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Abstract

In this paper, we consider the asymptotic behavior of solution to
the nonlinear damped wave equation

utt − div
¡
a(t, x)∇u

¢
+ b(t, x)ut = −|u|p−1u t ∈ [0,∞), x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn

with space-time speed of propagation and damping potential. We ob-
tained L2 decay estimates via the weighted energy method and under
certain suitable assumptions on the functions a(t, x) and b(t, x). The
technique follows that of Lin et al.[8] with modification to the region
of consideration in Rn. These decay result extends the results in the
literature.

Subjclass Primary: 35L05, 35L70; Secondary: 37L15

Keywords: Space-time speed of propagation, Space-time dependent
damping, Asymptotic behavior, Weighted energy method.

10.22199/issn.0717-6279-4357-4415

IB
ADAN U

NIV
ERSITY

 LI
BRARY
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1. Introduction

In this paper, we are concerned with the asymptotic behavior of solution
to the following nonlinear wave equation

(
utt − div

³
a(t, x)∇u

´
+ b(t, x)ut = −|u|p−1u, t ∈ [0,∞), x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn,
(1.1)
with space-time dependent coefficients of the form

b(t, x) = b0(1 + |x|2)
−α
2 (1 + t)−β(1.2)

and

ρ1(1+|x|2)
δ
2 (1+t)γ |ξ|2 ≤ a(t, x)ξ·ξ ≤ ρ0(1+|x|2)

δ
2 (1+t)γ |ξ|2, ξ ∈ Rn

(1.3)
where a(t, x) = η(t)−1ρ(x) and η(t) = (1 + t)−γ . In addition, b0 > 0,
ρ0 > 0, α+ δ ∈ [0, 2) and β + γ ∈ [0, 1), where u = u(t, x). More precisely,
α + β + δ + γ ∈ [0, 1). Equations of the form (1.1) arise in the study of
nonlinear wave equations describing the motion of body traveling in an
in-homogeneous medium. They appear in various aspects of Mathematical
Physics, Geophysics and Ocean acoustics.

In the case of scalar coefficients and bounded smooth domains Ω, there
is an extensive literature on energy dacay results. For the semi-linear wave
equation

utt −∆u+ ut = |u|p,(1.4)

Todorova and Yordanov [18] showed that Cn = 1 + 2
n is the critical

exponent(Fujita exponent) for p <∞ (n < 3) and p < 1 + 2
n(n ≥ 3).

Nishihara in his paper [11] showed that the decay rate of solution to
the damped linear wave equation follows that of self similar solution of
its corresponding heat equation for n = 3 and showed this by obtaining
Lp − Lq estimates on their difference. For similar results on 1-dimension
and 2-dimensions, see Marcati and Nishihara [9] and Hosono and Ogawa [5]
respectively, and in any dimension, see Narazaki [10]. Hence, it is expected
that the behavior of the solution to equation (1.4) is similar to that of the
corresponding heat equation

ut −∆u = |u|p,(1.5)
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whose similarity solution ua(t, x) has the form t
−1
p−1F (xt−

1
2 ) with

a = lim|x|→∞ |x|
2

p−1 f(x) ≥ 0 provided that p < 1 + 2
n .

In the case of time dependent potential type of damping, with equations
of the form

utt −∆u+ b(t)ut + |u|p−1u = 0,(1.6)

there are also several results on the decay rate of the solution. Nishihara
and Zhai [13], used a weighted energy method similar to those in [18] and
obtained decay estimates of the form

kuk2 ≤ Ct
−( n

4(p−1) )(1+β)

kuk1 ≤ Ct
−( n

2(p−1) )(1+β)
(1.7)

under the assumption that b(t) ≈ (1 + t)−β. For Cauchy problem of the
form

utt − a2(t)∆u+ b(t)ut + c0|u|p−1u = 0,(1.8)

it is well known that the interplay between the coefficient a2(t) and the term
b(t)ut induces different effect on the asymptotic behavior of the energy E(t)
given by

E(t) =
1

2
kutk2 +

a2(t)

2
k∇uk22 +

1

p
kukpp.(1.9)

For more details see [2, 3, 4, 20] and the references therein. In [1] Bui
considered the asymptotic behavior of the nonlinear problem (1.8) with
a(t) = (1+ t)c and b(t) = µ(1+ c)(1+ t)−1, c > 0, c0 = 0 and obtained the
following estimate

kut(t, ·), (1+t)c∇u(t, ·)kL2 ≤ (1+t)c+(c+1)max{µ
∗− 1

2
,−1}

³
ku1kH1+ku2kL2

´
(1.10)

with µ∗ = 1
2(1− µ− c

c+1).

In the case of damped wave equation with space dependent potential
type of damping;

utt −∆u+ b(x)ut + |u|p−1u = 0,(1.11)

where b1(1 + |x|)−α ≤ b(x) ≤ b2(1 + |x|)−α and b1, b2 > 0, Todorova and
Yordanov [19] investigated the decay rate of the energy when 0 ≤ α < 1.
They obtained several decay rate types for solutions of (1.11) depending on
p and α. These decay rates take the form
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³
kutk2 + k∇uk2, kukp+1

´
= O

³
t
−1
p−1+δ, t

− p+1
2(p−1)+δ

´
(1.12)

if 1 < p < 1 + 2α
n−α and

³
kutk2+k∇uk2, kukp+1

´
= O

³
t
−(1+α

2
) 1
p−1+

n
2(p+1)

+δ
, t
−(1+α

2
) p+1
2(p−1)+

n
4
+δ
´

(1.13)

if 1 + 2α
n−α < p < 1 + 2(4−α)

(n−α)(4−α) , for t > 1, where δ is a constant.

Nishihara[12] also considered the asymptotic behavior of solution to the
semi-linear wave equation (1.11) with b(x) satisfying

b1(1 + |x|2)−
α
2 ≤ b(x) ≤ b2(1 + |x|2)−

α
2(1.14)

and obtained decay rates of the following type

ku(t, ·)k2 ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C(1 + t)

− n−2α
2(2−α) if 1 + 2

n−α ≤ p < n+2
n−2

C(1 + t)−
2

2−α (
1

p−1 )−
n
4 if 1 + 2α

n−α < p ≤ 1 + 2
n−α

C(1 + t)−
2

2−α (
1

p−1 )−
n
4 [log(t+ 2)]

1
2 if p = 1 + 2α

n−α
C(1 + t)

− 1
p−1+

α
2(2−α) if 1 < p < 1 + 2α

n−α
(1.15)
where α ∈ [0, 1).
Ikehata and Inoue [6] studied nonlinear wave equations with b(x) = b0(1 +
|x|)−1 and showed that solutions to (1.11) depend on the coefficient b0 and
their decay estimate takes the form

kuk = O(t−1+µ) kutk22 + k∇uk22 = O(t−1+µ)(1.16)

where
1 < µ+ b0 < 1 + b0 if 0 < b0 ≤ 1
0 ≤ µ < 1 if b0 ≥ 1.

