Please use this identifier to cite or link to this item:
http://ir.library.ui.edu.ng/handle/123456789/7917
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adebisi, S.A. | - |
dc.contributor.author | Ogiugo, M. | - |
dc.contributor.author | EniOluwafe, M. | - |
dc.date.accessioned | 2023-02-10T10:21:52Z | - |
dc.date.available | 2023-02-10T10:21:52Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1116-4336 | - |
dc.identifier.other | ui_art_adebisi_determining_2020 | - |
dc.identifier.other | Transactions of the Nigerian Association of Mathematical Physics 11, pp. 5-6 | - |
dc.identifier.uri | http://ir.library.ui.edu.ng/handle/123456789/7917 | - |
dc.description.abstract | The problem of classification of fuzzy subgroups can be extended from finite p-groups to finite nilpotent groups. Accordingly, any finite nilpotent group can be uniquely written as a direct product of p-groups. In this paper, we give explicit formulae for the number of distinct fuzzy subgroups of the Cartesian product of two abelian groups of orders 2n−1 and 4 respectively for every integer n >2. | en_US |
dc.language.iso | en | en_US |
dc.subject | Finite p-Groups | en_US |
dc.subject | Nilpotent Group | en_US |
dc.subject | Fuzzy subgroups | en_US |
dc.subject | Dihedral Group | en_US |
dc.subject | Inclusion-Exclusion Principle | en_US |
dc.subject | Maximal subgroups | en_US |
dc.title | Determining the number of distinct fuzzy subgroups for the abelian structure Z4 x Z2n-1 ,n > 2 | en_US |
dc.type | Article | en_US |
Appears in Collections: | scholarly works |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
(22) ui_art_adebisi_determining_2020.pdf | 887.11 kB | Adobe PDF | View/Open |
Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.