Please use this identifier to cite or link to this item:
http://ir.library.ui.edu.ng/handle/123456789/5337
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Udomboso, C. G. | - |
dc.contributor.author | Amahia, G. N. | - |
dc.contributor.author | Dontwi, I. K. | - |
dc.date.accessioned | 2021-05-25T10:53:41Z | - |
dc.date.available | 2021-05-25T10:53:41Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 1538-9472 | - |
dc.identifier.other | ui_art_udomboso_adjusted_2016 | - |
dc.identifier.other | Journal of Modern Applied Statistical Methods 15(2), pp. 411-427 | - |
dc.identifier.uri | http://ir.library.ui.edu.ng/handle/123456789/5337 | - |
dc.description.abstract | In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC) criterion, based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The ANIC improves model selection in more sample sizes than does the NIC. | en_US |
dc.language.iso | en | en_US |
dc.publisher | JMASM, Inc. | en_US |
dc.subject | Statistical neural network | en_US |
dc.subject | Network information criterion | en_US |
dc.subject | Network information criterion | en_US |
dc.subject | Adjusted network information criterion | en_US |
dc.subject | Transfer function | en_US |
dc.title | An adjusted network information criterion for model selection in statistical neural network models | en_US |
dc.type | Article | en_US |
Appears in Collections: | Scholarly works |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
(23) ui_art_udomboso_adjusted_2016.pdf | 1.68 MB | Adobe PDF | View/Open |
Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.