Moreover, for damped wave equations with space-time dependent po-
tential type of damping

utt −∆u+ b(t, x)ut + |u|p−1u = 0, t > 0, x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,
(1.17)

Lin et al. [8] considered decay rates of solution to (1.17) and showed
using the weighted energy method that the L2 norm of the solution decays
as
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On asymptotic behavior of solution to a nonlinear wave equation ...1619

ku(t.·)k2 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(1 + t)

−( 1
p−1−

α
2(2−α) )(1+β) if α(p+1)p−1 > n

C(1 + t)
−( 1

p−1−
α

2(2−α) )(1+β) log(t+ 2), if α(p+1)p−1 = n

C(1 + t)
−(1+β) 1

p−1+
1+β

2(2−α) (N−α
2

p−1 ) if α(p+1)p−1 < n

(1.18)
For nonlinear wave equations with variable coefficients which exhibit a

dissipative term with a space dependent potential

utt −∇ · (b(x)∇u) +∇ · (b(x)ut) = 0, x ∈ Rn, t > 0(1.19)

under the assumption that

b0(1 + |x|)β|ξ|2 ≤ b(x)ξ · ξ ≤ b1(1 + |x|)β|ξ|2, ξ ∈ Rn,(1.20)

where b0 > 0, b1 > 0 and β ∈ [0, 2). R. Ikehata et al. [7] obtained long time
asymptotics for solutions to (1.19)-(1.20) as a combination of solutions of
wave and diffusion equations under certain assumptions on b in an exterior
domain, see also [15].

Said-Houari [17] considered a viscoelastic wave equation with space-
time dependent damping potential and an absorbing term

utt −∆u+
R t
0 g(t− s)∆u(s)ds+ b(t, x)ut + |u|p−1u = 0, t > 0, x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn

(1.21)
and by using a weighted energy method, they showed that the L2 decay
rates are the same as those in [8].

More recently, Roberts[16] under the assumption that

b0(1+|x|)β ≤ b(x) ≤ b1(1+|x|)β and a0(1+|x|)−α ≤ a(x) ≤ a1(1+|x|)−α

with

α < 1, 0 ≤ β < 2, 2α+ β < 2,(1.22)

obtained energy decay estimates of solution to the dissipative non-linear
wave equation

utt − div(b(x)∇u) + a(x)ut + |u|p−1u = 0, x ∈ Rn, t > 0
u(0, x) = u0(x) ∈ H1(Rn), ut(0, x) = u1(x) ∈ L2(Rn),

(1.23)
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1620 Paul A. Ogbiyele and Peter O. Arawomo

using a modification of the weighted multiplier technique introduced by
Todorova and Yordanov[14].

In this paper, by using the weighted L2-energy method similar to that of
[8], we obtain decay estimates of the energy of the solution to (1.1), where
a(t, x) and b(t, x) have the form in (1.2)-(1.3) above. In [8], the space Rn

was divided into two zones

Z(t;L, t0) := {x ∈ Rn|(t0 + t)2 ≥ L+ |x|2}

and Zc(t;L, t0) = Rn\Z(t;L, t0). To obtain boundedness on certain esti-
mates on Z, a further division of Z was required. Here, we split the domain
into two zones

Ω(t, L, t0) = {x ∈ Rn : (t0 + t)A ≥ L+ |x|2} and
Ωc(t, L, t0) = R

n\Ω(t, L, t0)
which depend on the weighted function for A = 2(1+β+γ)

2−(α+δ) and positive
constants L, t0. With this choice, we overcome the challenge of splitting the
first zone in order to obtain boundedness for every estimate on Ω(t;L, t0)
in the proof.

2. Preliminaries

In this section, we state some basic assumptions used in this paper. First,
we introduce the following notations. Lp(Rn), 1 ≤ p ≤ ∞, the Lebesgue
space with norm k · kp and H1

ρ(R
n) the Sobolev space defined by

H1
ρ(R

n) := {u ∈ L
2n

n−2+δ :

Z
Rn
(1 + |x|2) δ2 |∇u|2dx <∞}.(2.1)

Lemma 2.1. (Caffarelli-Kohn-Nirenberg)
There exist a constant C > 0 such that the inequality

k|x|σukLr ≤ Ck|x|δ∇ukθLqk|x|cuk1−θLp(2.2)

holds for all u ∈ C∞0 (R
n) if and only if the following relations hold:

1

r
+

σ

n
= θ

³1
q
+

δ − 1
n

´
+ (1− θ)

³1
p
+

c

n

´
(2.3)

with p, q ≥ 1. r > 0, 0 ≤ θ ≤ 1. δ − d ≤ 1 if θ > 0 and 1
p +

δ−1
n = 1

r +
σ
n

Remark 1. When σ = δ = c = 0, the Lemma is referred to as the
Gagliardo-Nirenberg inequality.
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We define the weighted function ψ(t, x) as follows:

ψ(t, x) = λ
(L+ |x|2)

2−(α+δ)
2

(t0 + t)1+β+γ
(2.4)

for a small positive constant λ = b0(1+β+γ)
2ρ0(2−(α+δ))2 and t0 ≥ L ≥ 1. Moreover,

we have

ψt(t, x) = −λ(1 + β + γ) (L+|x|
2)
2−(α+δ)

2

(t0+t)2+β+γ

∇ψ(t, x) = λ(2− (α+ δ)) (L+|x|
2)
−α−δ
2 x

(t0+t)1+β+γ

|∇ψ(t, x)|2 = λ2(2− (α+ δ))2 (L+|x|
2)−α−δ|x|2

(t0+t)2+2β+2γ

and consequently, we have

a(t, x)|∇ψ|2
(−ψt(t, x))

≤ 1
2
b(t, x).(2.5)

In the sequel, we will denote the function ψ(t, x) by ψ for simplicity.
To begin, we state the following lemmas which will be needed in the proof
of the main result. First, we define the functions E(t) and H(t) associated
to problem (1.1) by

E(t) := e2ψη(t)
h
1
2 |ut|2 +

a(t,x)
2 |∇u|2 + 1

p+1 |u|p+1
i

(2.6)

and

H(t) := e2ψη(t)
h
uut +

b(t, x)

2
|u|2

i
(2.7)

respectively. Then for the function E(t) in (2.6), we have the following
result.

