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1. Introduction

In this paper, we are concerned with the energy decay of solutions to viscoelastic wave equations of the
form

t
uy — (Au — /g(t — s)Au(s)ds) + b(t, z)ue + [uP"'lu =0, t>0, z€R"
0

u(0,x) = up(x), u (0, 2) = uq(z), reR"

having space-time dependent potential b(¢, ) and a power-type nonlinearity |u|P~tu with

2
l<p<+4oo (n=2) and 2<p+1<nfn (n>3),
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where the initial data ug(z) and uq(z) belong to appropriate spaces and u = u(t, x). In the case of energy
decay in bounded domains, there is an extensive literature on initial boundary value problems of the form
(1.1). Messaoudi [13] established a general decay result for the wave equation

t
ugy — Au + /g(t —85)Au(s)ds=0 in Q x (0,00)
0

which is not necessarily of exponential or polynomial type. Cavalcanti et al. [4] considered a damped wave
equation of the form

¢
uge — Au + /g(t — $)Au(s)ds + a(z)u, + [u|"u=0, in Qx(0,00) (1.2)
0

for a : @ — R with a(z) > ap > 0 and established exponential decay result when the relaxation function
g(t) decays exponentially. Song et al. [18] also considered (1.2) under certain suitable assumptions on a, g
and ~ and proved energy decay results similar to that of [4,13] using a new perturbed energy technique. See
[2,3,11] for related results.

In the case of unbounded domains, where the source and relaxation terms are absent, there is an extensive
literature concerning total energy decay to the scalar valued wave equation

Uy — Au+b(t,z)u, =0 (¢, z) € [0,00) x R™. (1.3)

Tkehata et al. [10], considered the linear wave equation (1.3) where (ug,u;) are compactly supported initial
data in the energy space. They obtained polynomial energy decay under suitable assumptions on the po-
tential b(¢, x). The result shows that for a potential of the form V(z) ~ (1 + |z])~%, a = 1 is critical. The
reader is referred to [5,6,12,14,15] for related results.

In the presence of an internal source term, Todorova and Yordanov [19] considered the problem

wge — Au+ b(t, w)up + |ulPtu =0 (1.4)

where b(t,z) = b(x) = bo(1l + |z|)~* with o € [0,1) (the subcritical potential case) and obtained total
energy decay rates which are almost optimal. By modifying the technique due to Todorova and Yordanov
[19], Ikehata and Inoue [8] considered the wave problem (1.4) and obtained total energy decay results in the
case when o = 1.

In [14], Mochizuki considered the wave problem (1.4) and showed non-decay results for the energy function
E,(t) in the case b(t,z) < by(1 + |z|) 717 where o > 0 (the supercritical potential case). For other related
results, see [7,9,12,15,20] and for time dependent potential b(t, z) = bo(1 +t)~! see [17,21,22].

Motivated by the results in the literature, we consider the viscoelastic wave problem (1.1) under suitable
conditions on the relaxation function g and the damping potential b. We establish more general decay
estimates where the initial data wg, u; are assumed to have compact support in a ball B(L) of radius L
about the origin, where L satisfies the condition supp{uo(z),u1(z)} C {|Jz|] < L} and where the solution
satisfy the finite speed of propagation property;

supp u(t,z) € B(L + 1), t € (0,00).

We achieve these results by introducing weighted functions in order to compensate for the noncompactness
that arises from the unboundedness of the domain. Our result improves on the perturbed energy technique
for unbounded domains.
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2. Preliminaries

In this section, we state some basic assumptions used in this paper. First, we introduce the following
notations. LI(R™), 1 < ¢ < oo, the Lebesgue space with norm || - ||, and W%4(R™) the Banach space of
functions in LI(R™) with i (i € N) generalized derivatives and H'(R") = W12(R"). Also, we denote by
{-,-) the inner product in L?(R™).

Lemma 2.1. (Sobolev, Gagliardo, Nirenberg [1]) Suppose that 1 < q < n. Ifu € WH9(R™), then u € LT (R™)
with

1

q*

|
SN

Moreover, there is a constant k = k(n,q) such that

o <k|Vull,  Yue WHI(R™).

