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An Algoritm for Solving Electromagnetic Field Equations by Finite Element Method
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Abstract: Describing the behaviour of electromagnetic frequency responses from vertically inhomogenous and 
anisotropic earth of 2-Dimensional structures energized finite sources is computationally laborious. Differential 
equations were derived and their numerical solutions also sought for the desired components of electric and 
magnetic fields. Also expressions for the impedance and apparent conductivity were stated. An algorithm based 
on the finite element method for computing approximate numerical solutions for these problems were dealinated.
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INTRODUCTION

The study of electrical resistivity from vertically 
inhomogenous earth wave conductivity changes 
continually with deplh and has been investigated by 
many workers. The study of the d.c resistivity soundings 
on a model earth with transition layer was also made 
by Mallick and Roy (1968), Mai lick and Iain (1979), 
Patella (1971), Koefold (1979) and Benerjee et al. (1980). 
Models of conductivity and resistivity varying linearly 
for Magnetotelluric (MT) soundings was also
investigated by Mallick (1970). Abramovic (1974), 
Rankin and Reddy (1975), Rankin and Kao (1980) and 
Kao (1982).

Berdichevskiy et al. (1974) investigated models of 
resistivity decreasing exponentially with depth. Kao 
(1982) studied the models with an inhomogenous layer 
where the resistivity or conductivity increases and 
decreases exponentially with depth. A though Kao’s 
procedure seems to be more reliable, it is desirable to 
consider a model of 2-Dimensional vertically
inhomogenous earth which may find application in the 
study of deep interior of tire earth.

A numerical finite element approach has been 
studied by many workers in solving magnotelluric 
problems of any type in various dimensions. Kaikkonen 
(1984) investigates tire finite element modeling in 
geophysical applications of nragnetolluric fields. 
Kaikkonene and Sharraa (1998) gave a precise 
explanation of an automated finite mesh generation and 
element coding in a 2-Dimensional magnetotelluric 
inversion. Kenneth and Whittal (1986), Kaikkonene

(1992) studied a 2-dimensional inversion of 
magnetotelluric data with a variable model geometry. 
Eric et. al. (1981), Rarmacher (1995) explained the finite 
element solutions of diffusion problems. Kaikkonene 
(1996) investigated the boundary integral solution of a 
d.c geoelctric problem for a 2-di.mensional body embedded 
in a two-layered earth.

The computation of magnetotelluric impedances from 
surface measurements of the magnetotelhrric fields exhibit 
anisotropy, which may be due to vertically inhomogenous 
structures with different, electrical properties. It is 
assumed here that tire primary, natural electromagnetic 
fields are plane waves and the distance between die 
measuring electrodes is small relative to tire dimensions of 
the structure.

The finite element method makes provision for the 
field as it involves the consideration of the field into 
smaller elements provide a very good approximation in the 
field. Thus, field characteristics as well as conductivity 
which is tire most important property in studying the 
electric current flow in tire earth medium can be 
considered.

MATERIALS AND METHODS

Solutions of die electromagnet ic field equations have 
been considered. Differential equations have been solved 
for different components of tire electromagnetic waves in 
2-dimensicn for vertically inhomogenous earth medium 
and an algorithm for numerical solutions by finite element 
method has been considered, examining the Galerkin 
process.
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Expressions were also stated for the wave impedance 
and conductivity in anisotropic vertically inhomogenous 
earth as vital components of the electrical properties in 
magnetotelluric survey and analysis of current flow in 
erath medium.

RESULTS

The impedance at any reference point can be 
determined independently by numerical approach, so that 
the impedance at any other point could be determined 
provided the vertical distance h between them is known.

Imaginary part:

3Hy/3z= -w sE x (8)

R.H.S of Eq. 7 and 8 become known constants, 
having computed numerical values for the components of 
E from Eq. 5 and 6. The electric vector oscillates along the 
x- direction and the magnetic vector ,in the y-direction. 
Since we have an electromagnetic field traveling in the z- 
direction, both E* and Hy are being calculated at various 
points along the z-direction in the medium.

3Ex/3z = -iwpHy (1)

3Ey/9z=  ( -c  + iws)Ex (2)

Obviously, tires e two equations contain two 
variables (E* and Hy).