Lemma 2.2. Let u be a solution of (1.1), then the function E(t) defined
in (2.6), satisfies

d
dtE(t) ≤ ∇ · (e2ψρ(x)∇uut) + e2ψη(t)

h
− b(t,x)

4 + ψt
i
|ut|2 + e2ψ ηt(t)

2 |ut|2

+e2ψη(t)
h

−γ
(p+1)(1+t) +

2ψt
p+1

i
|u|p+1 + e2ψ

h
ρ(x)ψt
3

i
|∇u|2.

(2.8)
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1622 Paul A. Ogbiyele and Peter O. Arawomo

Proof. Multiplying (1.1) by e2ψut and using (2.5), we obtain

d
dt

∙
e2ψ

h
1
2 |ut|2 +

a(t,x)
2 |∇u|2 + 1

p+1 |u|p+1
i¸

= ∇ · (e2ψa(t, x)∇uut) + e2ψ
h
ψt − b(t, x)

i
|ut|2 + e2ψat(t,x)

2 |∇u|2

+e2ψa(t,x)
ψt

h
ψt|∇u|2 −∇ψut

i2
− e2ψa(t,x)|∇ψ|2

ψt
|ut|2 + 2e2ψψt

p+1 |u|p+1

≤ ∇ · (e2ψa(t, x)∇uut) + e2ψ
h
ψt − 1

2b(t, x)
i
|ut|2 + e2ψat(t,x)

2 |∇u|2

+e2ψa(t,x)
ψt

h
ψt|∇u|−∇ψut

i2
+ 2e2ψψt

p+1 |u|p+1,

(2.9)

where we have used

e2ψut · b(t, x)ut = e2ψb(t, x)|ut|2.(2.10)

By employing Schwartz inequality, we observe that

e2ψa(t,x)
ψt

h
ψt|∇u|−∇ψut

i2
= e2ψa(t,x)

ψt

h
|ψt|2|∇u|2 − 2ψtut∇u ·∇ψ + |∇ψ|2|ut|2

i
≤ e2ψa(t,x)

ψt

h
1
3 |ψt|2|∇u|2 −

1
2 |∇ψ|2|ut|2

i
.

(2.11)

Hence, using (2.5) in (2.11) and substituting the resulting estimate in
(2.9), we obtain

d
dt

∙
e2ψ

h
1
2 |ut|2 +

a(t,x)
2 |∇u|2 + 1

p+1 |u|p+1
i¸

≤ ∇ · (e2ψa(t, x)∇uut) + e2ψ
h
ψt − b(t,x)

4

i
|ut|2 + 2e2ψψt

p+1 |u|p+1

+e2ψ
h
at(t,x)
2 + a(t,x)ψt

3

i
|∇u|2

(2.12)

and multiplying (2.12) by η(t), we get

d
dt

∙
e2ψη(t)

h
1
2 |ut|2 +

a(t,x)
2 |∇u|2 + 1

p+1 |u|p+1
i¸

≤ ∇ · (e2ψρ(x)∇uut) + e2ψη(t)
h
− b(t,x)

4 + ψt
i
|ut|2 + e2ψ ηt(t)

2 |ut|2

+e2ψη(t)
h

−γ
(p+1)(1+t) +

2ψt
p+1

i
|u|p+1 + e2ψ

h
ρ(x)ψt
3

i
|∇u|2.

(2.13)
2

Now, for the function H(t), we have the following lemma.
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Lemma 2.3. Let u be a solution of (1.1), then the function H(t) defined
in (2.7), satisfies

d
dtH(t) ≤ ∇ · (e2ψρ(x)u∇u) + e2ψη(t)|ut|2 + 2e2ψη(t)ψtuut − e2ψη(t)|u|p+1

−e2ψρ(x)
4 |∇u|2 + e2ψη(t)

∙
bt(t,x)
2 + b(t,x)ψt

3

¸
|u|2

+e2ψ ηt(t)b(t,x)
2 |u|2 + e2ψηt(t)uut

(2.14)

Proof. Multiplying (1.1) by e2ψu and using the estimate (2.5), we get

d
dt

∙
e2ψ

h
uut +

b(t,x)
2 |u|2

i¸
= ∇ · (e2ψa(t, x)u∇u) + e2ψ|ut|2 + 2e2ψψtuut + e2ψ bt(t,x)

2 |u|2

−e2ψa(t, x)|∇u|2 − a2(t,x)|∇ψ|2
ψtb(t,x)

|∇u|2e2ψ − e2ψ|u|p+1

+ b(t,x)
ψt

h
|ψtu+ a(t,x)∇ψ

b(t,x) |∇u|
i2
e2ψ

≤ ∇ · (e2ψa(t, x)u∇u) + e2ψ|ut|2 + 2e2ψψtuut + e2ψ bt(t,x)
2 |u|2

−e2ψa(t,x)
2 |∇u|2 + b(t,x)

ψt

h
|ψtu− a(t,x)∇ψ

b(t,x) |∇u|
i2
e2ψ − e2ψ|u|p+1

(2.15)

where we have used

e2ψb(t, x)uut =
d
dt

∙
e2ψb(t,x)

2 |u|2
¸
− e2ψψtb(t, x)|u|2

−e2ψ bt(t,x)
2 |u|2.

(2.16)

Using Schwartz inequality for the second to the last term on the right
hand side of (2.15), we have the following estimate

b(t,x)
ψt

h
|ψtu+ a(t,x)∇ψ

b(t,x) |∇u|
i2

≤ b(t,x)
ψt

h
1
3 |ψt|2|u|2 −

|a(t,x)|2|∇ψ|2
2|b(t,x)|2 |∇u|2

i
.

