave equations having
the form (2) and obtained blow up result for p > max{γ,m} and γ > r , where the blow up
result holds regardless of the size of Ω . Thus extending the result of Yang [17].

Liu and Wang [9] considered a class of wave equations of the form (2) and established
blow up results for certain solutions with non-positive initial energy as well as positive initial
energy. This further improves the results of Yang [17] and Messaoudi and Said-Houari [10].

In [13], Piskin investigated the energy decay of solutions for quasi-linear hyperbolic
equations of the form (2) with nonlinear damping and source terms and obtained blow up
result for the case m = 0, using the concavity method. More recently, Jeong, et al. [3] con-
sidered global nonexistence of solutions to a quasi-linear wave equation of the form (2),
with acoustic boundary conditions and satisfying p > max{γ,m} and γ > r .

For a review on recent results on global existence, energy decay and blow up of solutions
to nonlinear wave equations in bounded domains see [11], and for blow-up and global exis-
tence results for nonlinear wave equation of the form (2) with space dependent coefficients,
see [12].

We note here that the interaction between source and damping terms was first studied
in the work of Levine [6, 7], where they considered existence and asymptotic behaviour of
solutions to (2) for the case m = 0. Their results were extended by Georgiev and Todorova
[2] to the nonlinear case. In considering the relationship between m and p, for solutions
that vanish on ∂Ω × [0,∞), they showed that for m ≥ p, the solution with negative initial
energy is global in time and for p > m the solution cannot be global.

In the case of unbounded domains, due to lack of Lm ↪→ Lp injection, an important and
challenging question is whether the nonlinear damping in (1) would be sufficient enough to
prevent blow-up from occurring. Levine et al. [8] considered global existence and blow-up of
weak solutions to the Cauchy problem (1) with γ = 2, they showed that when m, p satisfy
the condition p < min{m,2(n − 1)/(n − 2)}, the solutions are global. In addition to the
condition p > {2,m} they also gave the restriction p < max{2n/(n − 2),mn/(n + 1 − m)}
for which the solution blows up when the initial energy is merely less than zero. In a related
work, G. Todorova [15], studied the Cauchy problem (1) where g(x,u) = −μ(x)u+u|u|p−2
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Existence and Blow up of a Nonlinear Cauchy Problem

and argued that for the case μ = 0, the additional restriction p < mn/(n−m+ 1) is method
driven.

In the semilinear case with scale invariant damping, that is

⎧
⎨

⎩

utt − �u + μ0

(1 + t)ν0
ut = |u|p in [0,∞) ×R

n

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ R
n

(3)

with μ0 > 0, u0, u1 ∈ C∞
0 (Rn) and n ∈ N. Lai et al. in [4] obtained blow up and lifetime

estimate result for solutions to (3) when ν0 = 1 and showed that blow up will occur for large
exponent. He established similar result in [5] for combined nonlinearity in comparison to
the scattering behavior of wave equations without damping.

In this paper, we investigate the existence and blow up time estimate for a negative initial
energy solution to (1) in the energy space u0 ∈ W 1,γ (Rn), u1 ∈ L2(Rn) having compact
support and for t ∈ [0,∞). For the blow up time estimate, we use a differential inequality
of the form

L′(t) ≥ k(t)L(t) + μh(t)Lν(t) for t > 0 (4)

for ν > 1, μ > 0 and h(t), k(t) are functions of t to be determined later. In this case, the
influence of the unboundedness of the domain on the growth behavior and the estimate of the
upper bounds for the blow up time is taken into consideration. In Sect. 5, we give examples
to various types of damping coefficients including the semilinear case (3).

2 Preliminaries

In this section, we state some basic assumptions used in this paper. For simplicity, we intro-
duce the following notations.

p′ Hölder conjugate of p where p′ = p

p−1 .
‖ · ‖p the usual Lp(Rn) norm for 1 ≤ p ≤ ∞.
Wk,p(Rn) is the Banach space of functions in Lp with k(k ∈N) generalized derivatives.
JT := [0,∞).

For the nonlinear functions g and b, we have the following assumptions;

(A1) g ∈ C(R), g(·, s)s ≥ 0, such that

ρ1|s|p−1 ≤ |g(·, s)| ≤ ρ2|s|p−1, s ∈R (5)

where ρ1 and ρ2 are positive constants and 0 < p ≤ nγ

n−γ
when n > γ .

