Please use this identifier to cite or link to this item: http://ir.library.ui.edu.ng/handle/123456789/7910
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOgiugo, M. E.-
dc.contributor.authorEniOluwafe, M.-
dc.date.accessioned2023-02-10T09:15:52Z-
dc.date.available2023-02-10T09:15:52Z-
dc.date.issued2017-
dc.identifier.issn1608-9324-
dc.identifier.otherui_art_ogiugo_classifying_2017-
dc.identifier.otherAfrican Journal of Pure and Applied Mathematics 4(1), pp. 27-33-
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/7910-
dc.description.abstractThe aim of this paper is to classify the fuzzy subgroups of the alternating group. First, an equivalence relation on *the set of all fuzzy subgroups of a group G is defined. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group. Explicit formulae for the number of distinct fuzzy subgroup of finite alternating group are obtained in the particular case n = 5. Some inequalities satisfied by this number are also established for n≥ 5.en_US
dc.language.isoenen_US
dc.subjectFuzzy subgroupsen_US
dc.subjectChains of subgroupsen_US
dc.subjectMaximal chains of subgroupsen_US
dc.subjectAlternating groupsen_US
dc.subjectSymmetric groupsen_US
dc.subjectRecurrence relationsen_US
dc.titleClassifying a class of the fuzzy subgroups of the alternating groups A(n)en_US
dc.typeArticleen_US
Appears in Collections:scholarly works

Files in This Item:
File Description SizeFormat 
(14) ui_art_ogiugo_classifying_2017.pdf813.89 kBAdobe PDFThumbnail
View/Open


Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.