(2.17)

In a similar way, using (2.5) in (2.17), and substituting the resulting
estimate in (2.15), we get

d
dt

∙
e2ψ

h
uut +

b(t,x)
2 |u|2

i¸
≤ ∇ · (e2ψa(t, x)u∇u) + e2ψ|ut|2 + 2e2ψψtuut + e2ψ bt(t,x)

2 |u|2

−e2ψa(t,x)
4 |∇u|2 + e2ψ b(t,x)ψt

3 |u|2 − e2ψ|u|p+1
(2.18)
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1624 Paul A. Ogbiyele and Peter O. Arawomo

and multiplying (2.18) by η(t), we obtain

d
dt

∙
e2ψη(t)

h
uut +

b(t,x)
2 |u|2

i¸
≤ ∇ · (e2ψρ(x)u∇u) + e2ψη(t)|ut|2 + 2e2ψη(t)ψtuut − e2ψη(t)|u|p+1

−e2ψρ(x)
4 |∇u|2 + e2ψη(t)

∙
bt(t,x)
2 + b(t,x)ψt

3

¸
|u|2

+e2ψ ηt(t)b(t,x)
2 |u|2 + e2ψηt(t)uut.

(2.19)
2

3. Main result

In this section, we consider the long time behavior of the solution to (1.1).
The result here is obtained via a weighted energy method and the technique
follows that of Lin et al.[8]. For local existence result, the compactness
condition on the support of the initial data is replaced by the following
condition:

I0 :=

Z
Ω(0;L,t0)

η(0)

∙
t
β+αA

2
0

h
|u1|2 + a(0, x)|∇u0|2

i
+ b(0, x)|u0|2

¸
e2ψ(0,x)dx

+

Z
Ωc(0;L,t0)

η(0)

∙
(L+ |x|2) 1A (β+αA

2
)
h
|u1|2 + a(0, x)|∇u0|2

i
+ b(0, x)|u0|2

¸
e2ψ(0,x)dx < +∞.

(3.1)

With respect to the size of (1 + |x|2) and (1 + t) and considering the
weighted function ψ, we partition the space Rn into the following zones:

Ω(t, L, t0) = {x ∈ Rn : (t0 + t)A ≥ L+ |x|2} and
Ωc(t, L, t0) = R

n\Ω(t, L, t0)

which is a modification of the zones as inspired by Lin et. al. [8], where

A = 2(1+β+γ)
2−(α+δ) . Since α+ β + δ + γ ∈ [0, 1), it follows that A < 2.

Theorem 3.1. Let u be the solution of (1.1) and let a(t, x), b(t, x) satisfy
(1.2) and (1.3) for 2 < p+1 < 2n

n−2+δ when n ≥ 2. Suppose that (u0, u1) ∈
H1
ρ(R

n) ∩ L2(Rn) and (??) holds. Then there exist a unique solution u
of (1.1) with u ∈ L∞([0,∞);H1

ρ(R
n)) and ut ∈ L∞([0,∞);L2(Rn)) which

satisfies the following estimate
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kuk2
L2
≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)

−2(1+β)
p−1 +

α(1+β+γ)
2−(δ+α) , if α(p+1)(p−1) > n

C(1 + t)
−2(1+β)

p−1 +
α(1+β+γ)
2−(δ+α) log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
−2(1+β)

p−1 + 1+β+γ
2−(δ+α) (n−

2α
p−1 ), if α(p+1)(p−1) < n.

(3.2)

Remark 2. The existence result can be proved using the same technique
as in [8] where in this case the Caffarelli-Kohn-Nirenberg inequality is used
instead of the Gagliardo-Nirenberg inequality, with the additional consid-

eration of the inequality |x|δ ≤ (1 + |x|2) δ2 . Hence, we omit the proof here.

Proof. [Proof of Theorem 3.1] We split the proof into three parts, the
first part considers the case x ∈ Ω(t, L, t0), the second part covers the case
x ∈ Ωc(t, L, t0) and the third part combines the two results . We state the
result in each of the zones in the form of a lemma.

Case 1: (x ∈ Ω(t, L, t0)). In this region, we define a functionEψ(Ω(t, L, t0))
by

Eψ(Ω(t, L, t0)) := (t0 + t)β+
αA
2 E(t) + νH(t)(3.3)

where ν is a small positive constant to be determined later, and the func-
tions HE(t;Ω(t;L, t0)), H1(t) and H2(t) by

HE(t;Ω(t;L, t0)) :=
R
Ω(t;L,t0)

Eψ(Ω(t, L, t0))dx(3.4)

H1(t) :=
R 2π
0 Eψ( Ω(t, L, t0))

¯̄̄
|x|=
√
(t0+t)A−L

h
(t0 + t)A − L

iN−1
2 dθ

× d
dt

q
(t0 + t)A − L

(3.5)

H2(t) :=

Z
∂Ω(t;L,t0)

e2ψ
h
(t0 + t)β+

αA
2 ρ(x)∇uut + νρ(x)u∇u

i
·−→n dS(3.6)

where −→n is the unit outward normal vector of ∂Ω(t;L, t0). Then we state
the next lemma.
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1626 Paul A. Ogbiyele and Peter O. Arawomo

Lemma 3.2. Let u be a solution of (1.1) and the functions E(t) and H(t)
be defined as in (2.6) and (2.7) above, then for x ∈ Ω(t, L, t0), the function
Eψ(Ω(t, L, t0)) satisfies

d
dtEψ(Ω(t, L, t0))

≤ ∇ · (e2ψ
h
(t0 + t)β+

αA
2 ρ(x)∇uut + νρ(x)u∇u

i
)

−k0e2ψη(t)
∙
1 + (t0 + t)β+

αA
2 (−ψt)

¸µ
|ut|2 + a(t, x)|∇u|2 + |u|p+1

¶
−k0

∙
1

(t0+t)
+ (−ψt)

¸
e2ψη(t)b(t, x)|u|2 − k0e

2ψη(t)|u|p+1

(3.7)

where k0 is a positive constant to be determined later. Furthermore, we
have

d
dt

³
(t0 + t)mHE(t;Ω(t;L, t0))

i
− (t0 + t)m

³
H1(t) +H2(t)

´

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)m−γ−

(1+β)(p+1)
p−1 , if α(p+1)(p−1) > n

C(1 + t)m−γ−
(1+β)(p+1)

p−1 log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
m−γ− (1+β)(p+1)

p−1 + 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )

, if α(p+1)(p−1) < n.