[ u

Lemma 2.2. Let u(t, z) be the solution of (1.1) for n > 3, then there exists a positive constant K such that

/|u(t,x)|2da:§K2(L+t)2/|Vu(t,x)|2dx. (2.1)

Proof. This follows directly from Holder’s inequality, Lemma (2.1) and the finite speed of propagation
property. Thus, we have

J e A I I B Nt P R
R~ R~

B(t+L)

where K = K(k,n,w,) and w,, is the volume of the unit sphere in R”. O

Definition 2.1. We define a weak solution of (1.1) as a function u(t, z) satisfying the following
(1)
we L*(0,T, H (R™)) N L>(0,T, LT (R™)),
uy € L®(0,T,L*(R™)), uy € L*(0,T,H ' (R"))
(if) we have

t s

/{(M(S),@ + ([Vu(s) - /9(5 = 1)Vu(r)dr], Vo) + (b(t, 2)ue(s), v) + (Ju(s)[" u(s), v) |ds = 0

0 0

for v € C§°([0,T] x R™) and a.e. t € [0,T] such that
(ii)

u(0) =up € H'(R™) and u(0) = u; € L*(R™)

For the potential b(¢,z) and the relaxation function g(t), we state the following assumptions:

loc

(A1) [pinin b(t,z)2dx € LS (Jr). where Jr = (0,00)
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(A2) There exists a positive function by, (¢) and a positive constant c,p such that

b(t,x) > br(t) for x € B(L +t) and ar(¢)br(t) > cap where ay(t) = [fB(LH) b(t,r)2dx
(A3) g is a differentiable function satisfying

2/n

g(s) >0, 1—/g(s)ds:€>0 and ¢'(s)<0 for s>0
0

4) In addition, there exists a positive differentiable function p satistying the condition
Ay) In additi h i itive diff iable f i isfyi h diti
g'(s) < —u(s)g(s), p(s) >0 and p'(s)<0 for 520

We now define the modified energy functional E(t) associated to problem (1.1) by
¢
B(t) = slll? + 51~ [ g(s)as] IVul + (g0 Va) &+ ——[lull2t} (22)
2 2 2 p4+1" P+l
0
where for easy representation, we shall use the following notation

t

(g0 V) := / ot — 8)||Vu(t) — Vu(s)|3ds
0

and hence for the functional E(t), we state the following lemma.

Lemma 2.3. Suppose that the assumptions (A1) to (A4) hold. Let u be a solution of the problem (1.1), then
fort >0, the energy functional E(t) satisfies

1 1
E(t) < - / bit, @) uel*d — Sg(®)|Vull3 + 5 (o' 0 Vu) (2.3)
R'n

and we have
E(t) < E(0). (2.4)

Proof. By multiplying (1.1) by u; and integrating over R™, we obtain the estimate (2.3) for any regular
solution. Thus by using density arguments, we get the desired result. O

3. Local existence

In this section, we shall discuss the existence of a weak solution to (1.1) in the maximal interval [0, T]
for T' < oo, using the Galerkin approximation technique.

Theorem 3.1. Suppose that the assumptions (A1) - (A4) hold. Let 2 < p+1 < % for n > 3, then there

exists a unique solution
we C0,T):; H'(R™)  and  w € C([0,T); LA(R™))

with initial data ug € HY(R™) and uy € L*(R™) having compact support for T small enough.
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The proof of the local existence result is similar to that of [16]. Hence, we will only give a sketch of the
proof here.

Sketch of Proof. Assume the sequence (w;)jen is a basis in H'(R™) which is orthonormal in L?*(R") and
consider a weak solution of the form

- Z ajn(H)w; (3.1)

satisfying the following approximate problem corresponding to (1.1)
t
(ugy, w;) + /g (t — s)Vu™(s)ds], Vw;) + (b(t, 2)u}, wj) + (Ju™ P~ u™, w;) = 0 (3.2)
0

for w; € H'(R™) with initial conditions

u™(0) = uf = Zdjnwj — g strongly in - H'(R™) as n — oo (3.3)
j=1
and
uf(0) =uf = chnwj —uy;  strongly in  L*(R™) as n — oo, (3.4)
j=1

where a;,(t) = (u"(t),w;), djn = (u§,w;) and ¢;, = (uf', w;).
We employ the following a priori bounds to obtain existence of solution to (3.2). Setting w; = uj*(t) in (3.2)
and integrating over R", we obtain the following estimate:

t

d " 1 1 nip
Glaharg[1- o Iveig+ 5o vur) + =l zt]
0 (3.5)
< [bt.olup o - 5oVl + 5 (0 Var).
Rn

From assumption (As) and (Ay4), the second and third terms on the right hand side of (3.5) are negative.
Hence, integrating over t for ¢ € [0,T], gives

t

1, 0 1 a2 L 1o
sl lP+5 1= [ oes] IVl + 500 Var) + — a7

0
¢ (3.6)
+ [ [ ool Pade < SO + 5190 O + " O
0 Rn
and there exists a positive constant C* independent of n such that
t
[l e, fvarip <ot falpii<or [ [ oo Pduds < (37)

