Please use this identifier to cite or link to this item:
http://ir.library.ui.edu.ng/handle/123456789/2138
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fadare, D. A. | - |
dc.contributor.author | Idialu, E. E. | - |
dc.contributor.author | Igbudu, S. O. | - |
dc.date.accessioned | 2018-10-11T13:58:18Z | - |
dc.date.available | 2018-10-11T13:58:18Z | - |
dc.date.issued | 2011 | - |
dc.identifier.other | ui_inpro_fadare_prediction_201110 | - |
dc.identifier.other | 24th AGM and International Conference of the Nigerian Institution for Mechanical Engineers held in Lagos from 12th -14th October 2011, pp. 41-51 | - |
dc.identifier.uri | http://ir.library.ui.edu.ng/handle/123456789/2138 | - |
dc.description.abstract | Artificial Neural Networks (ANNs) area prormsmg alternative to conventional tools in modeling and prediction of complex and non-linear parameters. However, the selection of appropriate network parameters for optimum performance pose application challenges. In this study, the modeling and predictive performances of six backpropagation learning algorithms: Levenberg-Marquardt (LM), BFGS Quasi-Newton (BFG), Resilient Backpropagation (RP), Fletcher-Powell Conjugate Gradient (CGF), Variable Learning Rate Backpropagation (GDX) and Bayesian Reglarization (BR) in solar radiation forecast were investigated. Multilayer perceptron (MPL) neural network with five, ten and one neuron(s) in the input, hidden and output layers, respectively was designed with MATLAB® neural network toolkit and trained with the six learning algorithms using the daily global solar radiation data of Ibadan (Lat. 7.4° N; Long. 3.90 E; Alt. 227.2m), Nigeria. The network performance was ranked based on the number of iterations required for convergence, and coefficient of correlation (r-value), mean square error (MSE) and mean absolute percentage error (MAPE) between the actual and predicted values of the training and testing datasets. Results showed that the LM and BR learning algorithms are the two best algorithms to be considered for use in modeling and forecasting of solar radiation data. | en_US |
dc.language.iso | en | en_US |
dc.title | Prediction of friction losses in spark-ignition engines: an artificial neural networks approach | en_US |
dc.title.alternative | Prediction of friction losses in spark-ignition engines: an artificial neural networks approach | en_US |
dc.type | Other | en_US |
Appears in Collections: | scholarly works |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
(40)ui_inpro_fadare_prediction_201110 (7.pdf | 6.28 MB | Adobe PDF | View/Open |
Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.