(3.8)

Proof. Multiplying (2.8) by (t0 + t)β+
αA
2 , we obtain

d
dt

∙
(t0 + t)β+

αA
2 E(t)

¸
≤ ∇ · (e2ψ(t0 + t)β+

αA
2 ρ(x)∇uut) + ηt(t)

2 (t0 + t)β+
αA
2 |ut|2

+

∙
(β+αA

2
)

2(t0+t)
1−(β+αA

2 )
− b(t,x)

4 (t0 + t)β+
αA
2 + (t0 + t)β+

αA
2 ψt

¸
e2ψη(t)|ut|2

+

∙
(β+αA

2
)

2(t0+t)
1−(β+αA

2 )
+ ψt

3 (t0 + t)β+
αA
2

¸
e2ψρ(x)|∇u|2

+

∙
(β+αA

2
)−γ

(p+1)(t0+t)
1−(β+αA

2 )
+ 2ψt

p+1(t0 + t)β+
αA
2

¸
e2ψη(t)|u|p+1.

(3.9)

Observe that β + αA
2 ≤ β + α < 1 since A < 2 and α+ β + δ + γ < 1.

Now, multiplying (2.14) by ν (where ν < b0) and adding the resulting
estimate to (3.9), we get
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On asymptotic behavior of solution to a nonlinear wave equation ...1627

d
dt

∙
(t0 + t)β+

αA
2 E(t) + νH(t)

¸
≤ ∇ · (e2ψ

h
(t0 + t)β+

αA
2 ρ(x)∇uut + νρ(x)u∇u

i
)

+

∙
(β+αA

2
)−γ(1− ν

b0
)

2(t0+t)
1−(β+αA

2 )
+ ν − b0

4 +
(�1b0−3ν)

�1b0
(t0 + t)β+

αA
2 ψt

¸
e2ψη(t)|ut|2

+

∙
(β+αA

2
)

2(t0+t)
1−(β+αA

2 )
− ν

4 +
ψt
3 (t0 + t)β+

αA
2

¸
e2ψρ(x)|∇u|2

+ν

∙
−β

2(t0+t)
+ (1−�1)

3 ψt

¸
e2ψη(t)b(t, x)|u|2

+

∙
(β+αA

2
)−γ

(p+1)(t0+t)
1−(β+αA

2 )
− ν + 2ψt

p+1(t0 + t)β+
αA
2

¸
e2ψη(t)|u|p+1,

(3.10)

where we have used Schwartz inequality to obtain the following estimates
for the third and last term on the right hand side of (2.14) respectively:

|2ψtutu| ≤ �1b(t,x)(−ψt)
3 |u|2 + 3(−ψt)

�1b0
(1 + t)β(1 + |x|2)α2 |ut|2

≤ −�1b(t,x)ψt
3 |u|2 − 3ψt

�1b0
(t0 + t)β+

αA
2 |ut|2

(3.11)

and

|ηt(t)utu| ≤ −b(t,x)ηt(t)
2 |u|2 − ηt(t)

2b0
(1 + t)β(1 + |x|2)α2 |ut|2

≤ −b(t,x)ηt(t)
2 |u|2 − ηt(t)

2b0
(t0 + t)β+

αA
2 |ut|2.

(3.12)

By a suitable choice of ν sufficiently small as mentioned earlier, we
can now choose a positive constant k0 such that the estimates below are
satisfied

(β+αA
2
)−γ(1− ν

b0
)

2t
1−(β+αA

2 )

0

+ ν − b0
4 ≤ −k0

(β+αA
2
)

2t
1−(β+αA

2 )

0

− ν
4 ≤ −k0,

(β+αA
2
)−γ

(p+1)t
1−(β+αA

2 )

0

− ν ≤ −2k0

ν 1−�13 ≥ k0,
(�1b0−3ν)

�1b0
≥ k0,

1
3 ≥ k0,

2
(p+1) ≥ k0, ν β2 ≥ k0,

(3.13)

this gives the desired estimate (3.7).
We now integrate the estimate (3.7) over Ω(t;L, t0) to obtain

d

dt
HE(t;Ω(t;L, t0))−H1(t)−H2(t) ≤ −H3(t;Ω(t;L, t0)),(3.14)
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1628 Paul A. Ogbiyele and Peter O. Arawomo

where

H3 (t;Ω(t;L, t0))

:= k0

Z
Ω(t;L,t0)

e2ψη(t)

∙
(1 + (−ψt)(t0 + t)β+

αA
2 )|ut|2 + (1 + (−ψt)(t0 + t)β+

αA
2 )

a(t, x)|∇u|2

+
³
−ψt + 1

t0+t

´
b(t, x)|u|2 + (1 + (−ψt)(t0 + t)β+

αA
2 )|u|p+1 + |u|p+1

¸
dx.

(3.15)
Define the function HE by

HE(t;Ω(t;L, t0)) :=
Z

Ω(t;L,t0)

η(t)

∙
(t0 + t)β+

αA
2

h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
+ b(t, x)|u|2

¸
e2ψdx.

(3.16)

It can be proved easily that for positive constants k1, k2, the following
inequality is satisfied:

k1HE ≤ HE(t;Ω(t;L, t0)) ≤ k2HE .(3.17)

Now, multiplying (3.14) by (t0 + t)m for m a constant which will be
determined later, we obtain

d
dt

³
(t0 + t)mHE(t;Ω(t;L, t0))

i
− (t0 + t)m

³
H1(t) +H2(t)

´
≤ (t0 + t)m

∙
m

t0+t
HE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))

¸
.

(3.18)

The term on the right hand side is estimated as

m
t0+t

HE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))

≤ mk2
t0+t

HE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))

≤
Z

Ω(t;L,t0)

e2ψη(t)

∙
mk2

(t0+t)
1−(β+αA

2 )
− k0

¸h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
dx

+

Z
Ω(t;L,t0)

e2ψη(t)

∙h
mk2
t0+t

i
b(t, x)u2 − k0|u|p+1

¸
dx,

(3.19)
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On asymptotic behavior of solution to a nonlinear wave equation ...1629

where we have used ψt ≤ 0.
From (3.13), it can be easily seen that we can choose t0 large enough, such
that mk2

t
1−(β+αA

2 )

0

< k0
2 . Therefore, the first term on the right hand side of

(3.19) yields

Z
Ω(t;L,t0)

e2ψη(t)

∙
mk2

(t0+t)
1−(β+αA

2 )
− k0

¸h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
dx

≤ −k0
2

Z
Ω(t;L,t0)

e2ψη(t)(|ut|2 + a(t, x)|∇u|2 + |u|p+1)dx ≤ 0.