(A2) b(t, x) > 0 is continuous and for p ≤ m,

(i) supx∈B(R+t) b(t, x) ∈ L∞
loc(JT )

(ii)
∫

B(R+t)

b(t, x)
nγ

nγ−m(n−γ ) dx ∈ L∞
loc(JT ), whenever 0 < m ≤ nγ

n−γ
and n > γ

and for p > m, we assume that

(iii)
∫

B(R+t)

b(t, x)
p

p−m dx ∈ L∞
loc(JT )
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Definition 1 We define a weak solution of (1) as a function u(t, x) satisfying the following

(i) u ∈ L∞([0, T ];W 1,γ (Rn)
) ∩ L∞([0, T ];Lp(Rn)

)

ut ∈ L∞([0, T ];L2(Rn)
) ∩ Lp

([0, T ] ×R
n
)
, utt ∈ Lm′([0, T ];W−1,γ ′

(Rn)
)

(ii) we have

∫ t

0

[
〈utt , v〉 + 〈|∇u|γ−2∇u,∇v〉 + 〈b(t, x)|ut |m−2ut , v〉 − 〈g(x,u),u〉

]
ds = 0

for v ∈ C∞
0 ([0, T ] ×R

n) and a.e t ∈ [0, T ] and such that
(iii)

u(0) = u0 ∈ W 1,γ (Rn), ut (0) = u1 ∈ L2(Rn)

We define the energy function associated with (1) by

E(t) = 1

2

∫

Rn

|ut |2dx + 1

γ

∫

Rn

|∇u|γ dx −
∫

Rn

∫ u

0
g(·, y)dydx (6)

and for this energy function (6), we have the following lemma;

Lemma 1 Assume that (A1) and (A2) hold. Let u be a solution of (1), then the energy
function E(t) of the problem (1) is defined by (6). In addition, E(t) is non increasing and
satisfies

E′(t) = −
∫

Rn

b(t, x)|ut |mdx (7)

Moreover, we have

E(t) ≤ E(0) (8)

Furthermore, we state the following lemmas for estimates as regard existence and blow
up results.

Lemma 2 (Modified Gronwall inequality, [14]) Let φ(t) be a non-negative function on
[0,∞) satisfying

φ(t) ≤ B1 + B2

∫ t

0
φδ(s)ds

where B1, B2 are positive constants, then φ(t) satisfy the inequality

φ(t) ≤ B1[1 − (δ − 1)B2B
δ−1
1 t] −1

δ−1 for δ > 1.

Lemma 3 Let y(t) be a continuous non-negative C1 function on [0,∞] which satisfies

y ′(t) ≥ a(t)y(t) + c(t)yr(t) (9)

(i) if a(t) < 0, c(t) > 0 and r > 1, then y(t) satisfies the following inequality

y1−r (t) ≤ e(1−r)
∫ t

0 a(s)ds

[
y

−(r−1)

0 − (r − 1)

∫ t

0
c(s)e(r−1)

∫ s
0 a(τ)dτ ds

]
(10)
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Existence and Blow up of a Nonlinear Cauchy Problem

(ii) and if a(t) ≥ 0, c(t) > 0 and r > 1. we have

y1−r (t) ≤ y1−r
0 − (r − 1)

∫ t

0
c(s)ds

where y0 = y(0) > 0.

Proof (Lemma 3)
Case (i)(if a(t) < 0, c(t) > 0 and r > 1):
Divide (9) by yr(t) and multiply the resulting inequality by its integrating factor to obtain

d

dt

[
y1−r (t)e−(1−r)

∫ t
0 a(s)ds

]
≤ (1 − r)c(t)e−(1−r)

∫ t
0 a(s)ds

Integrate this over [0, t] and multiply both sides of the resulting inequality by e(1−r)
∫ t

0 a(s)ds

to get the desired result.
Case (ii)(if a(t) ≥ 0, c(t) > 0 and r > 1):
In this case, (9) reduces to

y ′(t) ≥ c(t)yr (t) (11)

Divide (11) by yr(t) and integrate the resulting inequality over [0, t], this gives the desired
result. �

Now we are set to present the first result.

