Please use this identifier to cite or link to this item:
http://ir.library.ui.edu.ng/handle/123456789/7916
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adebisi, S. A. | - |
dc.contributor.author | Ogiugo, M. | - |
dc.contributor.author | EniOluwafe, M. | - |
dc.date.accessioned | 2023-02-10T10:11:08Z | - |
dc.date.available | 2023-02-10T10:11:08Z | - |
dc.date.issued | 2020-03 | - |
dc.identifier.issn | 1937-1055 | - |
dc.identifier.other | ui_art_adebisi_computing_2020 | - |
dc.identifier.other | International Journal of Mathematical Combinatorics 1, pp. 86-89 | - |
dc.identifier.uri | http://ir.library.ui.edu.ng/handle/123456789/7916 | - |
dc.description.abstract | In this paper, the explicit formulae is given for the number of distinct fuzzy subgroups of the cartesian product of the dihedral group of order 2n with a cyclic group of order four, where n > 3. | en_US |
dc.language.iso | en | en_US |
dc.subject | Finite p-Groups | en_US |
dc.subject | Nilpotent Group | en_US |
dc.subject | Fuzzy subgroups | en_US |
dc.subject | Fihedral Group | en_US |
dc.subject | Inclusion-exclusion principle | en_US |
dc.subject | Maximal subgroups | en_US |
dc.title | Computing the number of distinct fuzzy subgroups for the nilpotent p-group of D2n x C4. | en_US |
dc.type | Article | en_US |
Appears in Collections: | scholarly works |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
(21) ui_art_adebisi_computing_2020.pdf | 3.64 MB | Adobe PDF | View/Open |
Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.