(3.20)

To estimate the second term on the right hand of (3.19), we apply
Young’s inequality to obtain

Z
Ω(t;L,t0)

e2ψη(t)

∙h
mk2
t0+t

i
b(t, x)u2 − k0|u|p+1

¸
dx

≤
Z

Ω(t;L,t0)

e2ψη(t)

∙h
mk2

(1+t)1+β

i
b0(1 + |x|2)

−α
2 |u|2 − k0|u|p+1

¸
dx

≤
Z

Ω(t;L,t0)

e2ψη(t)

∙
C(1 + t)

−(1+β)(p+1)
p−1 (1 + |x|2)

−α(p+1)
2(p−1) − kp|u|p+1

¸
dx

≤ Cη(t)(1 + t)−
(1+β)(p+1)

p−1
R

Ω(t;L,t0)

e2ψ(1 + |x|2)
−α(p+1)
2(p−1) dx

≤ Cη(t)(1 + t)−
(1+β)(p+1)

p−1
R (t0+t)A2
0

³
1 + r2

´−α(p+1)
2(p−1) rn−1dr

(3.21)

where C = C(m, b0, k2, p) and kp = kp(k0, p). Define J by

J := C(1 + t)−
(1+β)(p+1)

p−1 −γ R (t0+t)A2
0

³
1 + r2

´−α(p+1)
2(p−1) rn−1dr.

Thus, if α(p+1)
(p−1) > n, it follows that

J ≤ C(1 + t)−
(1+β)(p+1)

p−1 −γ ,(3.22)

if α(p+1)
(p−1) = n, we have

J ≤ C(1 + t)−
(1+β)(p+1)

p−1 −γ log(2 + t)(3.23)

and if α(p+1)
(p−1) < n, we obtain
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1630 Paul A. Ogbiyele and Peter O. Arawomo

J ≤ C(1 + t)
− (1+β)(p+1)

p−1 −γ+ 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )

.(3.24)

Combining (3.19) - (3.24), we have

m
t0+t

HE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)−

(1+β)(p+1)
p−1 −γ, if α(p+1)(p−1) > n

C(1 + t)−
(1+β)(p+1)

p−1 −γ log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
− (1+β)(p+1)

p−1 −γ+ 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )

, if α(p+1)(p−1) < n.

(3.25)

Hence, we have that

d
dt

³
(t0 + t)mHE(t;Ω(t;L, t0))

i
− (t0 + t)m

³
H1(t) +H2(t)

´

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)m−γ−

(1+β)(p+1)
p−1 , if α(p+1)(p−1) > n

C(1 + t)m−γ−
(1+β)(p+1)

p−1 log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
m−γ− (1+β)(p+1)

p−1 + 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )

, if α(p+1)(p−1) < n.

(3.26)

2

Case 2: For the region Ωc(t;L, t0) =
n
x|(t0 + t)A ≤ L + |x|2

o
, we define

another function Eψ(Ω
c(t, L, t0)) by

Eψ(Ω
c(t, L, t0)) := (L+ |x|2)

1
A
(β+αA

2
)E(t) + νH(t),(3.27)

where ν is a small positive constant to be determined later. In addition,
define

HE(t;Ω
c (t;L, t0)) :=

R
Ωc(t;L,t0)

Eψ(Ω
c(t, L, t0))dx

(3.28)

H∗
1 (t) :=

R 2π
0 Eψ( Ω

c(t, L, t0))
¯̄̄
|x|=
√
(t0+t)A−L

h
(t0 + t)A − L

iN−1
2 dθ

× d
dt

q
(t0 + t)A − L

(3.29)
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On asymptotic behavior of solution to a nonlinear wave equation ...1631

H∗
2 (t) :=

Z
∂Ωc(t;L,t0)

e2ψ
h
(L+|x|2) 1A (β+αA

2
)ρ(x)∇uut+νρ(x)u∇u

i
·−→n dS

(3.30)

where −→n is the unit outward normal vector of ∂Ωc(t;L, t0).

We can now state the next lemma.

Lemma 3.3. Let u be a solution of (1.1) and the functions E(t) and H(t)
be defined as in (2.6) and (2.7) above, then for x ∈ Ωc(t;L, t0), the function
Eψ(Ω

c(t, L, t0)) satisfies

d
dtEψ(Ω

c(t, L, t0))

≤ ∇ · (e2ψ
h
(L+ |x|2) 1A (β+αA

2
)ρ(x)∇uut + νρ(x)u∇u

i
)

−k0e2ψη(t)
∙
1 + (L+ |x|2) 1A (β+αA

2
)(−ψt)

¸µ
|ut|2 + a(t, x)|∇u|2 + |u|p+1

¶
−k0

∙
1

(t0+t)
+ (−ψt)

¸
e2ψη(t)b(t, x)|u|2 − k0[1 + (L+ |x|2)−

1
A
[1−(β+αA

2
)]]

e2ψη(t)|u|p+1
(3.31)

where k0 is a positive constant to be determined later. Moreover, we have
that

d
dt

h
(t0 + t)mHE(t;Ω

c(t;L, t0))
i
− (t0 + t)m

³
H1(t) +H2(t)

´
≤ 0.

(3.32)

Proof. Multiplying (2.8) by (L+ |x|2) 1A (β+αA
2
), we obtain

d
dt

∙
(L+ |x|2) 1A (β+αA

2
)E(t)

¸
≤ ∇ · (e2ψ(L+ |x|2) 1A (β+αA

2
)ρ(x)∇uut) + e2ψ ηt(t)

2 (L+ |x|2) 1A (β+αA
2
)|ut|2

+η(t)

∙
− b(t,x)

4 (L+ |x|2) 1A (β+αA
2
) + (L+ |x|2) 1A (β+αA

2
)ψt

¸
e2ψ|ut|2

+

∙
(L+ |x|2) 1A (β+αA

2
)ψt
3

¸
e2ψρ(x)|∇u|2 −

1
A
(β+αA

2
)

(L+|x|2)1−
1
A
(β+αA

2 )
e2ψx · ρ(x)∇uut

+e2ψη(t)
h
−γ(L+|x|2)

1
A
(β+αA

2 )

(p+1)(1+t) + 2ψt
p+1(L+ |x|2)

1
A
(β+αA

2
)
i
|u|p+1.