3 Existence

In this section, using the Galerkin approximation technique, we shall discuss the existence
of a weak solution to (1) in the maximal interval [0, T ] for T < ∞,

Theorem 1 Suppose that the assumption (A1) and (A2) are satisfied. Then the problem (1)
admits a unique weak solution u on [0, T ] such that

u ∈ C
([0, T ];W 1,γ (Rn)

)
, ut ∈ C

([0, T ];L2(Rn)
) ∩ Lp

([0, T ] ×R
n
)

Proof To prove the existence result, we make use of the Galerkin approximation technique.
First, we assume the sequence of functions (wj )j∈N to be a basis in W 1,γ (Rn) which is also
orthonormal in L2(Rn) and we consider a weak solution of the form

un(t) =
n∑

j=1

ajn(t)wj (12)

which satisfies the following approximate problem corresponding to (1)

〈un
tt ,wj 〉 + 〈|∇un|γ−2∇un,∇wj 〉 + 〈b(t, ·)|un

t |m−2un
t ,wj 〉 = 〈g(·, un),wj 〉 (13)

for wj ∈ W 1,γ (Rn) with initial conditions

un(0) = un
0 ≡

n∑

j=1

djnwj → u0 strongly in W 1,γ (Rn) as n → ∞ (14)

Author's personal copy

IB
ADAN U

NIV
ERSITY

 LI
BRARY



P.A. Ogbiyele, P.O. Arawomo

and

un
t (0) = un

1 ≡
n∑

j=1

cjnwj → u1 strongly in L2(Rn) as n → ∞ (15)

where ajn(t) = 〈un(t),wj 〉, djn = 〈un
0,wj 〉, and cjn = 〈un

1,wj 〉. Since the coefficients are
continuous, then there exist a solution un(t) for the system (13)-(15) and for some interval
[0, tn) where 0 < tn < T . We will need the a-priori estimates below, to show that the solution
is bounded on the whole interval [0, T ].

Set wj = un
t (t) in (13) and using assumption (A1), the resulting equation is

d

dt

[1

2
‖un

t ‖2 + 1

γ
‖∇un‖γ

γ

] ≤ −
∫

Rn

b(t, ·)|un
t |mdx + ρ2

∫

Rn

|un|p−1|un
t |dx (16)

For the last term on the right hand side of (16), using Holder and Young’s inequality, we
obtain

∫

Rn

|un|p−1|un
t |dx ≤

[∫

Rn

|un
t |pdx

] 1
p

[∫

Rn

|un|pdx

] p−1
p

≤ ε1

[∫

Rn

b(t, x)|un
t |mdx

] p
m

[∫

B(R+t)

|b(t, x)| −p
m−p dx

]m−p
m

+ C(ε1)‖un‖p
p

≤ ε1ε2

∫

Rn

b(t, x)|un
t |mdx + ε1C(ε2)

∫

B(R+t)

|b(t, x)| −p
m−p dx + C(ε1)‖un‖p

p

(17)

and employing the estimate (17) in (16), we obtain

d

dt

[1

2
‖un

t ‖2 + 1

γ
‖∇un‖γ

γ

] + (1 − ε1ε2ρ2)

∫

Rn

b(t, ·)|un
t |mdx

≤C(ε1)ρ2‖un‖p
p + ε1C(ε2)ρ2

∫

B(R+t)

|b(t, x)| −p
m−p dx

(18)

Now, for the first term on the right hand side of (18), we observe from Sobolev inequality
that for t ∈ [0, T ] and p <

nγ

n−γ
, the following estimate holds

‖u‖p ≤
[∫

Rn

|u| nγ
n−γ dx

] n−γ
nγ

[∫

B(R+t)

dx
] nγ−p(n−γ )

npγ

≤ [ωn(R + t)n] nγ−p(n−γ )
npγ ‖u‖ nγ

n−γ
≤ K[ωn(R + t)n] nγ−p(n−γ )

npγ ‖∇u‖γ

(19)

where W 1,γ (Rn) is embedded continuously in L
Nγ

N−γ (Rn) with an embedding constant K

and ωn is the volume of the unit sphere in R
n. Hence (18) reduces to

d

dt

[1

2
‖un

t ‖2 + 1

γ
‖∇un‖γ

γ

] + (1 − ε1ε2ρ2)

∫

Rn

b(t, ·)|un
t |mdx

≤C(ε1)K
pρ2[ωn(R + t)n] nγ−p(n−γ )

nγ ‖∇u‖p
γ + ε1C(ε2)ρ2bR(t)

(20)
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where bR(t) = ∫
B(R+t)

|b(t, x)| −p
m−p dx and ε1ε2 < 1

ρ2
. Furthermore, setting

Hn(t) = 1

2
‖un

t ‖2 + 1

γ
‖∇un‖γ

γ + (1 − ε1ε2ρ2)

∫ t

0

∫

Rn

b(t, ·)|un
t |mdxds (21)

and integrating (20) over t for t ∈ [0, T ], we have from assumption (A2) that there exist
positive constants K1 and K2 such that (20) yields