Because it is difficult to attempt to solve any of tire 2 
Eq numerically, we shall therefore combme the equations 
to give another equation with one variable.
Hence, differentiating (1) with respect to z yields:

32E
3z2

3Hy
dz

(3)

Choice of initial conditions for the differential equations 
Electric field component:
Real part:

32Ex 2 — f = - w  p s E x 
o z

Imaginary part:

d2E*
d z2

: w p a  Ex

Magnetic field component:
Real part:

Ev

Substituting from (3) in (1) gives;

- ip w (-(a  + iwe)Ex ) (4)

Imaginary part:
3H
— — = -w  s Ey 
d z

To compute the magnitudes and phases of E„ and Hy, 
their real and imaginary parts have to be known. Splitting 
4 yields.
Real:

dzi
- = -w 2psEx (5)

Imaginary:

awpEx (6)

Also from (3) and (4), we found for ITy, that:

Thus; 
Real part:

0H
iwp— —= - ipw (-(a  + iws)Ex)

3Hy/3z= = -oE X (7)

For this method, we require some defined initial 
conditions for the 2 variables Ex(0) and ITy(0) having 
decided to apply a suitable finite element method to solve 
derived differential equations for Ex and Hy.

DISCUSSION

We sought for numerical solution for Ex and Hy by 
applying the Galerkin process, which is an aspect of the 
weighted residual method. We find an interpolation 
function for tire electric field component (and tire 
application of tire weighted residual function is 
discussed).
For tire numerical solution of Ex:

+ CEX=  0

Where C = w2 pE 
And by Galerkin process,
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JN;
\

+ CEX dz

Where N is known as the shape function:

Therefore,

[N i^-% -dz+ [ n  ̂CEX dz= 0 
J d zz J
EX=[N] {Ex}

related to the transverse displacement, Ex The joint 
degrees of freedom at the end nodes, designated EKl 
and Ex2. An additional (internal) degree of freedom 
is necessary in order to employ the suggested model. 
Instead , let us employ two additional joint degrees of 
freedom in order to preserve interclement compatibility 
for the slope.
The slope is defined as;

f Ni“ ^ { Ex} + [ CN. [N] } dz= 0J d z J

Integrating, we obtain

The two additional degrees of freedom are 0, and 0r 
Thus,

dE 
d z

— = a-2 + 2a3z + 3a4z2

{Ex}dz+JcN i[N ] {Ex}dz = 0

8N, a[N]
3 z 8 z

3N; f 82[N]

Ni ^ ( Ex I
{EX} + JCN ;[N] {Ex}dz= 0

The nodal values of of Ex and dE*/^ are obtained by 
evaluating at each node, thus:

Ex =04 + a 2Z| + a 3zf + a 4z3

dE„ - . 2—— = a 2 + 2a3Zj + 3a4Z|3 z

Where the first tenn i.e EXj = oq + a 2Zj + a 3z2 + a 4z3

N i ^ i { E x}
3 z

Accomrts for tire boundary condition and in matrix 
notation; we can rewrite the last expression as:

[K ,] {E ^-C fM y] {Ex} = 0

M-J3 Nj d Nj 
3 z 3 z

dz and [ m ;j ] = Cj NjNjdz

Next we move furtlier to choose an interpolation 
fmiction for our equation i.e.

8 %
d z 2

+ CEV = 0

Thus,
Ex = cq + a 2z + a,3z2 + a 4z3

dEv

dz
a 2 + 2a3Zj + 3a4zf

The minimum order of tlie polynomial is quadratic for 
this type of equation as we need to select a displacement 
model for E„ and axial displacements dEJdz are directly

These are chosen in order for the boundedness to be 
assured, that is;

• The displacement models must be continous within 
the elements and the displacements must be 
compartible between adjacent elements.

• The displacement models must include the rigid body 
displacements of the elements.

• The displacement models must include tire constant 
strain states of the element.

For convenience, transforming our coordinate system 
as follows:

Where z, = 0 and z2 = C and our displacement model 
becomes;

e x = W T M
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1x4 4x1

Also,

0(2) = [

1 z z l

Numerical solution for H:
( ) Real part:

9H„

= 0 1 2z 3z {a](«
In matrix notation, we now express the nodal 

displacement in terms of tire generalized coordinates:

Ex(z=oy IXxi

1

o o o

0(z= 0) Si 0 1 0  0

Ex (z = *) Exxi i t  t 2 e2
0(z = i?) .02 . 0 1 21 3£2

{q} =

= [A] {a}

Inverting die equations, we obtain

[A ] {q}
1 0 0 0
0 1 0 0

-3/t?2 -2 /(. 3j i 2 -1/<
_ 2j l 3 l/t?2 -2/V 3 l / l 2

{q}

Substituting (**) in (*) gives tire formulation of tire 
equation.