(3.33)
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Adding (3.33) to ν× (2.19), we obtain

d
dtEψ(Ω

c(t, L, t0))

≤ ∇ · (e2ψ
h
(L+ |x|2) 1A (β+αA

2
)ρ(x)∇uut + νρ(x)u∇u

i
)

− 1
A(β +

αA
2 )e

2ψ(L+ |x|2) 1A (β+αA
2
)−1x · ρ(x)∇uut + νe2ψ ηt(t)b(t,x)

2 |u|2

+η(t)

∙
ν − b(t,x)

4 (L+ |x|2) 1A (β+αA
2
) + (L+ |x|2) 1A (β+αA

2
)ψt

¸
e2ψ|ut|2

+

∙
−ν
4 + (L+ |x|2)

1
A
(β+αA

2
) ψt
3

¸
e2ψρ(x)|∇u|2 + e2ψ ηt(t)

2 (L+ |x|2) 1A (β+αA
2
)|ut|2

+η(t)

∙
−ν − γ(L+|x|2)

1
A
(β+αA

2 )

(p+1)(1+t) + 2ψt
p+1(L+ |x|2)

1
A
(β+αA

2
)
¸
e2ψ|u|p+1

+ν

∙
−β

2(t0+t)
+ ψt

3

¸
e2ψη(t)b(t, x)|u|2 + 2νe2ψη(t)ψtuut + νe2ψηt(t)uut.

(3.34)
For the second term on the right hand of (3.34), by using Schwartz

inequality, we obtain

| 1A(β +αA
2 )(L+ |x|2)

1
A
(β+αA

2
)−1x · ρ(x)∇uut|

≤ 1
A(β +

αA
2 )(L+ |x|2)

1
A
(β+αA

2
)− 1

2 |ut|ρ(x)|∇u|
≤

1
A
(β+αA

2
)ρ(x)

2(L+|x|2)1−
1
A
(β+1+αA

2 )
ρ(x)|∇u|2 +

1
A
(β+αA

2
)

2(L+|x|2)
1
A
[1−(β+αA

2 )]
|ut|2

≤
1
A
(β+αA

2
)ρ0

2(L+|x|2)1−
1
A
(β+1+

(α+δ)A
2 )

ρ(x)|∇u|2 +
1
A
(β+αA

2
)

2(L+|x|2)
1
A
[1−(β+αA

2 )]
|ut|2

(3.35)

and observe here that 1
A(β + 1 +

(α+δ)A
2 ) = 2(β+1)+γ(α+δ)

2(1+β+γ) < 1. Also, by
using the Schwartz inequality, we obtain the following estimates for the
second to the last term and the last term on the right hand side of (3.34)
respectively:

|2ψtuut| ≤ �2
3 (−ψt)b(t, x)|u|2 +

3
�2b0

(−ψt)(1 + t)β(1 + |x|2)α2 |ut|2

≤ −�2
3 (ψt)b(t, x)|u|2 −

3
�2b0

(ψt)(L+ |x|2)
1
A
(β+αA

2
)|ut|2

(3.36)

and

|ηt(t)utu| ≤ b(t,x)(−ηt(t))
2 |u|2 + (−ηt(t))

2b0
(1 + t)β(1 + |x|2)α2 |ut|2

≤ −b(t,x)ηt(t)
2 |u|2 − ηt(t)

2b0
(L+ |x|2) 1A (β+αA

2
)|ut|2.

(3.37)

Therefore, substituting the estimates (3.35) - (3.37) in (3.34), we get

IB
ADAN U

NIV
ERSITY

 LI
BRARY



On asymptotic behavior of solution to a nonlinear wave equation ...1633

d
dtEψ(Ω

c(t, L, t0))

≤ ∇ · (e2ψ
h
(L+ |x|2) 1A (β+αA

2
)ρ(x)∇uut + νρ(x)u∇u

i
)

+η(t)

∙
ν +

1
A
(β+αA

2
)−γ(1− ν

b0
)

2L
1
A
[1−(β+αA

2 )]
− b0

4 + (1−
3ν
�2b0

)(L+ |x|2) 1A (β+αA
2
)ψt

¸
e2ψ|ut|2

+

∙
−ν
4 +

1
A
(β+αA

2
)ρ0

2L
1− 1

A
(β+1+

(α+δ)A
2 )

+ (L+ |x|2) 1A (β+αA
2
)ψt
3

¸
e2ψρ(x)|∇u|2

+η(t)

∙
−ν − γ

(p+1)(L+|x|2)
1
A
[1−(β+αA

2 )]
+ 2ψt

p+1(L+ |x|2)
1
A
(β+αA

2
)
¸
e2ψ|u|p+1

+ν

∙
−β

2(t0+t)
+ (1−�2)

3 ψt

¸
e2ψη(t)b(t, x)|u|2.

(3.38)

Now, just as in the Case 1, we choose a suitable value for ν which is
sufficiently small and a positive constant k0 such that the estimates we have
below are satisfied.

ν +
1
A
(β+αA

2
)−γ(1− ν

b0
)

2L
1
A
[1−(β+αA

2 )]
− b0

4 ≤ −k0, −ν
4 +

1
A
(β+αA

2
)ρ0

2L1−
1
A
(β+1+

(α+δ)A
2 )

≤ −k0,

ν (1−�2)3 ≥ k0,
2

p+1 ≥ k0,
1
3 ≥ k0, (1− 3ν

�2b0
) ≥ k0, ν ≥ 2k0,

βv
2 ≥ k0,

γ
p+1 ≥ k0,

(3.39)

which gives the desired estimate. Therefore by integrating the estimate
(3.31) over Ωc(t, L, t0), we obtain

d

dt
HE(t;Ω

c(t;L, t0))−H∗
1 (t)−H∗

2 (t) ≤ −H3(t;Ω
c(t;L, t0))(3.40)

where

H3(t;Ω
c(t;L, t0))

:= k0

Z
Ωc(t;L,t0)

η(t)e2ψ
∙h
1 + (−ψt)(L+ |x|2)

1
A
(β+αA

2
)
i

h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
+
³
−ψt + 1

t0+t

´
b(t, x)|u|2 + [1 + (L+ |x|2)− 1

A
[1−(β+αA

2
)]]|u|p+1

¸
dx

(3.41)

Define the function HE c by
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HE c

=

Z
Ωc(t;L,t0)

η(t)

∙
(L+ |x|2) 1A (β+αA

2
)
h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
+ b(t, x)|u|2

¸
e2ψdx.