Hn(t) ≤Hn(0) + K1 + K2

∫ t

0
H

p
γ
n (s)ds (22)

for t ∈ [0, T ] where ε1C(ε2)ρ2

∫ t

0 bR(s)ds ≤ ε1C(ε2)ρ2T supt∈[0,T ] bR(t) ≤ K1.

and C(ε1)K
pρ2 supt∈[0,T ][ωn(R + t)n] nγ−p(n−γ )

nγ ≤ K2.
Applying Lemma 2, we get

Hn(t) ≤K1

(
1 − K2K

p−γ
γ

3 t
) −γ

p−γ (23)

for t ∈ [0, T ] and K3 = Hn(0)+K1. Thus, there exist a positive constant K4 independent of
n ∈ N such that

Hn(t) ≤ K4 (24)

Therefore, from (21) and (24), we obtain the following estimates

‖un
t ‖2 ≤ K4 (25)

‖∇un‖γ
γ ≤ K4 (26)

and
∫ t

0

∫

Rn

b(t, ·)|un
t |mdxds ≤ K4 (27)

Furthermore, from (27), assumption (A2) and Holder’s inequality, we have

∫

Rn

|un
t |pdx ≤

[∫

Rn

b(t, ·)|un
t |mdx

] p
m

[∫

B(R+t)

|b(t, ·)| −p
m−p dx

]m−p
m

≤ K5

where K5 is a positive constant independent of n.
Setting v = wj in (13), we have

|〈un
tt , v〉| ≤ |〈|∇un|γ−2∇un,∇v〉| + |〈b(t, ·)|un

t |m−2un
t , v〉| + |〈g(·, un), v〉| (28)

Now, for the last term on the right hand side of (28), using Holder’s inequality and (19), we
have

|〈g(·, un), v〉| ≤ ‖g(·, un(t))‖p′ ‖v‖p ≤ K6‖g(·, un(t))‖p′ ‖v‖1,γ (29)

and from (26) and assumption (A1), we get

‖g(·, un(t))‖p′ ≤ ρ2‖un(t)‖p−1
p ≤ K7 for t ∈ [0, T ] (30)
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For the second term on the right hand side of (28), using Hölder and Sobolev inequalities,
and assumption (A2), we have the estimate

∫

Rn

b(t, ·)|un
t |m−2un

t vdx

≤
[∫

Rn

b(t, ·)|un
t |mdx

]m−1
m

[ ∫

B(R+t)

|b(t, x)| nγ
nγ−m(n−γ ) dx

] nγ−m(n−γ )
nγm ‖v‖ nγ

n−γ

≤ K8

[∫

Rn

b(t, ·)|un
t |mdx

]m−1
m ‖v‖1,γ

(31)

Now, substituting the estimates (29), (31) in (28) and using Hölder’s inequality for the first
term on the right hand side of (28), we have the following estimate

|〈un
tt , v〉| ≤ K9

(
‖∇un(t)‖−1,γ ′ + ‖g(·, un(t))‖p′

+
[∫

Rn

b(t, ·)|un
t |mdx

]m−1
m

)
‖v‖1,γ

and thus, using the estimates (26) and (30), we obtain

‖un
tt (t)‖−1,γ ′ ≤ K10

([∫

Rn

b(t, ·)|un
t |mdx

]m−1
m + 1

)

By applying Hölder’s inequality, integrating the resulting estimate over t for t ∈ [0, T ] and
employing the estimate (27), we obtain

∫ t

0
‖un

tt (s)‖m′
−1,γ ′ ds ≤ K11

∫ t

0

(∫

Rn

b(t, ·)|un
t |mdx + 1

)
ds ≤ K12

for t ∈ [0, T ]. Therefore, for any T > 0 we have that the nonlinear terms are uniformly
bounded on [0, T ] and it follows that the solution un(t) of (13) exist on [0, T ] for each n.

Hence from the estimates above, we can obtain a subsequence uk of un and pass the limit
in the approximate problem to obtain a weak solution satisfying

b1 uk(t) → u(t) weakly-star in L∞([0, T ];W 1,γ (Rn)
)

b2 uk
t (t) → ut (t) weakly in L∞([0, T ];L2(Rn)

) ∩ Lp
([0, T ] ×R

n
)

b3 uk
tt (t) → utt (t) weakly-star in Lm′([0, T ];W−1,γ ′

(Rn)
)

b4 g(·, uk(t)) → φ(t) weakly-star in L∞([0, T ];Lp′
(Rn)

)

b5 |b(t, ·)|m−1
m |uk

t |m−2uk
t → ε(t) weakly in Lm′([0, T ] ×R

n
)
.