0 R»
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In the sequel, we denote by C} (i=0, 1, 2) positive constants independent of n. Set v = w; in (3.2) to get

[{ugy, v)| < [([Vu" = /g(t — 8)Vu" (s)ds], Vo)| + [(b(¢, 2)uf!, v)] + [{Ju" P~ ", v)]. (3-8)
0

For the second term on the right hand side of (3.8), using Holder and Sobolev inequalities and assumption
(A1), we have the following estimate

1

2

|(b(t, 2yup o) < K (/ |b(t,x>|%dx)"/b(t,x)|uf|2dx IV0ll2
R~

B(R+t) (3.9)
1
< G| [ bie.olur Pz Vol
Rn
and for the third term on the right hand side of (3.8), using Holder’s inequality, we obtain
[{Ju" P~ ™, )| < CF [l ([ IVl (3.10)

Substituting the estimates (3.9), (3.10) in (3.8) and using (3.7) together with Holder’s inequality and
assumption (As), it can be shown that

t
J Iy ds < 5. (3.11)
0

Therefore, for any 7' > 0, the nonlinear terms are uniformly bounded on [0,7] and it follows that the
solution u™(t) of (3.2) exists on [0, T] for each n. The other details follow as in [16].

4. General decay

In this section, we consider the decay of the energy of solution to (1.1). To achieve this, we introduce the
following functionals

M(t) := /uut dx

R~

and
L(t) == BW)E() + vap(t) M (1) (4.1)

where v, is a positive constant to be determined later and 3, p are positive functions depending on the
support radius L and satisfying the following:

(A5) 0<B(t), B(t) = p(t)ar(t) = p(t)ar(0),
(Ag) There exist positive functions 7y, and v, satisfying
(1) ()L +1)? < ar(t) and [np(t)(L + )27 < ¢,

/172
(i) wEE+0? Santlut) and o [58|(53) ] <
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Lemma 4.1. Suppose that the assumptions (As) — (Ag) hold, then there exist positive constants k1 and ko
such that the relation

k1B(t)E(t) < L(t) < k2B(t)E(2) (4.2)
1s satisfied.

Proof. Using Holder’s, Sobolev’s and Young’s inequalities and the assumptions (As), (Ag)(i), we obtain the
following estimate

IL(t) - BO)E(t)] <mp(t) / sy iz

R
Vo V1 2
<o)L+ 0P+ 5 o) |V
1% 1/1]{2
<P + 17 [F P + 5y 1Vl

v vik3c
<p(EmL (L + 82| 2 uell? + =52 Vul 2]

<FPO N2 1 vul?) <k B0)E®)

where k* = max{vs, %k%n} and vy = vo(wp,v1). O
Now, we state the following lemma on the functional M (t) above.

Lemma 4.2. Let u be a solution of the problem (1.1), suppose that the assumptions (Az) to (As) hold, then
the functional M(t) satisfies the following inequality

1+ k?]

IPOM(®) <pt) el = p(t) (£~ =5

Il + jas(®) [ bt s
R (4.3)

+ L (g0 Vi) — pO Il + 900 )

Proof. Differentiating M (¢) and using (1.1), we obtain

M (t) =||lug]|? — || Vul|® + 0/g(t - S)R[ Vu(s)Vu(t)dzds —R[ b(t, z)uudx 84

+1
= llullp

and multiplying this by p(t) gives

(o) M ()] =p(t)|Jue|> = p(t)[[Vul® + p(t) /g(t - ) / Vu(s)Vu(t)dzds
0 R (4.5)

= p(t) [ bt oyusude — plollal L+ 5 OMO).
R»
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For the third term on the right hand side of (4.5), using Young’s inequality, we obtain

t

/g(t —5) / Vu(s)Vu(t)dxds

0 R»
/ (t—s) /|Vu u(t)|[Vu(t )|dxds+/g(s)ds||VuH2 (4.6)
0
<+ [ a6 Tul+ 5 [ ts)ds(go T,
0 0

For the fourth term on the right hand side of (4.5), using (2.1), Holder’s, Young’s and Sobolev’s inequalities,
we have

/b(t, x)urude

]Rn
1
2
n—3z 5
< {/ b(t, ) |ug|* dw /|u|n 2da: 4 [ / b(txﬁdw]n (4.7)
R~ B(L+t)
1
< —aL(t)/ b(t, ) |ug|? dx+ ||VuH2

2
R~

Substituting the estimates (4.6) -(4.7) into (4.5) gives the following

2
[p(t)M (1) <p(t) [l = p(t) (g B %) [Vl + %P(t)aL(t) /b(t, )|’ da
R~
4 o) 8 ot)(g o V) - p(t)|[ul51 + o' ()M (),
Whelref0 d5<f0 Jis=1—0 0O

We now present the main result on decay of the energy.