9z
-=-crE v

Imaginary pail:
9Hy
3z

- = -wsE,

The Galerkin processes are also applied to these 
equations.

9Hv
— - = ~ ^ kdz

9HV
dz

- + C = 0 where C = aEv

h
SHy
9z

+ C dz = 0

Also, Hj, = [N] {Hy} 
Therefore,

0[N]
jN j—i—^{Hy} dz + JN ; C dz= 0

[Kij]{Hy} e + I; = 0

[ Kij]{Hy } e = - Fi

{q} = W  [A_1] {q}
= [N]{q}

Where:

f 3z2N =

3N_ Yez2
9z LK

2Z3 2z2 z3
Z i  + 11

6z ,i i - ^ +h
i  f

6z

Recall that
[ k 8] - c [ m s] = o

When this terms are substituted for a set of algebraic 
linear equations that can be solved simultaneously are 
generated, tliis is acliieved using the Gaussian Elimination 
Method.

The same procedure can be carried out for d^EJdz2 = 
wpoE„ the imaginary part of the field component.

Where is lire stiffness matrix and F, is die load 
matrix and they are

f 9Ni fand -J CN;, respectively.

We now assume a linear- interpolation function 
Hy = a, +a2z.

Since we are dealing with one dimensional simplest 
element .witir the length, L. The nodes are denoted by i 
and j and the nodal values by Hyl and Hj,. The coefficients 
a, and a2 can be determined using tire nodal conditions 
below:

Hy = Hyi at z = Z;

and
Hv = Hv at z=  Z: y y\ j

These nodal conditions result in the pair of equations 

Hy. = ctx + a 2z; (*)
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Hy = oq + a 2Zj

Which may be solved for as

<*i = HYizj ~ Hy,zi

When solved, substitution of the values for a, and a2 
into (* and **) produces

Hy, ZJ Hy, zi

Hy' = L

wlrich can be rearranged into

H y =
^Zj - z ' '  

J
H„ +| ~ ~ ~  |Hyj y,

= NiHy i+ NjH

and N , = ——— 
J L

<?Nl - _ A  9Nj _ l 
5z L 9z L

This can be substituted into our previous equation i.e. 

SN:
h  i ^ z t lN'“z
r SN: r
JNi ^ = - j N , C d z

to generate stiffness and load matrices.
For example, consider an element

_0______________________________ 1_
Zj L z2

With nodal parameters Hy, and Hy2 coordinates z, and 
z2 witlr lengllr L. Therefore, for tire stiffness and load 
matrices, we have

In matrix form

" - i  r 1 c " - 1 ' _  1 ‘- I T
[ h ) ' = - c

f

- i  i 2 L 2 ' 2 L - 1 ~  L - 1 l t y) l

and the same process is carried out on subsequent 
elements and the matrices are later assembled and linear 
equations that can be solved simultaneously by direct 
substitution are generated.

The same procedure is applied to the imaginary part 
of the magnetic field component.

CONCLUSION

Having derived expressions for both the real and 
imaginary parts of the electric and magnetic field 
components of the electromagnetic wave E„ and H, ,their 
magnitudes and phases can be computed.

The magnitude of tire electric field component is 
given as

( E reat) + ( E imag)

I

and the phase is given by:
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tan<t)=-^L
E-im ag

(|) = ai*c tan E real
F-'-'imag

Similarly, for tlie magnetic field component,

Inl­

and the phase is given by:

tarn)) =
O

_^real_.
H ' °imag

()> = arc tan HroaL
I Tn imag

Having computed the magnitudes of E„ and Hy, we 
can now find tine values of the wave impedance which is 
given by:

And tine apparent conductivity oa can thus be 
computed from tine equation stated below;

a a
jwp

The imaginary form in which o„ is appearing merely 
indicates diat there is a 45° phase difference between tine 
oscillations in tine magnetic and electric intensities. The 
next step is to write a computer program that will compute 
for us, all the steps treated above.
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