(3.42)

It can be proved in a similar way as in Case 1 that for positive constants
k∗1, k

∗
2, the following inequality holds.

k∗1HE c ≤ HE(t;Ω
c(t;L, t0)) ≤ k∗2HE c.(3.43)

Multiplying (3.40) by (t0 + t)m for the same constant m as in Case 1,
we have

d
dt

h
(t0 + t)mHE(t;Ω

c(t;L, t0))
i
− (t0 + t)m

³
H∗
1 (t) +H∗

2 (t)
´

≤ (t0 + t)m
∙

m
t0+t

HE(t;Ω
c(t;L, t0))−H3(t;Ω

c(t;L, t0))

¸
.

(3.44)

The term on the right hand side is estimated as

m
t0+t

HE(t;Ω
c(t;L, t0))−H3(t;Ω

c(t;L, t0))

≤ mk∗2
t0+t

HE c −H3(t;Ω
c(t;L, t0))

≤
Z

Ωc(t;L,t0)

e2ψ
∙
mk∗2(L+|x|2)

1
A
(β+αA

2 )

(t0+t)
− k0

h
1 + (−ψt)(L+ |x|2)

1
A
(β+αA

2
)
i¸

×η(t)
h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
dx

+

Z
Ωc(t;L,t0)

e2ψη(t)

∙µ
mk∗2
t0+t
− k0(−ψt)

¶
b(t, x)u2 − k0|u|p+1

¸
dx.

(3.45)

It can be seen from (3.39) that we can suitably choose k0 such that
mk∗2 ≤ λk0(1 + β + γ). Therefore the first term on the right hand side of
(3.45) yields
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Z
Ωc(t;L,t0)

e2ψ(L +|x|2) 1A (β+αA
2
)
∙

mk∗2
(t0+t)

− k0λ(1 + β + γ) (L+|x|
2)
2−(δ+α)

2

(t0+t)2+β+γ

¸
×η(t)

h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
dx

≤
Z

Ωc(t;L,t0)

e2ψ (L+|x|
2)

1
A
(β+αA

2 )

(t0+t)

∙
mk∗2 − k0λ(1 + β + γ)

¸
×η(t)

h
|ut|2 + a(t, x)|∇u|2 + |u|p+1

i
dx ≤ 0.

(3.46)
Likewise, for the second term on the right hand side of (3.45), we have

Z
Ωc(t;L,t0)

e2ψη(t)

∙µ
mk∗2
t0+t
− k0λ(1 + β + γ) (L+|x|

2)
2−(α+δ)

2

(t0+t)2+β+γ

¶
b(t, x)u2 − k0|u|p+1

¸
dx

≤
Z

Ωc(t;L,t0)

e2ψη(t)

∙µ
mk∗2
t0+t
− k0λ(1+β+γ)

(t0+t)

¶
b(t, x)u2

¸
dx ≤ 0.

(3.47)
Consequently, we have

d
dt

h
(t0 + t)mHE(t;Ω

c(t;L, t0))
i
− (t0 + t)m

³
H∗
1 (t) +H∗

2 (t)
´
≤ 0.(3.48)

2

Case 3. With t0 > L and H1 = H∗
1 , H2 = H∗

2 , then it follows from (3.26)
and (3.48) that

d
dt

³
(t0 + t)m

h
HE(t;Ω(t;L, t0)) +HE(t;Ω

c(t;L, t0))
i´

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)m−γ−

(1+β)(p+1)
p−1 , if α(p+1)(p−1) > n

C(1 + t)m−γ−
(1+β)(p+1)

p−1 log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
m−γ− (1+β)(p+1)

p−1 + 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )

, if α(p+1)(p−1) < n.

(3.49)

Choosing

m =

⎧⎨⎩
(1+β)(p+1)

p−1 − 1 + γ + � if α(p+1)(p−1) > n
(1+β)(p+1)

p−1 − 1+β+γ
2−(δ+α)(n−

α(p+1)
p−1 )− 1 + γ + � if α(p+1)(p−1) < n,

(3.50)
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for 0 < � < 1 and integrating (3.49) over [0, t], we obtain

h
HE(t; Ω(t;L, t0)) +HE(t;Ω

c(t;L, t0))
i

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)−

(1+β)(p+1)
p−1 +1−γ , if α(p+1)(p−1) > n

C(1 + t)−
(1+β)(p+1)

p−1 +1−γ log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
− (1+β)(p+1)

p−1 + 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )+1−γ

, if α(p+1)(p−1) < n.

(3.51)

In particular, we have

A :=
Z
Ω(t;L,t0)

e2ψb(t, x)|u|2dx+
Z
Ωc(t;L,t0)

e2ψb(t, x)|u|2dx

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 + t)−

(1+β)(p+1)
p−1 +1, if α(p+1)(p−1) > n

C(1 + t)−
(1+β)(p+1)

p−1 +1 log(2 + t), if α(p+1)(p−1) = n

C(1 + t)
− (1+β)(p+1)

p−1 + 1+β+γ
2−(δ+α) (n−

α(p+1)
p−1 )+1

, if α(p+1)(p−1) < n.

(3.52)

Now, set y = (L+|x|2)
2−(δ+α)

2

(t0+t)1+β+γ
. Since the following estimate

(1 + |x|2)−α2 ≥ (L+ |x|2)−α2 =

∙
(L+|x|2)

2−(δ+α)
2

(t0+t)1+β+γ

¸ −α
2−(δ+α)

(t0 + t)
−α

2−(δ+α) (1+β+γ)

(3.53)

holds, then for y > 0, we have that

e2λyy
− α
2−(δ+α) ≥ C.(3.54)

Therefore, we obtain

A ≥ C(1 + t)
−β− α

2−(δ+α) (1+β+γ)
Z
RN

u2dx(3.55)

which gives the desired estimate. 2

Remark 3. The decay result in Theorem 3.1 coincides with that of [8] for
the case δ = γ = 0 and with that of [13] for the case δ = γ = α = 0.
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