Theorem 4.1. Suppose that the assumptions (As) to (Ag) hold and let ug € H*(R™) and u; € L*(R™). Then,

(1) if ar(t)p(t) > cu, cu > 0, the energy of solution to (1.1) satisfies

S

’ )
<C
~
vV
o
=
(0]
S~—

E

8

¢

E(t) < ksE(0 e:rp /
ko

0

for positive constants k*, ko and k3 to be determined later.
(i) if ar(t)u(t) < cu, ¢, >0, the energy of solution to (1.1) satisfies

B(t) < kloE(O)exp<—Z—; / %ds) V> 0 (4.9)
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for positive constants k*, ks and k19 to be determined later.

Proof. Case (i): Multiplying the estimate in (2.3) by 5(t), we obtain

[BH)E( /b (t, )|ug)*dx — @g(t)HVuH% + @(g’ o Vu) (4.10)

Combining the estimates from (4.3) and (4.10) gives the following:

1%

L0 <~ [5(0) ~ 2p®asd)] [ bt do +v1p(0)ur]?
R~
B(t)
2

p(t)(g o Vu) + B (DE(t) + 11/ (1) M (1),

IVl = (4.11)

vi(1—10)
2

[1+k ]} g®IVul3 = vip)|ullbt]

—v1p(t) {Z

—i—@(g'OVu) +

Estimating the last two terms on the right hand side of (4.11) in terms of L(t) and M (t), we get

FOBO +nr OM) = ZH L0 +mao 53] M) (4.12)

and for the term 14 5(t) [ 5% ] M (t), using Holder’s inequality, Young’s inequality, Sobolev’s inequality and

v

assumption (Ag)(ii), we have the following estimate

t
v18(t) / |usu|da

t
Rn
v 2 |k TB®)|p()\))? 2 413
< G @@+l + o s [l (G ) [ e@vel (4.13)
123 Vk'QCi
< 2 p()an (b (t) a2 + =522 p(t) [Vl

Substituting (4.13) in (4.12) and the resulting estimate in (4.11), we employ assumption (As) together with
assumption (A4) to obtain

v+ v
20 < — o) [[1~ 0 (090 (0) - ]

(14 (1+24)k?

—vip(t) [0 = IVl = vap(®) Jullpf] (4.14)

ar(H)u(t) (1 —1) p(t)
- - L
o) “25 390V + L)
Choosing v, vo small enough such that (”1'“'2) < 1, and applying the condition ay,(t)u(t) > ¢, together

with assumption (A4s), then (4.14) reduces to
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_|_
£t < - o[t - U ey — ] fuel?
[1+(1+ch5)k?]
—vip(t) ¢ - [ IIVul = vip(t) Jullp%} (4.15)
3 .  n(l-10 B'(t)
oI (9o vu) + S 0
Hence, there exists a positive constant k£* satisfying
(v1 + v2) k* ¢, n(l—40) _ k*
VA _ > B >
[t g JeemmZ o 5 2 <2
ke 1+ (1+ )k ok
such that (4.15) yields
/ * 1 2 2 p+1 ﬂ/(t)
< —
£(6) < = p(0) (5 [l + £Vl + (9 0 Vo] + 5l ) + 5 20)
. B (t
<~k p(DEW) + ((t))L(t).

By the use of the integrating factor % and the estimate (4.2), we get

1 ' k*p(t)
{WL(t)] S (4.16)
Define G(t) by
G(t) == %t) ®), (4.17)
then (4.16) reduces to
Gt < — :228 ) (4.18)

and integrating (4.17) over [0, t] gives

2 S

G(t) < G(0 exp /Q (4.19)
0

From (4.17) and the estimate (4.2), we observe that G(t) is equivalent to E(t). Hence we have that the
energy decay estimate is given by

E(t) < ksE exp & s vt>0. O
ko ,8 s)

Proof. Case (ii): From (4.14), if we choose v; and v, small enough such that (VLQVZ) < 1, then there exists
a positive constant £* satisfying
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k* k*
[1_M}Cab_7/12_7 v >
2 2 p+1
_ x 1+ (14 c2,)k? Ok~
m =0 K 1/1{6—[ (1+¢,p) ]}2
2 2 2 2

such that (4.14) yields

* 1 2 2 1 +1
L) < = 1p(t) 5 el + A1Vl + — ]

k* p(t)

