Please use this identifier to cite or link to this item: http://ir.library.ui.edu.ng/handle/123456789/7918
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdebisi, S. A.-
dc.contributor.authorEniOluwafe, M.-
dc.date.accessioned2023-02-10T10:45:48Z-
dc.date.available2023-02-10T10:45:48Z-
dc.date.issued2020-
dc.identifier.issn2277-1417-
dc.identifier.otherui_art_adebisi_explicit_2020-
dc.identifier.otherUniversal Journal of Mathematics and Mathematical Sciences 13(1), pp. 1-7-
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/7918-
dc.description.abstractThe problem of classification of fuzzy subgroups can be extended from finite p-groups to finite nilpotent groups. Accordingly, any finite nilpotent group can be uniquely written as a direct product of p-groups. In this paper, we give explicit formulae for the number of distinct fuzzy subgroups of the Cartesian product of the dihedral group of order 2n with a cyclic group of order 2.en_US
dc.language.isoenen_US
dc.publisherPushpa Publishing House, Prayagraj, Indiaen_US
dc.subjectFinite p-Groupsen_US
dc.subjectNilpotent Groupen_US
dc.subjectFuzzy subgroupsen_US
dc.subjectDihedral Groupen_US
dc.subjectInclusion-Exclusion Principleen_US
dc.subjectMaximal subgroupsen_US
dc.titleAn explicit formula for the number of distinct fuzzy subgroups of the cartesian product of the dihedral group of order 2n with a cyclic group of order 2en_US
dc.typeArticleen_US
Appears in Collections:scholarly works

Files in This Item:
File Description SizeFormat 
(23) ui_art_adebisi_explicit_2020.pdf499.5 kBAdobe PDFThumbnail
View/Open


Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.