Now, letting n → ∞ in (13) and using (b1)–(b5), we obtain

∫ T

0

[(
utt , v

) + (|∇u|γ−2∇u,∇v
) + (

b(t, ·)|ut |m−2ut , v
) − (

φ,v
)]

dt = 0

for all v ∈ Lm([0, T ];W 1,γ (Rn)). The proof for g(·, un) = φ is the same as in [19], so we
omit it. �

Author's personal copy

IB
ADAN U

NIV
ERSITY

 LI
BRARY



Existence and Blow up of a Nonlinear Cauchy Problem

4 Blow up

In this section, we consider the blow up property of the solution to (1) having negative initial
energy. Our technique follows the one in [8], however we employ a differential inequality
of the form (4) in obtaining the blow up estimate of solution to (1).

First, we define the function H(t) by

H(t) := −E(t) (32)

then from (6), we have

0 < H(0) ≤ H(t) ≤
∫

Rn

∫ u

0
g(·, y)dydx ≤ ρ2

p
‖u‖p

p (33)

Moreover, from (8) the derivative H ′(t) satisfy

H ′(t) =
∫

Rn

b(t, x)|ut |mdx (34)

Furthermore, for the Cauchy problem (1), we define the function L(t) by

L(t) := λ(t)H 1−�(t) + μβ(t)

∫

Rn

uutdx (35)

for suitable choice of � satisfying

0 < � = p − m

mp
(36)

where λ and β are positive functions depending on the support radius R and satisfying the
following conditions

l1: λ′(t) ≥ 0

l21 : β(t)λ′(t) − λ(t)β ′(t) ≥ 0 and β ′(t)
β(t)

< 0
or

l22 : β(t)λ′(t) − λ(t)β ′(t) ≥ 0 and β ′(t)
β(t)

≥ 0
l3: λ(t) ≥ ηR(t)β(t)

where

ηR(t) =
[ ∫

B(R+t)

|b(t, x)| p
p−m dx

] p−m
(m−1)p

such that one of the following

l41 : D(t) := ∫ ∞
0 φ(s)−1

[
β(s)

λ(s)

] mp
p(m−1)+m ds = ∞

or
l42 : D(t) := ∫ ∞

0 β(s)
[
φ(s)λ(s)

mp
p(m−1)+m

]−1
ds = ∞

l51 : D(t) := ∫ ∞
0 φ(s)−1

[
β(s)

λ(s)

] mp
p(m−1)+m ds < ∞

or
l52 : D(t) := ∫ ∞

0 β(s)
[
φ(s)λ(s)

mp
p(m−1)+m

]−1
ds < ∞

is satisfied for φ(t) = max{1,
[
(R + t)

n(p−2)
2p η−1

R

] 1
1−� }.
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The weighted functions λ(t) and β(t) are used here to compensate for the lack of Lm ↪→
Lp injection arising as a result of the unboundedness of the domain for 0 ≤ m < p. In [8]
the function

L(t) := λ0λ(t)H 1−�(t) + β(t)

∫

Rn

uutdx

was used under the following assumptions

ηR(t) ≤ λ(t)/β(t), λ(t), β(t) > 0, λ′(t) ≥ 0

and tn(p−2)/2pβ ′(t) = o(β(t)) as t → ∞. Under these assumptions, they obtained an inequal-
ity of the form

L(t) ≥ j (t)Lν(t), ν > 1 (37)

In [15], the function (35) was used with λ(t) = (R + t)A and β(t) = 1 where A is a positive
constant. As will be discussed later, in this case β ′(t)

β(t)
= 0 and the inequality (37) is expected.

Notwithstanding for β ′(t)
β(t)

< 0, an inequality of the form (4) is expected.

Theorem 2 Let u(x, t) be a solution of the problem (1) with compact support in the ball
B(R) and suppose that the assumptions (l1), (l21 ), (l3) and (l41 ) are satisfied. In addition,
assume that g(·, u) satisfies

(B1)
∫
Rn ug(·, u)dx − q

∫
Rn

∫ u

0 g(·, y)dydx ≥ ρ0‖u‖p
p

for positive constants q ∈ (γ,p). Then for m < p, no weak solution of (1) with compact
support and satisfying E(0) < 0 and

∫
B(R)

u0u1dx > 0 can exist on the whole of [0,∞)

Proof From (35), we have that the derivative of L(t) yields

L′(t) =λ′(t)H 1−�(t) + μβ ′(t)
∫

Rn

uutdx + λ(t)(1 − �)H−�(t)H ′(t)

