Please use this identifier to cite or link to this item: http://ir.library.ui.edu.ng/handle/123456789/8110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOgbiyele, P. A.-
dc.contributor.authorArawomo, P. O.-
dc.date.accessioned2023-03-21T13:01:08Z-
dc.date.available2023-03-21T13:01:08Z-
dc.date.issued2020-06-
dc.identifier.issn1572-9036-
dc.identifier.issn0167-8019-
dc.identifier.otherui_art_ogbiyele_existence_2020-
dc.identifier.otherActa Applicandae Mathematicae 170(1), pp. 443-458-
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/8110-
dc.description.abstractIn this paper, we consider nonlinear wave equations with dissipation having the form utt −div_(|∇u|γ−2∇u)+b(t, x)|ut |m−2ut = g(x,u) for (t, x) ∈ [0,∞) × Rn. We obtain existence and blow up results under suitable assumptions on the positive function b(t, x) and the nonlinear function g(x,u). The existence result was obtained using the Galerkin approach while the blow up result was obtained via the perturbed energy method. Our result improves on the perturbed energy technique for unbounded domains.en_US
dc.language.isoenen_US
dc.publisherSpringer Nature B.V.en_US
dc.subjectNonlinear wave equationen_US
dc.subjectGlobal existenceen_US
dc.subjectBlow upen_US
dc.subjectFinite speed of propagationen_US
dc.titleExistence and Blow up Time Estimate for a negative initial energy solution of a nonlinear cauchy problemen_US
dc.typeArticleen_US
Appears in Collections:scholarly works

Files in This Item:
File Description SizeFormat 
(32) ui_art_ogbiyele_existence_2020.pdf1.16 MBAdobe PDFThumbnail
View/Open


Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.