L(¢).
Using the energy estimate (2.2) in (4.20), we obtain

zmog—wmwm0+WMﬂ@°W”+g$

L(t)

and simplifying (4.21) using the integrating factor %, we get

1 E*p(t)

! k*p(t)
5] <5 (

B(t)

Now, multiplying (4.22) by p(t) and using (2.3) together with assumption (Ay), gives

E(t) +

o Vu).

u(t) 1 K pt)u) krp(t) .,
b@Lm}s——ﬁg—Em—7ﬁ7E@.

p(t)

11

(4.20)

(4.21)

(4.22)

(4.23)

Since E' < 0 and from assumption (As), we have c,, = ¢(ar(0)) such that 5) < Cao- By rearrangement

(4.23) gives

p(t) . ' kp(Du(t)
[ SO+ a0k7E(t)} <=0 EO.
Define F'(t) by
F(t) == %L(t) + Caykr B (1),

then from (4.25) and (4.2), we observe that

F(t) < kop(t)E(t) + caokrE(t) < ksE(t),
where ks = max{kap(0), co,k7}. Likewise,

F(t) =2 kip(t)E(t) + cagkr E(t) = ko E(1),
where kg = cq, k7. Using the estimate (4.26), then (4.24) reduces to

F() < _k*p(t)u(t)F(t).

- kgB(t)

Integrating (4.28) over (0,t), we obtain the following estimate

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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F(t) < F(O)exp(—:—; / P (;>(Z§S)ds> (4.29)
and from (4.26) and (4.27), we obtain
E(t) < %E(O)exp(%/%ds) < kloE(O)exp(Z—;/%ds> Vt>0. O (4.30)
0

5. Application

Assume that the function b(t,z) is of the form b(t,2) = bo(1 + )1 (1 + |z|)~® for 0 < a; + f; < 1.
Then, we have

ar(t) = Oy (L + t)*~(eath), (5.1)

From assumption (Asy), for x € B(L + t), we have br,(t) ~ Co(L + t)~ (@181 and

ar(H)br(t) = Cy(1 +t)272t8) > Oy(L)2-2a+h) — ¢, (5.2)
From assumption (As),
LONS Cy(L + t)~2Heathn) (5.3)
B(t)

and % ~ CZ (L + t)Q*(alJrBl) > C’XLQ*(&1+51).
From assumption (Ag), nr(t) ~ (L +t)~*1 =5 and so

Tnaen S (L7 < Lrsery, (5.4)
L
P
(5)

|~
Bt~ (14070 and o [&W%y

In the case of polynomial growth of g, for g(t) ~ (1 + t)~%, we have from assumption (A4) that p(t) ~
C;(l +t)~! and the condition

Since 1, (¢)(L + )2 < ay,(¢)by(t) and [ﬁ(— (L +t)~2, we have

2
} ~ (L_|_t)—2+2(0¢1+ﬁ1) < 61235 (5.5)

ap(t)u(t) = Cy(1 + )= th) > ¢ | (5.6)
Consequently, we have from Theorem 4.1(i) and (5.3) that
E(t) < K5sE(0)exp(—Cs(1+s)" 1Tty v >0, (5.7)

which yields a polynomial decay in the case a1 + 51 = 1.
Observe that the assumptions (As) and (Ag) are satisfied for oy + 81 < 1 but fail for oy + 51 > 1.

In the case g(t) ~ 6, (1+1) =19+ with §;, §* small enough such that assumption (As) is satisfied,
we have from assumption (A4) that u(t) ~ Cs(1 +t)~'¢ and so oy (t)u(t) = Ce(1 + t)' = (@ +h+e) If in
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addition to 0 < a; + 1 < 1, we have a; + 31 + € > 1, then there exists a positive constant c, such that
ar(t)u(t) < ¢,. Consequently, from Theorem 4.1(ii), the energy decay takes the form:

E(t) < KeE(to)exp(—Cy (14 s) 727 tath) vy >, (5.8)
Remark 5.1. Let b(t, z) be as defined earlier, then
(i) within the ball {|z| < L}, ar(t) = C7, so from Theorem 4.1(i) we have
E(t) < KsE(0)exp(—Cst) vVt >0

and in the case of polynomial growth of g (u(t) &~ da(1+¢)~1), a consequence of Theorem 4.1(ii) is that
t
E(t) < KgE(O)@l‘p(—Cg//,L(S)dS) vt > 0.
0

148
(ii) within the ball {|z| < (L + t)Q*all }, we observe that the solution has a polynomial energy decay for
a1 + B € [0,1] and p & constant, since ar(t) ~ C1(L + t). In addition, when u(t) ~ (1 +¢)~! the
condition o, (t)u(t) > ¢, is satisfied and the energy decay remains in the polynomial form.
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