+ μβ(t)

∫

Rn

|ut |2dx + μβ(t)

∫

Rn

uutt

(38)

and using the equation (1), we obtain

L′(t) = λ′(t)H 1−�(t) + μβ ′(t)
∫

Rn

uutdx + λ(t)(1 − �)H−�(t)H ′(t)

[] + μβ(t)

∫

Rn

|ut |2dx − μβ(t)

∫

Rn

|∇u|γ dx + μβ(t)

∫

Rn

ug(·, u)dx

− μβ(t)

∫

Rn

b(t, x)|ut |m−2utudx

(39)

The second to the last term in (39), can be estimated using Holder’s inequality to get

∫

Rn

b(t, x)|ut |m−2utudx ≤
[∫

B(R+t)

|b(t, x)| p
p−m dx

] p−m
mp

[∫

Rn

b(t, x)|ut |mdx
]m−1

m ‖u‖p

≤
[
ηR(t)

∫

Rn

b(t, x)|ut |mdx
]m−1

m ‖u‖
p
m
p ‖u‖

m−p
m

p

Author's personal copy

IB
ADAN U

NIV
ERSITY

 LI
BRARY



Existence and Blow up of a Nonlinear Cauchy Problem

Hence, using Young’s inequality and (33), it follows that
∫

Rn

b(t, x)|ut |m−2utudx ≤C(δ1)H
�−�1(0)H−�(t)ηR(t)

∫

Rn

b(t, x)|ut |mdx

+ δ1H
−�(0)‖u‖p

p

(40)

where �1 = p−m

mp
. Therefore, using the estimate (40) in (39), we obtain

L′(t) ≥λ′(t)H 1−�(t) + μβ ′(t)
∫

Rn

uutdx + λ(t)(1 − �)H−�(t)H ′(t)

+ μβ(t)‖ut‖2 − μβ(t)‖∇u‖γ
γ + μβ(t)

∫

Rn

ug(·, u)dx

− C(δ1)H
�−�1(0)H−�(t)μβ(t)ηR(t)

∫

Rn

b(t, x)|ut |mdx

− δ1H
−�(0)μβ(t)‖u‖p

p

(41)

From the energy identity,

q

∫

Rn

∫ u

0
g(·, y)dydx = q

2
‖ut‖2 + q

γ
‖∇u‖γ

γ + qH(t)

for γ < q < p. Then, using assumption (B1), we obtain
∫

Rn

ug(·, u)dx ≥ q

2
‖ut‖2 + q

γ
‖∇u‖γ

γ + qH(t) + ρ0‖u‖p
p (42)

Therefore, we have

L′(t) ≥ λ′(t)H 1−�(t) + μβ ′(t)
∫

Rn

uutdx + μβ(t)(1 + q

2
)‖ut‖2

+ μβ(t)
[
ρ0 − δ1H

−�(0)
]‖u‖p

p + μβ(t)
[ (q − γ )

γ

]‖∇u‖γ
γ + qμβ(t)H(t)

+ [
λ(t)(1 − �) − C(δ1)H

�−�1(0)μβ(t)ηR(t)
]
H−�(t)

∫

Rn

b(t, x)|ut |mdx

(43)

We choose μ small enough such that

λ(t)(1 − �) ≥ C(δ1)H
�−�1(0)μβ(t)ηR(t) (44)

Also, from the definition of L(t) and assumption (l21 ), we have that

μβ ′(t)
∫

Rn

uutdx + λ′(t)H 1−�(t)

=[β ′(t)
β(t)

]
L(t) + β(t)

[β(t)λ′(t) − λ(t)β ′(t)
β2(t)

]
H 1−�(t)

≥[β ′(t)
β(t)

]
L(t)

(45)
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Hence, using the estimate (44) and (45) in (43), we obtain

L′(t) ≥[β ′(t)
β(t)

]
L(t) + μβ(t)

[
ρ0 − δ1H

−�(0)
]
‖u‖p

p

+ μβ(t)(1 + q

2
)‖ut‖2 + μβ(t)

[ (q − γ )

γ

]‖∇u‖γ
γ + qμβ(t)H(t)

(46)

Therefore, if we choose δ1 small enough such that ρ0 ≥ δ1H
−�(0), then there exist a positive

constant Cμ such that (46) satisfies

L′(t) − [β ′(t)
β(t)

]
L(t) ≥ Cμβ(t)

[‖u‖p
p + ‖ut‖2 + ‖∇u‖γ

γ + H(t)
]

(47)

where Cμ := μmin{q,
q−γ

γ
, [ρ0 − δ1H

−�(0)], (1 + q

2 )}. Hence, since

L(0) = λ(0)H 1−�(0) + μβ(0)

∫

B(R)

u0u1dx > 0

then from (47), we have that L(t) is an increasing function for t ≥ 0, satisfying

L(t) ≥ β(t)

β(0)
L(0) > 0 ∀t ≥ 0.

