Please use this identifier to cite or link to this item: http://ir.library.ui.edu.ng/handle/123456789/7917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdebisi, S.A.-
dc.contributor.authorOgiugo, M.-
dc.contributor.authorEniOluwafe, M.-
dc.date.accessioned2023-02-10T10:21:52Z-
dc.date.available2023-02-10T10:21:52Z-
dc.date.issued2020-
dc.identifier.issn1116-4336-
dc.identifier.otherui_art_adebisi_determining_2020-
dc.identifier.otherTransactions of the Nigerian Association of Mathematical Physics 11, pp. 5-6-
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/7917-
dc.description.abstractThe problem of classification of fuzzy subgroups can be extended from finite p-groups to finite nilpotent groups. Accordingly, any finite nilpotent group can be uniquely written as a direct product of p-groups. In this paper, we give explicit formulae for the number of distinct fuzzy subgroups of the Cartesian product of two abelian groups of orders 2n−1 and 4 respectively for every integer n >2.en_US
dc.language.isoenen_US
dc.subjectFinite p-Groupsen_US
dc.subjectNilpotent Groupen_US
dc.subjectFuzzy subgroupsen_US
dc.subjectDihedral Groupen_US
dc.subjectInclusion-Exclusion Principleen_US
dc.subjectMaximal subgroupsen_US
dc.titleDetermining the number of distinct fuzzy subgroups for the abelian structure Z4 x Z2n-1 ,n > 2en_US
dc.typeArticleen_US
Appears in Collections:scholarly works

Files in This Item:
File Description SizeFormat 
(22) ui_art_adebisi_determining_2020.pdf887.11 kBAdobe PDFThumbnail
View/Open


Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.