On the other hand

L
1

1−� (t) =
[
λ(t)H 1−�(t) + μβ(t)

∫

Rn

uutdx
] 1

1−�

≤2
1

1−�

[[
λ(t)

] 1
1−� H(t) + [

μβ(t)
] 1

1−�

[∫

Rn

uutdx
] 1

1−�
] (48)

Now, using Hölder inequality, we get

∣
∣∣
∫

Rn

uutdx

∣
∣∣ ≤ [ωn(R + t)n] (p−2)

2p ‖u‖p‖ut‖2

≤ [ωn(R + t)n] (p−2)
2p ‖u‖p‖ut‖2

where ωn is the volume of the unit sphere in R
n. Then by Young’s inequality, we have

[
‖u‖p‖ut‖2

] 1
1−� ≤ C8

[
‖u‖

ε
1−�
p + ‖ut‖

θ
1−�

]
(49)

where C8 = C8(ε, θ, �) and 1
ε

+ 1
θ

= 1. Now choosing θ = 2(1 − �) and setting ε
1−�

=
2

1−2�
≤ p, so that � ≤ �2, where �2 = p−2

2p
, then (49) yields

∣
∣∣
∫

Rn

uutdx

∣
∣∣

1
1−� ≤ C9(R + t)

n(p−2)
2p(1−�)

[
‖u‖p

p + ‖ut‖2
]

(50)

Combining the choice of � in (50), with the previous choices, we observe that �1 =
min

{
�1, �2

}
, and therefore we have

L
1

1−� (t) ≤2
1

1−�

[[
λ(t)

] 1
1−� H(t) + C9

[
(R + t)

n(p−2)
2p μβ(t)

] 1
1−�

[
‖u‖p

p + ‖ut‖2
]]

(51)
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and from (44), the estimate (51) yields

L
1

1−� (t) ≤[
2λ(t)] 1

1−�

[
H(t) + C10

[
(R + t)

n(p−2)
2p η−1

R

] 1
1−�

[
‖u‖p

p + ‖ut‖2
]]

(52)

where C10 = C10(C9, �, C(δ1), H(0)).

Define φ(t) := max{1, C10

[
(R + t)

n(p−2)
2p η−1

R

] 1
1−� }, then we have from (52) that

L
1

1−� (t) ≤ [
2λ(t)] 1

1−� φ(t)
[
H(t) + ‖u‖p

p + ‖ut‖2
]

(53)

Now combining (47) and (53), we have the following estimate

L′(t) − β ′(t)[β(t)]−1L(t) ≥ C∗
μβ(t)

[[
λ(t)] 1

1−� φ(t)
]−1

L
1

1−� (t) (54)

where C∗
μ = 2− 1

1−� Cμ. From Lemma 3, we have that (54) satisfies the following inequality

L(t) ≥
[β(t)

β0

]
⎡

⎣L
− �

1−�

0 −
[�C∗

μβ
− �

1−�

0

1 − �

]∫ t

0
φ(s)−1

[β(s)

λ(s)

] 1
1−�

ds

⎤

⎦

−(1−�)
�

(55)

with � = p−m

mp
. The desired result follows. �

Theorem 3 Let u(x, t) be a solution of the problem (1) and suppose that the assumptions
(l1), (l21 ), (l3) and (l51 ) are satisfied. In addition, assume that g(u) satisfies

(B1)
∫
Rn ug(u)dx − q

∫
Rn

∫ u

0 g(y)dydx ≥ ρ0‖u‖p
p

for positive constants q ∈ (γ,p) and m < p. Then, there exist a finite time T∗ satisfying

D(T∗) ≤ 1 − �

�C∗
μ

[
βo/L0

] �
1−�

where D(t) is the function defined in (l51) and � = p−m

mp
such that the solution u of (1) with

compact support and satisfying E(0) < 0 and
∫

B(R)
u0u1dx > 0 blows up.

The proof follows from that of Theorem 2.

Theorem 4 Let u(x, t) be a solution of the problem (1) and suppose that the assumptions l21

and l41 in Theorem 2 are replaced by l22 and l42 , then no weak solution of (1) with compact
support and satisfying E(0) < 0 and

∫
B(R)

u0u1dx > 0 can exist on the whole of [0,∞).
In addition if the assumptions l21 and l51 in Theorem 3 are replaced by l22 and l52 , Then

there exist a finite time T∗ such that the solution of (1) with compact support and satisfying
E(0) < 0 and

∫
B(R)

u0u1dx > 0 blows up.

The proof can be deduced from the proof of Theorem 2, where in this case, the estimate
for the blow up time is given by

L(t) ≥
[
L

−�
1−�

0 −
[ �C∗

μ

1 − �

]∫ t

0
β(s)

[
φ(s)λ(s)

1
1−�

]−1
ds

]−(1−�)
�

(56)
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5 Applications

For b(t, x) = (1 + t)k , we have that

ηR(t) = C(1 + t)
k

m−1 (R + t)
n(p−m)
p(m−1) (57)

and for β(t) = (R + t)a . Then, from assumption (l3), it follows that λ(t) takes the form

(1 + t)
a+ kp+n(p−m)

p(m−1) and the assumption (l1) is satisfied for nm
n+k+a(m−1)

< p.
The case

max
[
1, C10

[
(R + t)

n(p−2)
2p η−1

R (t)
] 1

1−�
] = 1

This holds for 2 ≤ m < 3. Moreover, we have that

∫ t

0
φ(s)−1

[
β(s)

λ(s)

] 1
1−σ

ds =
∫ t

0
(1 + s)

− m[kp+n(p−m)]
(m−1)[p(m−1)+m] ds (58)

In addition, the condition (l41) holds for m(nm+m−1)

m(n+k)−(m−1)2 < p and the blow up Theorem 2 is
satisfied for

max
{ nm

n + k + a(m − 1)
,

m(nm + m − 1)

m(n + k) − (m − 1)2

}
< p ≤ nγ

n − γ
(59)

The condition (l51) holds for p < m(nm+m−1)

m(n+k)−(m−1)2 , and the blow up to Theorem 3 holds in the
interval.

nm

n + k + a(m − 1)
< p ≤ min

{ m(nm + m − 1)

m(n + k) − (m − 1)2
,

nγ

n − γ

}
(60)

Note that for β(t) = 1, the estimates (59) and (60) hold with a = 0
For b(t, x) = C(1 + t)k|x|q , we have that

ηR(t) =C(1 + t)
k

m−1

[∫

B(R+t)

|x| qp
p−m dx

] p−m
p(m−1)

=C(1 + t)
k+q
m−1 (R + t)

n(p−m)
p(m−1)

(61)

and the argument follows as before with k replaced by k + q .
A good example in this direction is the semilinear wave equation (3). In this case k =

−ν0 = −1, m = 2, γ = 2. Choosing β(t) = 1, we have that the blow up Theorem 2 holds
for

max
{ 2n

n − 1
,

2(2n + 1)

2n − 3

}
< p ≤ 2n

n − 2

and for n = 3, 14
3 < p ≤ 6. Also, the blow up Theorem 3 holds for

2n

n − 1
< p ≤ min

{2(2n + 1)

2n − 3
,

2n

n − 2

}

and for n = 3, we have 3 < p ≤ 14
3 .

The case

max
[
1, C10

[
(R + t)

n(p−2)
2p η−1

R (t)
] 1

1−�
] = C10

[
(R + t)

n(p−2)
2p η−1

R (t)
] 1

1−�
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which satisfies the case m ≥ 3.
For b(t, x) = (1 + t)k and β(t) = (R + t)a as defined before, we have that λ(t) takes the

form (1 + t)
a+ kp+n(p−m)

p(m−1) . In this case the integral is given by

∫ t

0
φ(s)−1

[β(s)

λ(s)

] 1
1−σ ds = C10

∫ t

0

(
1 + s

)−[ n(p−2)
2p

][ mp
p(m−1)+m

]
ds

Furthermore, condition (l41 ) is satisfied for 2m(n+1)

m(n−2)+2 < p and the blow up Theorem 2 holds
for

max
{ nm

n + k + a(m − 1)
,

2m(n + 1)

m(n − 2) + 2

}
< p ≤ nγ

n − γ

Condition (l51 ) is satisfied for p < 2m(n+1)

m(n−2)+2 and the blow up Theorem 3 holds for

nm

n + k + a(m − 1)
< p ≤ min

{ 2m(n + 1)

m(n − 2) + 2
,

nγ

n − γ

}

Finally, the case b(t, x) = 1 can be deduced from the previous examples by setting k =
q = 0.
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